3. leis de newton (leis do movimento) 3.1 conceitos básicos ......22/fev/2018 – aula2 26/fev/2018...

34
22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira lei (inércia) 3.2.1 Referenciais de inércia 3.3 Segunda lei (F=ma) 3.4 Terceira lei (reação) 1 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma vetorial 2.3.3 ângulo de lançamento 2.3.4 Alcance

Upload: others

Post on 04-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

22/Fev/2018 – Aula2

26/Fev/2018 – Aula 3

3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira lei (inércia) 3.2.1 Referenciais de inércia 3.3 Segunda lei (F=ma) 3.4 Terceira lei (reação)

1

2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração

2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma vetorial 2.3.3 ângulo de lançamento 2.3.4 Alcance

Page 2: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

Aula anterior

Queda livre a partir do repouso:

vx = v0x + axt = 0+ gt

x = 12axt

2 + v0xt + x0 =12gt2 +0+0

Método de resolução: 1)  Determinar o que é pedido (tempo,

distância, velocidade, aceleração,…) 2)  Desenhar o objeto nas posições inicial e

final. Definir o sistema de eixos. 3)  Selecionar as equações relevantes e

resolvê-las. Só no fim, substituir os valores dados e calcular o resultado.

4)  Verificar se o resultado tem as dimensões certas e o valor esperado.

2.1 Queda livre

2

Page 3: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

Aula anterior

3

!ex = x = i = (1,0,0) = versor da direção +x!ey = y = j = (0,1,0) = versor da direção + y!ez = z = k = (0,0,1) = versor da direção +z

!A= Ax

!ex + Ay

!ey + Az

!ez

=!Ax +

!Ay +

!Ak

= Axx + Ay y + Az z

= (Ax ,Ay ,Az )

2.2 Movimento 2 e 3-D

Page 4: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

Aula anterior

4

A aceleração é independente da direção da velocidade.

2.3 Lançamento de projétil

•  A resistência do ar é desprezada.

•  g = 9,80 m/s2, dirigida para baixo.

x(t) = x0 + v0xt

y(t) = y0 + v0yt −12gt2

vx = v0xvy = v0y − gt

vx2 = v0x

2

vy2 = v0y

2 − 2gΔy

Page 5: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

5

Ângulo de lançamento: direção da velocidade inicial, relativamente à horizontal.

Exemplo: em qual destes casos a velocidade de chegada à água é maior?

vágua2 = v0

2 + 2ghvágua2 = v0

2 + 2gh

2.3.3 Ângulo de lançamento Aula anterior

Page 6: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

6

2.3.3.1 Ângulo zero

Se o ângulo de lançamento for igual a zero, a velocidade inicial na direção de y é zero.

x0 = 0

y0 = h

x = v0 t

y = h− 12gt2

vx = v0= constante

vy = −gt

vx2 = v0

2= constante

vy2 = −2gΔy

Page 7: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

7

2.3.3.1 Ângulo zero

Se o ângulo de lançamento for igual a zero, a trajetória é o ramo de uma parábola.

x = v0 t ⇒ t = xv0

⇒ y = h− 12g xv0

⎝⎜⎜

⎠⎟⎟

2

= h− g

2v02x2

Esta equação é da forma y = a + bx2, que representa uma parábola.

O ponto de chegada ao solo pode ser encontrado fazendo y = 0:

x = v02hg

Page 8: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

8

2.3.3.2 Ângulo diferente de zero

Se o ângulo de lançamento for diferente de zero:

x0 = 0

y0 = 0v0x = v0 cosθv0y = v0 senθ

x(t) = v0 cosθ( ) t

y(t) = v0 senθ( )− 12 gt2

vx = v0 cosθ

vy = v0 senθ − gt

vx2 = v0

2 cos2θ

vy2 = v0

2 sen2θ − 2gΔy

Page 9: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

9

2.3.3.2 Ângulo diferente de zero

Se o ângulo de lançamento for diferente de zero, a trajetória continua a ser uma parábola.

Esta equação é da forma y = ax + bx2, que representa uma parábola.

t = xv0x

⇒ y(x) = v0yxv0x

⎝⎜⎜

⎠⎟⎟−12g xv0x

⎝⎜⎜

⎠⎟⎟

2

=v0yv0x

⎝⎜⎜

⎠⎟⎟x −

g

2v0x2

⎜⎜

⎟⎟x2

y(x) = tgθ0( ) x − g

2v02 cos2θ0

⎜⎜

⎟⎟x2

Page 10: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

x y

10

2.3.3.2 Ângulo diferente de zero

Se o ângulo de lançamento for diferente de zero, a trajetória continua a ser uma parábola.

y(x) = tgθ0( ) x − g

2v02 cos2θ0

⎜⎜

⎟⎟x2

Projétil 1

simulação

Page 11: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

11

2.3.3.2 Ângulo diferente de zero

Simetria no movimento:

Mesmos y e |v|

Mesmos y e |v|

Page 12: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

12

2.3.4 Alcance

Alcance é a distância percorrida na horizontal.

Como

R = x = v0xt = v0 cosθ2gv0 senθ =

v02

g2senθ cosθ( )

y(t) = v0 senθ( )− 12 gt2

y = 0 ⇒ 0 = t v0y −12gt

⎝⎜

⎠⎟

⇒ t = 0 ou t = 2gv0y =

2gv0 senθ

2senθ cosθ = sen2θ R = x =v02

gsen2θ

Page 13: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

13

Para a mesma velocidade inicial, o alcance máximo verifica-se quando

dxdθ

= 0 ⇒d sen2θ( )dθ

= 0 ⇒ senθ = cosθ ⇒ θ = 45°

2.3.4 Alcance

Projétil 2

filme

Page 14: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

14

3.1 Conceitos básicos

O que causa uma aceleração? Uma força.

A força é uma grandeza vetorial: tem uma amplitude e um sentido.

Page 15: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

15

A massa pode ser encarada como uma medida da

•  quantidade de matéria do objeto

•  dificuldade em mudar a velocidade do objeto

•  inércia do objeto

3.1 Conceitos básicos

Page 16: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

16

3.1 Conceitos básicos

Forças de contacto Forças de campo

Page 17: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

17

A inércia pode ser definida como a tendência que uma massa tem de resistir a uma aceleração.

3.1 Conceitos básicos

Na figura (a), o avião move-se com uma velocidade constante, pelo que a bola não se move (no referencial do avião).

Na figura (b), o avião está a ser acelerado, pelo que a bola tende a deslocar-se (a acelerar) para a parte de trás do avião.

Page 18: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

18

3.1 Conceitos básicos

Força normal: quando um objeto empurra uma superfície, esta empurra-o como reação, perpendicularmente à superfície. É uma força de contacto.

Força de fricção: para além da força normal, pode existir uma força (de fricção), paralelamente à superfície e no sentido contrário ao do movimento. É uma força de contacto.

Page 19: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

19

3.1 Conceitos básicos

Força de tensão: força exercida por um fio ou uma corda, sobre um objeto. É uma força de contacto.

Peso: força da gravidade exercida sobre um objeto. É uma força de campo, de longo alcance.

Page 20: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

20

3.1 Conceitos básicos

Qualquer força pode ser expressa nas suas componentes, segundo cada eixo ortogonal x, y e z.

!F = Fx

!ex + Fy

!ey + Fz

!ez

Page 21: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

21

3.1 Conceitos básicos

Várias forças aplicadas num ponto de um objeto têm o mesmo efeito que a força resultante, igual à soma vetorial das várias forças.

!Fres =

!F1+!F2 +!=

"Fi

i=1

n∑

!Fres

!F∑ =!Fres

Fres y

Fres x

Page 22: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

22

3.1 Conceitos básicos

Page 23: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

23

3.2 Primeira Lei de Newton (Lei da Inércia)

Primeira Lei de Newton: se a resultante das forças que atuam numa partícula for nula, então essa partícula livre ou se move sempre em linha reta com velocidade constante (sem aceleração), ou está em repouso.

Page 24: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

3.2.1 Referenciais de inércia

Referencial de inércia: qualquer sistema de coordenadas que esteja em repouso ou que se desloque em qualquer direção, com velocidade constante.

24

Exemplo: a velocidade do passageiro, relativamente ao chão, depende dos sentidos relativos das velocidades do passageiro e do comboio.

Page 25: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

Referencial de inércia: qualquer sistema de coordenadas que esteja em repouso ou que se desloque em qualquer direção, com velocidade constante.

25

!vpassageiro, chão =!vpassageiro, comboio +

!vcomboio, chão

3.2.1 Referenciais de inércia

Page 26: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

26

3.2.1 Referenciais de inércia

Amy, Bill e Carlos medem a velocidade do corredor. Os vetores velocidade (a verde) são mostrados no referencial da Amy. Qual é a velocidade do corredor ?

A resposta depende do referencial do observador: Amy: vcorredor = 5 m/s Bill: vcorredor = 0 m/s Carlos: vcorredor =-10 m/s

Page 27: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

27

3.2 Segunda Lei de Newton

A aceleração de um objeto é proporcional à resultante das forças nele aplicadas:

A aceleração é inversamente proporcional à massa:

a∝ F

a∝ 1m

Page 28: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

28

3.2 Segunda Lei de Newton

Segunda lei de Newton: o vetor aceleração de uma partícula é proporcional ao vetor força resultante, que nela atua.

a∝ F

a∝ 1m

a = Fm

⇒!F =m !a

F⎡⎣ ⎤⎦= Newton = kg m/s2

Exemplo: uma força de 3 N provoca uma aceleração de 2 m/s2 num objeto. Qual é a massa do objeto?

m1 m1 =Fa1

= (3 N)

(2 m/s2)=1,5 kg

!F∑ =m !a

Page 29: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

29

3.2 Segunda Lei de Newton

Como a massa é positiva, a força e a aceleração têm o mesmo sentido.

!F∑ =m !a

Diagrama de forças •  separar o sistema em partes

(partículas ou pontos) •  representar as forças que

atuam em cada uma •  escolher um sistema de

coordenadas conveniente •  representar as componentes de

cada força •  aplicar as leis de Newton.

Page 30: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

30

3.2 Segunda Lei de Newton

Exemplo de um diagrama de forças

!F∑ =m !a

Diagrama de forças •  separar o sistema em partes

(partículas ou pontos) •  representar as forças que

atuam em cada uma •  escolher um sistema de

coordenadas conveniente •  representar as componentes de

cada força •  aplicar as leis de Newton.

Page 31: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

31

Exemplo O semáforo da figura tem um peso de 122 N. Está ligado a um fio que, por sua vez, liga a dois outros fixos a um suporte vertical. Calcule as tensões T1 e T2 nos dois fios de suporte.

124 C H A P T E R 5 • The Laws of Motion

F

Fg n

Figure 5.9 When one objectpushes downward on anotherobject with a force F, the normalforce n is greater than thegravitational force: n ! Fg " F.

P R O B L E M - S O LV I N G H I N T S

Applying Newton’s LawsThe following procedure is recommended when dealing with problems involvingNewton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle isin equilibrium in this direction and !F ! 0. If not, the particle is undergoingan acceleration, the problem is one of nonequilibrium in this direction, and!F ! ma.

• Analyze the problem by isolating the object whose motion is beinganalyzed. Draw a free-body diagram for this object. For systems containingmore than one object, draw separate free-body diagrams for each object.Do not include in the free-body diagram forces exerted by the object on itssurroundings.

• Establish convenient coordinate axes for each object and find thecomponents of the forces along these axes. Apply Newton’s second law, !F ! ma, in component form. Check your dimensions to make sure that allterms have units of force.

• Solve the component equations for the unknowns. Remember that you musthave as many independent equations as you have unknowns to obtain acomplete solution.

• Finalize by making sure your results are consistent with the free-body diagram.Also check the predictions of your solutions for extreme values of thevariables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to twoother cables fastened to a support, as in Figure 5.10a. Theupper cables make angles of 37.0° and 53.0° with the hori-zontal. These upper cables are not as strong as the verticalcable, and will break if the tension in them exceeds 100 N.Will the traffic light remain hanging in this situation, or willone of the cables break?

Solution We conceptualize the problem by inspecting thedrawing in Figure 5.10a. Let us assume that the cables donot break so that there is no acceleration of any sort in thisproblem in any direction. This allows us to categorize theproblem as one of equilibrium. Because the acceleration ofthe system is zero, we know that the net force on the lightand the net force on the knot are both zero. To analyze the

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagramfor the traffic light. (c) Free-body diagram for the knot where the three cables are joined.

124 C H A P T E R 5 • The Laws of Motion

F

Fg n

Figure 5.9 When one objectpushes downward on anotherobject with a force F, the normalforce n is greater than thegravitational force: n ! Fg " F.

P R O B L E M - S O LV I N G H I N T S

Applying Newton’s LawsThe following procedure is recommended when dealing with problems involvingNewton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle isin equilibrium in this direction and !F ! 0. If not, the particle is undergoingan acceleration, the problem is one of nonequilibrium in this direction, and!F ! ma.

• Analyze the problem by isolating the object whose motion is beinganalyzed. Draw a free-body diagram for this object. For systems containingmore than one object, draw separate free-body diagrams for each object.Do not include in the free-body diagram forces exerted by the object on itssurroundings.

• Establish convenient coordinate axes for each object and find thecomponents of the forces along these axes. Apply Newton’s second law, !F ! ma, in component form. Check your dimensions to make sure that allterms have units of force.

• Solve the component equations for the unknowns. Remember that you musthave as many independent equations as you have unknowns to obtain acomplete solution.

• Finalize by making sure your results are consistent with the free-body diagram.Also check the predictions of your solutions for extreme values of thevariables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to twoother cables fastened to a support, as in Figure 5.10a. Theupper cables make angles of 37.0° and 53.0° with the hori-zontal. These upper cables are not as strong as the verticalcable, and will break if the tension in them exceeds 100 N.Will the traffic light remain hanging in this situation, or willone of the cables break?

Solution We conceptualize the problem by inspecting thedrawing in Figure 5.10a. Let us assume that the cables donot break so that there is no acceleration of any sort in thisproblem in any direction. This allows us to categorize theproblem as one of equilibrium. Because the acceleration ofthe system is zero, we know that the net force on the lightand the net force on the knot are both zero. To analyze the

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagramfor the traffic light. (c) Free-body diagram for the knot where the three cables are joined.

⇒ Fx∑ = 0 , Fy∑ = 0Equilíbrio

Fx∑ = −T1cos37°+T2 cos53° = 0

Fy∑ =T1sen37°+T2 sen53°−T3= 0

T1 = 73,4NT2 = 97,4N

Page 32: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

32

3.3 Terceira Lei de Newton

Terceira lei de Newton: se uma partícula exercer noutra uma força então a segunda partícula exerce na primeira uma força , de igual módulo e de sentido contrário:

!F ,!

R

!F = −

!R

Page 33: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

33

3.3 Terceira Lei de Newton

Exemplos

Page 34: 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos ......22/Fev/2018 – Aula2 26/Fev/2018 – Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira

34

3.3 Terceira Lei de Newton

Exemplo: puxar uma corda

A corda, presa à parede, é puxada com uma força de 100 N.

A corda é puxada, em sentidos opostos, com duas forças de 100 N cada.

1 2

Qual é a maior tensão?

a. T1>T2 b. T1=T2 c. T1<T2