3d ztem inversion, interpretation and integrated exploration at the silver queen project, british...

24
3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk & Dianne E. KEGS Symposium 2012: Exploration 07 - Plus 5: A Half-Decade of Mineral Exploration Developments Saturday 03 March 2012

Upload: camila-goode

Post on 30-Mar-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia

Patrick B. M. van Kooten,

Peter L. Kowalczyk &

Dianne E. Mitchinson

KEGS Symposium 2012:

Exploration 07 - Plus 5: A Half-Decade of Mineral Exploration Developments

Saturday 03 March 2012

Page 2: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Acknowledgements

For granting permission to show select results from the Silver Queen Project, sincere thanks are due to:

Ellen Clements (Director, President & CEO)

New Nadina Explorations Ltd. (NNA: TSX-V)

www.nadina.com

The authors would also like to acknowledge:

• Geotech Airborne (www.geotech.ca)• Quantec Geoscience (www.quantecgeoscience.com)

Page 3: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Outline

Inverting ZTEM Data

• ZTEM Basics• ZTEM Processing Workflow

• QA/QC & Data Preparation

• Topography: A Cautionary Tale

• ZTEM Inversion

Silver Queen Case Study

• Overview• Geologic Setting• ZTEM Survey and Data

Preparation• Targeting Criteria• ZTEM Inversion Results• Titan 24 Survey & Results• Choosing targets• Summary & Outlook

Questions / Contacts

Page 4: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

ZTEM Basics: Factsheet

• ZTEM = Z-axis Tipper EM• Airborne AFMAG EM System developed by Geotech Ltd.• Frequency Range: 30 Hz to 720 Hz• Number of frequencies (typical survey): 6 (compared to 1 for

commonly used EM16 systems)• Depth of penetration: ~20 times greater than EM16• Polarizations measured: both along-line (X) and cross-line (Y)

components (vs. 1 for EM16)• Number of ZTEM data channels (typical survey): 6 frequencies

x 2 polarizations x 2 components (real & imaginary) = 24

This problem is best suited to 3D inversion!

Page 5: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

ZTEM Basics: Some Details

• ZTEM data do not include an E-Field measurement.

• The ZTEM system is sensitive to channelling of natural magnetotelluric (MT) currents in the subsurface.

• Large skin-depth in resistive terrains means ZTEM map geology to a greater depth and detect lower conductivity anomalies than active-source airborne EM systems.

• ZTEM response is independent of flight direction (2 polarizations measured).

Page 6: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

ZTEM Processing Workflow

Survey data 1 Check projections & datums 2 Adjust coil Z to geoid Z from GPS ellopsiod Z

3

Flag or delete bad data4Design mesh5Build topo model in mesh6

Run single frequency inversions 7 Review results (optionally:

adjust errors and edit data) 8 Run multi-frequency inversion

9

Review results (optionally: modify & run again)

Page 7: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

ZTEM Data: QA/QC and Preparation

Data QA/QC

• Confirm projections and datums are consistent.

• Interpolate flight line data onto regular grid to visualize each channel in ZTEM database and identify regions of poor data.

• Confirm tilt-angle cross-overs have correct sense.

Data Preparation

• Ensure that all data are in a consistent coordinate system.

• Assign appropriate error to each component of the ZTEM data.

• Flag or remove bad data.• Design inversion meshes best

suited for survey data.• ZTEM data are transformed to

the MT3Dinv EM sign convention for inversion.

• Obtain suitable topographic data

Page 8: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Topography: A cautionary tale

“Default” discretization of topography

Ground surface downward biased, increasing effective flight height. We can do better!

Aircraft flight path

Actual topographic

surface

Page 9: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Topography: A cautionary tale

“Modified” discretization of topography

Ground surface better estimates topography but flight lines could clip steep topography. Only use inversion points over cell centres.

Aircraft flight path

Actual topographic

surface

Inversion data point

Page 10: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

ZTEM Inversions

• Inversions are done with the UBC-GIF MT3Dinv program which derives from UBC-GIF EH3Dinv (adapted by Elliot Holtham and Doug Oldenburg to incorporate ZTEM tipper data).

• Inversion process is iterative.• Begin with one or more single frequency inversions (used to

assess the quality of the data and appropriateness of the errors assigned).

• Single frequency inversion models provide a starting model for the multifrequency inversion(s)

• At each stage results are reviewed. Data, errors, models and parameters may be edited and further inversions may be done before an acceptable conductivity model is obtained.

Page 11: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen Case Study (Overview)• The Silver Queen polymetallic vein system is a high grade past

producer south of Houston, British Columbia. • Abundant small veins and showings around the old

underground mine suggest further prospectivity• Current exploration around the old Silver Queen mine by New

Nadina Explorations Ltd has been driven by a conceptual model, targeting a blind, buried bulk tonnage deposit near the old mine and deeper in the mineralized system.

• In the 2011 field season:• ZTEM, airborne magnetic and Titan24 (IP / MT) surveys completed and

data were inverted. • Drilling, directed by integrated geology/geophysics, led to discovery of new

porphyry-style zone of mineralization.

• AGIC provided data analysis, 3D inversion, modeling, visualization, and interpretation services

Page 12: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen Vein

Silver Queen: Vein system and Geology

Cretaceous andesitic volcanic rocks

Lower Cretaceous sedimentary rocks

Late Cretaceous Bulkley Intrusive Suite

Eocene basaltic volcanic rocks

Eocene felsic intrusive rocks

Page 13: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Data QC (Xip @ 45 Hz)

Region of bad data

Page 14: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Data QC (Xip @ 720 Hz)

Region of bad data

Page 15: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Exploration targeting criteria

Criteria Evidence layers

Proximity to known mineralization Old mine workings plotted in 3D, with a corroborating resistive feature seen near surface in the ZTEM inversion.

Proximity to intrusive body Intrusive boundaries were interpreted using ZTEM conductivity isosurfaces and magnetic susceptibility isosurfaces, all derived from the 3D inversions.

In a regional structure, preferably spatially related to a kink, or a dilational zone of accommodation

Linear zones of higher conductivity from ZTEM inversion, associated with linear features in airborne magnetic data, map out regional structures.

In a zone of increased brecciation Brecciated rock interpreted from local zones of increased conductivity in the ZTEM inversion model.

Page 16: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: ZTEM inversion results

• blue = resistive (maps intrusive stocks)

• beige = less resistive (maps structures, breccias & volcanics)

Page 17: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Magnetic inversion results

• green = 0.02 S.I. Isosurface (maps magnetic intrusive phases & volcanics)

Page 18: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: ZTEM inversion results (plan slice)

Page 19: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Inversion results

NS section through ZTEM

inversion model

0.02SI isosurface defining magnetic phase of Silver

Queen intrusive stock

ZTEM buried target

Silver Queen Vein

Page 20: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Titan24 survey location

Titan 24 survey

• 4 lines across target area

• 150m dipoles, 300m traverse line separation

• IP (Resistivity & Chargeability) & MT)

Page 21: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Titan24 results (3D View from South)

Titan A

Titan BTitan C

DH S11-13• Top of mineralization @84m• End of hole @ 777M• 693 metres of mineralization!

IP Chargeability anomaly shell from 2011 Titan24

inversion

• Titan 24 identified deep chargeable body (Titan B) which was drilled

Page 22: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Silver Queen: Summary and Outlook• The airborne survey, data inversion and interpretation, Titan24

data acquisition, data inversion and interpretation and drilling were done in one field season!

• Drilling intersected a significant, previously unknown, porphyry style molybdenum deposit.

• Keys to success: • application of well-chosen geophysical methods• integrated interpretation of geophysical and geological data• ZTEM proved to be cost effective; ZTEM results used to focus follow-up

ground exploration and shortened the time necessary to explore the project area.

• 2012 work planned / underway:• More Titan24 work north and south of the discovery• 3D inversion of Titan24 MT data plus integration with geology from drilling• Continued program of deep drilling to define the mineralization and identify

additional zones of mineralization

Page 23: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Exploration “Eye-candy” Core photographs (courtesy New Nadina Explorations Ltd.) showing molybdenum mineralization and stock-work veining.

Thank you!Questions?

Page 24: 3D ZTEM inversion, interpretation and integrated exploration at the Silver Queen project, British Columbia Patrick B. M. van Kooten, Peter L. Kowalczyk

Contacts

Patrick B. M. van Kooten ([email protected])

Peter L. Kowalczyk ([email protected])

Dianne E. Mitchinson ([email protected])