4. results - information and library network...

55
- 50 - 4. RESULTS 4.1 Insecticidal bioassay studies on lab and field populations of H. armigera and T. chilonis 4.1.1 Insecticide bioassay on field collected (cotton and tomato) and susceptible lab populations of H. armigera The results on the toxicity of the test insecticides to third instar larvae of susceptible lab and field populations of H. armigera on cotton and tomato are presented in Table 3. The statistical comparison of toxicity and resistant factor shown in Table 4 revealed variations in the responses to field and susceptible populations of H. armigera larvae on cotton and tomato to the insecticides applied. On cotton, the median lethal concentration (LC 50 ) for 3 rd instar larvae of H. armigera ranged from 74.09 to 2684.97 ppm for the eight different insecticides, with the larvae exhibiting the highest resistance to triazophos and the lowest to abamectin (Table 4). Resistance of field populations to organophosphate compounds compared to the susceptible strain was found to be significantly higher by 1.26 to 4.11-fold. The resistance factor was highest (4.11) for malathion and least (1.2) for chlorpyriphos. In contrast to organophosphates, resistance of field populations of H. armigera to pyrethroid (cypermethrin) was 14.16 compared to the susceptible populations. The field populations on cotton showed no resistance to indoxacarb and abamectin and the resistance factor was 4.94 and to spinosad the resistant factor was 2.49 as compared to susceptible population. The non-overlapping method of fiducial limits done to observe differences in LC 50 values indicated abamectin and spinosad were on par (P<0.05), and differed significantly from other insecticides (Figure.1).

Upload: phungdiep

Post on 12-Dec-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

- 50 -

4. RESULTS

4.1 Insecticidal bioassay studies on lab and field populations of H. armigera and

T. chilonis

4.1.1 Insecticide bioassay on field collected (cotton and tomato) and susceptible lab

populations of H. armigera

The results on the toxicity of the test insecticides to third instar larvae of

susceptible lab and field populations of H. armigera on cotton and tomato are presented in

Table 3. The statistical comparison of toxicity and resistant factor shown in Table 4

revealed variations in the responses to field and susceptible populations of H. armigera

larvae on cotton and tomato to the insecticides applied. On cotton, the median lethal

concentration (LC50) for 3rd

instar larvae of H. armigera ranged from 74.09 to 2684.97

ppm for the eight different insecticides, with the larvae exhibiting the highest resistance to

triazophos and the lowest to abamectin (Table 4). Resistance of field populations to

organophosphate compounds compared to the susceptible strain was found to be

significantly higher by 1.26 to 4.11-fold. The resistance factor was highest (4.11) for

malathion and least (1.2) for chlorpyriphos. In contrast to organophosphates, resistance of

field populations of H. armigera to pyrethroid (cypermethrin) was 14.16 compared to the

susceptible populations. The field populations on cotton showed no resistance to

indoxacarb and abamectin and the resistance factor was 4.94 and to spinosad the resistant

factor was 2.49 as compared to susceptible population. The non-overlapping method of

fiducial limits done to observe differences in LC50 values indicated abamectin and

spinosad were on par (P<0.05), and differed significantly from other insecticides

(Figure.1).

- 51 -

On tomato, the median lethal concentrations (LC50) for 3rd

instar larvae of H. armigera

ranged from 46.44 to 2515.37 ppm for the eight insecticides, with the larvae exhibiting the

highest resistance for triazophos and the lowest resistance to abamectin (Table 4). The

resistance factor for organophosphate compounds for larvae collected from tomato was

significantly lower (1.15 to 2.09 fold) compared to the susceptible population. The

resistance factor was highest for cypermethrin (13.9), while indoxacarb showed nil

resistance as compared to the susceptible population. The non-overlapping method of

fiducial limits to test the difference in LC50 values indicated abamectin and spinosad

resistance was at par (P<0.05), and it differed significantly with other insecticides (Figure.

2). The larvae collected on cotton were 1.01 to 1.97-fold more resistant as compared to

tomato.

The insecticide toxicity data was also recorded after 7 days of exposure and their

mortality data was recorded (Table 5) and the LC50 values was derived using probit

analysis (Table 6). Hundred per cent mortality was recorded in the higher three

concentrations in most of the insecticides tested for field and susceptible populations of H.

armigera. From the probit analysis the median lethal concentration was tremendously

decreased and the LC50 values for field cotton populations was found to be 15.58, 243.39,

30.39,. 102.46, 249.96, 296.99, 17.67 and 613.17 ppm respectively, similarly the LC50

values for field tomato populations was found to be 12.49, 208.47, 38.32, 88.25, 303.98,

387.25, 13.67 and 529.12 ppm respectively.

4.1.2 Insecticide bioassay on susceptible lab and field (tomato) populations of T.

chilonis

The results on the toxicity of the test insecticides of field and susceptible

populations of T. chilonis on tomato are presented in Figure. 3 (abamectin, chlorpyriphos,

- 52 -

cypermethrin and indoxacarb) and Figure. 4 (malathion, quinalphos, spinosad and

triazophos) on susceptible populations and Figure. 5 (abamectin, chlorpyriphos,

cypermethrin, indoxacarb, malathion, quinalphos, spinosad and triazophos) on field

populations of T. chilonis (tomato), The statistical comparison of toxicity and resistant

factor is shown in Table 7. The data revealed very minute variations in the responses of

susceptible and field populations of T. chilonis to the insecticides applied. In field

populations, the median lethal concentration (LC50) ranged from 1.03 to 271.13 ppm for

the eight different insecticides, with the adults exhibiting the highest LC50 to quinalphos

and the lowest to malathion (Table 7). In lab populations median lethal concentration

LC50) ranged from 1.05 to 322.47 ppm for the eight different insecticides, with highest

LC50 values obtained for quinalphos and the lowest for malathion (Table 7).

The LC50 of field populations to organophosphate compounds was found to be

highest for quinalphos (271.23) followed by chlorpyriphos (12.93), triazophos (1.33) and

least in malathion (1.03) and in susceptible strain the LC50 organophosphate compounds

was found to be more in quinophos (322 .47) followed by chlorpyriphos (11.34),

triazophos (1.29) and least was in malathion (1.05). The LC50 of indoxacarb was 176.05

and 288.09 in field and susceptible strain populations; similarly LC50 of abamectin was

1.62 and 1.72 in field and susceptible strain. The LC50 of pyrethroid (cypermethrin) was

1.69 and 1.30 in field and susceptible strain. Comparing the LC50 values of all eight

insecticides of field and susceptible populations, it shows that field populations of T.

chilonis have no resistance to the insecticides tested.

- 53 -

Table 3. Toxicities of different insecticides on field (cotton and tomato) and

susceptible lab populations of H. armigera on cotton after 24 h of

exposure

Insecticide

Field (Cotton) Field (Tomato) Susceptible Lab

Dose

PPM n

a r

b M

c

Dose

PPM n

a r

b M

c

Dose

PPM n

a r

b M

c

Abamectin

0

14.25

28.5

57

114

10

10

10

10

10

0

0

2

6

7

0

0

20

60

70

0

14.25

28.5

57

114

10

10

10

10

10

0

0

4

6

10

0

0

40

60

100

0

4.75

9.50

19.0

38.0

10

10

10

10

10

0

1

4

6

10

0

10

40

60

100

Chlorpyriphos

0

300

600

1200

2400

10

10

10

10

10

0

0

2

4

9

0

20

40

90

0

300

600

1200

2400

10

10

10

10

10

0

0

3

5

9

0

0

30

50

90

0

175

350

700

1400

10

10

10

10

10

0

0

1

4

6

0

0

10

40

60

Cypermethrin

0

25

50

100

200

10

10

10

10

10

0

0

0

3

6

0

0

0

30

60

0

25

50

100

200

10

10

10

10

10

0

0

1

3

6

0

0

10

30

60

0

5

10

20

40

10

10

10

10

10

0

2

5

8

10

0

20

50

80

100

Indoxacarb

0

108.75

217.5

435

870

10

10

10

10

10

0

0

5

7

9

0

0

50

70

90

0

108.75

217.5

435

870

10

10

10

10

10

0

0

5

8

10

0

0

50

80

100

0

54.3

108.6

217.2

435

10

10

10

10

10

0

0

0

1

6

0

0

0

10

60

Malathion

0

250

500

1000

2000

10

10

10

10

10

0

0

1

3

6

0

0

10

30

60

0

250

500

1000

2000

10

10

10

10

10

0

0

3

6

10

0

0

30

60

100

0

125

250

500

1000

10

10

10

10

10

0

2

4

6

10

0

20

40

60

100

Quinalphos

0

250

500

1000

2000

10

10

10

10

10

0

0

0

2

6

0

0

0

20

60

0

250

500

1000

2000

10

10

10

10

10

0

0

1

3

6

0

0

10

30

60

0

125

250

500

1000

10

10

10

10

10

0

0

1

2

6

0

0

10

20

60

Spinosad

0

12.5

25

50

100

10

10

10

10

10

0

0

1

3

6

0

0

10

30

60

0

12.5

25

50

100

10

10

10

10

10

0

0

2

3

5

0

0

20

30

50

0

4.75

9.5

19.0

38.0

10

10

10

10

10

0

0

0

2

6

0

0

0

20

60

Triazophos

0

400

800

1600

3200

10

10

10

10

10

0

0

1

3

6

0

0

10

30

60

10

400

800

1600

3200

10

10

10

10

10

0

0

2

4

6

0

0

20

40

60

0

200

400

800

1600

10

10

10

10

10

0

0

1

3

5

0

0

10

30

50 aNumber of larvae used

bNumber of larvae died

cPer cent mortality

- 54 -

Table 4. Statistical comparison of toxicity and resistance factor of eight commonly used insecticides on field (cotton

& tomato) and susceptible lab populations of H. armigera after 24 h of exposure

Test larvae

(Population of

H. armigera)

Insecticide LC50 A

(ppm)

95% FL of LC50

RF Slope ± SE Chi

square Lower Upper

Field (Cotton)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

74.09a

1421.04d

170.72b

381.28c

1678.10d

1772.70d

83.90a

2684.97e

54.81

1088.68

134.28

--

1284.06

1409.96

64.20

2054.51

106.28

1924.11

242.20

--

2534.12

2484.81

126.70

4054.59

4.9

1.2

14.1

- 0.9

4.1

2.0

2.4

1.8

0.0223 ± 0.0056

0.0014 ± 0.0003

0.0143 ± 0.0039

0.0038 ± 0.0009

0.0012 ± 0.0003

0.0015 ± 0.0004

0.0246 ± 0.0068

0.0007 ± 0.0002

5.23

1.54

2.45

7.47

1.43

1.10

1.43

1.43

Field

(Tomato)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

46.44a

1294.89e

167.81b

288.00c

850.41d

1678.10e

91.49b

2515.37e

35.23

967.08

128.40

216.71

656.12

1284.06

66.51

1865.75

66.74

1784.60

253.41

385.01

1215.15

2534.12

171.98

3977.74

3.0

1.1

13.9

- 0.7

2.0

1.9

2.7

1.7

0.0448 ± 0.0127

0.0014 ± 0.0003

0.0123 ± 0.0034

0.0075 ± 0.0019

0.0027 ± 0.0007

0.9912 ± 0.0003

0.0189 ± 0.0062

0.0006 ± 0.0002

3.47

2.94

1.43

3.47

1.98

1.43

2.74

3.07

Susceptible

strain

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

14.99

1125.28

12.05

399.21

407.45

874.47

33.67

1476.74

10.99

854.88

8.404

321.95

309.09

674.27

26.78

1105.88

22.04

1692.6

17.25

546.52

585.45

1321.26

47.21

2528.26

-

-

-

-

-

-

-

-

0.1174 ± 0.0326

0.0017 ± 0.0004

0.1322 ± 0.0357

0.0080 ± 0.0024

0.0027 ± 0.0007

0.0051 ± 0.0014

0.0808 ± 0.0230

0.0013 ± 0.0004

1.79

2.71

1.33

0.26

3.47

0.86

1.10

1.89

LC50 : Concentration of insecticides that killed 50% of the test larval population in the observation period of 24 h., FL: Fiducial Limit.

SE: Pooled binomial standard error.

- 55 -

0

900

1800

2700

3600

4500

Aba

mec

tin

Chlor

pyriph

os

Cyp

ermethr

in

Indo

xaca

rb

Malathion

Qui

nalpho

s

Spinos

ad

Triaz

opho

s

Insecticides

LC

50 (

in p

pm

)

Cotton

Figure 1. LC50 values of third instar larvae of Helicoverpa armigera to

different insecticides (box showing mean value and bar showing

lower and upper fiducial values)

0

900

1800

2700

3600

4500

Aba

mec

tin

Chl

orpy

ripho

s

Cyp

erm

ethr

in

Indo

xaca

rb

Malathi

on

Qui

nalp

hos

Spin

osad

Triazo

phos

Insecticides

LC

50 (

in p

pm

)

Tomato

Figure 2. LC50 values of third instar larvae of Helicoverpa armigera to

different insecticides (box showing mean value and bar showing

lower and upper fiducial values)

- 56 -

Table 5. Toxicities of different insecticides on field (cotton and tomato) and

susceptible lab populations of H. armigera on cotton after 7 days of

exposure

Insecticide

Field (Cotton) Field (Tomato) Susceptible Lab

Dose

PPM n

a r

b M

c

Dose

PPM n

a r

b M

c

Dose

PPM n

a r

b M

c

Abamectin

0

14.25

28.5

57

114

10

10

10

10

10

1

4

9

10

10

10

40

90

100

100

0

14.25

28.5

57

114

10

10

10

10

10

1

5

10

10

10

10

50

100

100

100

0

4.75

9.50

19.0

38.0

10

10

10

10

10

0

6

10

10

10

0

60

100

100

100

Chlorpyriphos

0

300

600

1200

2400

10

10

10

10

10

0

8

10

10

10

0

80

100

100

100

0

300

600

1200

2400

10

10

10

10

10

1

7

10

10

10

10

70

100

100

100

0

175

350

700

1400

10

10

10

10

10

1

8

10

10

10

10

80

100

100

100

Cypermethrin

0

25

50

100

200

10

10

10

10

10

1

4

8

10

10

10

40

80

100

100

0

25

50

100

200

10

10

10

10

10

0

3

7

10

10

0

30

70

100

100

0

5

10

20

40

10

10

10

10

10

0

8

10

10

10

0

80

100

100

100

Indoxacarb

0

108.75

217.5

435

870

10

10

10

10

10

0

7

9

10

10

0

70

90

100

100

0

108.75

217.5

435

870

10

10

10

10

10

1

7

9

10

10

10

70

90

100

100

0

54.3

108.6

217.2

435

10

10

10

10

10

0

9

10

10

10

0

90

100

100

100

Malathion

0

250

500

1000

2000

10

10

10

10

10

1

5

9

10

10

10

50

90

100

100

0

250

500

1000

2000

10

10

10

10

10

1

4

8

10

10

10

40

80

100

100

0

125

250

500

1000

10

10

10

10

10

1

8

10

10

10

10

80

100

100

100

Quinalphos

0

250

500

1000

2000

10

10

10

10

10

1

3

6

10

10

10

30

60

100

100

0

250

500

1000

2000

10

10

10

10

10

1

2

7

10

10

10

20

70

100

100

0

125

250

500

1000

10

10

10

10

10

1

7

9

10

10

10

70

90

100

100

Spinosad

0

12.5

25

50

100

10

10

10

10

10

1

2

8

10

10

10

20

80

100

100

0

12.5

25

50

100

10

10

10

10

10

1

4

9

10

10

10

40

90

100

100

0

4.75

9.5

19.0

38.0

10

10

10

10

10

0

8

9

10

10

0

80

90

100

100

Triazophos

0

400

800

1600

3200

10

10

10

10

10

0

3

7

10

10

0

40

60

100

100

10

400

800

1600

3200

10

10

10

10

10

0

4

8

10

10

0

40

80

100

100

0

200

400

800

1600

10

10

10

10

10

0

8

9

10

10

0

80

90

100

100 aNumber of larvae used

bNumber of larvae died

cPer cent mortality

- 57 -

Table 6. Statistical comparison of toxicity and resistance factor of eight commonly used insecticides on field

(cotton & tomato) and susceptible lab populations of H. armigera after 7 days of exposure

Test larvae

(Population of

H. armigera)

Insecticide LC50 A

(ppm)

95% FL of LC50 Slope ± SE Chi square

Lower Upper

Field (Cotton)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

15.58

243.39

30.39

102.46

249.96

296.99

17.67

613.17

8.55

--

16.59

50.17

120.58

178.94

11.46

421.91

23.27

--

46.54

146.84

378.78

437.61

26.38

878.86

0.090 ± 0.027

0.015 ± 0.022

0.043 ± 0.013

0.015 ± 0.004

0.005 ± 0.002

0.005 ± 0.002

0.092 ± 0.027

0.003 ± 0.001

0.211

0.002

0.019

2.562

0.001

0.831

1.241

0.477

Field (Tomato)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

12.49

208.47

38.32

88.25

303.98

387.25

13.67

529.12

6.50

82.92

26.62

26.21

165.96

254.06

7.50

342.27

18.90

333.50

54.92

139.64

465.41

574.69

20.41

735.98

0.119 ± 0.035

0.006 ± 0.002

0.053 ± 0.017

0.012 ± 0.004

0.004 ± 0.001

0.004 ± 0.001

0.103 ± 0.030

0.001 ± 0.004

0.733

0.093

0.477

0.876

0.019

0.803

0.211

0.677

Susceptible strain

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

4.38

105.17

4.01

43.18

74.12

101.44

4.04

170.30

--

34.93

--

--

24.95

30.13

1.69

71.25

--

174.41

--

--

123.86

160.50

5.94

250.45

0.759 ± 0.855

0.012 ± 0.004

0.863 ± 1.080

0.115 ± 2.041

0.017 ± 0.005

0.010 ± 0.003

0.345 ± 0.098

0.008 ± 0.003

0.009

0.015

0.003

0.000

0.015

0.876

4.307

4.307

LC50 : Concentration of insecticides that killed 50% of the test larval population in the observation period of 7 days. FL -

Fiducial Limit. SE: Pooled binomial standard error.

- 58 -

Figure 3. Toxicities of abamectin, chlorpyriphos, cypermethrin and indoxacarb on lab adult populations of T. chilonis after

24 h of exposure

- 59 -

Figure 4. Toxicities of malathion, quinalphos, spinosad and triazophos on lab adult populations of T. chilonis after 24 h of

exposure

- 60 -

Figure 5. Toxicities of abamectin, chlorpyriphos, cypermethrin, indoxacarb, malathion, quinalphos, spinosad and triazophos

on field adult populations of T. chilonis from tomato crop after 24 h of exposure

- 61 -

Table 7. Statistical comparison of toxicity of eight commonly used insecticides on field (tomato) and susceptible

populations of T. chilonis after 4 h of exposure

Test

(Population of

adult T. chilonis

Insecticide

LC50

(ppm)

95% FL of LC50

RF Slope ± SE

Chi

square Lower Upper

Field (Tomato)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

1.62

12.93

1.69

176.05

1.03

271.23

2.75

1.33

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0.92

1.14

1.31

0.61

0.91

0.94

0.96

1.03

0.0708 ± 0.1481

0.0914 ± 0.0164

0.6050 ± 0.1428

0.0050 ± 0.0012

0.9386 ± 0.1567

0.5020 ± 0.0006

0.4564 ± 0.0758

0.7521 ± 0.1584

9.90

8.77

11.11

13.50

20.55

22.08

7.98

14.13

Susceptible strain

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

1.72

11.34

1.30

288.09

1.05

322.47

2.86

1.29

-

-

0.80

-

-

-

-

-

-

-

1.95

-

-

-

-

-

-

-

-

-

-

-

-

-

0.6454 ± 0.1442

0.0845 ± 0.0158

0.3719 ± 0.1414

0.0049 ± 0.0013

0.7309 ± 0.1345

0.0017 ± 0.0005

0.4522 ± 0.0825

0.7245 ± 0.1604

10.92

12.52

3.90

8.47

26.84

25.41

4.44

13.14

LC50 : Concentration of insecticide that killed 50% of the adult population in the observation period of 4 h. FL: Fiducial Limit.

SE: Pooled binomial standard error.

- 62 -

4.2 Isolation of gut bacterial flora from field and lab populations of H. armigera

and T. chilonis

4.2.1 Isolation of gut bacterial flora from the insecticide resistance larval

populations of H. armigera collected from tomato.

Gut bacteria was isolated from the gut of insecticide resistant fourth and fifth instar

larvae of H. armigera collected from the tomato fields of Malur, Karnataka, by following

standard microbiological procedures. Isolated colonies on nutrient agar plates from

different dilutions were isolated and sub cultured to obtain pure cultures. The plates of

isolated bacterial colonies have been shown in Plate 4. Eleven randomly isolated bacterial

colonies from the nutrient agar plates were sub cultured to obtain pure colonies and the

plates of eleven isolated bacterial colonies were coded as HT1, HT2, HT3, HT5, HT7,

HT9, HT10, HT12, HT13, HT14 and HT15 (Plate 5). Gram staining of the bacterial

isolates showed that isolates HT2, HT3, HT5, HT9, HT10, HT15 were Gram +ve cocci,

isolates HT1, HT7, HT12, HT13 were Gram –ve rods and isolate HT14 were gram +ve

rods.

4.2.2 Isolation of gut bacterial flora from the insecticide resistance larval

populations collected from cotton and susceptible lab populations of H.

armigera.

Gut bacteria was isolated from the gut of insecticide resistant fourth and fifth instar

larvae of H. armigera collected from the cotton fields of Vikarabad, Andhra Pradesh, by

following standard microbiological procedures. Isolated colonies on nutrient agar plates

from different dilutions were isolated and sub cultured to obtain pure cultures. The plates

of isolated bacterial colonies have been shown in Plate 6. Seven randomly isolated

bacterial colonies from the nutrient agar plates were sub cultured to obtain pure colonies

and the plates of seven isolated bacterial colonies were coded as CL1, CL2, CL3, CL4,

- 63 -

CL5, CL6 and CL7 (Plate 7 ). Gram staining of the bacterial isolates showed that isolates

CL1, CL3 were Gram +ve rods, isolates CL2, CL4, CL6 were Gram + ve cocci and

isolates CL5, CL7 were Gram –ve rods. Gut bacteria was isolated from the gut of

susceptible fourth and fifth instar larvae of H. armigera collected from mass production

unit of NBAII, Bangalore, by following standard microbiological procedures. Isolated

colonies on nutrient agar plates from different dilutions were isolated and sub cultured to

obtain pure cultures. The plates of isolated bacterial colonies have been shown in Plate 8.

Six randomly isolated bacterial colonies from the nutrient agar plates were sub cultured to

obtain pure colonies and the plates of seven isolated bacterial colonies were coded as HL1,

HL2, HL3, HL4, HL5 and HL6 (Plate 9). Gram staining of the bacterial isolates showed

that the isolates HL1, HL3, HL5, HL6 were Gram – ve rods and isolates HL2, HL4 were

Gram +ve rods.

4.2.3 Isolation of gut bacterial flora from the susceptible lab and field adult

populations of T. chilonis.

Gut bacteria was isolated from the gut of susceptible lab (obtained from the mass

production unit of NBAII) and field adult populations of T. chilonis collected from tomato

fields of Malur, Karnataka, by following standard microbiological procedures. Isolated

colonies on nutrient agar plates from different dilutions were isolated and sub cultured to

obtain pure cultures. The plates of isolated bacterial colonies have been shown in Plate 10.

Five randomly isolated bacterial colonies (two from susceptible lab and three from field

population) from the nutrient agar plates were sub cultured to obtain pure colonies and the

sub cultured plates were coded as TF1, TF2 and TF3 for field populations and TL1, TL2

for lab populations (Plate 11). Gram staining of the pure bacterial isolates showed that the

isolates TF1, TF3 were Gram –ve rods and isolate TF2 were Gram +ve rods and isolates

TL1, TL2 were Gram –ve rods.

- 64 -

Plate 4. Plate A-C- Bacterial colonies on nutrient agar isolated from

gut of insecticide resistant larvae of H. armigera collected

from tomato.

- 65 -

================================================================

Plate 5. Pure cultures of bacterial isolate from the gut of insecticides resistant H.

armigera larvae from tomato. Plate P1-P3, P5, P7, P9, P10, P12 – P15 –

Eleven isolates labeled as HT1 – HT15

- 66 -

Plate 6. Bacterial colonies on nutrient agar isolated from gut of

insecticide resistant H. armigera larvae from cotton.

- 67 -

Plate 7. Pure cultures of bacterial isolate from the gut of

insecticides resistant H. armigera larvae from cotton.

Plate P1 – P7 – Seven isolates labeled as CL1– CL7

- 68 -

Plate 8. Bacterial colonies on nutrient agar isolated from gut

of insecticide susceptible H. armigera larvae.

- 69 -

Plate 9. Pure cultures of bacterial isolate from the gut of

insecticide susceptible H. armigera larvae. Plate P1

– P6 – Six isolates labeled as HL1– HL6

- 70 -

A B

C

Plate 10. Bacterial colonies on nutrient agar isolated

from gut of T. chilonis. Plates A and B –

Field (tomato), Plate C – Lab Populations

- 71 -

Plate 11. Pure cultures of bacterial isolate from the gut of

susceptible lab and field populations of T. chilonis Plate

TF1 – TF3 – Field, Plate TL1 – TL2 – Susceptible lab

- 72 -

4.2.4 Isolation of DNA and 16s rRNA PCR amplification of gut bacteria of

insecticide resistant larvae of H. armigera on tomato and cotton

DNA was isolated from eleven bacterial isolates and the presence of genomic

DNA from all the 11 isolates was confirmed on 0.8% agarose gel stained with ethidium

bromide (Figure 6). An intense single band was seen in all the 11 wells along with the

DNA marker. The extracted DNA was used as template for amplification of 16S rRNA

gene. The primers selected were specific. Initial standardisation by many gradient PCR

has facilitated the specific amplification as observed by high intense band. The optimum

annealing temperature was found to be 58ºC. An intense single band of size

approximately 1.5 kb was visible on 1% agarose gel stained with ethidium bromide

(Figure. 7) in all the 11 wells. Similarly DNA was isolated from seven bacterial isolates

and the presence of genomic DNA from all the 7 isolates was confirmed on 0.8% agarose

gel stained with ethidium bromide (Figure 8). An intense single band was seen in all the 7

wells along with the DNA marker. The extracted DNA was used as template for

amplification of 16S rRNA gene. The primers selected were specific. The optimum

annealing temperature was found to be 58ºC. An intense single band of size approximately

1.5 kb was visible on 1% agarose gel stained with ethidium bromide (Figure. 9) in all the 7

wells.

4.2.5 Isolation of DNA and 16s rRNA PCR amplification of gut bacteria of

insecticide susceptible larvae of H. armigera.

DNA was isolated from six bacterial isolates and the presence of genomic DNA

from all the 6 isolates was confirmed on 0.8% agarose gel stained with ethidium bromide

(Figure 10). An intense single band was seen in all the 6 wells along with the DNA

marker. The extracted DNA was used as template for amplification of 16S rRNA gene..

- 73 -

The primers selected were specific. The optimum annealing temperature was found to be

58ºC. An intense single band of size approximately 1.5 kb was visible on 1% agarose gel

stained with ethidium bromide (Figure. 11) in all the 6 wells.

4.2.6 Isolation of DNA and 16s rRNA PCR amplification of gut bacteria of

laboratory and field (tomato) adult populations of T. chilonis

DNA was isolated from three bacterial isolates from field and two bacterial

isolates from laboratory adult populations of T. chilonis and the presence of genomic

DNA from all the bacterial isolates was confirmed on 0.8% agarose gel stained with

ethidium bromide (Figure 12 and 14). An intense single band was seen in all the wells

along with the DNA marker. The extracted DNA was used as template for amplification of

16S rRNA gene. The primers selected were specific. The optimum annealing temperature

was found to be 58ºC. An intense single band of size approximately 1.5 kb was visible on

1% agarose gel stained with ethidium bromide (Figure. 13 and 15) in all the wells

4.2.7 Sequencing and sequence analysis of PCR amplified 16S rRNA gene of the

eleven bacterial isolates from the gut of H. armigera from tomato crop.

The PCR amplified 16S rRNA gene from all the 11 isolates was gel eluted and was

partially sequenced using forward and reverse primers, at sequencing facility of Aristogene

Biosciences (P) Ltd., Bangalore, India. The partial sequence obtained from all the 11

isolates ranged from 852, 621, 616, 810, 681, 676, 840, 658, 706, 625, 834 bp respectively

in length and were analysed in BLASTn (www.ncbi.nlm.nih.gov) and the bacterial genera

and species were determined. The partial 16S rRNAs sequence and the determined

bacterial sp. along with the accession number (HL1-HL15) have been shown in Table 8.

The max identity of the sequence was 99-100%. The nucleotide sequences of 11 isolates

were submitted to NCBI-Gen Bank and the accession numbers were obtained. The

determined bacterial communities were found to be Stenotrophomonas sp. Enterococcus sp

- 74 -

Figure 6. Agarose gel electrophoresis of genomic DNA from

eleven bacterial isolates from the gut of H. armigera

from tomato crop. Lane M –Marker -

Lambda/HindIII digest (sizes-23130, 9416, 6557, 4361,

2322, 2027, 564). Lane 1 – 11 – Genomic DNA from

11 bacterial isolates

Figure 7. Agarose gel electrophoresis of 16S rRNA PCR

amplicon from eleven bacterial isolates form gut of H.

armigera from tomato crop. Lane M - Marker - 0.1-2 k

blow range marker, (sizes-100bp, 200bp, 300bp,

600bp. 1kb, 1.5kb, 2 kb). Lane 1 – 11 – 1.5 kb 16S

rRNA PCR amplicon from fifteen bacterial isolates. 1=HT1, 2=HT2, 3=HT3, 4=HT5, 5=HT7, 6=HT9, 7=HT10,

8=HT12, 9=HT13, 10=HT14, 11=HT15.

- 75 -

Figure 8. Agarose gel electrophoresis of genomic

DNA from seven bacterial isolates form

gut of H. armigera from cotton crop. M-

Standard DNA Marker, CL1 – CL7 –

Genomic DNA of the bacterial isolates

Figure 9. Agarose gel electrophoresis of 16S

rRNA PCR amplicon from seven

bacterial isolates form gut of H.

armigera from cotton crop. M- 0.1-3 kb

Low range marker: sizes- 100bp, 200bp,

300bp, 600bp, 1kb, 1.5kb, 2 kb, 2.5kb, 3

kb)., CL1 – CL7 – 16S rRNA PCR

amplicon of the bacterial isolates

- 76 -

Figure 10. Agarose gel electrophoresis of genomic DNA

from six bacterial isolates from the gut of

larvae of laboratory populations of H.

armigera. Lane M –Marker - Lambda/HindIII

digest (sizes-23130, 9416, 6557, 4361, 2322, 2027,

564). Lane 1 – 6 – Genomic DNA from 6 bacterial

isolates

Figure 11. Agarose gel electrophoresis of 16S rRNA PCR

amplicon from six bacteria isolates from gut of

the larvae of laboratory populations of H.

armigera. Lane M- Marker - 0.1-3 kb Low

range marker: sizes- 100bp, 200bp, 300bp,

600bp, 1kb, 1.5kb, 2 kb, 2.5kb, 3 kb)., Lane -

HL1 – HL6 – 16S rRNA PCR amplicon of the

bacterial isolates, 1=HL1, 2=HL2, 3=HL3,

4=HL4, 5=HL5, 6=HL6.

- 77 -

Figure 12. Agarose gel electrophoresis of genomic

DNA from three bacterial isolates form

field populations of T. chilonis. M-

Standard DNA Marker, TF1 – TF3 –

Genomic DNA of the bacterial isolates

Figure 13. Agarose gel electrophoresis of 16S rRNA

PCR amplicon from three bacterial

isolates form field populations of T.

chilonis. M- 0.1-3 kb Low range marker:

sizes- 100bp, 200bp, 300bp, 600bp, 1kb,

1.5kb, 2 kb, 2.5kb, 3 kb)., TF1 – TF3 – 16S

rRNA PCR amplicon of the bacterial

isolates

- 78 -

Figure 14. Agarose gel electrophoresis of genomic

DNA from two bacterial isolates form lab

populations of T. chilonis. M- Standard

DNA Marker, TL1 – TL2 – Genomic

DNA of the bacterial isolates

Figure 15: Agarose gel electrophoresis of 16S rRNA

PCR amplicon from two bacterial isolates

form lab populations of T. chilonis. M- 0.1-

3 kb Low range marker: sizes- 100bp,

200bp, 300bp, 600bp, 1kb, 1.5kb, 2 kb,

2.5kb, 3 kb)., TL1 – TL2 – 16S rRNA PCR

amplicon of the bacterial isolates

- 79 -

Table 8. Partial 16S rRNA sequence and identified bacterial species with GenBank

accession number of the eleven bacterial isolates from the gut of

insecticide resistance field larval populations of H. armigera collected

from tomato crop

Isolate Partial 16S rRNA gene sequence Size

(bp)

Identified

Bacteria by

BLASTn

GenBank

Accession

Number

HT1

AGTCGAACGGCAGCACAGTAAGAGCTTGCTCTTATGGGTGGCGAGTGGC

GGACGGGTGAGGAATACATCGGAATCTACCTTTTCGTGGGGGATAACGTA

GGGAAACTTACGCTAATACCGCATACGACCTTCGGGTGAAAGCAGGGGA

CCTTCGGGCCTTGCGCGGATAGATGAGCCGATGTCGGATTAGCTAGTTGG

CGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGAT

GATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCA

GCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATACCG

CGTGGGTGAAGAAGGCCTTCGGGTTGTAAAGCCCTTTTGTTGGGAAAGAA

AAGCAGTCGATTAATACTCGGTTGTTCTGACGGTACCCAAAGAATAAGCA

CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTT

ACTCGGAATTACTGGGCGTAAAGCGTGCGTAGGTGGTTGTTTAAGTCTGT

TGTGAAAGCCCTGGGCTCAACCTGGGAATTGCAGTGGATACTGGGCGACT

AGAGTGTGGTAGAGGGTAGTGGAATTCCCGGTGTAGCAGTGAAATGCGT

AGAGATCGGGAGGAACATCCATGGCGAAGGCAGCTACCTGGACCAACAC

TGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG

GTAGTCCACGCCCTAAACGATGCGAACTGGATGTTGGGTGCAATTTGGCA

CGCAGTATCGAAGCTAACGCGTTAAGTTCGCCGCCTGGGGAGTACGGTCG

CAAGACTGAA

852

Stenotrophomonas

sp.

HM446252

HT2

AACGGGTGAGTAACACGTGGGTAACCTGCCCATCAGAAGGGGATAACAC

TTGGAAACAGGTGCTAATACCGTATAACACTATTTTCCGCATGGAAGAAA

GTTGAAAGGCGCTTTTGCGTCACTGATGGATGGACCCGCGGTGCATTAGC

TAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCATAGCCGACCTG

AGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACG

GGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGAAAGTCTGACCGAGC

AACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAG

AGAAGAACAAGGATGAGAGTAAAATGTTCATCCCTTGACGGTATCTAAC

CAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGT

GGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTC

TTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAA

ACTGGGAGACTTGAGTGCAGAAGAGGAGAGTGGAATTCCATGTGTAGCG

GTGAAATGCGTAGATATATGGAGGAACAC

621

Enterococcus sp.

HM446253

HT3

TGCAAGTCGAACGCTTTTTCTTTCACCGGAGCTTGCTCCACCGAAAGAAA

AAGAGTGGCGAACGGGTGAGTAACACGTGGGTAACCTGCCCATCAGAAG

GGGATAACACTTGGAAACAGGTGCTAATACCGTATAACACTATTTTCCGC

ATGGAAGAAAGTTGAAAGGCGCTTTTGCGTCACTGATGGATGGACCCGC

GGTGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCAT

AGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCA

GACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGAAAGT

CTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAAC

TCTGTTGTTAGAGAAGAACAAGGATGAGAGTAAAATGTTCATCCCTTGAC

GGTATCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTA

ATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGC

AGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGG9

99999999999GTCATTGGAAACTGGGAGACTTG

616

Enterococcus sp.

HM446254

HT5

CCCTTAGAGTTTGATTCCTGGCTGAGGACGAACGCTGGCGGCGTGCCTAA

TACATGCAAGTCGAACGCTTTTTCTTTCACCGGAGCTTGCTCCACCGAAA

GAAAAAGAGTGGCGAACGGGTGAGTAACACGTGGGTAACCTGCCCATCA

GAAGGGGATAACACTTGGAAACAGGTGCTAATACCGTATAACACTATTTT

CCGCATGGAAGAAAGTTGAAAGGCGCTTTTGCGTCACTGATGGATGGACC

CGCGGTGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGAT

GCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGG

CCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGA

AAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTA

AAACTCTGTTGTTAGAGAAGAACAAGGATGAGAGTAAAACGTTCATCCCT

TGACGGTGTCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC

GGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGA

GCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGG

AGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAGAGTGGAAT

TCCATGTGTAGCGGTGAAATGCGTAGATATATGGAGGAACACCAGTGGC

GAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGTGGG

GAGCGAACAGGATTAGATA

810

Enterococcus

gallinarum

HM446256

HT7

TCGAACGGACCCTTCGGGGTTAGTGGCGGACGGGTGAGTAACACGTGGG

AACGTGCCTTTAGGTTCGGAATAGCTCCTGGAAACGGGTGGTAATGCCGA

ATGTGCCCTTCGGGGGAAAGATTTATCGCCTTTAGAGCGGCCCGCGTCTG

ATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATCAGTAGCTG

GTCTGAGAGGATGACCAGCCACACTGGGACTGAGACACGGCCCAGACTC

CTACGGGAGGCAGCAGTGGGGAATCTTGCGCAATGGGCGAGCCTGACGC

AGCCATGCCGCGTGAATGATGAAGGTCTTAGGATTGTAAAATTCTTTCAC

CGGGGACGATAATGACGGTACCCGGAGAAGAAGCCCCGGCTAACTTCGT

GCCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTTGCTCGGAATTACT

GGGCGTAAAGGGCGCGTAGGCGGATCGTTAAGTCAGAGGTGAAATCCCA

GGGCTCAACCCTGGAACTGCCTTTGATACTGGCGATCTTGAGTATGAGAG

AGGTATGTGGAACTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAA

GAACACCAGTGGCGAAGGCGACATACTGGCTCATTACTGACGCTGAGGC

GCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG

681

Bravundimonas

diminuta

HM446258

Table Continued…

- 80 -

TGCAAGTCGACGCTTTTTCTTTCACCGGAGCTTGCTCCACCGAAAGAAAA

AGAGTGGCGAACGGGTGAGTAACACGTGGGTACCTGCCCATCAGAAGGG

GATAACACTTGGAAACAGGTGCTAATACCGTATAACACTATTTTCCGCAT

GGAAGAAAGTTGAAAGGCGCTTTTGCGTCACTGATGGATGGACCCGCGG

TGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCATAG

CCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGA

CTCCTACGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGAAAGTCT

GACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAACTC

TGTTGTTAGAGAAGAACAAGGATGAGAGTAAAATGTTCATCCCTTGACGG

TATCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAAT

ACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCA

GGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGT

CATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAGAGTGGAATTCCAT

GTGTAGCGGTGAAATGCGTAGATATATGGAGGAA

676

Enterococcus

faecium

HM446260

HT10

AGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAATACATG

CAAGTCGAGCGAACAGACGAGGAGCTTGCTCCTCTGACGTTAGCGGCGG

ACGGGTGAGTAACACGTGGATAACCTACCTATAAGACTGGGATAACTTCG

GGAAACCGGAGCTAATACCGGATAATATATTGAACCGCATGGTTCAATA

GTGAAAGACGGTTTTGCTGTCACTTATAGATGGATCCGCGCCGCATTAGC

TAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATGCGTAGCCGACCTG

AGAGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTACG

GGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGC

AACGCCGCGTGAGTGATGAAGGTCTTCGGATCGTAAAACTCTGTTATTAG

GGAAGAACAAATGTGTAAGTAGCTATGCACGTCTTGACGGTACCTAATCA

GAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG

CAAGCGTTATCCGGAATTATTGGGCGTAAGGCGCGCGTAGGCGGTTTTTT

AAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAAC

TGGAAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGT

GAAATGCGCAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTG

GTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGATTA

GATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGG

840

Staphylococcus

sp.

HM446261

HT12

TGCAAGTCGAGCGGATGAAGGGAGCTTGCTCCTGGATTCAGCGGCGGAC

GGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGATAACGTCCGG

AAACGGGCGCTAATACCGCATACGTCCTGAGGGAGAAAGTGGGGGATCT

TCGGACCTCACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGG

GGTAAAGGCCTACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGAT

CAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCA

GTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGT

GTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGG

GCAGTAAGTTAATACCTTGCTGTTTTGACGTTACCAACAGAATAAGCACC

GGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTA

ATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCAAGTTGGAT

GTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTA

GAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTA

GATATAGGAAGGAACAC

658

Pseudomonas

aeruginosa

HM446263

HT13

GTCCTCCTTGCGGTTAGACTACCTACTTCTGGTGCAACAAACTCCCATGGT

GTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATTCT

GATCCGCGATTACTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTC

CAATCCGGACTACGATCGGCTTTTTGAGATTAGCATCCTATCGCTAGGTA

GCAACCCTTTGTACCGACCATTGTAGCACGTGTGTAGCCCTGGCCGTAAG

GGCCATGATGACTTGACGTCGTCCCCGCCTTCCTCCAGTTTGTCACTGGCA

GTATCCTTAAAGTTCCCGACATTACTCGCTGGCAAATAAGGAAAAGGGTT

GCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACA

GCCATGCAGCACCTGTATGTAAGTTCCCGAAGGCACCAATCCATCTCTGG

AAAGTTCTTACTATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCATCGAA

TTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCATTTGAGT

TTTAGTCTTGCGACCGTACTCCCCAGGCGGTCTACTTATCGCGTTAGCTGC

GCCACTAAAGCCTCAAAGGCCCCAACGGCTAGTAGACATCGTTTACGGCA

TGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCATGCTTTCGCACCTCA

G

706

Acinetobacter

calcoaceticus

HM446264

HT14

GGCTGGCTCCTAAAAGGTTACCTCACCGACTTCGGGTGTTACAAACTCTC

GTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGG

CATGCTGATCCGCGATTACTAGCGATTCCAGCTTCACGCAGTCGAGTTGC

AGACTGCGATCCGAACTGAGAACAGATTTGTGGGATTGGCTTAACCTCGC

GGTTTCGCTGCCCTTTGTTCTGCCCATTGTAGCACGTGTGTAGCCCAGGTC

ATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCAC

CGGCAGTCACCTTAGAGTGCCCAACTGAATGCTGGCAACTAAGATCAAG

GGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGAC

GACAACCATGCACCACCTGTCACTCTGCCCCCGAAGGGGACGTCCTATCT

CTAGGATTGTCAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTT

CGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTT

GAGTTTCAGTCTTGCGACCGTACTCCCCAGGCGGAGTGCTTAATGCGTTA

GCTGCAGCACTAAGGGGCGGAAAC

625

Bacillu subtilis

HM446265

HT15

GGGGTTAGGCCACCGGCTTCGGGTGTTACCGACTTTCATGACGTGACGGG

CGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGTTGCTGATCTGC

GATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGATCCG

AACTGAGACCGGCTTTAAGGGATTCGCTCCACCTCACGGTATCGCAGCCC

TCTGTACCGACCATTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATG

ATGACTTGACGTCGTCCCCACCTTCCTCCGAGTTGACCCCGGCAGTCTCCT

GCGAGTCCCCACCATCACGTGCTGGCAACACAGGACAAGGGTTGCGCTC

GTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATG

CACCACCTGTCTACCGGCCACAAGGGAAACCACATCTCTGCAGTCGTCCG

GTACATGTCAAACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCA

CATGCTCCGCCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTAGCCT

TGCGGCCGTACTCCCCAGGCGGGGCGCTTAATGCGTTGGCTACGGCACGG

ATCCCGTGGAAGGAAACCCACACCTAGCGCCCACCGTTTACGGCGTGGAC

TACCAGGGTATCTAATCCTGTTCGCTACCCACGCTTTCGCTCCTCAGCGTC

AGTTACTGCCCAGAGACCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTG

CGCATTTCACCGCTACACCAGGAATTCCAGTCTCCCCTGCAGTACTCGAG

TCTGCCCGTATCGCCTGCAAGCCCGCAGTTG

834

Rhodococcus sp.

HM446266

- 81 -

Enterococcus sp., Enterococcus gallinarum, Bravundimonas diminuta, Enterococcus

faecium, Staphylococcus sp., Pseudomonas aeruginosa, Acinetobacter calcoaceticus,

Bacillus subtilis and Rhodococcus sp., of which genera Enterococcus were found to be

predominant.

4.2.8 Sequencing and sequence analysis of PCR amplified 16S rRNA gene of the

seven bacterial isolates from the gut of H. armigera from cotton ecosystem.

The PCR amplified 16S rRNA gene from all the 7 isolates was gel eluted and was

partially sequenced using forward and reverse primers, at sequencing facility of

Aristogene Biosciences (P) Ltd., Bangalore, India. The partial sequence obtained from all

the 7 isolates ranged from 677, 660, 478, 459, 642, 514. 559 bp respectively in length and

were analysed in BLASTn (www.ncbi.nlm.nih.gov) and the bacterial genera and species

were determined. The partial 16S rRNAs sequence and the determined bacterial sp. along

with the accession number (CL1-CL7) have been shown in Table 9. The max identity of

the sequence was 99-100%. The nucleotide sequences of 7 isolates were submitted to

NCBI-Gen Bank and the accession numbers were obtaind. The determined bacterial

communities were found to be Bacillus pumulis, Enterococcus casseliflavus, Bacillus

subtilis, Rhodococcus sp., Pseudomonas sp., Staphylococcus sp., Pseudomonas

aeruginosa.

4.2.9 Sequencing and sequence analysis of PCR amplified 16S rRNA gene of the six

bacterial isolates from the gut of H. armigera from laboratory populations.

The PCR amplified 16S rRNA gene from all the 6 isolates was gel eluted and was

partially sequenced using forward and reverse primers, at sequencing facility of

Aristogene Biosciences (P) Ltd., Bangalore, India. The partial sequence obtained from all

the 6 isolates ranged from 664, 861, 779, 623, 541, 693 bp, respectively. in length and

were analysed in BLASTn (www.ncbi.nlm.nih.gov) and the bacterial genera and species

- 82 -

were determined. The partial 16S rRNAs sequence and the determined bacterial sp. along

with the accession number (HL1-HL6) have been shown in Table 10. The max identity of

the sequence was 99-100%. The nucleotide sequences of 6 isolates were submitted to

NCBI-Gen Bank and the accession numbers were obtained. The determined bacterial

communities were found to be Proteus vulgaris, Cellulosimicrobium cellulans Klebsiella

oxytoca, Bacillus subtilis, Stenotrophomonas maltophilia, Pseudomonas sp.

4.2.10 Sequencing and sequence analysis of PCR amplified 16S rRNA gene of the

three bacterial isolates from the gut of field populations of T. chilonis and two

bacterial isolates from the gut of laboratory populations of T. chilonis

The PCR amplified 16S rRNA gene from 3 bacterial isolates from field

populations and 2 bacterial isolates from the lab populations of T. chilonis was gel eluted

and was partially sequenced using forward and reverses primers, at sequencing facility of

Aristogene Biosciences (P) Ltd., Bangalore, India. The partial sequence obtained ranged

from 641, 808, 720 bp respectively in length in case of field populations and 675 and 747

bp respectively in case of laboratory populations and all the isolates were analysed in

BLASTn (www.ncbi.nlm.nih.gov) and the bacterial genera and species were determined.

The partial 16S rRNAs sequence and the determined bacterial sp. along with the accession

number (TF1-TF3 and TL1 – TL2) has been shown in Table 11. The max identity of the

sequence was 99-100%. The nucleotide sequences of 5 isolates were submitted to NCBI-

GenBank and the accession numbers were obtained. The determined bacterial

communities were found to be Stenotrophomonas maltophilia, Bacillus sp., Pseudomonas

sp., respectively in case of field populations and Pseudomonas sp., and Stenotrophomonas

sp., in case of laboratory populations of T. chilonis.

- 83 -

Table 9. Partial 16S rRNA sequence and identified bacterial species with GenBank

accession number of the seven bacterial isolates from the gut of insecticide

resistance field larval populations of H. armigera collected from cotton

crop.

Isolate Partial 16S rRNA gene sequence Size

(bp)

Identified

Bacteria By

BLASTn

GenBank

Accession

Number

CL1

GTGCATTGCGGGTGCTATACATGCAAGTCGAGCGGACAGAAGGGAGCTT

GCTCCCGGGTGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGC

CTGTAAGACTGGGATAACTCCGGGAAACCGGAGCTAATACCGGATAGTT

CCTTGAACCGCATGGTTCAAGGATGAAAGACGGTTTCGGCTGTCACTTAC

AGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAA

GGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACT

GAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGC

AATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTT

CGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCAAGAGTAGCTG

CTTGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCA

GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCG

TAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTC

AACCGGGGAGGGTCATTGGAAACTGGAAACTTGATTGCAGAAGAGGAGA

GTGTAATTCCACGTGTAGCGGTGAAATGCGAAAAAA

677

Bacillus pumulis

HQ651050

CL2

GATTATGGCTCAGGACGAACGCTGGCGGCGTGCGTAATACATGCAAGTC

GAACGCTTTTTCTTTCACCGGAGCNTGCTCCANCGNAAGAAAAAGAGTGG

CGAACGGGTGAGTAACACGTGGGTAACCTGCCCATCAGAAGGGGATAAC

ACTTGGAAACAGGTGCTAATACCGTATAACACTATTTTCCGCATGGAAGA

AAGTTGAAAGGCGCTTTTGCGTCACTGATGGATGGACCCGCGGTGCATTA

GCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCATAGCCGACC

TGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTA

CGGGAGGCAGCAGTAGGGAATCTTCGGCAATGGACGAAAGTCTGACCGA

GCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAACTCTGTTGTT

AGAGAAGAACAAGGATGAGAGTAAAATGTTCATCCCTTGACGGTATCTA

ACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG

GTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGT

ATCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGG

AAACTGGGAGACTTGAGT

660

Enterococcus

casseliflavus

HQ651051

CL3

TGCAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGAC

GGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGG

GAAACCGGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTCAAACAT

AAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCT

AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGA

GAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG

GAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCA

ACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGG

GAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACC

AGAAAGCCACGGCTAACTACGTGCCAGCAGCCG

478 Bacillus subtilis JF266592

CL4

CCCGAAATTGGCGGGTGCTTACACATGCAGTCGAACGATGAAGCCCAGCT

TGCTGGGTGGATTAGTGGCGAACGGGTGAGTAACACGTGGGTGATCTGCC

CTGCACTCTGGGATAAGCCTGGGAAACTGGGTCTAATACCGGATATGACC

TCGGGATGCATGTCCTGGGGTGGAAAGTTTTTCGGTGCAGGATGAGCCCG

CGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGG

TAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCC

AGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAG

CCTGATGCAGCGACTCCGCGTGAGGGATGACGGCCTTCTGGTTGTAAACC

TCTTTCCCCCCTGACCAAACGCAAGTGACGGTAGTCGGAAAAAAAGCCCG

GCCCTCTACCT

459 Rhodococcus sp. HQ651052

CL5

GGGCCCGTGGGGGAGGACTACACATGCAAGTCGAGCGGATGAAGGGAGC

TTGCTCCTGGATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAATCTGCC

TGGTAGTGGGGGATAACGTCCGGAAACGGGCGCTAATACCGCATACGTC

CTGAGGGAGAAAGTGGGGGATCTTCGGACCTCACGCTATCAGATGAGCC

TAGGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGAT

CCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGG

TCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGA

AAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAA

AGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTG

ACGTTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGT

AATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGC

GTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAA

CTGCATCCCAAAACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAAAT

642 Pseudomonas sp. HQ651053

CL6

GTCTGCGGCATGCTATACATGCAGTCGAGCGAACAGACGAGGAGCTTGCT

CCTTTGACGTTAGCGGCGGACGGGTGAGTAACACGTAGGTAACCTACCTA

TAAGACTGGGATAACTTCGGGAAACCGGAGCTAATACCGGATAATATTTC

GAACCGCATGGTTCGATAGTGAAAGATGGCTTTGCTATCACTTATAGATG

GACCTGCGCCGTATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAAC

GATACGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACA

CGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGG

CGAAAGCCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTCTTCGGATC

GTAAAACTCTGTTATTAGGGAAGAACAAACGTGTAAGTAACTGTGCACGT

CTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG

CGGTAATACGTAGGTGG

514 Staplylococcus sp. HQ651054

Table Continued…

- 84 -

CL7

CTGTTCTGTCGGCAGCTAGACATGCAAGTCGAGCGGATGAAGGGAG

CTTGCTCCTGGATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAAT

CTGCCTGGTAGTGGGGGATAACGTCCGGAAACGGGCGCTAATACCG

CATACGTCCTGAGGGAGAAAGTGGGGGATCTTCGGACCTCACGCTA

TCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCT

ACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACA

CTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG

GGAATATTGGACAATGGGCGAAGCCTTGATCCAGCCATGCCGCGTG

TGTGAAGAAGTCTTCGGATTGTAAACACTTTAAGTTGGGAGAAGGC

AGAAGTTAATACCTTGGTTGTTTTGACGTACCACAGAATAAGCACC

GGCTACTTCTGCCGCAGCCGCGTATACCAAGGTGCAGCGTAATTCG

AATTACTGGCGTAAGCGCGCGAAGGGTTCACAGGTGGAAGGGAAT

CCCCGGCTC

559 Pseudomonas

auerogenosa HQ651055

- 85 -

Table 10. Partial 16S rRNA sequence and identified bacterial species with GenBank

accession number of the six bacterial isolates from the gut of susceptible

laboratory larval populations of H. armigera.

Isolate Partial 16S rRNA gene sequence Size

(bp)

Identified

Bacteria By

BLASTn

GenBank

Accession

Number

HL1

CATGCAGTCGAGCGGTAACAGGAGAAAGCTTGCTTTCTTGCTGACGAGCG

GCGGACGGGTGAGTAATGTATGGGGATCTGCCCGATAGAGGGGGATAAC

TACTGGAAACGGTGGCTAATACCGCATGACGTCTACGGACCAAAGCAGG

GGCTCTTCGGACCTTGCGCTATCGGATGAACCCATATGGGATTAGCTAGT

AGGTGAGGTAATGGCTCACCTAGGCAACGATCTCTAGCTGGTCTGAGAGG

ATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGG

CAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGC

CGCGTGTATGAAGAAGGCCTTAGGGTTGTAAAGTACTTTCAGCGGGGAG

GAAGGTGATAAAGTTAATACCTTTGTCAATTGACGTTACCCGCAGAAGAA

GCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAG

CGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCAATTAAGT

CAGATGTGAAAGCCCCGAGCTTAACTTGGGAATTGCATCTGAAACTGGTT

GGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCACGTGTAGCGGTGAAAT

GCGTAGAGATGTGAGGAATAC

664

Proteus vulgaris

JF266593

HL2

CATGCAGTCGAACGATGATGCCCAGCTTGCTGGGCGGATTAGTGGCGAAC

GGGTGAGTAACACGTGAGTAACCTGCCCTTGACTTCGGGATAACTCCGGG

AAACCGGGGCTAATACCGGATATGAGCCGCCTTCGCATGGGGGTGGTTG

GAAAGTTTTTCGGTCAGGGATGGGCTCGCGGCCTATCAGCTTGTTGGTGG

GGTGATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCGAC

CGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA

GTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGT

GAGGGATGAAGGCCTTCGGGTTGTAAACCTCTTTCAGCAGGGAAGAAGC

GCAAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAGCA

GCCGCGGTAATACGTAGGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAA

AGAGCTCGTAGGCGGTTTGTCGCGTCTGGTGTGAAAACTCGAGGCTCAAC

CTCGAGCTTGCATCGGGTACGGGCAGACTAGAGTGCGGTAGGGGAGACT

GGATTTCCTGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGAACACCG

ATGGCGAAGGCAGGTCTCTGGGCCGCAACTGACGCTGAGGAGCGAAAGC

ATGGGGAGCGAACAGGATTAGATACCCTGGTTAGTCCATGCCGTAAACGT

TTGGCACTAGGTGTGGGGGC

861

Cellulosimicrobiu

m cellulans

JF266594

HL3

ACGCTGGCGGCAGGCCCTAACACATGCAAGTCGAACGGTGAGCACARAA

GAGCTTGCTCTCGGGTGACGAGTGGCGGACGGGTGAGTAATGTCTGGGA

AACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGC

ATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCAG

ATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGC

GACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAG

ACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAAT

GGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGG

GTTGTAAAGTACTTTCAGCGGGGAGGAAGGCGATAAGGTTAATAACCTTG

TCGATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAG

CCGCGGTAATACGGAGGGTGCAAGCGTAATCGGAATTACTGGGCGTAAA

GCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACC

TGGGAACTGCATTCGAAACTGGCAGGCTGGAGTCTTGTAGAGGGGGGTA

GAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGG

TGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCG

TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCT

779

Klebsiella oxytoca

JF266595

HL4

TACATGCAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGC

GGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACT

CCGGGAAACCGGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTCAA

ACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATT

AGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGAC

CTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCT

ACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGG

AGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGT

TAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCT

AACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA

GGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGG

TTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTG

GAAACTGGGGAACTTGAGTGCAGAAGAGGA

623

Bacillus subtilis

JF266596

HL5

ACATGCAAGTCGAGCGGCAGCACAGGAGAGCTTGCTCTCTGGGTGGCGA

GTGGCGGACGGGTGAGGAATACATCGGAATCTACTCTGTCGTGGGGGAT

AACGTAGGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGC

AGGGGACCTTCGGGCCTTGCGCGATTGAATGAGCCGATGTCGGATTATCT

AGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGTCTGA

GAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGG

GAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCC

ATACCGCGTGGGTGAAGAAGGCCTTCGGGTTGTAAAGCCCTTTTGTTGGG

AAAGAAATCCAGCTGGCTAATACCCGGTTGGGATGACGGTACCCAAAGA

ATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTG

CAAGCGTTACTCGGAATTACTGGGCGTACAGCGTGCGTAGGTGGTCGTT

549

Stenotrophomonas

maltophilla

JF266597

Table Continued…

- 86 -

HL6

GTCGAGCGGCAGCACGGGTACTTGTACCTGGTGGCGAGCGGCGGAC

GGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGATAACGCT

CGGAAACGGACGCTAATACCGCATACGTCCTACGGGAGAAAGCAG

GGGACCTTCGGGCCTTGCGCTATCAGATGAGCCTAGGTCGGATTAG

CTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCGTAACTGG

TCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGAC

TCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAG

CCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA

AAGCACTTTAAGTTGGGAGGAAGGGCAGTTACCTAATACGTATCTG

TTTTGACGTTACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGC

AGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGG

CGTAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGTGAAATCCCC

GGGCTCAACCTGGGAACTGCATCCAAAACTGGCAGGCTAGAGTATG

GTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATA

TAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACT

GACACT

693

Pseudomonas sp.

JF266602

- 87 -

Table 11. Partial 16S rRNA sequence and identified bacterial species with GenBank

accession number of the five bacterial isolates from the gut of field and

lab populations of adult T. chilonis.

Isolate Partial 16S rRNA gene sequence Size

(bp)

Identified

Bacteria By

BLASTn

GenBank

Accession

Number

TF1

ACATGCAAGTCGAGCGGCAGCACAGGAGAGCTTGCTCTCTGGGTGGCGA

GTGGCGGACGGGTGAGGAATACATCGGAATCTACTCTGTCGTGGGGGAT

AACGTAGGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGC

AGGGGACCTTCGGGCCTTGCGCGATTGAATGAGCCGATGTCGGATTATCT

AGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGTCTGA

GAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGG

GAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCC

ATACCGCGTGGGTGAAGAAGGCCTTCGGGTTGTAAAGCCCTTTTGTTGGG

AAAGAAATCCAGCTGGCTAATACCCGGTTGGGATGACGGTACCCAAAGA

ATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTG

CAAGCGTTACTCGGAATTACTGGGCGTACAGCGTGCGTAGGTGGTCGTTT

AAGTCCGTTGTGAAAGCCCTGGGCTCAACCTGGGAACTGCAGTGGATACT

GGGCGACTATAATGTGGTAGAGGGTAGCGGATTTCCTGGTGTAGCAGTG

641 Stenotrophomonas

maltophilia JF266599

TF2

AGTCGAGCGAATGGATTGAGAGCTTGCTCTCAAGAAGTTAGCGGCGGAC

GGGTGAGTAACACGTGGGTAACCTGCCCATAAGACTGGGATAACTCCGG

GAAACCGGGGCTAATACCGGATAACATTTTGAACTGCATGGTTCGAAATT

GAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCT

AGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGA

GAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG

GAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCA

ACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGG

GAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGTACCTAACC

AGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTG

GCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCT

TAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAA

CTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGG

TGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCT

GGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATT

AGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGG

GTTTCCGCCCTTTAGTGCT

808 Bacillus sp. HQ651056

TF3

TACCATGCAAGTCGAGCGGAGGAGGGAGCTTGCTCCTGGAATCAGCGGC

GGACGGGTGAGTAATGCCTGGGAATCTGCCTGGTAGTGGGGGATAACGT

CTCGAAAGGGACGCTAATACCGCGTACGTCCTACGGGAGAAAGCAGGGG

ATCTTCGGACCTTGCGCTATCAGATGAGCCCAGGCCGGATTAGCTTGTTG

GTGAGGTAATGGCTCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGA

TGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGC

AGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCC

GCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGA

AGGGGTTGAAGCTAATACCTTCAATCTTTGACGTTACCAACAGAATAAGC

ACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCG

TTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGTAAGATG

GAAGTGAAATCCCCGGGCTTAACCTGGGAACTGCTTTCATAACTGCTGAG

CTAGAGTACGGTAGAGGGTAGTGGAATTTCCTGTGTAGCGGTGAAATGCG

TAGATATAGGAAGGAACACCAGTGGCGAAGGCGACTACCTGGACTGATA

CTGACACTGAGGTGCGAAAGCGTGGGGA

720 Pseudomonas sp. JF266598

TL1

TACCATGCAAGTCGAGCGGAGGAGGGAGCTTGCTCCTGGAATCAGCGGC

GGACGGGTGAGTAATGCCTGGGAATCTGCCTGGTAGTGGGGGATAACGT

CTCGAAAGGGACGCTAATACCGCGTACGTCCTACGGGAGAAAGCAGGGG

ATCTTCGGACCTTGCGCTATCAGATGAGCCCAGGCCGGATTAGCTTGTTG

GTGAGGTAATGGCTCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGA

TGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGC

AGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCC

GCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGA

AGGGGTTGAAGCTAATACCTTCAATCTTTGACGTTACCAACAGAATAAGC

ACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCG

TTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGTAAGATG

GAAGTGAAATCCCCGGGCTTAACCTGGGAACTGCTTTCATAACTGCTGAG

CTAGAGTACGGTAGAGGGTAGTGGAATTTCCTGTGTAGCGGTGAAATGCG

TAGATATAGGAAGGAACACCAGTGGCGAAGGC

675 Pseudomonas sp. JF266600

TL2

GTCGAACGGCAGCACAGTAAGAGCTTGCTCTTATGGGTGGCGAGTGGCG

GACGGGTGAGGAATACATCGGAATCTACTTTTTCGTGGGGGATAACGTAG

GGAAACTTACGCTAATACCGCATACGACCTTCGGGTGAAAGCAGGGGAC

CTTCGGGCCTTGCGCGATTGAATGAGCCGATGTCGGATTAGCTAGTTGGC

GGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGATG

ATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAG

CAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATACCGC

GTGGGTGAAGAAGGCCTTCGGGTTGTAAAGCCCTTTTGTTGGGAAAGAAA

ACTTGCAGGTTAATACCCAGCAAGTCTGACGGTACCCAAAGAATAAGCA

CCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTT

ACTCGGAATTACTGGGCGTAAAGCGTGCGTAGGTGGTTGTTTAAGTCTGT

TGTGAAAGCCCTGGGCTCAACCTGGGAACTGCAGTGGAAACTGGACAAC

TAGAGTGTGGTAGAGGGTAGCGGAATTCCCGGTGTAGCAGTGAAATGCG

TAGAGATCGGGAGGAACATCCATGGCGAAGGCAGCTACCTGGACCAACA

CTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCT

GGTAGTC.

747 Stenotrophomonas

sp. JF266601

- 88 -

4.2.11 Phylogeny analysis of the gut bacterial isolates from laboratory and field

populations of H. armigera and adult laboratory and field populations of T.

chilonis

The phylogenetic tree was constructed using Neighbour-Joining Tree MEGA-4

bioinformatics software tool and the genetic relatedness between the isolates were

analysed. The dendogram showing the genetic relatedness among the bacterial isolates

have been shown in Figure 16 (bacterial isolates from the gut of larvae of H. armigera

collected from tomato ecosystem), Figure 17 (bacterial isolates from the gut of larvae of

H. armigera collected from cotton ecosystem), Figure 18 (bacterial isolates from the gut of

larvae of H. armigera from laboratory populations) and Figure 19 (bacterial isolates from

the gut of field and laboratory adult populations of T. chilonis).

4.3 Insecticide bioassay on field (cotton and tomato) populations of H. armigera

after treating with antibiotics.

In order to know whether gut bacteria is having any role in insecticide resistance,

the field collected larvae of H armigera was treated with tetracycline along with diet for

about five generations to cure the gut bacteria and after fifth generation insecticide

bioassay was carried out. The results on the toxicity of the test insecticides to third instar

larvae of field populations of H. armigera on cotton and tomato after treating with

tetracycline are presented in Table 12. The statistical comparison of toxicity and resistant

factor is shown in Table 13. The data revealed variations in the responses of field

populations of H. armigera larvae collected from cotton and tomato to various

insecticides. On cotton, median lethal concentration (LC50) for 3rd

instar larvae of H.

armigera ranged from 67.51 to 1991.48 ppm for the eight different insecticides, with the

larvae exhibiting the highest resistance to triazophos (1991.48 ppm) and the lowest to

abamectin (67.51 ppm). Resistance of field populations to organophosphate

- 89 -

E.casseliflavus

E.gallinarum

Enterococcus sp.

E.faecium

Staphylococcus sp.

Bravundimonas diminuta

Stenotrophomonas sp.

Pseudomonas aeruginosa

Acinetobacter calcoaceticus

Bacillus subtilis

Rhodococcus sp.6

97

94

56

92

66

0.00.51.01.5

Figure 16. Phylogenetic dendrogram of the bacterial isolates from the gut of

larvae of H. armigera from tomato crop.

Bacillus pumilus

Bacillus subtilis

Staphylococcus sp.

Enterococcus casseliflavus

Rhodococcus sp.

Pseudomonas sp.

Pseudomonas aeruginosa99

92

54

99

0.000.050.100.15

Figure 17. Phylogenetic dendrogram of the bacterial isolates from the gut of

larvae of H. armigera from cotton crop.

- 90 -

Proteus vulgaris

Klebsiella oxytoca

Stenotrophomonas maltophilla

Pseudomonas sp.

Cellulosimicrobium cellulans

Bacillus subtilis

100

98

100

0.000.050.100.15

Figure 18. Phylogenetic dendrogram of the bacterial isolates from the gut of

laboratory larvae of H. armigera

Stenotrophomonas maltophilia

Stenotrophomonas sp.

Pseudomonas sp.

Bacillus sp.

100

0.000.050.100.15

Figure 19. Phylogenetic dendrogram of the bacterial isolates from the gut of

adult field and laboratory populations T. chilonis.

- 91 -

Table 12. Toxicities of different insecticides in field populations

of H. armigera after treating with tetracycline on

cotton and tomato after 24 h of exposure

Insecticide

Field (Cotton) Field (Tomato)

Dose

ppm n

a r

b M

c

Dose

ppm n

a r

b M

c

Abamectin

0

14.25

28.5

57

114

10

10

10

10

10

0

0

2

6

8

0

0

20

60

80

0

14.25

28.5

57

114

10

10

10

10

10

0

0

2

5

7

0

0

20

50

70

Chloropyriphos

0

300

600

1200

2400

10

10

10

10

10

0

1

3

6

10

0

10

30

60

100

0

300

600

1200

2400

10

10

10

10

10

0

1

4

6

10

0

10

40

60

100

Cypermethrin

0

25

50

100

200

10

10

10

10

10

0

0

2

4

8

0

0

20

40

80

0

25

50

100

200

10

10

10

10

10

0

0

2

5

7

0

0

20

50

70

Indoxacarb

0

108.75

217.5

435

870

10

10

10

10

10

0

0

2

6

8

0

0

20

60

80

0

108.75

217.5

435

870

10

10

10

10

10

0

2

4

8

10

0

20

40

80

100

Malathion

0

250

500

1000

2000

10

10

10

10

10

0

0

1

3

5

0

0

10

30

50

0

250

500

1000

2000

10

10

10

10

10

0

1

2

4

8

0

10

20

40

80

Quinalphos

0

250

500

1000

2000

10

10

10

10

10

0

0

1

3

7

0

0

10

30

70

0

250

500

1000

2000

10

10

10

10

10

0

1

3

6

8

0

10

30

60

80

Spinosad

0

12.5

25

50

100

10

10

10

10

10

0

0

2

4

8

0

0

20

40

80

0

12.5

25

50

100

10

10

10

10

10

0

0

3

5

8

0

0

30

50

80

Triazophos

0

400

800

1600

3200

10

10

10

10

10

0

0

2

5

8

0

0

20

50

80

0

400

800

1600

3200

10

10

10

10

10

0

1

4

6

8

0

10

40

60

80 aNumber of larvae used bNumber of larvae died cPer cent mortality

- 92 -

Table 13. Statistical comparison of toxicity of eight commonly used insecticides on field (cotton & tomato)

populations of H. armigera after 24 h of exposure after tetracycline antibiotic treatment

Test larvae

(Population of

H. armigera)

Insecticide LC50

(ppm)

95% FL of LC50

RF Slope ± SE Chi

square Lower Upper

Field (Cotton)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

67.51

992.82

130.64

247.16

1286.13

1539.47

65.32

1991.48

50.42

740.95

99.32

167.33

906.43

1193.04

49.66

1501.35

92.98

1451.36

180.81

353.96

2015.54

2160.64

90.40

2749.53

4.50

0.88

10.8

0.61

3.15

1.76

1.90

1.30

0.0261 ± 0.0061

0.0019 ± 0.0005

0.0146 ± 0.0035

0.0060 ± 0.0016

0.0010 ± 0.0003

0.0014 ± 0.0003

0.0293 ± 0.0070

0.0009 ± 0.0002

4.05

0.78

1.97

2.40

2.59

1.05

1.97

2.72

Field (Tomato)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

77.78

947.35

133.25

277.30

1271.11

1097.68

59.92

1679.72

58.08

694.51

96.37

198.22

939.49

774.76

44.25

1149.16

112.30

1392.26

202.76

396.79

1835.03

1594.64

84.55

2485.16

5.10

0.84

11.05

0.69

3.11

1.25

1.77

1.13

0.0222 ± 0.0056

0.0018 ± 0.0005

0.0113 ± 0.0030

0.0061 ± 0.0016

0.0013 ± 0.0003

0.0012 ± 0.0003

0.0277 ± 0.0067

0.0007 ± 0.0002

3.56

1.79

2.02

0.80

1.58

2.79

3.71

3.79

LC50 : Concentration of insecticide that killed 50% of the test larval population in the observation period of 24 h. FL:

Fiducial Limit. SE: Pooled binomial standard error.

- 93 -

compounds compared to susceptible strain was found to be significantly higher by 0.88 to

3.15-fold. The resistance factor was highest (3.15) for malathion and least (0.61) for

indoxacarb. In contrast to organophosphates, resistance of field populations of H.

armigera to pyrethroid (cypermethrin) was 10.8 compared to the susceptible populations.

The field populations on cotton showed no resistance to indoxacarb, abamectin and the

resistance factor was 4.50 and to spinosad the resistant factor was 1.90 as compared to

susceptible population.

On tomato, the median lethal concentrations (LC50) for 3rd

instar larvae of H.

armigera after tetracycline treatment ranged from 59.92 to 1679.72 ppm for the eight

insecticides, with the larvae exhibiting the highest resistance for triazophos and the lowest

resistance to spinosad (Table 11). The resistance factor for organophosphate compounds

for larvae collected from tomato was (0.84 to 3.11 fold) compared to the susceptible

population. The resistance factor was highest for cypermethrin (11.05), while indoxacarb

showed nil resistance as compared to the susceptible population. The larvae collected on

cotton were more resistant as compared to tomato. The comparison of the LC50 values of

the 3rd

instar larvae of field populations of H. armigera collected from cotton and tomato

before antibiotic treatment and after antibiotic treatment for five generations showed

significant decrease in the insecticide resistance to the insecticides tested (Figure 20 and

21). The insecticide toxicity data was also recorded after 7 days of exposure and their

mortality data was recorded (Table 14) and the LC50 values was derived using probit

analysis (Table 15). Hundred per cent mortality was recorded in the higher three

concentrations in most of the insecticides tested for field populations of H. armigera,

seven days after treating with tetracycline. From the probit analysis the median lethal

concentration was tremendously decreased and the LC50 values for field cotton population

- 94 -

Figure 20. Comparison of LC50 values before and after tetracycline

treatment on third instar larvae of field populations of H.

armigera collected from cotton crop to different test

insecticides (BTT = before tetracycline treatment ; ATT =

after tetracycline treatment)

Figure 21. Comparison of LC50 values before and after tetracycline

treatment on third instar larvae of field populations of H.

armigera collected from tomato crop to different test

insecticides (BTT = before tetracycline treatment ; ATT

= after tetracycline treatment)

- 95 -

Table 14. Toxicities of different insecticides after treating with

tetracycline in field populations of H. armigera (cotton

and tomato) after 7 days of exposure

Nsecticide

Field (Cotton) Field (Tomato)

Dose

PPM n

a r

b M

c

Dose

PPM n

a r

b M

c

Abamectin

0

14.25

28.5

57

114

10

10

10

10

10

1

8

9

10

10

10

80

90

100

100

0

14.25

28.5

57

114

10

10

10

10

10

1

8

10

10

10

10

80

100

100

100

Chlorpyriphos

0

300

600

1200

2400

10

10

10

10

10

1

8

10

10

10

10

80

100

100

100

0

300

600

1200

2400

10

10

10

10

10

0

9

10

10

10

0

90

100

100

100

Cypermethrin

0

25

50

100

200

10

10

10

10

10

0

8

10

10

10

0

80

100

100

100

0

25

50

100

200

10

10

10

10

10

0

9

10

10

10

0

90

100

100

100

Indoxacarb

0

108.75

217.5

435

870

10

10

10

10

10

1

7

8

10

10

10

70

80

100

100

0

108.75

217.5

435

870

10

10

10

10

10

0

8

9

10

10

0

80

90

100

100

Malathion

0

250

500

1000

2000

10

10

10

10

10

0

7

9

10

10

0

70

90

100

100

0

250

500

1000

2000

10

10

10

10

10

0

8

10

10

10

0

80

100

100

100

Quinalphos

0

250

500

1000

2000

10

10

10

10

10

0

8

9

10

10

0

80

90

100

100

0

250

500

1000

2000

10

10

10

10

10

0

8

9

10

10

0

80

90

100

100

Spinosad

0

12.5

25

50

100

10

10

10

10

10

0

6

8

10

10

0

60

80

100

100

0

12.5

25

50

100

10

10

10

10

10

0

7

9

10

10

0

70

90

100

100

Triazophos

0

400

800

1600

3200

10

10

10

10

10

1

7

8

10

10

10

70

80

100

100

0

400

800

1600

3200

10

10

10

10

10

1

7

9

10

10

10

70

90

100

100 aNumber of larvae used bNumber of larvae died cPer cent mortality

- 96 -

Table 15. Statistical comparison of toxicity of eight commonly used insecticides on field (cotton & tomato)

populations of H. armigera after 7 days of exposure after tetracycline treatment

Test larvae

(Population of

H. armigera)

Insecticide LC50

(ppm)

95% FL of LC50 Slope ± SE

Chi

square Lower Upper

Field (Cotton)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

10.22

180.30

20.79

99.02

235.56

212.88

15.58

416.88

1.75

59.89

--

23.30

115.35

89.06

8.52

196.05

16.71

297.27

--

160.47

337.58

313.07

23.19

611.07

0.094 ± 0.028

0.007 ± 0.002

0.199 ± 0.721

0.010 ± 0.003

0.007 ± 0.002

0.007 ± 0.002

0.089 ± 0.028

0.003 ± 0.001

2.130

0.015

0.000

1.894

2.56

4.307

3.354

3.830

Field (Tomato)

Abamectin

Chlorpyriphos

Cypermethrin

Indoxacarb

Malathion

Quinalphos

Spinosad

Triazophos

8.56

149.95

19.06

92.60

203.36

216.89

11.78

324.63

2.84

42.04

--

38.74

--

89.07

5.78

96.43

14.12

257.24

--

136.19

--

313.07

16.88

513.63

0.151 ± 0.047

0.009 ± 0.003

0.216 ± 0.673

0.015 ± 0.004

0.018 ± 0.028

0.007 ± 0.002

0.131 ± 0.037

0.003 ± 0.001

0.015

0.001

0.000

4.307

0.002

4.307

2.562

0.876

LC50 : Concentration of insecticide that killed 50% of the test larval population in the observation period of 7

days, FL: Fiducial Limit. SE: Pooled binomial standard error.

- 97 -

was found to be 10.22, 180.30, 20.79, 99.02, 235.55, 212.88, 15.58, and 416.88 ppm

respectively, similarly the LC50 values for field tomato populations was found to be 8.56.

149.95, 19.06, 92.60, 203.36, 216.89, 11.78, and 324.63 ppm respectively. Lower LC50

values were recorded wherever microbial curing was done with antibiotic, though it was

statistically non-significant by non-overlap method of fludicial limits.

4.4 Insecticide degradation studies by the gut microbial isolates from susceptible

lab and field populations of H. armigera and adult lab and field populations of

T. chilonis by minimal media and Gas Chromatography.

All the eight insecticides were selected for the insecticide degradation studies. .All

the bacterial isolates from the gut of lab and field populations of H. armigera and lab and

field adult populations of T. chilonis after sequencing, were tested for their growth on

minimal salt medium (MSM) along with the selected insecticides as per the concentration

mentioned in materials and methods. Growth of the bacterial isolates was recorded after 7

days of incubation at 30ºC and is shown in the Table 16. Total of 24 bacterial isolates

were tested and among them isolate HT3 (Enterococcus sp.) were found to grow on

minimal salt medium (MSM) and with chlorpyriphos and isolate CL2 (Enterococcus

casseliflavus) was able to grow in MSM with chloropyriphos and malathion and no growth

was seen in MSM without insecticide (control). The growth of isolates HT3 and CL2 on

MSM without insecticide (control) and with insecticides is shown in Plate 12. Bacterial

isolates HT3 and CL2 were further grown in MSM broth without and with insecticides and

incubated in shaker at 30ºC for 7 days, after incubation 0.1 ml of the culture was plated on

to sterile nutrient agar plates and were incubated at 30ºC for 48 h and the number of CFU

was calculated along with control and data have been shown Table 17. Further cell free

extract of the MSM broth cultures were analyzed in the Gas Chromatography facility

available at Bangalore Test House, Bangalore, to determine the concentration of the

- 98 -

insecticide. GC graph results have been shown for MSM with insecticides, MSM with

isolate HT3 without insecticide and with chlorpyiphos and MSM with isolate CL2 without

insecticides and with chlorpyriphos and malathion in Figure 22, 23, and 24 respectively.

The concentration of the insecticides in the MSM broth cultures along with the control

have been shown in Table 18. GC graph analysis showed that there was decrease in the

concentrations of the insecticides in msm broth cultures with insecticides when compared

to that of msm broth cultures without insecxticides. The isolate HT3 (Enterococcus sp.)

was able to utilize 43.9% of chlorpyriphos and isolate CL2 (Enterococcus casseliflavus)

was able to utilize 26% of chlorpyriphos and 57.1% of malathion in msm broth cultures

with camparison with the respective control cultures. Findings of the current resukts

suggested that gut bacteria in the field populations of H. armigera is having a role in

insecticide resistance.

- 99 -

Table 16. Growth of bacterial isolates on MSM medium with insecticides from the gut of Helicoverpa armigera (tomato, cotton

and susceptible lab) and T. chilonis (field and lab)

Bacterial

Isolates

Isolate Name MSM MSM +

Abamectin MSM +

Chlorpyriphos

MSM +

Cypermethrin

MSM +

Indoxacarb MSM +

Malathion

MSM +

Quinalphos

MSM +

Spinosad

MSM +

Triazophos

HT1 Stenotrophomonas sp. − − − − − − − − −

HT2 Enterococcus sp. − − − − − − − − −

HT3 Enterococcus sp. -- − ++ − − − -- − −

HT5 Enterococcus gallinarum − − − − − − − − −

HT7 Bravundimonas diminuta − − − − − − − − −

HT9 Enterococcus faecium − − − − − − − − −

HT10 Staphylococcus sp. − − − − − − − − −

HT12 Pseudomonas aeruginosa − − − − − − − − −

HT13 Acinetobacter calcoaceticus − − − − − − − − −

HT14 Bacillu subtillis − − − − − − − − −

HT15 Rhodococcus sp. − − − − − − − − −

CL1 Bacillus pumillis − − − − − − − − −

CL2 Enterococcus casseliflavus -- − ++ − − + -- − −

CL3 Bacillus subtilis − − − − − − − − −

CL4 Rhodococcus sp. − − − − − − − − −

CL5 Pseudomonas sp. − − − − − − − − −

CL6 Staphylococcus sp. − − − − − − − − −

CL7 Pseudomonas aeruginosa − − − − − − − − −

HL1 Proteus vulgaris − − − − − − − − −

HL2 Cellulosimicrobium cellulans − − − − − − − − −

HL3 Klebseilla oxytoca − − − − − − − − −

HL4 Bacillus subtilis − − − − − − − − −

HL5 Stenotrophomonas maltophilla − − − − − − − − −

HL6 Pseudomonas sp. − − − − − − − − −

Table 12 Continued…

- 100 -

TF1 Stenotrophomonas maltophilla − − − − − − − − −

TF2 Bacillus sp. -- − -- − − -- -- − −

TF3 Pseudomonas sp. − − − − − − − − −

TL1 Pseudomonas sp. − − − − − − − − −

TL2 Stenotrophomonas sp. − − − − − − − − −

TF1 Stenotrophomonas maltophilla − − − − − − − − −

MSM: Minimum Salt Medium, +: Good growth, ++: Very good growth, −: No growth

HT1-HT15: Bacterial isolates from the larval gut of insecticide resistant field larvae of H. armigera from tomato.

CL1-CL2: Bacterial isolates from the larval gut of insecticide resistant field larvae of H. armigera from cotton.

HL1-HL2: Bacterial isolates from the larval gut of lab populations of H. armigera.

TF1-TF3: Bacterial isolates from the gut of field adult populations of T. chilonis

TL1 – TL2: Bacterial isolates from the gut of laboratory adult populations of T. chiloni

- 101 -

Plate 12. Growth of bacterial isolate HT3 and CL2 on MSM with insecticides. HT3

– Enterococcus sp. CL2 - Enterococcus casseliflavus. A – Control, B - MSM

with Chlorpyriphos, C – MSM with Malathion

- 102 -

A B

Figure 22. GC analysis of MSM with Chloropyriphos and Malathion, A-

Chlorpyriphos B- Malathion CL2 CL

A B

Figure 23. GC analysis of MSM with Chloropyriphos and bacterial isolate HT3,

A- Chlorpyriphos B- Control

- 103 -

A B

C

Figure 24. GC analysis of MSM with chloropyriphos, malathionwith

bacterial isolate CL2 A- Chlorpyriphos B- Malathion C-

Control

- 104 -

Table 17. Colony forming units of the bacterial

isolates (HT3 and CL2) on nutrient agar

MSM broth

culture CFU/mL

Control 00

MSM + HT3 3 X 10 -4

MSM + HT3 +

Chlorpyriphos 7 X 10

-4

MSM + CL2 1 X 10 -4

MSM + CL2 +

Chlorpyriphos 3 X 10

-4

MSM + CL2 +

Malathion 2 X 10

-4

Table 18. Concentration of Insecticides in MSM

broth Cultures with bacterial isolates HT3

and CL2 analyzed by GC-ECD

MSM broth

culture

Chlorpyriphos

Conc. (µg/ml)

Malathion

Conc. (µg/ml)

Control 00 00

MSM 38.29 112.27

MSM + HT3 16.81 ---

MSM + CL2 10.05 64.13

HT3 – Enterococcus sp. CL2 - Enterococcus casseliflavus