3d-printed rfid tags for a specific application

8
A NOVEL METHOD FOR 3D PRINTING HIGH CONDUCTIVITY ALLOYS FOR UHF APPLICATIONS Undergraduate Paper Authors: Craig Bishop, Ian Armstrong, Rolando Navarrete Advisors: Dr. Michael Marcellin, Dr. Hao Xin Electrical and Computer Engineering Department, University of Arizona ABSTRACT Traditional approaches to constructing 3D structural electronics with conductive and dielectric materials include inkjet printed, silverbearing ink and fine copper wire meshes. One approach combines stereolithographic 3Dprinted photopolymers with directprinted silverbearing conductive inks. Results have shown 3D conductive structures with conductivities in the range 2x10 6 to 1x10 7 S/m using annealing temperatures ranging from 110°C to 150°C for 10 to 15 minutes. However, the stereolithographic approach suffers from the high cost of the printer and structural deformation during annealing. This paper presents a new method for 3d printing high conductivity metal alloys using consumergrade 3D printer. The design and construction of the necessary modification will be presented in addition to the new 3D design process. The method yields metal structures with expected conductivities exceeding 2.6x10 6 S/m. The process is performed without an annealing step, so the polymeric structural material is not exposed to high temperatures for any prolonged time. A UHF ISM band antenna is constructed for an RFID application using this method, the antenna performance is measured, and the results are compared simulations in Ansys HFSS. This new method can reduce total cost, and several low meltingpoint alloys could raise the conductivity. KEY WORDS RFID, 3DPrinting, UHF, Security INTRODUCTION Additive manufacturing has great potential for lowvolume prototyping and even volume manufacturing in the future. Current commercially available printers extrude a variety of plastics (ABS, PLA, polyester resin), photocured polymers, and laser annealed granules or powders. In addition, the laser annealing process is capable of printing some metals including steel and titanium. However, only in the last few years has research focused on

Upload: craigjb1

Post on 21-Jul-2016

18 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 3D-Printed RFID Tags for a Specific Application

A  NOVEL  METHOD  FOR  3D  PRINTING  HIGH  CONDUCTIVITY  ALLOYS  FOR  UHF  APPLICATIONS  

   

Undergraduate  Paper  Authors:    Craig  Bishop,  Ian  Armstrong,  Rolando  Navarrete  

Advisors:    Dr.  Michael  Marcellin,  Dr.  Hao  Xin  Electrical  and  Computer  Engineering  Department,  University  of  Arizona  

       ABSTRACT    Traditional  approaches  to  constructing  3D  structural  electronics  with  conductive  and  dielectric  materials  include  ink-­‐jet  printed,  silver-­‐bearing  ink  and  fine  copper  wire  meshes.    One  approach  combines  stereo-­‐lithographic  3D-­‐printed  photo-­‐polymers  with  direct-­‐printed  silver-­‐bearing  conductive  inks.    Results  have  shown  3D  conductive  structures  with  conductivities  in  the  range  2x106    to  1x107  S/m  using  annealing  temperatures  ranging  from  110°C  to  150°C  for  10  to  15  minutes.    However,  the  stereo-­‐lithographic  approach  suffers  from  the  high  cost  of  the  printer  and  structural  deformation  during  annealing.    This  paper  presents  a  new  method  for  3d  printing  high  conductivity  metal  alloys  using  consumer-­‐grade  3D  printer.  The  design  and  construction  of  the  necessary  modification  will  be  presented  in  addition  to  the  new  3D  design  process.  The  method  yields  metal  structures  with  expected  conductivities  exceeding  2.6x106  S/m.  The  process  is  performed  without  an  annealing  step,  so  the  polymeric  structural  material  is  not  exposed  to  high  temperatures  for  any  prolonged  time.  A  UHF  ISM  band  antenna  is  constructed  for  an  RFID  application  using  this  method,  the  antenna  performance  is  measured,  and  the  results  are  compared  simulations  in  Ansys  HFSS.  This  new  method  can  reduce  total  cost,  and  several  low  melting-­‐point  alloys  could  raise  the  conductivity.      KEY  WORDS  RFID,  3D-­‐Printing,  UHF,  Security      INTRODUCTION    Additive  manufacturing  has  great  potential  for  low-­‐volume  prototyping  and  even  volume  manufacturing  in  the  future.    Current  commercially  available  printers  extrude  a  variety  of  plastics  (ABS,  PLA,  polyester  resin),  photo-­‐cured  polymers,  and  laser  annealed  granules  or  powders.    In  addition,  the  laser  annealing  process  is  capable  of  printing  some  metals  including  steel  and  titanium.    However,  only  in  the  last  few  years  has  research  focused  on  

Page 2: 3D-Printed RFID Tags for a Specific Application

integrating  conductive  metals  and  dielectric  polymers  in  a  single  additive  process.    Doing  so  promises  to  change  how  rapid  prototyping  of  antennas,  non-­‐planar  circuit  boards,  and  even  semiconductor  packaging  is  performed.    This  paper  explores  a  novel  method  for  integrating  high-­‐conductivity  metal  with  a  standard  3D-­‐printed  ABS  plastic  without  an  annealing  step.    Previous  research  in  the  field  has  achieved  full  integration  of  conductors  and  polymers  using  stereolithography  and  direct  print  technologies  (Lopes  et  al.,  2012).  By  combining  a  line-­‐scan  sterolithography  system  and  a  direct-­‐print  system,  a  seamless  process  for  printing  conductors  and  polymers  was  achieved.    The  stereolithographic  system  laser  cures  a  photosensitive  liquid  polymer,  and  silver-­‐based  conductive  inks  are  deposited  using  a  direct-­‐print  system  with  25  micron  lines  and  spaces.    The  candidate  inks  used  required  curing  temperatures  of  110°C  to  138°C.    Medina  et  al.  developed  a  3D  printed  accelerator  sensor  system  using  ink  dispensing  combined  with  stereolithography.    Additionally  Medina  et  al.  developed  the  precursor  to  the  system  above  for  arbitrary-­‐form  structural  electronics  printing.  For  printed  RFID  tags  alone,  much  research  has  focused  on  using  traditional  and  widely  available  inkjet  print  heads  to  dispense  silver  bearing  inks  (Pranonsatit,  2012),  operating  the  tags  in  the  902-­‐928  MHz  band.    For  this  research  project,  the  high  cost  of  stereolithography  3D-­‐printers  and  the  associated  materials  necessitated  an  alternative  and  lower  cost  method.      SYSTEM  DESIGN    The  scope  of  the  project  described  in  this  paper  extended  beyond  the  fabrication  of  a  3D-­‐printed  device  to  include  the  demonstration  of  a  UHF  RFID  tag  within  an  application.    An  application  called  Survivable  Security  was  developed  to  take  advantage  of  the  unique  properties  of  a  completely  3D-­‐printed  RFID  tag.    Unlike  traditional  retail  security  tags  that  are  printed  or  adhesively  mounted  onto  the  target  product,  a  3D-­‐printed  RFID  tag  can  be  structurally  embedded  into  the  target  product.    By  designing  the  security  tag  as  an  integral  structural  component,  its  removal  is  made  disadvantageous  and  can  even  disable  the  product.    Combined  with  an  embedded  computer  system  and  standard  RFID  reader,  the  system  provides  unique  advantages  for  high  value  items.    To  fulfill  its  role  in  a  security  tag,  the  RFID  tag  requires  at  least  a  one-­‐meter  readable  range.    To  meet  the  low  cost  requirements,  a  commercial,  low-­‐end,  3D-­‐printer  was  selected  for  the  project:    a  Makerbot  Replicator  2X.    The  Replicator  2X  ships  with  two  0.4  mm  extrusion  nozzles  for  use  with  ABS  or  PLA  filaments.    The  platform  is  capable  of  100  micron  layers.      MATERIALS    Several  conductive  materials  were  investigated,  including  conductive  polymers,  silver  bearing  inks,  and  low  melting  point  solder  alloys.    There  are  conductive  polymers  available  for  purchase  and  use  with  consumer  grade  3D  printers.    The  conductive  polymers  are  

Page 3: 3D-Printed RFID Tags for a Specific Application

achieved  by  mixing  metallic  impurities  into  the  ABS  or  PLA  base,  achieving  5000-­‐10000  Ohms/cm.    The  commercially  available  conductive  polymers  investigated  are  not  suitable  for  a  UHF  antenna.    Silver  bearing  inks  were  investigated,  and  shown  by  several  previous  researchers  to  be  a  viable  option  for  UHF  RFID  applications.    The  inks  have  conductivities  ranging  from  1x105  to  1x107  depending  on  cure  temperature.    For  maximum  conductivity,  inks  required  cure  temperatures  of  150°C  to  170°C  for  15  minutes.    For  this  projects  application,  conductivity  of  at  least  1x106  was  desirable,  and  conductive  ink  required  annealing  temperatures  that  deform  the  structural  ABS  which  is  printed  at  230°C,  but  starts  melting  at  105°C.    In  addition  to  the  previously  explored  polymers  and  conductive  inks,  this  project  investigate  the  use  of  low  melting  point  solder  alloys  to  create  conductive  components.    Standard  Sn60Pb40  solder  melts  at  183°C,  which  is  lower  than  the  nozzle  temperature  used  for  ABS  plastic.    However,  a  specialty  solder  alloy,  Bi58Sn42,  melts  at  138°C  with  a  conductivity  of  approximately  2.898x106  S/m.    The  solder  alloy  is  commonly  available  as  a  solder  paste,  suspended  in  a  flux  gel.    Several  similar  alloys  with  varying  ratios  of  Bizmuth  are  available  and  a  Indium-­‐Tin  alloy  achieves  a  lower  melting  point  of  118°C.    For  this  project,  the  Bi58Sn42  was  selected  because  of  availability  and  ease  of  handling.      3D-­‐PRINTER  MODIFICATIONS    The  commercial  Makerbot  Replicator  2X  does  not  support  extrusion  of  solder  alloys  as  sold.    Several  modifications  were  designed  to  adapt  one  of  the  two  extrusion  nozzles  for  the  Bi58Sn42  solder  paste.    The  solder  paste  is  widely  available  in  5  cc  syringes  for  easy  reflow  applications.    The  syringe  also  provides  a  convenient  mechanism  for  applying  dispensing  pressure.    The  modifications  to  the  3D-­‐printer  take  advantage  of  the  existing  syringe  and  the  existing  stepper  motor  from  the  Replicator  2X.    A  custom  designed  mechanical  assembly  was  designed  that  utilizes  the  stepper  motor  to  drive  the  syringe  pump  using  a  thread-­‐rod  mechanism.    All  of  the  stepper  motor  drive  circuitry  from  the  existing  Replicator  2X  was  reused  in  the  new  assembly.    The  syringe  pump  is  a  5.1x5.2x2.4  inch3  L-­‐shaped  assembly  manufactured  symmetrically  from  two  pieces  of  aluminum.    The  design  was  completed  using  SolidWorks  and  prepared  for  CNC  cutting  using  Mastercam.    The  aluminum  assembly,  shown  in  Figure  2,  incorporates  a  cavity  for  mounting  the  solder  paste  syringe.    A  steel  lever  arm  was  welded  to  a  hex  nut  matching  the  threaded  rod  and  positioned  to  drive  the  syringe  plunger.    Two  drive  gears  were  manufactured  using  the  Replicator  2X  out  of  ABS.    The  stepper  motor  torque  required  a  3:1  gear  ratio  in  order  to  successfully  drive  the  syringe  plunger  during  operation.    A  plastic  timing  belt  couples  the  two  gears,  and  two  printed,  circular  pieces  of  ABS  are  used  to  hold  the  timing  belt  in  place  during  operation.    The  ends  of  the  threaded  rod  are  terminated  with  circular  bearings,  and  an  additional  metal  shaft  was  used  to  couple  the  thread  rod  to  the  ABS  gear  above.

Page 4: 3D-Printed RFID Tags for a Specific Application

Coupling  the  syringe  to  the  extrusion  nozzle  of  the  Replicator  2X  was  the  largest  challenge.    A  first  attempt  used  high-­‐flexibility  silicone  rubber  tubing  pressure  fitted  to  the  syringe  needle  and  then  pressure  fitted  onto  a  rolled  steel  2  mm  outer-­‐diameter  rolled  steel  tube  inserted  into  the  print  shaft  on  the  Replicator  2X.    However,  the  necessary  pressure  for  extruding  the  solder  paste  exceeded  the  10-­‐psi  rated  tubing.    A  replacement  tube  made  from  ABS  rated  to  400  psi  was  able  to  withstand  the  necessary  pressure.    In  addition  to  withstanding  the  necessary  pressure,  the  coupling  mechanism  requires  a  sharp  thermal  profile  in  order  to  prevent  solidification  of  solder  paste  in  the  tubing  above  the  extrusion  nozzle.    The  original  design  using  a  rolled  steel  tube  inserted  into  the  aluminum  print  shaft  resulted  in  solidification  of  solder  paste  above  the  print  shaft  within  minutes  of  starting  operation  at  150°C.    Ideally,  the  interface  is  a  thermal  step  junction  where  the  extrusion  nozzle  is  maintained  at  the  print  temperature  and  all  the  assemblies  

Figure  1.    Front  view  of  the  Replicator  2X  with  syringe  pump  assembly  installed

Figure  2.    Syringe  assembly  design

Figure  3.    Close-­‐up  of  the  syringe  coupling  and  entry  point  into  the  Replicator  2X

Page 5: 3D-Printed RFID Tags for a Specific Application

above  are  maintained  at  room  temperature.    To  better  approximate  a  step  junction,  the  steel  tubing  insert  was  replaced  with  a  Kapton  polyimide  plastic  tubing  with  a  thermal  conductivity  of  0.37  W/m°K,  and  order  of  magnitude  lower  than  the  steel  tubing.    The  increased  flexibility  of  the  insert  tubing  required  fabrication  of  a  plaster  stiffener  structure  using  the  ABS  nozzle  of  the  Replicator  2X.      ANTENNA  DESIGN    The  RFID  tag  was  designed  to  be  passive  to  reduce  the  size  and  cost  of  each  tag.  The  SL900A  RFID  IC  from  AMS  (Austria  MicroSystems)  was  selected  as  the  IC  for  the  RFID  tags  for  its  reasonable  performance  and  price.  The  SL900A  has  a  complex  impedance  of  31  -­‐  j320  Ω  at  915MHz.  Therefore,  the  target  impedance  of  the  antenna  design  was  31  +  j320  Ω  so  that  the  antenna  and  IC  would  be  complex  conjugately  matched.  The  SL900A  has  a  differential  antenna  input,  which  is  well  suited  for  dipole  antenna  designs,  so  a  half  wavelength  dipole  design  was  chosen  for  the  RFID  tag.  The  basis  for  the  antenna  design  was  the  meandered  half  wavelength  dipole  antenna  presented  by  Rao  et  al.  This  design  was  first  modeled  in  HFSS,  and  then  modified  to  perform  with  the  specified  RFIC  IC  and  at  the  desired  operating  frequency.  The  base  antenna  design  parameters  are  shown  below.                              The  lengths,  widths  and  spacing  of  the  meandered  segments  of  the  dipole  were  adjusted  to  tune  the  impedance  of  the  antenna  to  the  desired  value.  The  3D  printing  method  imposed  several  constraints  on  the  physical  dimensions  of  the  conductive  traces.  The  minimum  trace  width  was  0.4mm  due  to  the  resolution  of  the  printer  head  extruder  nozzle.  The  thickness  of  the  traces  was  limited  to  a  minimum  of  0.6  mm.  The  overall  size  of  the  final  antenna  design  was  90mm  x  15.5mm  x  0.6mm  and  the  size  of  the  printed  RFID  tag  was  100mm  x  25mm  x  1.6mm.  

Figure  4.    Parameters  of  the  loaded  meander  tag  antenna  (mm)

Page 6: 3D-Printed RFID Tags for a Specific Application

   RESULTS  AND  CONCLUSIONS    Initial  results  from  the  project  show  that  3D-­‐printing  low  melting  point  solder  alloys  is  possible  using  commercial  grade  3D  printers.    A  test  vehicle  consisting  of  a  single  0.6mm  thick  conductive  trace,  0.8mm  wide  and  50  mm  long,  was  printed  using  the  modified  printer  and  syringe  assembly.    Several  iterations  were  necessary,  since  the  syringe  to  printer  interface  is  not  completely  reliable,  even  with  the  polyimide  tubing.    The  third  iteration  produced  a  1.4mm  thick  substrate  with  a  single  track  of  solder  alloy  in  the  center.    Several  attempts  to  print  the  complex  meander  line  antenna  geometry  were  only  minimally  successful  so  far.    

Figure  5.    Final  antenna  design  shown  in  ANSYS  HFSS

Figure  6.    Plot  of  antenna  impedance  over  operating  frequency  range

Page 7: 3D-Printed RFID Tags for a Specific Application

 The  first  major  problem  stems  from  the  limited  shelf  life  of  the  solder  alloy  paste.    The  flux  mixture  evaporates  within  days  after  first  opening  the  packaging.    The  evaporation  was  countered  with  addition  of  a  liquid  flux  to  the  mixture  before  insertion  into  the  syringe  assembly.    However,  the  volume  of  added  flux  was  found  to  severely  affect  the  ability  of  the  system  to  extrude  the  solder  paste.    Without  added  liquid  flux,  the  paste  tended  to  solidify  in  the  ABS  tubing  before  reaching  the  heated  nozzle.    Conversely,  a  high  concentration  of  added  flux  resulted  in  the  nozzle  leaking  molten  solder  during  ABS  printing,  with  the  solder  paste  stepper  motor  turned  off.    The  results  from  the  project  so  far  prove  the  fundamental  concept  of  printing  a  low  melting  point  solder  alloy  is  viable,  but  requires  further  development  before  it  is  reliable.    Further  experimentation  is  necessary  to  determine  the  concentration  of  liquid  flux  necessary  and  the  exact  3D-­‐printer  CAM  software  parameters  for  the  modified  nozzle.    In  addition,  exploration  of  an  alumina  or  mullite  ceramic  tube  to  replace  the  Kapton  polyimide  tubing  may  increase  reliability  of  the  syringe  to  printer  coupling.    Mullite  could  also  better  approximate  the  necessary  thermal  step  junction.    ACKNOWLEDGEMENTS    The  authors  thank  Xiaoju  Yu  for  her  support  in  completing  the  HFSS  antenna  design,  and  Min  Liang  for  characterizing  the  3D-­‐printed  ABS  dieletric  properties.      

Figure  7.    Simple  test  vehicle  after  printing  with  leaked  solder  paste  residue  visible

Page 8: 3D-Printed RFID Tags for a Specific Application

REFERENCES    Castillo,  S.,  Medina,  F.,  MacDonald,  E.,  and  R.  Wicker,  “Electronics  integration  in  conformal  substrates  fabricated  with  additive  layered  manufacturing”,  Proceedings  of  the  20th  Annual  Solid  Freeform  Fabrication  Symposium,  2009,  pp.  730-­‐7.  

“DSP  798LF  (Sn42/Bi58)  Lead  Free  Water  Soluble  Solder  Paste”,  Qualitek  International  Inc.  Lopes,  Amit,  MacDonald,  Eric,  and  Ryan  Wicker,  “Integrating  stereolithography  and  direct  print  technologies  for  3D  structural  electronics  fabrication”,  Rapid  Prototyping  Journal,  vol.  18,  no.  2,  2012,  pp.  129-­‐133.  

Medina,  F.,  Lopes,  A.J.,  Inamdar,  A.V.,  Henessey,  R.  Palmer,  J.A.,  Chavez,  B.D.,  and  R.B.  Wicker,  “Integrating  multiple  rapid  manufacturing  technologies  for  developing  advanced  customized  functional  devices”,  Rapid  Prototyping  &  Manufacturing  2005  Conference  Proceedings,  2005.  

Rao,  K.V.S.,  Kikitin,  P.V.,  and  S.  Lam,  “Antenna  design  for  UHF  RFID  tags:    A  review  and  a  practical  application”,  IEEE  Trans.  Antennas  Propag.,  vol.  53,  no.  12,  pp.  3870-­‐3876,  Dec.,  2005.