304-notes 8 biotreat 2013

53
ENVE 304 UNIT OPERATIONS AND PROCESSES OF WASTEWATER TREATMENT Biological Oxidation / Growth Kinetics / Reactor types / Mass Balances

Upload: harrison-woodward

Post on 03-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 1/53

ENVE 304

UNIT OPERATIONS AND

PROCESSES OF WASTEWATERTREATMENT

Biological Oxidation / Growth Kinetics / Reactor types /

Mass Balances

Page 2: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 2/53

• Types and characteristics of 

wastewaters

• Physical unit operations

• Biological oxidation

• Biological wastewater treatment

processes

• Handling & disposal of  2

 TOPICS

Page 3: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 3/53

1.Types and characteristics of wastewaters

 –Wastewater management, Environmental laws and

regulations, Types of wastewaters, Physical, chemicaland biological characteristics of WW, Main WWTP units

1. Physical unit operations

 –Flow measurement, Screening , Coarse solid reduction,Grit removal, Equalization, Sedimentation, Flotation,Oxygen transfer, Aeration

1. Biological Oxidation 3

 TOPICS

Page 4: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 4/53

Biological Oxidation

• Classification of microorganisms

• Oxidation equations – Aerobic, anaerobic, nitrification, denitrification – Required oxygen amounts

• Growth kinetics• Reaction orders• Reactor types (completely-mixed, plug-flow, etc)• Main equations and derivations in flow through

systems, in systems with recycle, operatingparameters, SVI definition

4

Learning Objectives:

Page 5: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 5/53

5

Bacterial Growth

Biomass producedcanbe measured:

VSS, Particulate

COD, Protein

content, DNA, ATP, Turbidity

measurements,

Bacterial cell

count

Page 6: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 6/53

0

0.03

0.06

0.09

0.12

  µ ,

   1   /   h  r

0.15

0.18

0 300 600 900 1200

So

, mg COD/L

1500

µm /2

µm

Ks

S*

Monod

Haldane

µ *

6

Bacterial Growth

Page 7: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 7/53

Monod equation (substrate-limited growth, no inhibition)

Haldane equation (inhibition)

7

)(S  K 

 s

m

+=

µ  µ 

)

/

(2

i s

m

 K S S  K 

++

=µ 

 µ  K i = inhibition constant,

mg/L

µ = specific growth rate, mg new cells / mg cells.d (1/T)µm = maximum specific growth rate, mg new cells / mg cells.d

(1/T)S = concentration of growth-limiting substrate, mg/LK s = half-velocity constant, substrate concentration at one-half 

the maximum specific utilization rate, mg/L

Bacterial Growth

Page 8: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 8/53

First order

Zero order

8

Haldane eq.

}Beyond this point, the processcannot grow and will fail.

Monod eq.

 s

m

 K 

S  µ  µ =Ks >> S, then,

m µ  µ =Ks << S, then,

)/21

(*

i s

m

 K  K 

+= µ  µ 

i s K  K S  /* =

Bacterial Growth

Page 9: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 9/53

9

Rate of utilization of soluble substrates

kY m = µ Y 

k  m µ =

)( S  K Y 

 XS r 

 s

m

 su +−=

µ 

S  K 

kXS r 

 s

 su+

−=

rsu = substrate utilization rate, mg/L.d

k = maximum specific substrate utilization rate, mg substrate/mgcells.d

µm = maximum specific growth rate, mg new cells/mg cells.dY = true s nthesis ield coefficient m VSS m bsCOD

Page 10: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 10/53

10

Other rate expression for the utilization of solublesubstrates

k r  su −=

kS r  su −=

kXS r  su −=

o

 suS 

S kX r  −=

Rate of utilization of soluble substrates

a e o u a on o so u e

Page 11: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 11/53

a e o u za on o so u esubstrate

11

kY m = µ Y 

k  m µ =

)( S  K Y 

 XS r 

 s

m

 su +−=

µ 

S  K 

kXS r 

 s

 su+

−=

rsu = substrate utilization rate, mg/L.d

k = maximum specific substrate utilization rate, mg substrate/mgcells.d

µm = maximum specific growth rate, mg new cells/mg cells.dY = true s nthesis ield coefficient m VSS m bsCOD

Rate of biomass growth with soluble

Page 12: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 12/53

Rate of biomass growth with solublesubstrates

12

 X k Yr r  d  su g  −−=

 X k S  K 

kXS Y r  d 

 s

 g  −+

=)(

rg = net biomass production rate, mg VSS/L.d

Y = true (synthesis) yield coefficient, mg VSS /mg bsCODX = biomass concentration, mg/Lkd = endogenous decay coefficient, mg VSS/mg VSS.d

NET GROWTH RATE

Page 13: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 13/53

13

 Typical kinetic coefficients for the activated–

sludge process for the removal of organicmatter from domestic wastewater (200C)

Page 14: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 14/53

14

Total VSS And Active Biomass

 X k  f  r  d d  Xd  )(=

V QX  X k  f   X k Yr r  iOd d d  suVSS  X T /)( ,, ++−−=

VSS  X d  suact  X  T r  X k Yr  F  ,, /)( −−=

rxd = rate of production of 

cell debris, mg VSS/L.d

f d = fraction of biomass thatremains as cell debris(0.1-0.15 mg VSS/mgVSS)

rxT, VSS = total VSS production rate,

mg/L.dQ = influent flowrate, L/d

XO,i = influent nbVSS concentration,

mg/LV= volume of the reactor, L

Active fractionof biomass

Rate of celldebrisproduction

nbVSS intheinfluent

Netbiomass

growthrate

Page 15: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 15/53

15

 su g bio

r r Y  /−=

Net biomass yield: to estimate amount of active microorganisms

Observed yield: to estimate amount of sludge produced

 suVSS  X obs r r Y T 

/,−=

(Considers decay of m/o)

Considers decay of m/o, includes VSScontent due to cell debris and influent

nbVSS

Biomass yield =g biomass produced

g substrateconsumed

Yield Coefficient

Synthesis (True) yield: to estimate amount of biomass produced

during cell synthesis relative to the amountof substrate degraded.

Page 16: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 16/53

16

Rate of oxygen uptake

 g  suO r r r  42.1−−=

rO = oxygen uptake rate, mg O2/L.d

rsu = substrate utilization rate, mg bsCOD/L.d

1.42 = COD of the cell tissue (C5H7NO2), mg bsCOD/mg VSSr = net rate of biomass growth, mg VSS/L.d

READING ASSIGNMENT: CHP 7, ESTIMATION OF BIOMASS YIELDFROM BIOENERGETICS

Page 17: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 17/53

Growth kinetics for nitrifiers

17

dn

n

nmn k 

 N  K 

 N −

+= )(

µ  µ  Assuming excess

DO is available.

dn

On

nmn k 

 DO K 

 DO

 N  K 

 N −

++= ))((

µ  µ 

 To account forthe effects of DO

µn = Specific growth rate of nitrifying bacteria, mg new cells / mg cells.d

(1/T)µnm = Maximum specific growth rate of nitrifying bacteria, mg new cells /

mg cells.d (1/T)kdn = endogenous decay coefficient for nitrifying organisms, mg VSS/mg

VSS.dK n = half-velocity constant, mg/L

N = Nitrogen concentration, mg/L

The rate of substrate utilization for

Page 18: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 18/53

18

 The rate of substrate utilization indicating a slowerutilization rate in the anoxic zone

S  K 

kXS r 

 s su+

−=η 

 To indicate the effect of oxygen (which inhibits nitratereduction by repressing nitrate reduction enzyme):

η ))()(('

'

3,

3

3 DO K 

 K  NO K 

 NOS  K 

kXS r O

O

 NO s s

 su+++

−=

The rate of substrate utilization fordenitrifiers

ƞ = Fraction of denitrifying bacteria in the biomass, mg VSS / mg VSSK S,NO3 = half-velocity coefficient for nitrate limited reaction, mg/L

K’O = DO inhibition coefficient for nitrate limited reaction, mg/L

E l

Page 19: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 19/53

19

Example

An industrial wastewater with a biodegradable solubleCOD content of 300 mg/L and nonbiodegradable VSS of 50mg/L is treated in an activated sludge process. Influentflowrate is 1000 m3/d. The biomass concentration in the

aeration basin of 105 m3

is 2000 mg/L. The biodegradablesoluble COD removal efficiency is 95%.

k = 5 d-1, K s = 40 mg/L,

 Y = 0.40 g VSS/g bsCOD,k

d

= 0.10 g VSS/g VSS.d

Cell debris per dry weight = 0.10

Determine; Net biomass yieldObserved yield

VSS production rate & activebiomass fraction

R t T

Page 20: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 20/53

20

Reactor Types

Batch reactors

Complete-mix reactorsPlug-flow reactors

Plug-flow with axial dispersion

Ideal flow reactors

Non-ideal flow

reactors

Materials-balance equation in a

Page 21: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 21/53

21

Materials-balance equation in asystem boundary

Accumulation ratewithin thesystemboundary

=

Inflow rate

to thesystemboundary

-

Generation

rate withinthe systemboundary

+

Outflow

rate fromthesystemboundary

V r QC QCoV dt 

dC c+−=

R t i d d

Page 22: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 22/53

22

Rate expressions and orders

k r c =

kC r c =

2kC r c =

C  K 

kC r c +=

Zero-order reaction

Second- order reaction

Saturation (mixed-order) reaction

Differential Method

First-order reaction

n

c kC r  =

Bi l i l T t t P

Page 23: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 23/53

Biological Treatment Processes

23

SUSPENDED GROWTH

PROCESSES

ATTACHED GROWTHPROCESSES

Modeling Biological Treatment

Page 24: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 24/53

24

SUSPENDED GROWTH PROCESSES

ATTACHED GROWTH (BIOFILM) PROCESSES

 The microorganisms responsible for treatment aremaintained in liquid suspension by appropriate mixing.

• Activated-sludge process(es)• Aerated lagoons

• Aerobic digestion

• Anaerobic contact processes• Anaerobic digestion

 The microorganisms responsible for treatment areattached to an inert packing material (rock, gravel,sand, wide range of plastics, synthetic materials etc.).

• Trickling filters• Rotating biological contactors

• Packed-bed reactors, fluidized-bed reactors, expanded-bed reactors

Modeling Biological TreatmentProcesses

Page 25: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 25/53

25

COMPLETE-MIX REACTORS

MODELING 

SUSPENDED GROWTH PROCESSES

Complete-mix reactors

Page 26: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 26/53

26

Complete-mix reactors

V r QC QCoV dt 

dC c+−=

Systemboundary

Accumulation rate = inflow rate - outflow rate +generation rate

 Assumptions : well-mixed, constant volume, C and T are uniform

τ k 

QV k 

C C 

+=

+=

1)/(1

00

Under steady-state conditionsand first-order reaction (r 

c=

-kC)

Q, C0 Q, C

Page 27: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 27/53

Page 28: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 28/53

28

MODELING 

SUSPENDED GROWTH PROCESSES

COMPLETE-MIX

ACTIVATED-SLUDGE PROCESS

Page 29: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 29/53

Complete-mix reactors

Page 30: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 30/53

30

Biomass Mass

Balance:

[ ] V r  X Q X QQQX V dt 

dX  g  Rwewo ++−−= )(

rg = net rate of biomass production, g VSS/ m3.

d

Accumulation rate = inflow rate - outflow rate + net growthrate

 Assuming; X 0 = 0 (can be neglected) and steady-state conditions

 prevail;

V r  X Q X QQ  g  Rwew =+− )(

d u s Rwew k 

 X 

r Y 

VX 

 X Q X QQ−−=

+− )(

1/SRT

 µ =SRT 

1

SRT= Solids retention

Complete mix reactors

Complete-mix reactors

Page 31: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 31/53

31

 Rwew X Q X QQ

VX 

+− )(SRT =

If no clarifier following the aeration basin,thus, no recyle; R=0, Qw=0,

τ ==QX 

VX 

QX 

VX 

e

SRT =

τ SRT == theoretical hydraulic detention time, V/Q, dτ 

Biomass MassBalance:

SRT= Solids retention time, d

  Complete mix reactors

Complete-mix reactors

Page 32: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 32/53

32

-rsu/X = U = Specific substrate utilization rat

g BOD or COD/g VSS .d

u s k  X 

r Y 

SRT −−=

1

S0= influent soluble substrate concentration,

g BOD or bsCOD/m3

S= effluent soluble substrate concentration,g BOD or bsCOD/m3

 X 

S S 

VX 

S S QU 

 X 

r  su

τ 

−=

−== 00 )(

d k YU SRT 

−=1

 s

k S  K 

kS Y 

SRT −

+=

1

[ ]

1)(

1

−−

+=

d  s

k Yk SRT 

SRT k  K S 

Biomass Mass

Balance:

Complete mix reactors

Complete-mix reactors

Page 33: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 33/53

33

SludgeQw, XR,S

Effluent

(Q-Qw), Xe,S

Influent

Q, X0,

S0

Return activated sludge

QR, XR, S

S, X,

V

ClarifierAeration tank

Substrate Mass Balance:

V r QS QS V 

dt 

dS  suo +−=

 Assuming; steady-state conditions

))((0S  K 

kXS 

Q

V S S 

 s +=−

+

−=

SRT k 

S S Y SRT  X 

d 1

)( 0

τ [ ]

1)(

1

−−

+=

d  s

k Yk SRT 

SRT k  K S 

  Complete mix reactors

Complete-mix reactors

Page 34: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 34/53

34

Mixed liquor VSS concentration:

Inert material mass balance =

X0,i = nbVSS concentration in influent, g/m3

Xi = nbVSS concentration in aeration tank, g/m3

rx,i = rate of nbVSS production from cell debris,g/m3.d

rx,i

= X k  f   d d  )(

SRT  X k  f  SRT  X  X  d d ii )()/(,0 += τ 

X T = X + Xi 

X T= total MLVSS concentration in aeration tank, g

VSS/m3

X= biomass concentration, g VSS/m3

Xi = inert VSS; nonbiodegradable VSS (nbVSS), g

VSS/m3

V r SRT V  X QX V dt 

dX 

i xii

i

,,0 /+−=

At steady-stateconditions

τ τ 

SRT  X SRT  X k  f  

SRT k 

S S Y SRT  X  i

d d 

T 00 )(

1

)(++

+

−=

  Complete mix reactors

 

Complete-mix reactors

Page 35: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 35/53

35

Mixed liquor VSS concentration:

X T = X + Xi 

X T= total MLVSS concentration in aeration tank, g

VSS/m3

X= biomass concentration, g VSS/m3

Xi = inert VSS; nonbiodegradable VSS (nbVSS), g

VSS/m3

If both BOD removal and nitrification;

τ τ τ 

SRT  X 

SRT k 

 NOY SRT SRT  X k  f  

SRT k 

S S Y SRT  X  i

dn

 xn

d d d 

00

1

)()(

1

)(+

+++

+

−=

Ox = concentration of NH4-N in the influent that is nitrified

dn = endogenous decay coefficient for nitrifying organisms, g VSS/gVSS.d

p

Page 36: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 36/53

 

Complete-mix reactors

Page 37: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 37/53

37

TSS produced daily :

90.080.0 −=TSS 

VSS (typical biomass ratio; 0.85)

)(85.085.085.000, VSS TSS Q D

C  B A P  TSS  X T  −++++=

= net waste activated sludge produced daily, measured in terms of TSS, gTSS

0= influent wastewater TSS concentration, g/m3

VSS0 = influent wastewater VSS concentration, g/m3

Mass of MLVSS (XVSS) V = (Px,VSS) SRT

Mass of MLSS (X TSS) V = (Px,TSS) SRT

TSS  X T  P  ,

p

Complete-mix reactors

Page 38: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 38/53

38

Observed Yield:

)(1)(

1 0

,0

S S 

 X 

SRT k 

SRT Y k  f  

SRT k 

Y Y 

i

d d 

obs−

++

++

=

nbVSS ininfluent

Heterotrophic biomass

Celldebris

)(11)(1 0

,0

S S 

 X 

SRT k 

SRT k 

SRT Y 

k  f  SRT k 

i

dn

n

d d d 

d obs

−++++++=

Nitrifying

bacteria

biomass

p

Page 39: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 39/53

39

Oxidized nitrogen:

In separate nitrification or

In combined BOD removal and nitrification

Q(NOx) = Q(TKN0) – QNe – 0.12 Px,bio

Ne = effluent NH4-N

0.12 = N content in C5H7NO2

Oxygen Requirements:

Oxygen used = bCOD removed – COD of waste sludge

RO = Q(S0-S) - 1.42 Px,bio + 4.33Q (NOx)

RO = oxygen required, kg/d

Px,bio = biomass as VSS wasted per day, kg/d

Design & Operating Parameters

Page 40: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 40/53

40

SRT = the most critical parameter of activated-sludgedesign.

It represents; the average period of time during whichthe sludge has remained in the system

r BOD removal= 3-5 d (dependent on mixed-liquor temperature)

at 18-250C= SRT ~ 3 d (to limit nitrification), even 1 d

 s

k S  K 

kS Y 

SRT −

+=

1SRT affects treatmentprocess performance,aeration tank volume,

sludge production, oxygenrequirements.

Solids retention time (SRT):

Design & Operating Parameters

Page 41: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 41/53

41

Process performance and stability

Washout; S = S0 SRT = SRTmin 

 sk S  K 

kS 

Y SRT  −+= 0

0

min

1

If S0 >> K s;

Safety factor (SF) = SRTdes/ SRTmin 

d md  k k Yk SRT 

−≈−≈ µ min

1

(SF= 2-20)

Design & Operating Parameters

Page 42: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 42/53

42

Food to microorganisms (F/M) ratio:

 X 

VX 

QS 

biomassmicrobial total 

rate substrateapplied total 

 M 

 F 

τ 00 ===

Specific substrate utilization rate:

100

)/( E  M  F U  = E = BOD or bsCOD process removal efficiency, (S0-S)*100/S0

 X 

S S U 

τ 

−= 0

d k YU SRT 

−=1

d k  E  M  F 

Y SRT 

−=100

)/(1

(g BOD or bsCOD/ gVSS.d)

F/M = 1.0 g BOD or bsCOD/ g VSS.d for high-rate systemsF/M = 0.04 g BOD or bsCOD / g VSS.d for extended-aeration

Design & Operating Parameters

Page 43: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 43/53

43

Volumetric organic loading rate:

)/10( 3

0

kg  g V 

S Q Lorg  =

Lorg = volumetric organic loading rate, kg BOD/m3.d

Q= influent wastewater flowrate, m3/dV= aeration tank volume, m3

S0 = influent BOD concentration, g/m3

Usually, Lorg is 0.3-3.0 kg BOD or COD /m3.d (applied to the aeration ta

Page 44: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 44/53

44

Mixed-liquor settling characteristics Should be considered while designing secondary

clarifier;Sludge volume index (SVI) : is the volume of 1 g of sludge after 30 min of settling. (suspended solids interms of MLSS)

 g 

mL

 Lmg  solids suspended 

 g mg  LmL sludgeof  volume settled 

SVI  == /,

)/10)(/,( 3

SVI <100 good settling sludge (desired)

SVI > 150 filamentous growth, poor settling

1)/(100

100

−=

SVI  P  R

w

With SVI; R required tomaintain a fixed MLSSin the aeration tank canbe determined; Pw = MLSS as expressed as percentage

(eq. 0.3% ~ 3000 mg/L)

Page 45: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 45/53

45

SludgeQw, XR,S

Effluent

(Q-Qw), Xe,S

Influent

Q, X0,

S0

QR, XR, S

S, X,

V

ClarifierAeration tank

 Assuming; steady-stateconditions

SECONDARY CLARIFIER 

0 = X(Q + QR) - QRXR - XRQW - QeXe

(Q-Qw

=Qe

)

Mass balance around the clarifier:

Page 46: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 46/53

46

SECONDARY CLARIFIER 

[ ] X  X 

SRT  XV  XQQ

 R

 R−

−=

)/(

Q

O R

Recycle ratio = R =

 X  X 

 X  R

Q

O

 R

 R

−==Mass balance around the aeration tank:

Mass balance around the clarifier:

1)/(

)/(1

−−=

 X  X 

SRT  R

 R

τ 

Page 47: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 47/53

47

SECONDARY CLARIFIER 

 A

 X QQSLR R )( +

=

Solids loading rate (SLR):

A= clarifier surface area, m2

ypical return sludge pumping rate: 50 - 75% of Qave

esign average capacity = 100 - 150% of the design flowrat

Return sludge concentration, XR = 4000 – 12000 mg/L

EXAMPLE

Page 48: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 48/53

48

Design a complete-mix activated sludge process to treatprimary effluent of 10000 m3/d by both BOD removal andnitrification.

Influent BOD = 150 g/m3 (bCOD/BOD=1.6)

Effluent BOD = 2 g/m3 

Influent TKN = 35 mg/L,

Effluent NH4-N = 0.5 mg/L

NH4-Nin / TKNin = 0.65

SRT = 15 d

 Theoretical detention time = 8 h Yn= 0.12

K s = 40 mg/L,

 Y = 0.40 g VSS/g bCOD,kd = 0.08 g VSS/g VSS.d

kdn = 0.06 g VSS/g VSS.d =

Determine

• Oxygen demand in theaeration tank

• Oxygen uptake rate• Oxygen required fornitrification

• Tank biomass concentration

Page 49: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 49/53

49

PLUG-FLOW

ACTIVATED-SLUDGE PROCESS

MODELING SUSPENDED GROWTH PROCESSES

Plug-flow reactors

Page 50: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 50/53

50

Under steady-state conditions and nth-order reaction (r c = -kCn )

V r QC QC V t 

C c x x x ∆+−=∆∂

∂∆+||

x x+ x∆

V ∆

= change in average concentration with

time, (mg/L.s)C = constituent concentration, mg/L

= differential volume element, L

r c = reaction rate for constituent C, mg/L.s

cr  x

 A

Q

C +

∆−=

τ k Q

V k 

Q

 ALk dx

Q

 Ak 

dC  L

n

C −=−=−=−= ∫ ∫  00

L

Q, CQ, Co

τ k Q

V k 

dC n

C −=−=∫ 

0

cr  x

 A

Q

C +

∂−=

Non-ideal Plug-flow reactors:ith i l

Page 51: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 51/53

51

with axial

dispersion

)2/exp()1()2/exp()1(

)2/1exp(422

0 d aad aa

d a

−−−+=

C= effluent concentration, mg/LC0 = influent concentration, mg/L

a = (1+4kτd)1/2

d = dispersion factor = D/uL

D=coefficient of axial dispersion,m2/s

u=fluid velocity, m/sL= characteristic length, m

As d goes to infinity, complete-mix, if d=0 then plug-

flow.

Wehner andWilhelm equation

To check if the flow is ideal or not

Page 52: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 52/53

52

READING ASSIGNMENT:Residence time distribution (RTD) CurvesChp 4-4 (Metcalf & Eddy, 4th Ed.)

Tracer study analyses

Plug-flow reactor

Pulse dose Step input

Kinetic model of the plug-flowreactor

Page 53: 304-Notes 8 BioTreat 2013

7/28/2019 304-Notes 8 BioTreat 2013

http://slidepdf.com/reader/full/304-notes-8-biotreat-2013 53/53

53

reactor

 Two simplifying assumptions:

- Microorganisms concentration in influent =microorganisms concentration in effluent

applies only if; SRT / Ʈ >5

then; average microorganism concentration: X

- Rate of substrate utilization through the tank;S  K 

S  X k r 

 s

 su+

−=

 After integration, and substitution of equation for X 

i s

k S S  K S S 

S S k Y 

SRT −

++−

−=

)/ln()1()(

)(1

0

0

α  )1(

0

α 

α 

+

+=

S S Si

Si= influent concentration to reactor after dilution with recycle flow

α = recycle ratio