4 eso academics - unit 03 - polynomials. algebraic fractions

16
Unit 03 November 1. MONOMIALS AND POLYNOMIALS. 1.1. MONOMIALS. A Monomial is an Algebraic Expression containing one Term which may be a number, a Variable or a product of numbers and variables, with no negative or fractional exponents. (Mono implies one and the ending nomial is Greek for part). 2a 3 ;5; βˆ’2; 450 2 are monomials The number is called Coefficient and the variables are called Literal Part. If the literal part of a monomial has only one letter, then the Degree is the exponent of the letter. If the literal part of a monomial has more than one letter, then the degree is the addition of the exponents of the letters. The degree of βˆ’5 3 is 3 The degree of 2 2 3 is 2+3+1=6 MATH VOCABULARY: Monomial, Algebraic Expression, Term, Variable, Coefficient, Literal Part, Degree, Polynomial. 1.2. ADDITION AND SUBTRACTION OF MONOMIALS. You can add monomials only if they have the same literal part (they are also called like terms). In this case, you add the coefficients and leave the same literal part. Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.1

Upload: gogely-the-great

Post on 13-Jan-2017

20 views

Category:

Education


2 download

TRANSCRIPT

Page 1: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

1. MONOMIALS AND POLYNOMIALS.

1.1. MONOMIALS.

A Monomial is an Algebraic Expression containing one Term which may be a

number, a Variable or a product of numbers and variables, with no negative or

fractional exponents. (Mono implies one and the ending nomial is Greek for part).

2a3

; 5π‘₯π‘₯; βˆ’2𝑦𝑦; 450π‘₯π‘₯2𝑧𝑧 are monomials

The number is called Coefficient and the variables are called Literal Part. If the

literal part of a monomial has only one letter, then the Degree is the exponent of the

letter. If the literal part of a monomial has more than one letter, then the degree is the

addition of the exponents of the letters.

The degree of βˆ’5π‘₯π‘₯3 is 3

The degree of 2π‘₯π‘₯2𝑦𝑦3𝑧𝑧 is 2 + 3 + 1 = 6

MATH VOCABULARY: Monomial, Algebraic Expression, Term, Variable, Coefficient,

Literal Part, Degree, Polynomial.

1.2. ADDITION AND SUBTRACTION OF MONOMIALS.

You can add monomials only if they have the same literal part (they are also

called like terms). In this case, you add the coefficients and leave the same literal part.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.1

Page 2: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

3π‘₯π‘₯ + 5π‘₯π‘₯ = 8π‘₯π‘₯

3π‘₯π‘₯ βˆ’ 2π‘₯π‘₯2 You cannot add the terms because they have different literal part.

1.3. MULTIPLICATION AND DIVISION OF MONOMIALS.

If you want to multiply two or more monomials, you just have to multiply the

coefficients, and add the exponents of the equal letters.

2π‘₯π‘₯7 βˆ™ 3π‘₯π‘₯3 = (2 βˆ™ 3) βˆ™ π‘₯π‘₯7+3 = 6π‘₯π‘₯10

(βˆ’2π‘₯π‘₯𝑦𝑦2𝑧𝑧) βˆ™ (5π‘₯π‘₯2𝑧𝑧3) = οΏ½(βˆ’2) βˆ™ 5οΏ½ βˆ™ (π‘₯π‘₯1+2) βˆ™ (𝑦𝑦2+0) βˆ™ (𝑧𝑧1+3) = βˆ’10π‘₯π‘₯3𝑦𝑦3𝑧𝑧4

If you want to divide a monomial by a monomial of the same or lower degree,

you just have to divide the coefficients, and subtract the exponents of the equal

letters.

10π‘₯π‘₯5 Γ· 2π‘₯π‘₯2 = (10 Γ· 2) βˆ™ (π‘₯π‘₯5βˆ’2) = 5π‘₯π‘₯3

(12π‘Žπ‘Ž2𝑏𝑏) Γ· (3π‘Žπ‘Ž) = (12 Γ· 3) βˆ™ (π‘Žπ‘Ž2βˆ’1) βˆ™ (𝑏𝑏1βˆ’0) = 4π‘Žπ‘Žπ‘π‘

1.4. POLYNOMIALS.

A Polynomial is the addition or subtraction of two or more monomials (which

are called Terms). If there are two monomials, it is called a Binomial, if there are three

monomials, it is called a Trinomial. The Degree of the polynomial is the highest degree

of the terms that it contains.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.2

Page 3: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

You usually write polynomials with the terms in β€œDecreasing” order of exponents. We

say that a polynomial is Complete if it has terms of every exponent from the degree of the

polynomial until you get down to the Constant Term.

Polynomials are also sometimes named for their degree:

MATH VOCABULARY: Binomial, Trinomial, To Decrease, Constant Term, Quadratic,

Cubic, Quartic.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.3

Page 4: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

1.5. EVALUATING POLYNOMIALS.

β€œEvaluating” a polynomial 𝑷𝑷(𝒙𝒙) is calculating its numerical value at a given

value of the variable: 𝒙𝒙 = 𝒂𝒂. You must substitute the variable 𝒙𝒙 for the value 𝒂𝒂, and

calculate the value of the polynomial 𝑷𝑷(𝒂𝒂).

Evaluate 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯4 βˆ’ 3π‘₯π‘₯2 + π‘₯π‘₯ + 1 at π‘₯π‘₯ = 2

𝑃𝑃(2) = 24 βˆ’ 3 βˆ™ 22 + 2 + 1 = 16 βˆ’ 12 + 2 + 1 = 7

MATH VOCABULARY: Numerical Value.

1.6. ADDING AND SUBTRACTING POLYNOMIALS.

When adding or subtracting polynomials you must add or subtract each like

term of the polynomial, that is, monomials that have the same literal part. (You must

use what you know about the addition of monomials).

If 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 4;𝑄𝑄(π‘₯π‘₯) = π‘₯π‘₯3 + 2π‘₯π‘₯ + 1 and 𝑅𝑅(π‘₯π‘₯) = βˆ’π‘₯π‘₯ + 3

Find 𝑃𝑃(π‘₯π‘₯) + 𝑄𝑄(π‘₯π‘₯)βˆ’ 𝑅𝑅(π‘₯π‘₯) = 𝑆𝑆(π‘₯π‘₯)

𝑆𝑆(π‘₯π‘₯) = (π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 4) + (π‘₯π‘₯3 + 2π‘₯π‘₯ + 1)βˆ’ (βˆ’π‘₯π‘₯ + 3) =

= π‘₯π‘₯3 + π‘₯π‘₯2 + οΏ½3π‘₯π‘₯ + 2π‘₯π‘₯ βˆ’ (βˆ’π‘₯π‘₯)οΏ½ + οΏ½(βˆ’4) + 1 βˆ’ 3οΏ½ = π‘₯π‘₯3 + π‘₯π‘₯2 + 6π‘₯π‘₯ βˆ’ 6

1.7. MULTIPLICATION OF POLYNOMIALS.

β€’ A Monomial times a multi-term polynomial. To do this, we have to expand the

brackets.

βˆ’2π‘₯π‘₯(π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 4) = (βˆ’2π‘₯π‘₯) βˆ™ (π‘₯π‘₯2) + (βˆ’2π‘₯π‘₯) βˆ™ (3π‘₯π‘₯) + (βˆ’2π‘₯π‘₯) βˆ™ (βˆ’4) =

= βˆ’2π‘₯π‘₯3 βˆ’ 6π‘₯π‘₯2 + 8π‘₯π‘₯

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.4

Page 5: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

β€’ A Multi-term polynomial times a multi-term polynomial. We have to multiply

every term by every term.

If 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 4 and 𝑅𝑅(π‘₯π‘₯) = βˆ’π‘₯π‘₯ + 3, find 𝑃𝑃(π‘₯π‘₯) βˆ™ 𝑅𝑅(π‘₯π‘₯)

𝑃𝑃(π‘₯π‘₯) βˆ™ 𝑅𝑅(π‘₯π‘₯) = (π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 4 ) βˆ™ (βˆ’π‘₯π‘₯ + 3) =

= π‘₯π‘₯2 βˆ™ (βˆ’π‘₯π‘₯ + 3) + 3π‘₯π‘₯ βˆ™ (βˆ’π‘₯π‘₯ + 3) βˆ’ 4 βˆ™ (βˆ’π‘₯π‘₯ + 3) =

= βˆ’π‘₯π‘₯3 + 3π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯2 + 9π‘₯π‘₯ + 4π‘₯π‘₯ βˆ’ 12 =

= βˆ’π‘₯π‘₯3 + 13π‘₯π‘₯ βˆ’ 12

1.8. EXTRACTING FACTORS OF POLYNOMIALS.

To extract factors from polynomials we have to see with variables and factors

are repeating it.

Extract factors from 6π‘₯π‘₯2𝑦𝑦2 βˆ’ 3π‘₯π‘₯𝑦𝑦2 + 30π‘₯π‘₯2𝑦𝑦

6π‘₯π‘₯2𝑦𝑦2 βˆ’ 3π‘₯π‘₯𝑦𝑦2 + 30π‘₯π‘₯2𝑦𝑦 = (2π‘₯π‘₯𝑦𝑦) βˆ™ (3π‘₯π‘₯𝑦𝑦) + (βˆ’π‘¦π‘¦) βˆ™ (3π‘₯π‘₯𝑦𝑦) + (10π‘₯π‘₯) βˆ™ (3π‘₯π‘₯𝑦𝑦) =

= 3π‘₯π‘₯𝑦𝑦(2π‘₯π‘₯𝑦𝑦 βˆ’ 𝑦𝑦 + 10π‘₯π‘₯)

2. POWER OF POLYNOMIALS.

The Power of a polynomial, 𝑷𝑷(𝒙𝒙)𝒏𝒏, is the multiplication of the polynomial

𝑷𝑷(𝒙𝒙), n times.

𝑷𝑷(𝒙𝒙)𝒏𝒏 = 𝑷𝑷(𝒙𝒙) βˆ™ 𝑷𝑷(𝒙𝒙) βˆ™ … βˆ™ 𝑷𝑷(𝒙𝒙)���������������𝒏𝒏 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

2.1. BINOMIALΒ΄S POWERS.

To solve the power of a binomial we have to use the Tartaglia's Triangle, also

known as PascalΒ΄s Triangle.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.5

Page 6: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

To know the development of a binomial raised to the nth power we use the

nth+1 row of the triangle to find the 𝒄𝒄 coefficients.

(𝒂𝒂 + 𝒃𝒃)𝒏𝒏 = πŸπŸπ’‚π’‚π’π’π’ƒπ’ƒπŸŽπŸŽ + π’„π’„π’π’βˆ’πŸπŸπ’‚π’‚π’π’βˆ’πŸπŸπ’ƒπ’ƒπŸπŸ + β‹―+ π’„π’„πŸπŸπ’‚π’‚πŸπŸπ’ƒπ’ƒπ’π’βˆ’πŸπŸ + πŸπŸπ’‚π’‚πŸŽπŸŽπ’ƒπ’ƒπ’π’

(𝒂𝒂 βˆ’ 𝒃𝒃)𝒏𝒏 = �𝒂𝒂 + (βˆ’π’ƒπ’ƒ)�𝒏𝒏 = πŸπŸπ’‚π’‚π’π’(βˆ’π’ƒπ’ƒ)𝟎𝟎 + π’„π’„π’π’βˆ’πŸπŸπ’‚π’‚π’π’βˆ’πŸπŸ(βˆ’π’ƒπ’ƒ)𝟏𝟏 + β‹―+ π’„π’„πŸπŸπ’‚π’‚πŸπŸ(βˆ’π’ƒπ’ƒ)π’π’βˆ’πŸπŸ + πŸπŸπ’‚π’‚πŸŽπŸŽ(βˆ’π’ƒπ’ƒ)𝒏𝒏

The exponents of 𝒂𝒂 and 𝒃𝒃 must add always 𝒏𝒏.

(π‘Žπ‘Ž + 𝑏𝑏)2 β‡’ 𝑛𝑛 = 2 𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑙𝑙𝑓𝑓 π‘‘π‘‘β„Žπ‘€π‘€ 3π‘“π‘“π‘Ÿπ‘Ÿ 𝑓𝑓𝑙𝑙𝑀𝑀 β‡’ 𝑐𝑐𝑙𝑙𝑀𝑀𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝑛𝑛𝑑𝑑𝑐𝑐 𝟏𝟏 𝟐𝟐 𝟏𝟏 β‡’

(π‘Žπ‘Ž + 𝑏𝑏)2 = πŸπŸπ‘Žπ‘Ž2𝑏𝑏0 + πŸπŸπ‘Žπ‘Ž2βˆ’1𝑏𝑏0+1 + πŸπŸπ‘Žπ‘Ž2βˆ’2𝑏𝑏0+2 =

= π‘Žπ‘Ž2 + 2π‘Žπ‘Žπ‘π‘ + 𝑏𝑏2

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.6

Page 7: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

(π‘Žπ‘Ž βˆ’ 𝑏𝑏)5 β‡’ 𝑛𝑛 = 5 𝑀𝑀𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑙𝑙𝑓𝑓 π‘‘π‘‘β„Žπ‘€π‘€ 6π‘‘π‘‘β„Ž 𝑓𝑓𝑙𝑙𝑀𝑀 β‡’ 𝑐𝑐𝑙𝑙𝑀𝑀𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝑛𝑛𝑑𝑑𝑐𝑐 𝟏𝟏 πŸ“πŸ“ 𝟏𝟏𝟎𝟎 𝟏𝟏𝟎𝟎 πŸ“πŸ“ 𝟏𝟏 β‡’

(π‘Žπ‘Ž βˆ’ 𝑏𝑏)5 = πŸπŸπ‘Žπ‘Ž5(βˆ’π‘π‘)0 + πŸ“πŸ“π‘Žπ‘Ž5βˆ’1(βˆ’π‘π‘)0+1 + πŸπŸπŸŽπŸŽπ‘Žπ‘Ž5βˆ’2(βˆ’π‘π‘)0+2 + πŸπŸπŸŽπŸŽπ‘Žπ‘Ž5βˆ’3(βˆ’π‘π‘)0+3

+ πŸ“πŸ“π‘Žπ‘Ž5βˆ’4(βˆ’π‘π‘)0+4 + πŸπŸπ‘Žπ‘Ž5βˆ’5(βˆ’π‘π‘)0+5 =

= π‘Žπ‘Ž5 βˆ’ 5π‘Žπ‘Ž4𝑏𝑏 + 10π‘Žπ‘Ž3𝑏𝑏2 βˆ’ 10π‘Žπ‘Ž2𝑏𝑏3 + 5π‘Žπ‘Žπ‘π‘4 βˆ’ 𝑏𝑏5

MATH VOCABULARY: Tartaglia's Triangle, Pascal's Triangle.

3. POLYNOMIAL IDENTITIES.

Some special products are called Polynomial Identities, and they serve to solve

some algebraic expressions. We will see three of them:

β€’ The Square of the Sum: (𝒂𝒂 + 𝒃𝒃)𝟐𝟐 = π’‚π’‚πŸπŸ + πŸπŸπ’‚π’‚π’ƒπ’ƒ + π’ƒπ’ƒπŸπŸ

(2π‘₯π‘₯ + π‘₯π‘₯2)2 = (2π‘₯π‘₯)2 + 2 βˆ™ (2π‘₯π‘₯) βˆ™ (π‘₯π‘₯2) + (π‘₯π‘₯2)2 = 4π‘₯π‘₯2 + 4π‘₯π‘₯3 + π‘₯π‘₯4 =

= π‘₯π‘₯4 + 4π‘₯π‘₯3 + 4π‘₯π‘₯2

β€’ The Square of the Difference: (𝒂𝒂 βˆ’ 𝒃𝒃)𝟐𝟐 = π’‚π’‚πŸπŸ βˆ’ πŸπŸπ’‚π’‚π’ƒπ’ƒ + π’ƒπ’ƒπŸπŸ

(4π‘Žπ‘Ž βˆ’ 𝑏𝑏)2 = (4π‘Žπ‘Ž)2 βˆ’ 2 βˆ™ (4π‘Žπ‘Ž) βˆ™ (𝑏𝑏) + (𝑏𝑏)2 = 16π‘Žπ‘Ž2 βˆ’ 8π‘Žπ‘Žπ‘π‘ + 𝑏𝑏2

β€’ The Product of a Sum and a Difference: (𝒂𝒂 + 𝒃𝒃) βˆ™ (𝒂𝒂 βˆ’ 𝒃𝒃) = π’‚π’‚πŸπŸ βˆ’ π’ƒπ’ƒπŸπŸ

(2π‘₯π‘₯ + 𝑦𝑦) βˆ™ (2π‘₯π‘₯ βˆ’ 𝑦𝑦) = (2π‘₯π‘₯)2 βˆ’ (𝑦𝑦)2 = 4π‘₯π‘₯2 βˆ’ 𝑦𝑦2

MATH VOCABULARY: Polynomial Identities, Algebraic Expressions, Square of the Sum,

Square of the Difference, Product of a Sum and a Difference.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.7

Page 8: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

4. DIVISION OF POLYNOMIALS.

The division of polynomials is similar to the division of natural numbers. When

you divide polynomials you get a quotient and a remainder. In general, if you divide

the polynomial 𝑨𝑨(𝒙𝒙) by the polynomial 𝑩𝑩(𝒙𝒙) and the quotient and the remainder are

𝑸𝑸(𝒙𝒙) and 𝑹𝑹(𝒙𝒙) respectively.

β‡’ 𝑨𝑨(𝒙𝒙) = 𝑩𝑩(𝒙𝒙) βˆ™ 𝑸𝑸(𝒙𝒙) + 𝑹𝑹(𝒙𝒙)

When the remainder is 𝟎𝟎, we have that 𝑨𝑨(𝒙𝒙) = 𝑩𝑩(𝒙𝒙) βˆ™ 𝑸𝑸(𝒙𝒙). In this case, the

polynomial 𝑨𝑨(𝒙𝒙) is divisible by 𝑩𝑩(𝒙𝒙), that is, 𝑩𝑩(𝒙𝒙) is a factor or divisor of 𝑨𝑨(𝒙𝒙).

Divide A(x) = 2π‘₯π‘₯5 βˆ’ 7π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 1 by 𝐡𝐡(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 + 1

+2π‘₯π‘₯5 βˆ’7π‘₯π‘₯2 +3π‘₯π‘₯ βˆ’1 π‘₯π‘₯3 βˆ’2π‘₯π‘₯2 +1

βˆ’2π‘₯π‘₯5 +4π‘₯π‘₯4 βˆ’2π‘₯π‘₯2 2π‘₯π‘₯2 +4π‘₯π‘₯ +8

+4π‘₯π‘₯4 βˆ’9π‘₯π‘₯2 +3π‘₯π‘₯ βˆ’1 𝑄𝑄(π‘₯π‘₯)

βˆ’4π‘₯π‘₯4 +8π‘₯π‘₯3 βˆ’4π‘₯π‘₯

+8π‘₯π‘₯3 βˆ’9π‘₯π‘₯2 βˆ’π‘₯π‘₯ βˆ’1

βˆ’8π‘₯π‘₯3 +16π‘₯π‘₯2 βˆ’8

+7π‘₯π‘₯2 βˆ’π‘₯π‘₯ βˆ’9 ⇐ 𝑅𝑅(𝑋𝑋)

β‡’ 2π‘₯π‘₯5 βˆ’ 7π‘₯π‘₯2 + 3π‘₯π‘₯ βˆ’ 1 = (π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 + 1) βˆ™ (2π‘₯π‘₯2 + 4π‘₯π‘₯ + 8) + (7π‘₯π‘₯2 βˆ’ π‘₯π‘₯ βˆ’ 9)

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.8

Page 9: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

4.1. DIVISION OF A POLYNOMIAL BY (𝒙𝒙 βˆ’ 𝒂𝒂). RUFFINI’S RULE.

It is very common to divide a polynomial by (𝐱𝐱 βˆ’ 𝐚𝐚):

(3π‘₯π‘₯3 + 4π‘₯π‘₯ βˆ’ 2) Γ· (π‘₯π‘₯ βˆ’ 2) β‡’ 𝑄𝑄(π‘₯π‘₯) = 3π‘₯π‘₯2 + 6π‘₯π‘₯ + 16 π‘Žπ‘Žπ‘›π‘›π‘Ÿπ‘Ÿ 𝑅𝑅(π‘₯π‘₯) = 30

Using the above rules

But this division can also be done using Ruffini’s rule:

β€’ Step 1: Set the coefficients of the dividend in one line. If the polynomial is not

complete, complete it by adding the missing terms with zeroes. Draw two

perpendicular lines like this:

3 0 4 βˆ’2

β€’ Step 2: At the bottom left, place the opposite of the independent term of the

divisor:

3 0 4 βˆ’2

2

β€’ Step 3: Bring down the first coefficient.

3 0 4 βˆ’2

2

3

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.9

Page 10: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

β€’ Step 4: Multiply this coefficient by the divisor and place it under the following

coefficient.

3 0 4 βˆ’2

2 6

3

β€’ Step 5: Add the two coefficients.

3 0 4 βˆ’2

2 6

3 6

β€’ Step 6: Repeat Steps 4 and 5 until you get the last number, like this:

3 0 4 βˆ’2

2 6 12 32

3 6 16 30

The last number obtained, 30, is the remainder of the division. The quotient is

a polynomial of one degree less than the dividend polynomial and whose coefficients

are the ones obtained in the division. The Coefficients of the Quotient are 3, 6 π‘Žπ‘Žπ‘›π‘›π‘Ÿπ‘Ÿ 16.

In this example, the quotient polynomial is:

𝑄𝑄(π‘₯π‘₯) = 3π‘₯π‘₯2 + 6π‘₯π‘₯ + 16

MATH VOCABULARY: Ruffini’s Rule.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.10

Page 11: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

4.2. RUFFINI’S RULE’S USES.

When the coefficients of a polynomial 𝑷𝑷(𝒙𝒙) are integers, if (𝒙𝒙 βˆ’ 𝒂𝒂) is a factor

of 𝑷𝑷(𝒙𝒙) and β€œπ’‚π’‚β€ is also an integer number, then β€œπ’‚π’‚β€ is a divisor of the constant term of

𝑷𝑷(𝒙𝒙). So if you are looking for factors of a polynomial 𝑷𝑷(𝒙𝒙), have a try with the linear

factors (𝒙𝒙 βˆ’ 𝒂𝒂) where β€œπ’‚π’‚β€ is a divisor of the constant term of 𝑷𝑷(𝒙𝒙).

5. THE REMAINDER THEOREM.

Remember that you can calculate the number value of a polynomial at a given

value of the variable (1.5.). The Remainder Theorem states:

β€œThe number value of the polynomial 𝑷𝑷(𝒙𝒙) at 𝒙𝒙 = 𝒂𝒂 is the same as the remainder of

the division 𝑷𝑷(𝒙𝒙) Γ· (𝒙𝒙 βˆ’ 𝒂𝒂) . That is, 𝑷𝑷(𝒂𝒂) = 𝑹𝑹 .”

PROOF:

P(x) = (x βˆ’ a) βˆ™ Q(x) + R

If x = a β‡’ P(a) = (a βˆ’ a) βˆ™ Q(a) + R = 0 + R β‡’ P(a) = 𝑅𝑅

Find the remainder of this division using the Theorem:

(3π‘₯π‘₯3 + 2π‘₯π‘₯2 + 5π‘₯π‘₯ βˆ’ 3) Γ· (π‘₯π‘₯ + 1)

Using the theorem:

𝑃𝑃(βˆ’1) = 3(βˆ’1)3 + 2(βˆ’1)2 + 5(βˆ’1) βˆ’ 3 = βˆ’9 β‡’ 𝑅𝑅(π‘₯π‘₯) = βˆ’9

MATH VOCABULARY: Remainder Theorem.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.11

Page 12: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

6. ROOTS OF A POLYNOMIAL.

A number β€œπ’‚π’‚β€ is called a Root of a polynomial 𝑷𝑷(𝒙𝒙) if 𝑷𝑷(𝒂𝒂) = 𝟎𝟎 . The roots (or

zeroes) of a polynomial are the solutions of the equation 𝑷𝑷(𝒙𝒙) = 𝟎𝟎.

One of the most important uses of Ruffini’s rule is to find the roots of a

polynomial.

Find the roots of 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯2 βˆ’ π‘₯π‘₯ βˆ’ 2

The constant term is βˆ’2, so its divisors are Β±1 π‘Žπ‘Žπ‘›π‘›π‘Ÿπ‘Ÿ Β± 2. Starting with 1:

1 βˆ’1 βˆ’2

1 1 0

1 0 βˆ’2 = 𝑅𝑅(π‘₯π‘₯) β‰  0

1 βˆ’1 βˆ’2

βˆ’1 βˆ’1 +2

1 βˆ’2 0 = 𝑅𝑅(π‘₯π‘₯) β‡’ 𝑅𝑅𝑙𝑙𝑙𝑙𝑑𝑑

1 βˆ’1 βˆ’2

2 2 +2

1 1 0 = 𝑅𝑅(π‘₯π‘₯) β‡’ 𝑅𝑅𝑙𝑙𝑙𝑙𝑑𝑑

As the polynomial has a second degree we donΒ΄t need to test the last divisor. The roots

are βˆ’1 π‘Žπ‘Žπ‘›π‘›π‘Ÿπ‘Ÿ 2. We can also solve it using the remainder theorem

MATH VOCABULARY: Roots, Zeroes.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.12

Page 13: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

7. FACTORIZING POLYNOMIALS.

Factoring a polynomial means rewriting it as a product of polynomials of the

lowest degree as possible that can be multiplied together to give us the polynomial

that you started with.

π‘₯π‘₯2 βˆ’ 16 = (π‘₯π‘₯ + 4) βˆ™ (π‘₯π‘₯ βˆ’ 4)

There are different techniques for factorizing polynomials:

β€’ Taking out common factor:

16π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯ = 2π‘₯π‘₯(8π‘₯π‘₯2 βˆ’ 1)

β€’ Using Polynomial Identities:

π‘₯π‘₯2 βˆ’ 16 = (π‘₯π‘₯ + 4) βˆ™ (π‘₯π‘₯ βˆ’ 4)

β€’ Using the Fundamental Theorem of Algebra:

The roots of the polynomial 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 6 are using the quadratic formula,

2 π‘Žπ‘Žπ‘›π‘›π‘Ÿπ‘Ÿ βˆ’ 3

So, you can rewrite: 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯2 + π‘₯π‘₯ βˆ’ 6 = (π‘₯π‘₯ βˆ’ 2) βˆ™ (π‘₯π‘₯ + 3)

β€’ Using Ruffini’s Rule:

𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯ + 6

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.13

Page 14: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

1 βˆ’2 βˆ’5 +6

1 1 βˆ’1 βˆ’6

1 βˆ’1 βˆ’6 0

βˆ’2 βˆ’2 +6

1 βˆ’3 0

β‡’ 𝑃𝑃(π‘₯π‘₯) = π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯+ 6 = (π‘₯π‘₯ βˆ’ 1) βˆ™ (π‘₯π‘₯+ 2) βˆ™ (π‘₯π‘₯ βˆ’ 3)

β€’ A combination of the previous ones:

𝑃𝑃(π‘₯π‘₯) = βˆ’2π‘₯π‘₯4 βˆ’ 4π‘₯π‘₯3 + 14π‘₯π‘₯2 βˆ’ 8π‘₯π‘₯

We can extract π‘₯π‘₯, and 𝐻𝐻𝐻𝐻𝐻𝐻 (2,4,8,14) = 2

β‡’ 𝑃𝑃(π‘₯π‘₯) = 2π‘₯π‘₯ βˆ™ (βˆ’π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 + 7π‘₯π‘₯ βˆ’ 4) = 2π‘₯π‘₯ βˆ™ 𝑄𝑄(π‘₯π‘₯)

Factorizing 𝑄𝑄(π‘₯π‘₯), the divisors or 4: Β± 1, Β±2, Β±4. We test with βˆ’1

βˆ’1 βˆ’2 +7 βˆ’4

βˆ’1 +1 +1 βˆ’8

βˆ’1 βˆ’1 +8 βˆ’12 = 𝑅𝑅(π‘₯π‘₯) β‰  0 β‡’ 𝑁𝑁𝑙𝑙 𝑅𝑅𝑙𝑙𝑙𝑙𝑑𝑑

We test with +1:

βˆ’1 βˆ’2 +7 βˆ’4

+1 βˆ’1 βˆ’3 +4

βˆ’1 βˆ’3 +4 0 = 𝑅𝑅(π‘₯π‘₯) β‡’ 𝑅𝑅𝑙𝑙𝑙𝑙𝑑𝑑

β‡’ (π‘₯π‘₯ βˆ’ 1)𝑐𝑐𝑐𝑐 π‘Žπ‘Ž π‘“π‘“π‘Žπ‘Žπ‘π‘π‘‘π‘‘π‘™π‘™π‘“π‘“ β‡’ 𝑃𝑃(π‘₯π‘₯) = 2π‘₯π‘₯ βˆ™ 𝑄𝑄(π‘₯π‘₯) = 2π‘₯π‘₯ βˆ™ (π‘₯π‘₯ βˆ’ 1) βˆ™ (βˆ’π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ + 4)

The last one can be factorizing using again Ruffini or using the quadratic formula:

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.14

Page 15: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

π‘₯π‘₯ =βˆ’(βˆ’3) Β± οΏ½(βˆ’3)2 βˆ’ 4 βˆ™ (βˆ’1) βˆ™ 4

2 βˆ™ (βˆ’1) =3 Β± 5βˆ’2 = οΏ½π‘₯π‘₯1 = βˆ’4

π‘₯π‘₯2 = +1

β‡’ 𝑃𝑃(π‘₯π‘₯) = 2π‘₯π‘₯ βˆ™ (π‘₯π‘₯ βˆ’ 1) βˆ™ (βˆ’π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯ + 4) = 2π‘₯π‘₯ βˆ™ (π‘₯π‘₯ βˆ’ 1) βˆ™ (π‘₯π‘₯ βˆ’ 1) βˆ™ (π‘₯π‘₯ + 4) =

= 2π‘₯π‘₯ βˆ™ (π‘₯π‘₯ βˆ’ 1)2 βˆ™ (π‘₯π‘₯ + 4)

MATH VOCABULARY: Factorizing Polynomials, Fundamental Theorem of Algebra,

Quadratic Formula.

8. ALGEBRAIC FRACTIONS.

An Algebraic Fraction is the quotient of two polynomials, that is:

𝑷𝑷(𝒙𝒙)𝑸𝑸(𝒙𝒙)

2π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯ + 4π‘₯π‘₯ βˆ’ 1 𝑐𝑐𝑐𝑐 π‘Žπ‘Žπ‘›π‘› π΄π΄π‘™π‘™π‘™π‘™π‘€π‘€π‘π‘π‘“π‘“π‘Žπ‘Žπ‘π‘π‘π‘ π»π»π‘“π‘“π‘Žπ‘Žπ‘π‘π‘‘π‘‘π‘π‘π‘™π‘™π‘›π‘›

The same calculations that you do with numerical fractions can be done with

algebraic fractions. As you usually do with numerical fractions, you can simplify

algebraic fractions factoring the polynomials in the numerator and in the

denominator. Dividing by the H.C.F. of numerator and denominator you will get the

simplest form of the algebraic fraction.

π‘₯π‘₯6 βˆ’ 6π‘₯π‘₯5 + 9π‘₯π‘₯4 + 4π‘₯π‘₯3 βˆ’ 12π‘₯π‘₯2

π‘₯π‘₯3 βˆ’ 2π‘₯π‘₯2 βˆ’ 5π‘₯π‘₯ + 6 = π»π»π‘Žπ‘Žπ‘π‘π‘‘π‘‘π‘™π‘™π‘“π‘“π‘π‘π‘§π‘§π‘π‘π‘›π‘›π‘™π‘™ =π‘₯π‘₯2 βˆ™ (π‘₯π‘₯ + 1) βˆ™ (π‘₯π‘₯ βˆ’ 2)2 βˆ™ (π‘₯π‘₯ βˆ’ 3)

(π‘₯π‘₯ βˆ’ 1) βˆ™ (π‘₯π‘₯ + 2) βˆ™ (π‘₯π‘₯ βˆ’ 3) =

=π‘₯π‘₯2 βˆ™ (π‘₯π‘₯ + 1) βˆ™ (π‘₯π‘₯ βˆ’ 2)2

(π‘₯π‘₯ βˆ’ 1) βˆ™ (π‘₯π‘₯ + 2) βˆ™(π‘₯π‘₯ βˆ’ 3)(π‘₯π‘₯ βˆ’ 3) =

π‘₯π‘₯2 βˆ™ (π‘₯π‘₯ + 1) βˆ™ (π‘₯π‘₯ βˆ’ 2)2

(π‘₯π‘₯ βˆ’ 1) βˆ™ (π‘₯π‘₯ + 2)

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.15

Page 16: 4 ESO Academics - UNIT 03 - POLYNOMIALS. ALGEBRAIC FRACTIONS

Unit 03 November

As you usually do with numerical fractions, you can also add, subtract, multiply

or divide algebraic fractions. (To add or subtract algebraic fractions you need to

reduce to common denominator).

MATH VOCABULARY: Algebraic Fraction.

Axel CotΓ³n GutiΓ©rrez Mathematics 4ΒΊ ESO 4.3.16