31 32 9/18/2014 9/18/13 starter: based on the word, what do you think biochemistry means?? practice:...

29
31 32 9/18/2014 9/18/13 Starter: Based on the word, what do you think Biochemistry means?? Practice: Video Application: Notes with review Biochemistry Connection/Exit: 1.What are the major biomolecules made and used by living organisms? 2.What is the structure of carbohydrates, lipids, proteins, and nucleic acids? 3.What is the function of carbohydrates, lipids, proteins, and nucleic acids? 1 Biochemistry 9/18/2014

Upload: roland-miller

Post on 18-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

31 329/18/2014 9/18/13

Starter: Based on the word, what do you think Biochemistry means??

Practice: Video

Application: Notes with review

Biochemistry

Connection/Exit:

1.What are the major biomolecules made and used by living organisms?2.What is the structure of carbohydrates, lipids, proteins, and nucleic acids?3.What is the function of carbohydrates, lipids, proteins, and nucleic acids?

1

Biochemistry9/18/2014

Date Lecture/ Activity/ Lab Page9/17 Biochemistry Vocabulary 29-309/18 Biochemistry notes 31-32

Table of Contents

Agenda

1. Starter 2. Practice 3. Activity

BIOMOLECULES DISCUSSION

IntroductionAll compounds can be classified in 2 broad categories:

 

1)Organic compounds- Contain carbon, oxygen, and hydrogen atoms

2) Inorganic compounds- Can have one or the other, but do not contain both carbon and hydrogen atoms

Most of your body’s molecules are organic compounds.

Macromolecules are built from small organic compounds the same way a railroad train is built, by linking a lot of smaller units together into long chains.

i. Large carbon compounds are built up from smaller simpler molecules called monomers (mono = one )

ii. Monomers can bind to one another to form complex molecules known as polymers (poly = many)

iii. A polymer consists of repeated, linked units, which can also bind forming large polymers called Macromolecules. (macro = large )

Animation of Condensation

http://nutrition.jbpub.com/resources/animations.cfm?id=6

Monomers link to form polymers through a chemical reaction called condensation reaction or dehydration synthesis.  During the formation of polymers, Water (H2O), is released or is by-product of the reaction.

Animation showing Hydrolysis

http://nutrition.jbpub.com/resources/animations.cfm?id=7&debug=0

The breakdown of some complex molecules, such as polymers, occurs through a process known as hydrolysis.

Hydrolysis is the reverse of a condensation reaction.  The addition of water, to some polymers can break the bonds that hold them together.

There are four main types of macromolecules found in living organisms:

Carbohydrates

Proteins

Nucleic Acids

Lipids

Carbohydrates

i.Composed of carbon, hydrogen, and oxygen atoms in the proportion of 1 : 2 : 1

1.General formula: (CH2O)n where n is the number of carbon atoms.

a.Example: The sugar glucose is a small carbohydrate; its n equals 6. Therefore its chemical formula is C6H12O6.

The building blocks (or monomers) of carbohydrates are monosaccharides.i.Monosaccharides are simple sugars

(saccharide = sugar). Examples: 1.Glucose: commonly found in blood of

animals2.Galactose: a simple sugar found in milk 3.Fructose: commonly found in fruit

a.Glucose and Fructose both have the formula C6H12O6, Sometimes compounds may have the same formula, however they have different structures/ arrangements. In such cases, those compounds are called isomers.

Monosaccharide Example

i.Disaccharides contain 2 monosaccharides joined by dehydration synthesis. Examples:

ii. 1.Lactose: commonly found in

milk, made up of Galactose + Glucose2. Sucrose: “table sugar”,

transported in plants, made up of Fructose + Glucose

Disaccharide Example

i.Polysaccharides are carbohydrates formed from linking individual sugars into long chains. Examples: 1.Starch: a common storage form of glucose in plants (breads, pasta, potatoes)

2.Cellulose: a polysaccharide contained in the cell walls of plants; gives strength and rigidity to plant cells.

3.Glycogen: a common storage form of glucose in animals (stored in the muscles and liver to be used as quick energy) 

Polysaccharide Example

Carbohydrates Function:

EnergyStructural supportCell wallCell membrane marker

I. (include fats, oils, waxes, etc.)i.Class of macromolecules that do not dissolve

in waterii.Lipids usually serve one of three functions:

1.Energy storage2.structural support in cell membranes

(phospholipids)3.serve as reactants ( starting materials) for

metabolic reactionsiii.Fatty acids are the building blocks (or

monomers) that make up most lipids.iv.Fatty acids are classified as either saturated

or unsaturated.

Lipids

LipidsThe classification depends on the proportion of hydrogen atoms to carbon - carbon bonds in the molecule: i.Saturated fatty acids have the

maximum number of bonds possible, they are full.

1.Saturated fats are usually solid at room temperature, and most come from animal products.

ii.Unsaturated fatty acids have double bond(s) in the carbon chain and are not full.

1.Most unsaturated fats are liquid at room temperature, and are usually referred to as oils.

LipidsSaturated animal fats are associated with circulatory disorders; plant oils can be substituted for animal fats in the diet.

I. A common lipid that contains fatty acids is a triglyceride. Triglycerides (referred to as neutral fats) are glycerol linked to three fatty acids (in the shape of an “E”) by condensation reaction.

Triglyceride Example

ProteinsI.  

i. Proteins are organic compounds composed mainly of carbon, hydrogen, and nitrogen atoms.

ii.Proteins are the construction materials for body parts such as hair, skin, nails, and blood.

iii.Amino acids are the building blocks (or monomers) that make up most proteins

1.There are 20 different kinds of amino acids that humans use.

iv.One important group of proteins - enzymes - help control chemical reactions by acting as catalysts. Catalysts speed up reactions by lowering activation energy.

Amino Acid

Proteins Function:

Lots of functions!Enzymes (speed rate of chemical

reactions)Structural components in cellsMechanical functions in muscles and

cytoskeleton (internal cell framework)Cell signalingImmune response

Nucleic Acids

○ Nucleic Acids are complex organic molecules that store genetic information in the cell.

○ Nucleotides are the building blocks (or monomers) that make up most nucleic acids.Nucleotides consist of a

sugar (pentose) + base (nitrogenous) + phosphate.

Example- DNA nucleotide:

Nucleic AcidsI.Three main types of nucleic acids

i.DNA = Deoxyribonucleic acid1.Is the genetic information inside the nucleus of cells

ii.RNA = Ribonucleic acid1.Instructions which code for protein synthesis

iii.ATP = Adenosine triphosphate = has a slightly different structure than DNA and RNA. It contains a base + sugar + three phosphatesa. ATP is used as energy for the cell

247 2485/5/2014 9/18/13

Starter: Based on the word, what do you think Biochemistry means??

Practice: Video

Application: Notes with review

Biochemistry

Connection/Exit:

1.What are the major biomolecules made and used by living organisms?2.What is the structure of carbohydrates, lipids, proteins, and nucleic acids?3.What is the function of carbohydrates, lipids, proteins, and nucleic acids?

1

Biochemistry5/5/2014