41 st amatyc annual conference themed session t2b leibnitz’s method and other methods for summing...

24
41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna Community College [email protected] November 19, 2015 New Orleans, Louisiana 1 2 3 4 5

Upload: imogene-kennedy

Post on 19-Jan-2016

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

1

41st AMATYC Annual Conference

Themed Session T2B

Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers

Dr. Siham AlfredGermanna Community College

[email protected]

November 19, 2015New Orleans, Louisiana

∑ 𝑖❑ ∑ 𝑖2 ∑ 𝑖3 ∑ 𝑖4 ∑ 𝑖5

Page 2: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

2

Abstract

• Students are introduced to sums of powers of positive integers when finding areas under curves to motivate the introduction of integration.

• They begin to approximate areas under curves by using right-Left hand side rectangles, midpoint or trapezoid methods. All these calculations are done for small values of n.

• When they proceed to calculate the area as a limit of a Riemann Sum, they encounter the formulas for the sums of powers of positive integers.

Page 3: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

3

Abstract

• Or they might encounter these formulas in a course on Mathematical Induction.

• But where do these formulas come from and how are they computed remains a mystery to the students.

• In this presentation primarily Leibnitz’s Method and some modifications his method for calculating sums of positive integer powers will be explored.

Page 4: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

4

On Finite Sums of Powers of Positive Integers

OUTLINE

I. The Sum of the First n Positive Integers

II. The Leibnitz Algebraic Method

A. Alternative Algebraic Method

B. Calculus-Based Method

C. Looking at the General Case

Page 5: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

5

Some Powers of Positive Integers

1n

i

n (1)

1

( 1)

2

n

i

n ni

= 21 1

2 2n n (2)

2

1

( 1)(2 1)

6

n

i

n n ni

= 3 21 1 1

3 2 6n n n (3)

2 2

3

1

( 1)

4

n

i

n ni

= 4 3 21 1 1

4 2 4n n n (4)

2

4 ( 1)(2 1)(3 3 1)

30

n

i

n n n n ni

= 5 4 31 1 1 1

5 2 3 30n n n n (5)

Page 6: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

6

Mathematicians who computed the sums of powers of positive integers

See Janet Beery’s valuable article in [2].

Beery traces the fascinating and rich history of the computation of the sums of powers of positive integers from Pythagoras to Bernoulli.

Page 7: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

7

Mathematicians who computed the sums of powers of positive integers

Pythagoras (570-500 B.C.)Greece, Italy

Thomas Harriot (1560-1621) England

Archimedes (287-212 B.C.), Greece, Italy

Johann Faulhaber (1580-1635) Germany

Aryabhata (b. A.D. 478)Northern India

Pierre de Fermat (1601-1665) France

Abu-Bakr Al-Kharaji (d. 1019) Baghdad

Blaise Pascal (1623-1662)France

Ibn Al Haytham (965-1039)Egypt

Jakob Bernoulli (1654-1705) Switzerland

Page 8: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

8

I. The Sum of the First n Positive Integers

1 1 + 2 = 3 1 + 2 + 3 = 6 1 + 2 + 3 + 4 = 10

1

( 1)

2

n

i

n ni

Page 9: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

9

The Pythagorean Method of Computing the Sum of n Positive Integers

Twice a triangular number is an oblong number:

Generalize this result to get the sum of the first n positive integers

2(1 2 3 ... ) ( 1)n n n ( 1)

(1 2 3 ... )2

n nn

2(1 2 3 4 5) 5 6

Page 10: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

10

Leibnitz Experimented with Finite Differences

In [3] on page 31, Leibnitz computes finite differences on the set of squares below 0 1 4 9 16 25 1 3 5 7 9 and notes that 25 - 0 = 1 + 3 + 5 + 7 + 9 He notes that this sum: first term minus the last term of the original sequence is the sum of the first differences no matter where one starts.

For example: 25 – 1 = 24 = 3+5+7+9

Page 11: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

11

Leibnitz Experimented with Finite Differences Then he proceeds to study 2nd, third and fourth finite differences on the set below which he called combinatory numbers. In this array a preceding series, whether horizontal or vertical, is the first difference of the series immediately following it. In addition, each series either horizontal or vertical contains the sum of the series immediately preceding it

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 15 35 70 126

1 6 21 56 126 252

1 7 28 84 210 462

In this array a preceding series whether horizontal or vertical is the first difference of the series immediately following it.

Each series either horizontal or vertical contains the sum of the series immediately preceding it.

Page 12: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

12

He argued in [3] page 51 that if x is the general term of a series of natural numbers,

then the general term of the series of squares is 2x and the next square in the series would

be 2( 1)x . Then the general term for the finite difference between the two successive

squares is 2 2( 1) 2 1x x x , which an odd number.

Similarly the general term for the finite difference of successive cubes is

3 3 2( 1) 3 3 1x x x x .

Then Leibnitz applied the same approach he used on the two successive terms of squares and cubes and considered computing the difference between two successive terms of the entire series as will be shown next.

Page 13: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

13

II. The Leibnitz Algebraic Method

2

1

( 1)(2 1)

6

n

i

n n ni

3 22

1

( 1)(2 1)

6 3 2 6

n

i

n n n n n ni

The sum of the first n integer squares =

As a polynomial, it will be shown that the above sum can also be written as

Page 14: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

14

II. The Leibnitz Algebraic Method

Leibnitz made the assumption that the sum of squares of the first n integers is a polynomial of degree n+1. So by assumption the sum of the first n squares is a cubic polynomial

Since S(0) = 0 it follows that d = 0

Page 15: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

15

II. The Leibnitz Algebraic Method

It is clear that 2 2( 1) ( ) ( 1) 2 1S x S x x x x

The left hand side can be written as:

3 3 2 2 2[( 1) ] [( 1) ] [( 1) ] 2 1a x x b x x c x x d d x x

𝑆 (𝑥+1)=02+12+22+32 ...+𝑥2+ (𝑥+1 )2Consider

Page 16: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

16

II. The Leibnitz Algebraic Method

Expanding the Left hand side and collecting like terms gives

2 23 (3 2 ) 2 1ax a b x a b c x x

1 1 1,3 2 6a b and c

Equate coefficients of like terms

to get

3 2 ( 1)(2 1)1 1 1( ) 3 2 6 6

x x xS x x x x

as required to prove

3 1, 3 2 2 1a a b and a b c

Page 17: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

17

For the sum of thefirst n integers

Use S(x) = ax2 + bx + cS(0) = 0, so c = 0

S(x+1) – S(x) = (x+1) = a[(x+1)2 – x2 ] +b[(x+1) – x] + c –c = 2ax + a + b = x + 1, a = ½ , b = ½

For the sum of thefirst n cubes

UseS(x) = ax4 + bx3 + cx2 + dxS(0) = 0, so e = 0

S(x+1) – S(x) = (x+1)3

= a[(x+1)4– x4 ] +b[(x+1)3 – x3]

+ c[(x+1)2 – x2 ] + d[(x+1) – x] = (x+1)3

= 4ax3 + (6a+3b)x2 + (4a+3b+2c)x +a+b+c = (x+1)3 = x3 + 3x2 + 3x + 1

4a =1, 6a + 3b = 3, 4a + 3b + 2c = 3a = ¼ , b = ½ , c = ¼ , d = 0

For the sum

for a positive integer k

Use S(x), a polynomialof degree k+1

S(x+1) – S(x) = (x+1)k

1

( 1)

2

n

i

n ni

2 23

1

( 1)

4

n

i

n nfor i

Page 18: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

18

A.Alternative Algebraic Method

3 3 2 2 2[( 1) ] [( 1) ] [( 1) ] 2 1a x x b x x c x x d d x x

Since we have three unknowns we need three equations to solve the system. When x = 0 the above equation becomes 1a b c

7 3 4a b c

19 5 9a b c

Note: Leibnitz Method requires expanding the binomial powers of (x+1). An alternative method would be equating two polynomials which requires equating coefficients of like terms.

When x = 1 the above equation becomes

When x = 2 the above equation becomes

Page 19: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

19

A.Alternative Algebraic Method

When solving the system the same solution is obtained

1 1 1,3 2 6a b and c

Page 20: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

20

B.Calculus Based Method

3 3 2 2 2[( 1) ] [( 1) ] [( 1) ] 2 1a x x b x x c x x d d x x 2 2[3( 1) 3 ] [2( 1) 2 ] 2 2a x x b x x x

(1)(2)

(2) is an equation in a and b, the c term vanishes. Note that the term in (2)

[2( 1) 2 ] 2 2 2 2b x x bx b bx b

By the time the students get to Riemann sums and integration they have already covered the derivative, they can differentiate both sides of the equation in Example 1

So equation (2) becomes 2 2[3( 1) 3 ] 2 2 2a x x b x

Page 21: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

21

B.Calculus Based Method

Differentiate equation (2) again will eliminate the constant term 2b to get

(6 1) 6 ) 2a x x

When x = 0 in equations (1), (2) and (3) the system can be easily solved by back substitution

(3)

1

3 2 2

1 1 16 2, , ,3 2 6

a b c

a b

a So a b and c

Page 22: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

22

C.Proving the General Case

To prove the general case that the sum of positive integer powers of k

( ) 0 1 2 3 ...k k k k kS x x 1 1

1 1 1...k k kk k k oa x a x a x a x a , is a polynomial of

degree k+1 with 1

1

1kak

and 0 0a , assume that

( ) 0 1 2 3 ....k k k k kS x x = 1 21 2 1( ) ...m m m

m m m oP x a x a x a x a x a an arbitrary

thm degree polynomial. It is required to show that 1m k , the leading coefficient of ( )P x

1

1mak

and the constant term 0 0a .

Since (0) 0S , it follows that 0 0a . 1 1

1 1( 1) ( ) ( 1) [( 1) ] [( 1) ] ... [( 1) ]k m m m mm mS x S x x a x x a x x a x x

Page 23: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

23

C.Proving the General Case

It follows that the leading term of ( 1)kx is kx = 1( ) mmm a x the leading term of the polynomial on the

left. Therefore 1k m and 1m k as required to prove.

Moreover, 1 ( ) mm a and 1 1

1mam k

namely that the leading coefficient of the sought after

polynomial of degree k+1 is the reciprocal of the degree of the polynomial as required to prove.

Page 24: 41 st AMATYC Annual Conference Themed Session T2B Leibnitz’s Method and Other Methods for Summing the Powers of Positive Integers Dr. Siham Alfred Germanna

24

Leibnitz’s Method and Other Methods of Summing Up the Powers of Integers

REFERENCES

1. J.A, Suzuki, “Introducing the Sums of Powers”, The College Mathematics Journal, Vol. 35, No. 4, September 2004, pp. 303-305

2. J. Beery http://www.maa.org/press/periodicals/convergence/sums-of-powers-of-positive-integers

3. G.W. Leibnitz (Translated by J.M. Child), The Early Mathematical Manuscript of Leibnitz, Open Court, 1920, pp. 31-33, 51