4,#, ( 4+(, () ,archive.ieee-sensors.org/conference-websites-archive/...sensors 2013 +#1#'! -" 4+(,...

39
Sponsored by the IEEE Sensors Council, www.ieee-sensors.org SENSORS 2013 Tutorials: November 3, 2013 Conference: November 4-6, 2013 ,#!' ' '%4,#, ( 4+(,(), #!( &#%#( ++'( 7+31 .1&( -24373 .! '-.+.&;

Upload: others

Post on 17-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Sponsored by the IEEE Sensors Council, www.ieee-sensors.org

    SENSORS 2013Tutorials: November 3, 2013 Conference: November 4-6, 2013

  • SENSORS 2013

  • SENSORS 2013

  • SENSORS 2013

     Source: Yole Développement, “STMicro L3G3250A Reverse costing”, 2012

    Source: Seeger, et. al. "Development of High-Performance, High-Volume Consumer MEMS Gyroscopes.” Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island. 2010.

  • SENSORS 2013

      

  • SENSORS 2013

    acor = −2Ω× vdrv

       acor

  • SENSORS 2013

    m∂2y∂t2

    + by∂y∂t+ ky y = Felecy − 2mλΩZ

    ∂x∂t

    ∂y∂t+m

    ∂2y∂t2 y

    y = Z∂x∂t

    m∂2x∂t2

    + bx∂x∂t+ kx x = Felecx + 2mλΩZ

    ∂y∂tZ∂y∂t

    ∂x∂t+m

    ∂2x∂t2 x

    x =

  • SENSORS 2013

      

      

      Ω   θ

  • SENSORS 2013

      

      Ω

    MODE 1 MODE 2

    m∂2x∂t2

    + bx∂x∂t+ kx x = Felecx m

    ∂2y∂t2

    + by∂y∂t+ ky y = −2mλΩZ

    ∂x∂t

    Ω

    Fcor = −2mλ Ω×∂x∂t

  • SENSORS 2013

    Amp TransducerTransducer

    xFelecx

    ΩzDrive System

    Fcor y∂/∂t

    vx

    Sense System

    Amp TransducerTransducer

    Felecx

    Drive SystemDrive System

    m∂2x∂t2

    + bx∂x∂t+ kx x = Felecx

      ω ω0drvX( jω)Felecx ( jω)

    =Qdrvmω0drv

    2 ∠X( jω)Felecx ( jω)

    = −90º

    X( jω)Felec ( jω)

    =1

    m

    1

    −ω 2 +ω0drvQdrv

    jω +ω0drv2

    Qdrv =kx m

    bxω0drv =

    kxm

  • SENSORS 2013

    Micralyne DRIE etched comb-drive structures

       

    dC

    dx=ε ⋅2n ⋅ tg0

       

    Device Overview DDDeevviiiccceee OOOOvvvveeerrrrvvvvvvvviiiieeewwwww Electrode

    Resonating Proof-Mass

    40-60µm

    Capacitive Gap

    GATech/Qualtré’s HARPSS parallel-plate gaps

    dC

    dx=

    ε ⋅w ⋅ t

    g0 − x( )2 ≈

    ε ⋅w ⋅ tg02

    Micralyne DRIE etched comb drive structures

    Motor

    Stator

  • SENSORS 2013

      vdrv Ω

    Amp TransducerTransducer

    xFelecx

    ΩzDrive System

    Fcor y∂/∂t

    vx

    Sense System

    ΩzΩΩ

    FFcor yyvxx

    S S tSense System

    m∂2y∂t2

    + by∂y∂t+ ky y = Fcor Fcor = 2mλΩZ

    ∂x∂t

      ω0sns ω0drv

    Y ( jω)X( jω) ω=ω0 drv

    = 2λΩjω0drv

    −ω0drv2 +

    ω0snsQsns

    jω0drv +ω0sns2

  • SENSORS 2013

      

    If ω0drv

  • SENSORS 2013

       

    Robert Bosch GmbH, single-axis gyroscope U. Michigan, Ring gyroscope

       

      

       

    J. Marek, IEEE, ISSCC 2010

  • SENSORS 2013

      

        

    SF∝xdrvω0drv

    ω0sns2 −ω0drv

    2( )2+ω0sns2 ω0drv

    2

    Qsns

    dC

    dxVP

    SensorDynamics, 3-axis gyroscope Source: http://www.i-micronews.com/news/Generation-MEMS-gyroscopes-inertial-combo-sensors-SensorDyn,6375.html

  • SENSORS 2013

      

      

  • SENSORS 2013

  • SENSORS 2013

    Q = 77,000

  • SENSORS 2013

      

      

      

      

    Rm =2π ⋅Meff ⋅ g0

    4 ⋅ fresε0 ⋅Aelec ⋅VP( )

    2⋅Q

    frff es⋅ g04 ⋅

    ⋅Q

    Mefe fff [Ω]

    SF =2π ⋅λ ⋅ε0 ⋅Aelec ⋅VP ⋅Q

    180 ⋅α ⋅ g0

    ⋅Q⋅ g0

    [A/(º/s)]

    MNEΩ =180 ⋅απ ⋅λ ⋅ g0

    kB ⋅Tπ ⋅Meff ⋅ fres ⋅Q⋅Q⋅ frff es⋅ g0 Mefe fff

    [(º/s)√Hz]

    BW =fres2Q

    frff es2Q

    [Hz]

  • SENSORS 2013

    • • 

  • SENSORS 2013

    • 

  • SENSORS 2013

    X-Axis Axl. Response

    Y-Axis Axl. Response

    Z-Axis Axl. Response X-Axis Gyro Response X Axis Gyro Response

    Q ≈ 28,000

    Y-Axis Gyro Response

    Q ≈ 28,000

    Z-Axis Gyro Response

    SSSSEEEENNNNSSSSOOOORRRRS

    Q ≈ 118,000

    Resonator

  • SENSORS 2013

    m11 q1(t)+ d11 q1(t)+ k11 q1(t) = −2λm22 q2 (t)Ω(t)

    m22 q2 (t)+ d22 q2 (t)+ k22 q2 (t) = 2λm11 q1(t)Ω(t)

    ω01 =k11m11

    =ω02 =k22m22

    Δω0 = 0

    k22 ≠ k11

    m22 ≠m11

    ω01 ≠ω02

    -90

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    7251500 7252000 7252500 7253000 7253500 7254000 7254500

    Mag

    ntid

    ue [d

    B]

    Frequency [Hz]

    Mode 1

    Mode 2

    Δω0 ≠ 0

  • SENSORS 2013

    • 

    -90

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    7251500 7252000 7252500 7253000 7253500 7254000 7254500

    Mag

    ntid

    ue [d

    B]

    Frequency [Hz]

    Mode 1

    Mode 2

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    7251500 7252000 7252500 7253000 7253500 7254000 7254500

    Mag

    ntid

    ue [d

    B]

    Frequency [Hz]

    Mode 1

    Mode 2

    k11elec =εAg03

    VP −VT , j( )j=1

    l

    ∑2

    Spring softening

    ω01=k11mech − k11elec

    m11

  • SENSORS 2013

    • Ωz

    m

    k1, b1

    x

    k1, b1

    k2, b2

    k2, b2

    Fin

    m

    k1, b1 k1, b1

    k2, b2

    k2, b2

    y

    Fcoriolis

    Fcor = 2mλΩZ∂x∂t

    • 

    m

    xk12, b12

    Finy

    k12, b12k12, b12

    k12, b12

    Damping coupling Stiffness coupling

    mq1(t)+ d11 q1(t)+ d12 q2 (t)+ k11 q1(t)+ k12 q2 (t) = −2λmq2 (t)Ω(t)

    Coriolis coupling

    mq2 (t)+ d22 q2 (t)+ d21 q1(t)+ k22 q2 (t)+ k21 q1(t) = 2λmq1(t)Ω(t)

  • SENSORS 2013

    • 

    Felec

    Drive Mode

    q2QModeCoupling

    k21

    Sense Mode

    q1 FQ

    -90

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    7251500 7252000 7252500 7253000 7253500 7254000 7254500

    Mag

    ntid

    ue [d

    B]

    Frequency [Hz]

    Mode 1

    Mode 2

    -85

    -80

    -75

    -70

    -65

    -60

    -55

    -50

    7251500 7252000 7252500 7253000 7253500 7254000 7254500

    Mag

    ntid

    ue [d

    B]

    Frequency [Hz]

    Mode 1

    Mode 2

    ∠q2Qq1

    ≈ −90º

    • 

    2000 2 37252500 72530002 2 00 2 3000 7252 500 72500 7253000 725352500 7253000 72535

    • 

  • SENSORS 2013

    • 

    q2 I (t)+ω02Q2

    q2 I (t)+b21mq1(t)+ω02

    2 q2 I (t) = 0+b21mq1(t)

    •  q2 I (ω)q1(ω) ω=ω01=ω02

    = −b21Q2mω01

    ∠00

    • 

    q2c (ω)q1(ω) ω=ω01=ω02

    =2λQ2ω01

    Ω( ′ω )∠00

    q2c (t)+ω02Q2

    q2c (t)+ω022 q2c (t) = 2λΩ(t)q1(t)= 2λΩ(t)q1(t)

    • 

  • SENSORS 2013

    • 1

    Q=

    1

    QSFD+

    1

    QTED+

    1

    Qanchor+

    1

    Qsurface+

    1

    Qintrinsic

    1

    QSFD∝μeffg03

    1

    1+jωωc

    1

    QTED=

    Eα 2 T0Cυ

    ⎝⎜

    ⎠⎟

    ωmech τ n1+ ωmech τ n( )

    2 fnn

    ∑ 1Qanchor

    =1

    2πWresonatorΔWanchor

  • SENSORS 2013

    • • • 

    • 

  • SENSORS 2013

    • • 

    ax, ay, az vx, vy, vz dx, dy, dz Position

    Orientation Ωx, Ωy, Ωz ϕx, ϕy, ϕz

    • • 

    ϕx, ϕy, ϕz

  • SENSORS 2013

    • • 

    λ2=27

    90≈ 0.3

    27º

    90º

    • • 

  • SENSORS 2013

    • 

    • • • 

  • SENSORS 2013

    • 

    q2q1= tan2θ

    • • • 

    • • 

    • 

  • SENSORS 2013

  • SENSORS 2013

    • • 

    Vib

    ratio

    n A

    mpl

    itude

    Time [s]

    Mode 1

    Mode 2

    • • 

    • 

    SENSORS 2013

  • SENSORS 2013

    • 

    • 

    • 

    • • • 

    • 

  • SENSORS 2013

  • SENSORS 2013

  • Sponsored by the IEEE Sensors Council, www.ieee-sensors.org

    SENSORS 2013Tutorials: November 3, 2013 Conference: November 4-6, 2013