3 平面上の線形変換 - ryukoku universitytsutomu/la1/11/lecture...3 平面上の線形変換...

18
3 平面上の線形変換 行列は数を長方形の形に並べたものであるが,単なる数字の表に止 まらず,空間から空間への写像という意味を持つ.すべての線分を 線分か点に移し,すべての面を面か線分か点に移す線形写像と呼ば れる写像を行列は表現する. この章では,まず,基本的な線形変換に対応する 2 次正方行列を 紹介する.ついで,線形写像の合成から行列やベクトルの積が必然 的に導入されることを解説し,図形を変換するという意識の下で行 列の計算を行う. 3.1 平面から平面への写像 ≪写像と変換≫ 2 つの集合 X Y において,X 1 1 つの要素に Y の要 素を 1 つずつ対応させる規則を X から Y への写像という.X Y が一致す るとき,写像のことを変換ともいう. この章では,平面から平面への変換 ( x y ) ( x y ) を考える.たとえば, ( x y ) = 2x 1 2 y (3.1) は,x 方向は 2 倍に拡大し,y 方向は半分に縮小する変換である.また, ( x y ) = ( 1 2 (x + y) y ) (3.2) は,x 座標と y 座標の平均を新しい x 座標にする変換である. 例題3-1 (3.1) によって平面上の点の列を ( x 1 y 1 ) = ( a b ) , ( x n+1 y n+1 ) = 2x n 1 2 y n (n =1, 2, 3, ··· ) と定義する.すると,x n =2 n1 ay n = ( 1 2 ) n1 b となる.a ̸=0 ならば lim n→∞ |x n | = であり,任意の b に対して lim n→∞ y n =0 である. 課題3-1 (3.2) によって平面上の点の列を ( x 1 y 1 ) = ( a b ) , ( x n+1 y n+1 ) = ( 1 2 (x n + y n ) y n ) (n =1, 2, 3, ··· ) 27

Upload: others

Post on 21-Jan-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

3 平面上の線形変換

行列は数を長方形の形に並べたものであるが,単なる数字の表に止まらず,空間から空間への写像という意味を持つ.すべての線分を線分か点に移し,すべての面を面か線分か点に移す線形写像と呼ばれる写像を行列は表現する. この章では,まず,基本的な線形変換に対応する 2 次正方行列を紹介する.ついで,線形写像の合成から行列やベクトルの積が必然的に導入されることを解説し,図形を変換するという意識の下で行列の計算を行う.

3.1 平面から平面への写像

≪写像と変換≫ 2 つの集合 X と Y において,X の 1 つ 1 つの要素に Y の要素を 1つずつ対応させる規則を X から Y への写像という.X と Y が一致するとき,写像のことを変換ともいう.

この章では,平面から平面への変換(xy

)→(x′

y′

)を考える.たとえば,

(x′

y′

)=

2x

1

2y

(3.1)

は,x 方向は 2 倍に拡大し,y 方向は半分に縮小する変換である.また,(x′

y′

)=

(1

2(x+ y)

y

)(3.2)

は,x 座標と y 座標の平均を新しい x 座標にする変換である.

例題3-1   (3.1) によって平面上の点の列を

(x1

y1

)=

(a

b

),

(xn+1

yn+1

)=

2xn

1

2yn

(n = 1, 2, 3, · · · )

と定義する.すると,xn = 2n−1a,yn =

(1

2

)n−1

b となる.a = 0 ならば

limn→∞

|xn| = ∞ であり,任意の b に対して limn→∞

yn = 0 である.

�課題3-1   (3.2) によって平面上の点の列を

(x1

y1

)=

(a

b

),

(xn+1

yn+1

)=

(1

2(xn + yn)

yn

)(n = 1, 2, 3, · · · )

27

と定義する.すると,yn = (n = 1, 2, · · ·)である.一方,xn+1 − =1

2(xn − ) から,xn =   (a− ) + となる.以上より,任意の a,b に

対し limn→∞

xn = , limn→∞

yn = である.

Tidbit: エノン(Henon)写像� �(3.1),(3.2)の右辺は xと y の 1次式であるが,2次の項が現れる例として,(

x′

y′

)=

(1− px2 + qy

x

)(ただし,p = 1.4,q = 0.3) (3.3)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

x

y

Figure 3.1: 直線 x = 0,y = 4x,y = −4x の像

を考える.エノン写像と呼ばれるこの変換は y 軸に平行な直線 x = c(c は定数)を x 軸に平行な直線 y = c に写像し,その他の直線を放物線に写像する.たとえば,直線 x = 0,y = 4x,y = −4xは,それぞれ,Figure 3.1の直線,上側の放物線,下側の放物線に写像される.

例題3-2  エノン写像 (3.3)によ

って直線 y = rx はどのような図形に写像されるか.ベクトルを利用して表現せよ.

(解答例) 直線 y = rx のベクトル

方程式(xy

)=

(trt

)(t は実数)を

(3.3) に代入すれば(x′

y′

)=

(1− pt2 + qrt

t

)=

1 +q2r2

4p0

(p(t− qr

2p)2

−t

)(t は実数)

となる.これは,Tidbit: 楕円,双曲線,放物線のベクトルを利用した表現(p. 17)に例示したように,x 軸を対称軸とする放物線を表す.� �

3.2 線形変換の基本的性質

≪線形変換≫ (3.1),(3.2) は行列を用いて,それぞれ,(x′

y′

)=

(2 00 1/2

)(xy

),

(x′

y′

)=

(1/2 1/20 1

)(xy

)

とも表現される.y 軸に関する対称移動(x′

y′

)=

(−xy

)も行列を用いて

28

(x′

y′

)=

(−1 00 1

)(xy

)(3.4)

と表される.このように 2 次の実正方行列 A によって(x′

y′

)= A

(xy

)(3.5)

と表される変換は平面上の線形変換と呼ばれる.

≪線形変換はすべての直線を直線か 1 点に写像≫ xy 平面上の点(cd

)を通り,

ベクトル(ab

)= 0 の方向に伸びる直線は

(xy

)=

(cd

)+ t

(ab

)(t は実数)

と表された((2.7),(2.8) 参照).これを 2 次の実正方行列 A によって変換すれば (

x′

y′

)= A

(xy

)= A

(cd

)+ tA

(ab

)(t は実数) (3.6)

となる.(3.6) は,A

(ab

)= 0 ならば点 A

(cd

)を通り,ベクトル A

(ab

)の方

向に伸びる直線を表し,A

(ab

)= 0 ならば一点 A

(cd

)を表す.以上より,線

形変換はすべての直線を 直線か 1 点 に写像することが分かる.

例題3-3  行列 A =

(1 11 1

)が表す線形変換によって直線はどのような図

形に写像されるか調べよ.(解答例) 直線のベクトル方程式を(

xy

)=

(cd

)+ t

(ab

)(t は実数),

(ab

)= 0 (3.7)

とする.この直線は A によって(x′

y′

)= A

(xy

)=

(1 11 1

){(cd

)+ t

(ab

)}=

(c+ dc+ d

)+ t

(a+ ba+ b

)(t は実数)に写像される.したがって,a + b = 0(傾きが −1)ならば 1 点(

c+ dc+ d

)に写像され,a+ b = 0(傾きが −1 ではない)ならば

(c+ dc+ d

)を通

る傾きが 1 の直線に写像される.

例題3-4  行列 A =

(1 11 2

)が表す線形変換はすべての直線を直線に写像

することを示せ.

29

(解答例) ベクトル方程式 (3.7) で与えられる直線は A によって(x′

y′

)= A

(xy

)=

(1 11 2

){(cd

)+ t

(ab

)}=

(c+ dc+ 2d

)+ t

(a+ ba+ 2b

)(t は実数)に写像される.a + b,a + 2b の少なくと一方は 0 ではない(両方

とも 0 ならば a = b = 0 となり,(ab

)= 0 という前提に矛盾)ので,このベク

トル方程式は直線を表す.以上より,(1 11 2

)が表す線形変換はすべての直線

を直線に写像することが分かった.

�課題3-2(TAチェック) 行列A =

(1 −1−1 1

)が表す線形変換によって

1 点に写像される直線をすべて求めよ.

�課題3-3(TAチェック) 行列 A =

(1 11 0

)が表す線形変換はすべての

直線を直線に写像する.方向が(ab

)である直線がどのような方向の直線に移

るかを調べよ.

3.3 いろいろな線形変換

≪拡大・縮小,反転≫ Figure 3.2 に縦・横の 拡大・縮小や縦・横の反転を表す

1 0

0 1

1 0

0 1

1 0

0 2

1.5 0

0 2

1 0

0 1

− 1 0

0 2

− 1.5 0

0 2

− −

0.5 0

0 1

Figure 3.2: 拡大・縮小,反転を表す行列

30

行列の例を示す.これらはすべて(a 00 d

)の形の行列であり,これによって表

される線形変換は (x′

y′

)=

(a 0

0 d

)(x

y

)=

(ax

dy

)と書ける.したがって,|a| が横(x 軸)方向の拡大率,|d| が縦(y 軸)方向の拡大率を表し,a < 0 ならば横(x 軸)方向に反転され,d < 0 ならば縦(y

軸)方向に反転される.なお,単位行列(1 00 1

)は 恒等変換(何も動かさない

変換)に対応する.

≪座標軸に沿ってずらす変換≫ Figure 3.3 は座標軸に沿ってずらす変換の例を

示す.これらは(1 b0 1

)か(1 0c 1

)の形である.

(1 b0 1

)が表す線形変換は

(x′

y′

)=

(1 b

0 1

)(x

y

)=

(x+ by

y

)

であるから,y 座標の値を保ちつつ,x 軸に沿ってずらす変換を表す.一方,(1 0c 1

)はつぎのように x 座標の値を保ちつつ,y 軸に沿ってずらす変換を

表す. (x′

y′

)=

(1 0

c 1

)(x

y

)=

(x

y + cx

)

1 1

0 1

1 1

0 1

1 0

1 1

1 0

1 1

Figure 3.3: 座標軸に沿ってずらす変換を表す行列

≪回転移動≫ 原点のまわりに図形を θ だけ回転させると,Figure 3.4 に図示

したように,点(10

)は(cos θsin θ

)に,点

(01

)は(− sin θcos θ

)に移動する.した

31

がって,一般の点(xy

)= x

(10

)+ y

(01

)は

x

(cos θ

sin θ

)+ y

(− sin θ

cos θ

)=

((cos θ)x− (sin θ)y

(sin θ)x+ (cos θ)y

)=

(cos θ − sin θ

sin θ cos θ

)(x

y

)に移動する.このことから,原点のまわりに図形を θ 回転させる変換を表す行

列は

(cos θ − sin θ

sin θ cos θ

)であることが分かる.Figure 3.5 にリニアーくんを原点

のまわりに −π

6,

π

4,

π

2,

6回転した結果を示す.

O x

y

1

θ

cos

sin

θ

θ

sin

cos

θ

θ

Figure 3.4: 原点のまわりの回転

6

πθ = −

5

6

πθ =

2

πθ =

4

πθ =

cos sin

sin cos

θ θ

θ θ

Figure 3.5: 回転移動を表す行列

3.4 合成変換

≪合成変換と行列の積≫ 原点のまわりにπ

2だけ回転する変換および y 軸方向

に 2 倍する変換を表す行列を A,B とすれば,原点のまわりにπ

2だけ回転し

た後に y 軸方向に 2 倍する変換はどのような行列で表されるだろうか.行列A,B は

A =

(cos(π/2) − sin(π/2)sin(π/2) cos(π/2)

)=

(0 −11 0

), B =

(1 00 2

)(3.8)

であった.したがって,点(xy

)を原点のまわりに

π

2だけ回転した点を

(x′

y′

),

それをさらに y 軸方向に 2 倍した点を(x′′

y′′

)とすれば

(x′

y′

)=

(0 −11 0

)(xy

)=

(−yx

),

(x′′

y′′

)=

(1 00 2

)(x′

y′

)=

(x′

2y′

)32

である.右側の式に左側の式を代入すれば(x′′

y′′

)=

(x′

2y′

)=

(−y2x

)=

(0 −12 0

)(xy

)が得られる.一方,BA =

(1 00 2

)(0 −11 0

)=

(0 −12 0

)だから,積 BA が求

める行列である.一般に(xy

)A−−−→

(x′

y′

)B−−−→

(x′′

y′′

)と続けて変換されたときには(

x′

y′

)= A

(xy

),

(x′′

y′′

)= B

(x′

y′

)である.したがって(

x′′

y′′

)= B

(x′

y′

)= B

(A

(xy

))= (BA)

(xy

)となる.つまり,A による変換と B による変換を続けた合成変換は行列の積BA によって表現される(AB ではないことに注意せよ).逆の視点からは,行列の積 AB はB による変換に A による変換を続けた

変換を表現するように定義されていることが分かる.

Tidbit: 線形変換の合成と行列の積� �n 次元の実ベクトル全体からなる集合を n 次元空間といい,Rn で表す.(3.5) のように平面 R2 から R2 への線形変換は 2× 2 行列によって表現される.同様に R3 から R3 への線形変換は 3× 3 行列によって表される.また,R2 から R3 への線形写像は 3× 2 行列によって,R3 から R2 への線形写像は 2× 3 行列によって表現される. 一般に,Rn から Rm への線形写像はx1

...xm

=

a11 · · · a1n...

. . ....

am1 · · · amn

x1

...xn

のように m× n 行列によって与えられる.  p× q 行列 A,m× n 行列 B による線形写像

Rq −−−→A

Rp, Rn −−−→B

Rm

を考える.すると,n = p の場合には A による写像に B による写像を続ける

Rq −−−→A

Rp ≡ Rn −−−→B

Rm

ことが可能になる.この線形写像の合成に対応して,n = p の場合に積 BAが定義される.� �

33

≪再び積の非可換性( AB = BA)≫ 行列 Aによる変換に行列 Bによる変換を続けた合成変換を表すのが積 BAであるという観点は,積の非可換性(AB = BA)をより明確にするだろう.Figure 3.6 は積の非可換性をビジュアルに示すもの

である.A,B はそれぞれ (3.8) の原点のまわりのπ

2回転,縦方向の 2 倍拡大

を表す行列であり,図の上の流れは回転してから縦に拡大する変換(BA),下の流れは縦に拡大してから回転する変換(AB)を表す.

回転

回転

0 1

1 0A − =

0 1

1 0A − =

1 0

0 2B =

1 0

0 2B =

Figure 3.6: <回転してから縦に拡大>と<縦に拡大してから回転>

行列 A,B について,AB = BA のとき A と B は可換であるといい,AB = BAのときは Aと B は非可換であるという.行列の積は一般には非可換(AB = BA)であるが特別な行列同士は可換(AB = BA)になることがある.

例題3-5   x 軸に沿ってずらす変換同士は可換であり,y 軸に沿ってずら

す変換同士も可換である.ただし,x 軸に沿ってずらす変換と y 軸に沿ってずらす変換は可換ではない.実際,(

1 b0 1

)(1 b′

0 1

)=

(1 b+ b′

0 1

),

(1 0c 1

)(1 0c′ 1

)=

(1 0

c+ c′ 1

)

であるから,(1 b0 1

)と(1 b′

0 1

)は可換であり,

(1 0c 1

)と(1 0c′ 1

)も可換で

ある.一方,(1 b0 1

)(1 0c 1

)=

(1 + bc b

c 1

),

(1 0c 1

)(1 b0 1

)=

(1 bc 1 + bc

)

だから bc = 0 のとき(1 b0 1

)と(1 0c 1

)は可換ではない.

�課題3-4  原点のまわりの回転を表す行列同士は可換であることを,原点

のまわりに α だけ回転する変換を表す行列と β だけ回転する変換を表す行列の積を計算することによって示せ.

34

�課題3-5(TAチェック) すべての 2 次正方行列と可換な 2 次正方行列

A =

(a bc d

)を求めよ.

Solution:求める行列 A はすべての 2 次正方行列 X に対して AX − XA =

O となるものである.したがって,X =

(1 00 0

)に対しても AX − XA =( )

= O でなければならない.このことから = 0かつ = 0であ

ることが分かる.また,X =

(0 10 0

)とすると AX −XA =

( )= O

であるから d = であることが分かる.逆に,a を任意の数,A =

(a 00 a

)とすれば,すべての 2 次正方行列 X =

(x yz w

)に対して

AX =

( ), XA =

( )

であり AX = XA が成り立つ.以上より,A = a

(1 00 1

)(a は任意の数)が

求める行列である.なお,この形の行列は スカラー行列 と呼ばれる.

≪変換の合成≫ 例として,原点を通る一般の直線に関する対称移動を表現する行列を単純な線形変換の合成によって求めよう.直線が x 軸の正の向きとなす

O

x

y

O

x

y

O

x

y

O

x

y

θ

θ

x

Figure 3.7: 原点で x 軸の正の向きと角 θ で交わる直線に関する対称移動

角を θ とする.Figure 3.7 に示したように,まず直線と図形(リニアーくん)

35

を一緒に原点のまわりに −θ だけ回転する(右上).これを表す行列は(cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

)=

(cos θ sin θ

− sin θ cos θ

)

である.回転の後,直線は x 軸と一致するので,この直線に関する対称移動は(1 00 −1

)によって表される(右下).最後に,直線と図形を一緒に原点のまわりに θ だけ回転すれば,直線は元に戻り図形は対称移動後のものとなる(左下).この回転を表す行列は (

cos θ − sin θ

sin θ cos θ

)

である.以上を例題としてまとめる.

例題3-6  原点で x 軸の正の向きと角 θ で交わる直線に関する対称移動を

表現する行列を求めよ.

(解答例) 求める行列はつぎのように表される.(cos θ − sin θ

sin θ cos θ

)(1 0

0 −1

)(cos θ sin θ

− sin θ cos θ

)

=

(cos θ − sin θ

sin θ cos θ

)(cos θ sin θ

sin θ − cos θ

)

=

(cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

)=

(cos 2θ sin 2θ

sin 2θ − cos 2θ

)(3.9)

�課題3-6  直線 y = − 1√

3x が x 軸の正の向きとなす角を求めよ.さらに,

この直線に関する対称移動を表す行列を求めよ.

�課題3-7  ベクトル方程式

(xy

)= t

(−1√3

)(t は実数)で与えられる直線

が x 軸の正の向きとなす角を求めよ.さらに,この直線に関する対称移動を表す行列を求めよ.�

�課題3-8   a を実数とする.直線 y = ax が x 軸の正の向きとなす角を θ

(−π/2 ≤ θ < π/2)とし,cos θ,sin θ 求めよ.さらに,この直線に関する対称移動を表す行列を求めよ.

36

�課題3-9(TAチェック)  a を実数とする.Figure 3.8 のように,原点で

x 軸の正の向きと角 θ で交わる直線に沿って a 倍する変換を表す行列をつぎの単純な線形変換の合成によって求めよ.

(1) まず直線と図形を一緒に原点のまわりに −θ だけ回転する.

(2) 回転の後,直線は x 軸と一致するので,x 軸方向に a 倍する.

(3) 最後に,直線と図形を一緒に原点のまわりに θ だけ回転させる.

こうすれば,直線は元に戻り図形は直線に沿って a 倍したものとなる.

O

x

y

θ

Figure 3.8: 一般の直線に沿った拡大

3.5 図形の拡大率と行列式

≪拡大・縮小率と行列式≫ 2 次正方行列による線形変換の前後で図形の大きさ(面積)はどのように変わるだろうか.

θP

QR

O

1

1

x

y

Pa

c

Rb

d

Qa b

c d

+ ′ +

Figure 3.9: 面積拡大率

Figure 3.5にも示されているように回転しても図形の大きさは変わらないし,Figure 3.3 のような座標軸に沿ってずらす変換を受けても図形の大きさは変わらないように見える.また,Figure 3.2 に描かれているよ

うに,行列(a 00 d

)によって縦や横

に拡大・縮小されたり反転されたりすると面積は |ad| 倍になる.一般の 2 次正方行列 A について

拡大率を計算しよう.多くの図形はさまざまな大きさの正方形の和集合となるので,面積が 1 の正方形がどのような面積の図形に写像されるかを

調べる.A =

(a bc d

)によって,Fig-

ure 3.9の原点 Oは Oに,点 P

(10

),

37

Q

(11

),R

(01

)はそれぞれP′

(ac

),Q′

(a+ bc+ d

),R′

(bd

)に移される.線形変換

は直線を直線か一点に移すから,正方形 OPQRは平行四辺形 OP′Q′R′ に写像される.この平行四辺形の面積 S は三角形 OP′R′ の 2倍であるから,θ = ∠P′OR′

とおき,(2.4) を用いれば,

S = |OP′||OR′| sin θ = |OP′||OR′|√1− cos2 θ

=

√|OP′|2|OR′|2 − (

−−→OP′,

−−→OR′)2

=√(a2 + c2)(b2 + d2)− (ab+ cd)2

=√a2d2 + b2c2 − 2abcd =

√(ad− bc)2 = |ad− bc|

(3.10)

となる.したがって,A による面積拡大率は |ad − bc| である.なお,ここに

現れる ad− bc は行列 A =

(a bc d

)の 行列式 と呼ばれ,detA,|A| あるいは∣∣∣∣a b

c d

∣∣∣∣ で表される.例題3-7  縦や横に拡大・縮小したり,座標軸に関して反転する線形変換

を表す行列(a 00 d

)の行列式は ad,面積拡大率は |ad| である.

�課題3-10  座標軸に沿ってずらす変換を表す行列

(1 b0 1

),(1 0c 1

)や

原点のまわりの回転を表す行列(cos θ − sin θsin θ cos θ

)の行列式と面積拡大率を求

めよ.

例題3-8  つぎの行列が表す線形変換によって Figure 3.9の正方形 OPQR

がどのような図形に移されるかを調べよ.また,行列式と面積拡大率を求めよ.

        (1)

(1 22 −2

)       (2)

(1 21 2

)

(解答例) (1) 正方形 OPQR は O,(12

),(30

),(

2−2

)を頂点とする平行四

辺形に移される.行列式は −2− 4 = −6,面積拡大率は 6 である.

(2) 正方形の頂点 O,P,Q,R は,それぞれ, O,

(1

1

),

(3

3

),

(2

2

)に移さ

れる.したがって,この正方形は

(0

0

)と

(3

3

)を結ぶ線分に移される.行列式

は 2− 2 = 0,面積拡大率も 0 である.

38

�課題3-11  つぎの行列が表す線形変換によって Figure 3.9の正方形OPQR

がどのような図形に移されるかを調べよ.また,行列式と面積拡大率を求めよ.

     (1)

(1 21 0

)     (2)

(2 1−1 0

)     (3)

(1 −2−1 2

)

≪行列式の符号≫ 行列式の絶対値は面積拡大率であるが,その符号はどのような意味を持つだろうか.Figure 3.2 には8種類の行列による変換後のリニアーくんが描かれている.右上,左下,下のリニアーくんは時計回りの向きであるが,他の5つは反時計回りである.この事実と呼応して,右上,左下,下の変換を表す行列の行列式は負であるが,他の5つは正である.また,Figure 3.5 やFigure 3.3 に現れる行列の行列式はすべて正であり,変換後のリニアーくんは反時計回りである.このように 行列式が正ならば向きが保たれ,負ならば逆向きになる ことが分かる.

3.6 逆変換・逆行列

≪座標軸に沿ってずらす変換の逆変換≫ 行列(1 b0 1

)が表す x軸に沿ってずら

す線形変換は(xy

)から

(x′

y′

)=

(x+ by

y

)への写像である.この関係を

(xy

)を(x′

y′

)で表す形に書き換えれば

(xy

)=

(x′ − by′

y′

)=

(1 −b0 1

)(x′

y′

)

となる.したがって,(1 b0 1

)が表す線形変換の逆変換は行列

(1 −b0 1

)によっ

て与えられる.同様に,(1 0c 1

)が表す y 軸に沿ってずらす線形変換の逆変換

は(

1 0−c 1

)によって与えられる.

≪回転,拡大・縮小,座標軸に関する反転の逆変換≫ 課題2-12,課題3-4からも分かるように,原点のまわりの θ だけの回転の逆変換を表す行列は(cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

)=

(cos θ sin θ

− sin θ cos θ

)である.また,ad = 0 のとき,(

a 00 d

)による縦や横の拡大・縮小や座標軸に関する反転の逆変換を表す行列

は(1/a 00 1/d

)である.

39

≪逆行列≫ x 軸に沿ってずらす変換とその逆変換を表す行列 A =

(1 b0 1

)と

B =

(1 −b0 1

)の間には

BA = AB =

(1 00 1

)= I (I:恒等変換を表す単位行列)

という関係がある.一般に,行列 A に対して

BA = AB = I (3.11)

を満たす行列 B を A の逆行列といい,B = A−1 と表す.行列 A,B,I を数a,b,1 に置き換えると (3.11) は

ba = ab = 1

に対応する.上式が成り立つとき b を a の 逆数 といった(b =1

a≡ a−1).こ

のように,数の世界における逆数という概念を行列の世界まで拡張したものが逆行列である.数 a の逆数は a = 0 ならば存在した.では,行列の場合はどうだろうか.

例題3-9 例題3-8に現れたつぎの行列の逆行列が存在するか否かを調べ,

存在するなら求めよ.

        (1)

(1 22 −2

)       (2)

(1 21 2

)

(解答例)(1)存在を仮定して,求める逆行列を(x yz w

)と置く.

(x yz w

)(1 22 −2

)=

I より (x+ 2y 2x− 2yz + 2w 2z − 2w

)=

(1 00 1

)である.したがって{

x+ 2y = 12x− 2y = 0

,

{z + 2w = 02z − 2w = 1

⇐⇒{

x = 1/3y = 1/3

,

{z = 1/3w = −1/6

となる.こうして得られた行列1

6

(2 22 −1

)については

(1 2

2 −2

)1

6

(2 22 −1

)=

I も成り立つ.したがって,これが求める逆行列である.

(2) 存在を仮定して,求める逆行列を(x yz w

)と置く.

(x yz w

)(1 21 2

)= I

より(x+ y 2x+ 2yz + w 2z + 2w

)=

(1 00 1

)⇐⇒

{x+ y = 12x+ 2y = 0

,

{z + w = 02z + 2w = 1

40

でなければならないが,このようなことはありえない.したがって(1 21 2

)の

逆行列は存在しない.

≪逆行列が存在するための条件と計算方法≫ 逆行列が存在する行列を 正則行列 と呼ぶ.一般の 2 次正方行列が正則であるための条件と逆行列の計算方法を

考えよう.A =

(a bc d

)の逆行列 X =

(x yz w

)が存在したと仮定する.する

と,XA = I より(ax+ cy bx+ dyaz + cw bz + dw

)=

(1 00 1

)⇐⇒

{ax+ cy = 1bx+ dy = 0

,

{az + cw = 0bz + dw = 1

となる.まず detA = ad − bc = 0 の場合を考える.このときは,上の x と y

の連立 1 次方程式と z と w の連立 1 次方程式を解いて

X = A−1 =1

ad− bc

(d −b

−c a

)(3.12)

である.つぎに detA = 0 の場合を考える.上の x と y の連立 1 次方程式からy を消去すると (ad − bc)x = d となるから d = 0 でなければならない.また,x を消去すると (ad− bc)y = −b となるから b = 0 でなければならない.だが,b = d = 0 は bz + dw = 1 と矛盾する.したがって detA = 0 のとき A は正則

ではない.以上より,A =

(a bc d

)は detA = ad− bc = 0 の場合に限り正則

であり,逆行列は (3.12) で与えられる.つぎに示すように,A も B も正則であるとき積 AB も正則であり,その逆

行列は (AB)−1 = B−1A−1 となる.

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

�課題3-12  課題3-11に現れたつぎの行列の逆行列が存在するか否か

を調べ,存在するなら求めよ.

     (1)

(1 21 0

)     (2)

(2 1−1 0

)     (3)

(1 −2−1 2

)

�課題3-13  つぎの行列について逆行列が存在するか否かを調べ,存在す

る場合にはそれを求めよ.

    (1)

(1 21 1

)    (2)

(1 21/2 1

)    (3)

(1 2−1 0

)

41

�課題3-14  つぎの行列についてどのような数 a に対して逆行列が存在す

るかを調べ,存在するときは,逆行列も求めよ.

        (1)

(a −1−3 2

)       (2)

(a a3

1 1

)

3.7 ベクトルの線形独立性と行列のランク

≪線形独立なベクトルの組≫ 2 つのベクトル v1 =

(ac

),v2 =

(bd

)に対して,

集合a1v1 + a2v2  (a1,a2 は実数) (3.13)

を考える.v1 = v2 = 0ならば (3.13)は原点のみからなる集合である.また,一方が零ベクトルではなくとも他方が零ベクトルであったり,v1 と v2 が平行な場合には (3.13)は直線になる(Figure 3.10の左図参照).v1 も v2 も零ベクトルではなく,かつ,互いに平行ではないとき (3.13)は平面を表すが,このようなときに v1,v2は線形独立であるという(Figure 3.10の右図参照).線形独立ではないときは線形従属であるという.点 R1,R2 を

−−→OR1 = v1,

−−→OR2 = v2 となるように

x

y

x

y

O O

1R 1

R

2R

2R

1v

1v

2v

2v

Figure 3.10: 線形従属であるベクトル(左)と線形独立であるベクトル(右)

選ぶ.すると,(3.13)が平面を表すのは,3点 O,R1,R2が一直線上にないとき,すなわち,三角形 OR1R2 がつぶれないときである.(3.10) で計算したように,

この三角形の面積は1

2|ad− bc|である.したがって,det

(v1 v2

)= ad−bc = 0

の場合に限り v1 =

(ac

),v2 =

(bd

)は線形独立である.

≪ 2 次正方行列のランク≫ 2 次正方行列 A =

(a bc d

)の列ベクトルを v1 =(

ac

),v2 =

(bd

)とする.すると A によって平面全体は

A

(xy

)=(v1 v2

)(xy

)= xv1 + yv2  (x,y は実数) (3.14)

42

に写像される.(3.14) が平面(2 次元空間)のとき A のランクは 2 であるといい,直線(1 次元空間)のとき A のランクは 1 であるといい,原点のみ(0 次元空間)のとき A のランクは 0 であるという(A のランクは記号 rankA で表す).(3.14) は (3.13) の a1,a2 を x,y で取り替えたものであるから,

   v1,v2 が線形独立ならば rankA = 2,

   v1 = 0,v2 = 0 ならば rankA = 1,v1 = 0,v2 = 0 ならば rankA = 1,   v1 = 0,v2 = 0 が平行ならば rankA = 1,

   v1 = v2 = 0 ならば rankA = 0

である.

例題3-10  例題3-8,例題3-9に現れたつぎの行列が平面全体をど

のような図形に写像するかを調べ,ランクを求めよ.

        (1)

(1 22 −2

)       (2)

(1 21 2

)

(解答例) (1) det

(1 22 −2

)= −6 = 0 だから,この行列によって平面全体は

平面全体に写像され,rank

(1 22 −2

)= 2 である.

(2) この行列によって平面全体は(1 2

1 2

)(x

y

)= (x+ 2y)

(1

1

)  (x,y は実数)

に写像される.この集合は x+ 2y = z と置けば

z

(1

1

)  (z は実数)

と同じであるから,原点を通る傾き 1の直線である.また,このことから rank

(1 21 2

)=

1 である.

�課題3-15(TAチェック) 課題3-11,課題3-12に現れたつぎの

行列が平面全体をどのような図形に写像するかを調べ,ランクを求めよ.

     (1)

(1 21 0

)     (2)

(2 1−1 0

)     (3)

(1 −2−1 2

)

�課題3-16(TAチェック) ランクが 0 である 2 次正方行列をすべて求

めよ.

43

�課題3-17  課題3-13の行列のランクを求めよ.

�課題3-18(TAチェック) 課題3-14の行列のランクを求めよ.

�まとめ:ベクトルの線形独立性・ランク・面積拡大率・行列式・逆行列� �

2 次正方行列A =

(a bc d

)=(v1 v2

)についてつぎが成り立つ.

v1,v2 は線形従属 v1,v2 は線形独立

⇕ ⇕rankA < 2 rankA = 2

⇕ ⇕A は平面全体を 1 直線か 1 点に写像 A は平面全体を平面全体に写像

⇕ ⇕面積拡大率は零 面積拡大率は正

⇕ ⇕detA = 0 detA = 0

⇕ ⇕A の逆行列 A−1 は存在しない A の逆行列 A−1 は存在する� �

44