2d optics 3d optics 3d optics - institute for mathematics ... · *caltech optical info. proc. group...

19
1 George Barbastathis Mechanical Engineering Department 3D Optics George Barbastathis Mechanical Engineering Department Massachusetts Institute of Technology George Barbastathis Mechanical Engineering Department 2D Optics 3D Optics lenses gratings Light interacts with medium on a sequence of discrete surfaces GRadient INdex optics (GRIN) Volume Holograms Light interacts with medium throughout a volume throughout a volume George Barbastathis Mechanical Engineering Department George Barbastathis Mechanical Engineering Department Imaging with traditional lenses depth of field lens A A imaged B B blurred image plane George Barbastathis Mechanical Engineering Department Imaging with 3D lenses depth of field 3D lens B B blocked image plane A A imaged Contrast Defocus George Barbastathis Mechanical Engineering Department Shape recovery (“profilometry”) with 3D lenses Line scan method: 2D scanning Line scan method: 2D scanning longitudinal + one lateral dimension longitudinal + one lateral dimension raw images on CCD camera 2½D shape (“profile”) in digital form Working distance d= 50cm Longitudinal resolution z FWHM < 1mm

Upload: others

Post on 03-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

1

George BarbastathisMechanical Engineering Department

3D Optics

George Barbastathis

Mechanical Engineering Department

Massachusetts Institute of Technology

George BarbastathisMechanical Engineering Department

2D Optics 3D Optics

lenses gratings

Light interacts with medium on a sequence of discrete surfaces

GRadient INdex optics(GRIN)

VolumeHolograms

Light interacts with medium throughout a volumethroughout a volume

George BarbastathisMechanical Engineering Department

George BarbastathisMechanical Engineering Department

Imaging with traditional lenses

depthof

field

lens

A A imaged

B

B

blurred

image plane

George BarbastathisMechanical Engineering Department

Imaging with 3D lenses

depthof

field

3D lens

B

B

blocked

image plane

A

A imaged

Contrast Defocus ⇔

George BarbastathisMechanical Engineering Department

Shape recovery (“profilometry”) with 3D lenses

Line scan method: 2D scanningLine scan method: 2D scanninglongitudinal + one lateral dimensionlongitudinal + one lateral dimension

raw imageson CCD camera

2½D shape(“profile”)

in digital form

Working distance d= 50cmLongitudinal resolution ∆z FWHM< 1mm

Page 2: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

2

George BarbastathisMechanical Engineering Department

z=0 µm z=50 µm

z=200 µm z=250 µm

originalobject

Microturbine provided by Chee Wei Wong, Alan Epstein, MIT

Object Distance = 46 cmObject Distance = 46 cm

Resolution accomplished Resolution accomplished ≤≤ 100 100 µµmmraw imagesraw images

profileprofilereconstructionreconstruction

Arnab Sinha, George BarbastathisMIT 3D Optical Systems groupOptics Express 11:3202, 2003

Shape recovery (“profilometry”) with 3D lenses

George BarbastathisMechanical Engineering Department

index ofrefraction

n0+n1

n0– n1

3D lens: plane-to-plane wave volume hologram

George BarbastathisMechanical Engineering Department

Making the (simplest) 3D lens

photosensitivematerial

referencepoint source

of

plane wavesignal beam

referenceplane

( ) ( )[ ]rkkr ⋅−+= rs10 cosnnnafter exposure

George BarbastathisMechanical Engineering Department

Operating the (simplest) 3D lens

3D objectobjective

lens 3D lens

collectorlens

digitalcamera

visiblecolumn

x∆ y∆

z∆ L

of

xy

z

mm1m100~ ÷µL

George BarbastathisMechanical Engineering Department

Operating a multiplex 3D lens

3D objectobjective

lens

collectorlens

digitalcamera

visiblecolumns

3D lens(multiplex)

George BarbastathisMechanical Engineering Department

Operating a hyperspectral multiplex 3D lens

3D objectobjective

lens

collectorlens

digitalcamera

visiblerainbow slices

3D lens(multiplex)

Page 3: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

3

George BarbastathisMechanical Engineering Department

Rainbow volume holographic imaging

slice #1slice #1 slice #2slice #2

2½D shape2½D shape

Wenyang Sun, George BarbastathisMIT 3D Optical Systems group

Optics Letters 30:976, 2005

George BarbastathisMechanical Engineering Department

Multiplex imaging of 3D fluorescent object

3D object:fluorescent beads

in water

three three ““slicesslices”” throughthroughfluorescent (3D) object, stacked fluorescent (3D) object, stacked

along along longitudinallongitudinal direction direction ……

…… are viewed are viewed simultaneouslysimultaneously and and sideside--byby--sidesideon the digital cameraon the digital camera

Wenhai Liu,* Demetri Psaltis,* George Barbastathis***Caltech Optical Info. Proc. group **MIT 3D Optical Systems group

Optics Letters 27:854, 2002

George BarbastathisMechanical Engineering Department

Camera pixel layout for 4D (3D spatial + spectral) imaging#1

λ1 λ2 λw

slice index #2 #N

M pixels

W pixels

3D object

#1#2 #Nslice index

WNMWzyx

×××=××× λ

#1

#2

#W

slitindex

camera die

George BarbastathisMechanical Engineering Department

3D opticalimage

traditionalcamera

0 100 200 300 400 500 600 70040

60

80

100

120

140

160

180

200

220

240

irradiance acrossimage cross-section

Sun Light (completely passive) illumination

~10cm

~5m

objective

0 100 200 300 400 500 600 7060

80

100

120

140

160

180

George BarbastathisMechanical Engineering Department

Temporal Heterodyning

input signal

local oscillator

low pass filter

transducer

George BarbastathisMechanical Engineering Department

Temporal Heterodyning

input signal

local oscillator

low pass filter

transducer

( )φω +tA ii cos

( )tA LL cos ω

( )( )φωω −− tAA cos iLiL

Page 4: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

4

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

input signal

local oscillator

( ){ }φ+xkiA ii cos

( ){ }xkiA LL cos

?

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

input signal

local oscillator

( ){ }φ+xkiA ii exp

( ) ( ) 2SSSRR expexp φ++ xikAxikA

thintransparency

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

SRi kkk ++

SRi kkk −+

SRi kkk +−

SRi kkk −−

input signal

local oscillator

( ){ }φ+xkiA ii exp

( ) ( ) 2SSSRR expexp φ++ xikAxikA

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

input signal

local oscillator

( ){ }φ+xkiA ii exp

( ) ( ) 2SSSRR expexp φ++ xikAxikA

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

input signal

local oscillator

( ){ }φ+xkiA ii exp

( ) ( ) 2SSSRR expexp φ++ xikAxikA

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

SRi kkk +−

input signal

local oscillator

( ){ }φ+xkiA ii exp

( ) ( ) 2SSSRR expexp φ++ xikAxikA

Page 5: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

5

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning

SRi kkk +−

low pass filter

input signal

local oscillator

( ){ }φ+xkiA ii exp

( ) ( ) 2SSSRR expexp φ++ xikAxikA

( )( ) ⎭

⎬⎫

⎩⎨⎧

⎥⎦

⎤⎢⎣

⎡++

′+−

S

SRiSRi exp

φφxkkk

iAAA

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ){ }φ+′′xki i exp

( ) ( ) 2SSSRR expexp φ+′′+′′ xikAxikA

ℑ⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

George BarbastathisMechanical Engineering Department

1D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ) ( ) 2SSSRR expexp φ+′′+′′ xikAxikA

ℑ ℑ

spatial filter

( )⎥⎦⎤

⎢⎣⎡ +−

−′π

λδ2

SRi kkkfx

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx ( ){ }φ+′′xki i exp

George BarbastathisMechanical Engineering Department

33D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ){ }φ+′′⋅rk i exp i

( ) ( ) 2SSSRR expexp φ+′′⋅+′′⋅ rkrk iAiA

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

ℑ ?

George BarbastathisMechanical Engineering Department

33D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ) ( ) 2SSSRR expexp φ+′′⋅+′′⋅ rkrk iAiA

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

ℑ ?

( )⎥⎦⎤

⎢⎣⎡ +−

−′π

λδ2

SRi kkkfx

( ){ }φ+′′⋅rk i exp i

George BarbastathisMechanical Engineering Department

33D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ) ( ) 2SSSRR expexp φ+′′⋅+′′⋅ rkrk iAiA

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

ℑ ?

( )⎥⎦⎤

⎢⎣⎡ +−

−′π

λδ2

SRi kkkfx

( ){ }φ+′′⋅rk i exp i

Page 6: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

6

George BarbastathisMechanical Engineering Department

33D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ) ( ) 2SSSRR expexp φ+′′⋅+′′⋅ rkrk iAiA

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

ℑ ?

( )⎥⎦⎤

⎢⎣⎡ +−

−′π

λδ2

SRi kkkfx

( ){ }φ+′′⋅rk i exp i

George BarbastathisMechanical Engineering Department

Phase matching as a filter for 3D spatial heterodyning

Recording Bragg-matched readout

Diffracted beams from elemental thin slicesare all in phase in phase → strong diffraction

George BarbastathisMechanical Engineering Department

Recording Bragg-mismatched readout

Diffracted beams from elemental thin slicesare out of phase out of phase → no diffraction

Phase matching as a filter for 3D spatial heterodyning

George BarbastathisMechanical Engineering Department

Recording Bragg-mismatched readout

Rθ∆

θλθsin2R LL

=∆Angle Bragg selectivity

θ

Λ

L

θ

Phase matching as a filter for 3D spatial heterodyning

George BarbastathisMechanical Engineering Department

33D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ) ( ) 2SSSRR expexp φ+′′⋅+′′⋅ rkrk iAiA

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

( )⎥⎦⎤

⎢⎣⎡ +−

−′π

λδ2

SRi kkkfx

propagation along z

George BarbastathisMechanical Engineering Department

33D Spatial Heterodyning in the Fourier domain

input signal

local oscillator

( ) ( ) 2SSSRR expexp φ+′′⋅+′′⋅ rkrk iAiA

⎟⎠⎞

⎜⎝⎛ −

πλδ2

ifkx

( )⎥⎦⎤

⎢⎣⎡ +−

−′π

λδ2

SRi kkkfx

propagation along z

Page 7: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

7

George BarbastathisMechanical Engineering Department

3D Spatial Heterodyning in k-space

Recording Bragg-matched readout

Rk

Sk

Kλπ2

radius

=k

RS kkK −=

pk

K

George BarbastathisMechanical Engineering Department

Recording Bragg-matched readout

Rk

Sk

Kλπ2

radius

=k

RS kkK −=

pk

K

dk

Kkk += Rd

3D Spatial Heterodyning in k-space

George BarbastathisMechanical Engineering Department

Recording Bragg-mismatched readout

Rk

Sk

Kλπ2

radius

=k

RS kkK −=

pk

K

dk

( )[ ] zxxKkk ˆˆ ˆ dRd zk+⋅+=k=d k

⎟⎠⎞

⎜⎝⎛ ∆= LkII zd

2matched-Braggdiffracted 2

1sinc

zkd∆

x

z

3D Spatial Heterodyning in k-space

George BarbastathisMechanical Engineering Department

Applications: 3D holographic data storage

⎟⎟⎠

⎞⎜⎜⎝

⎛−

πλ

δ2

i,mfkx ( )yxgm ′′,

George BarbastathisMechanical Engineering Department

Applications: 3D holographic data storage

⎟⎟⎠

⎞⎜⎜⎝

⎛−

πλ

δ2

i,nfkx ( )yxgn ′′,

George BarbastathisMechanical Engineering Department

Applications: 3D holographic optical correlators

( )yxgm , ⎟⎟⎠

⎞⎜⎜⎝

⎛−′

πλ

δ2

i,mfkx

strongest

Page 8: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

8

George BarbastathisMechanical Engineering Department

Applications: 3D holographic optical correlators

( )yxgn , ⎟⎟⎠

⎞⎜⎜⎝

⎛−′

πλ

δ2

i,nfkx

strongest

George BarbastathisMechanical Engineering Department

Applications: 3D holographic optical imaging

( )zyxf ,,

⎟⎠⎞

⎜⎝⎛∆

×⎟⎠⎞

⎜⎝⎛

′∆′

×

×⎟⎠⎞

⎜⎝⎛ ′−′

zz

xx

zyfkxf

sliceslit

,,2

0

πλ

George BarbastathisMechanical Engineering Department

Applications: 3D holographic optical imaging

( )zyxf ,,

⎟⎠⎞

⎜⎝⎛∆

×⎟⎠⎞

⎜⎝⎛

′∆′

×

×⎟⎠⎞

⎜⎝⎛ ′−′

zz

xx

zyfkxf

sliceslit

,,2

0

πλ

George BarbastathisMechanical Engineering Department

Applications: 3D holographic hyperspectral imaging

( )λ,,, zyxf spectral components ofselected voxel are spread

out on detector plane

George BarbastathisMechanical Engineering Department

Applications: 3D multiplex hyperspectral imaging

( )λ,,, zyxf spectral components ofmultiplemultiple voxelss areare spread

out on nonnon--overlapping locationsoverlapping locationsinin detector plane

George BarbastathisMechanical Engineering Department

Applications: probing unknown 3D holograms

⎟⎠⎞

⎜⎝⎛ −

πλδ2

0fkx ( )yxI ′′,

?

( )zyx ′′′′′′ ,,ε

Page 9: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

9

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil

( )00 , yyxx −−δ ( )00 ,;, yxyxh ′′( )zyx ′′′′′′ ,,ε

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil

( )00 , yyxx −−δ ( )00 ,;, yxyxh ′′

( ) { } ⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ ′+′−

+⎟⎟⎠

⎞⎜⎜⎝

⎛ ′+⎟⎟

⎞⎜⎜⎝

⎛ ′+ℑ=′′

22

22

21

20

20

21

0

21

000 22

1,1,1,;,f

yxf

yxfy

fy

fx

fxyxyxh

λλλε

( )zyx ′′′′′′ ,,ε

George BarbastathisMechanical Engineering Department

Optical imaging with 2D pupil

( )00 , yyxx −−δ ( )00 ,;, yxyxh ′′

( ) { } ⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ ′+′−

+⎟⎟⎠

⎞⎜⎜⎝

⎛ ′+⎟⎟

⎞⎜⎜⎝

⎛ ′+ℑ=′′

22

22

21

20

20

21

0

21

000 22

1,1,1,;,f

yxf

yxfy

fy

fx

fxyxyxh

λλλε

( )zyx ′′′′′′ ,,ε

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil

( )0xx −δ ( )0; xxh ′

( ) { } ⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ ′−⎟⎟

⎞⎜⎜⎝

⎛ ′+ℑ=′

22

2

21

20

21

00 22

1,1;f

xf

xfx

fxxxh

λλε

( )zx ′′′′ ,ε

simplify to 1D lateral dimension + longitudinal dimension

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )xδ ( )0;xh ′( )zx ′′′′ ,ε

L

θs

( ) ( ) [ ]( ) 2ss cossinexpexp, θθε zxikikzzx ++=′′′′

Plane-to-plane wave hologramOn-axis reference

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )xδ ( )0;xh ′( )zx ′′′′ ,ε

L

θs

Page 10: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

10

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )xδ ( )0;xh ′

L

θs

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )xx d−δ ( )xxh d;′

L

θs

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )xx d2−δ ( )xxh d2;′

L

θs

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )0; xxh ′

L

θs

( )0xx −δ

x′

0x

George BarbastathisMechanical Engineering Department

Optical imaging with 3D pupil: building the Hopkins matrix

( )0; xxh ′

L

θs

( )0xx −δ

x′

0x

Hopkinsmatrix

George BarbastathisMechanical Engineering Department

Incoherent imaging with 3D pupil

L

θs

object:incoherent

superpositionof point sources

( )( )( )( )( )

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

−M

M

xfxf

fxfxf

d2d-0dd2 ( )

( )( )

( )( )

?

d2d0

dd2

=

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

′−

′−

′′

M

M

xgxg

gxgxg

image

Page 11: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

11

George BarbastathisMechanical Engineering Department

Incoherent imaging with 3D pupil

L

θs

( )( )( )( )( )

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

−M

M

xfxf

fxfxf

d2d-0dd2

object:incoherent

superpositionof point sources

object

George BarbastathisMechanical Engineering Department

Incoherent imaging with 3D pupil

L

θs

object

( )( )( )( )( )

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

−M

M

xfxf

fxfxf

d2d-0dd2

Hopkins matrix

George BarbastathisMechanical Engineering Department

Incoherent imaging with 3D pupil

L

θs

object

( )( )( )

( )( )

=

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

′−

′−

′′

M

M

xgxg

gxgxg

d2d0

dd2 ( )

( )( )( )( )

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

−M

M

xfxf

fxfxf

d2d-0dd2

image Hopkins matrix

George BarbastathisMechanical Engineering Department

Incoherent imaging with clear (2D) pupil

object

( )( )( )

( )( )

=

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

′−

′−

′′

M

M

xgxg

gxgxg

d2d0

dd2 ( )

( )( )( )( )

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

−M

M

xfxf

fxfxf

d2d-0dd2

image Hopkins matrix

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

intra

page

cros

stal

k

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

interpage crosstalk(on-axis pixel)

Page 12: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

12

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

interpage crosstalk

(pixel @ Gaussian image)

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

interpage crosstalk

(pixel @ Gaussian image)

pk

K

dk

zkd∆

x

z

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

interpage crosstalk

(pixel @ Gaussian image)

pk

K

dk

zkd∆

x

z

L1

main lobe width

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

interpage crosstalk

(pixel @ Gaussian image)

intra

page

cros

stal

k

interpage crosstalk(on-axis pixel)

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

θs

George BarbastathisMechanical Engineering Department

The Hopkins matrix of 3D pupilsL

θs

intra

page

cros

stal

k

interpage crosstalk

(pixel @ Gaussian image)interpage crosstalk

(on-axis pixel)

Page 13: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

13

George BarbastathisMechanical Engineering Department

Defocused response of 3D pupils

( )00 ,, zzyxx −−δ ( )00 ,;, zxyxq ′′( )zyx ′′′′′′ ,,ε

?

George BarbastathisMechanical Engineering Department

Defocused response of 3D pupils

?

( )00 ,, zzyxx −−δ ( )00 ,;, zxyxq ′′( )zyx ′′′′′′ ,,ε

( ) ( ) ( )⎭⎬⎫

⎩⎨⎧ ′′+−×

⎭⎬⎫

⎩⎨⎧ ′′+′′

⎭⎬⎫

⎩⎨⎧=′′′′′′ ∫∫ 2

1

22

1

exp2exp,dd2exp,,f

zyxif

yyxxiyxypxzizyxPλ

πλ

πλ

π

( ) ( ) ( )zyxPzyxzyxg ′′′′′′×′′′′′′=′′′′′′ ,,,,,, ε

( ) ⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛ ′+′−

′′=′′

22

22

22 211,,,

fyx

fy

fxGyxq

λλλ

( ) ( )0Fresnel, zyxp =

( )yxp ,

George BarbastathisMechanical Engineering Department

Blinking spot of 3D pupil

George BarbastathisMechanical Engineering Department

Applications: 3D holographic optical imaging

( )zyxf ,,

⎟⎠⎞

⎜⎝⎛∆

×⎟⎠⎞

⎜⎝⎛

′∆′

×

×⎟⎠⎞

⎜⎝⎛ ′−′

zz

xx

zyfkxf

sliceslit

,,2

0

πλ

3D pupil

George BarbastathisMechanical Engineering Department

3D holographic imaging: overview of experiments

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

……

1cm1cm

George BarbastathisMechanical Engineering Department

3D optics for imaging: summary

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

Microscopy

……

1cm1cm

Ladar/Lidar

Page 14: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

14

George BarbastathisMechanical Engineering Department

3D holographic imaging: overview of experiments

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

……

1cm1cm

Laser Line illumination

Laser Line illumination(inclined)

+ telephoto objective

George BarbastathisMechanical Engineering Department

3D holographic imaging: overview of experiments

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

……

1cm1cm

Rainbow illumination

George BarbastathisMechanical Engineering Department

3D holographic imaging: overview of experiments

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

……

1cm1cm

White Line illumination

Sun Light illumination+ Radon transform

George BarbastathisMechanical Engineering Department

3D holographic imaging: overview of experiments

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km……

1cm1cm

fluorescent object+ multiplex imaging

George BarbastathisMechanical Engineering Department

3D holographic imaging: overview of experiments

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

……

1cm1cm

Laser Line illumination+ multiplex imaging

+ Viterbi post-processing

George BarbastathisMechanical Engineering Department

3D optics for imaging: summary

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100m

Plankton(individual)

Object sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

……

1cm1cm

GOAL

GOAL

Page 15: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

15

George BarbastathisMechanical Engineering Department

3D optics for imaging: summary

1m1m 1cm1cm 100100μμmm 11μμmm 10nm10nm100m100mObject sizeObject size

Working distanceWorking distance

1mm1mm

10cm10cm

1m1m

1km1km

Microscopy

……

1cm1cm

Imaging properties:Imaging properties:

• profilometric (2½D) or tomographic (3D) • no or minimal scanning

• laser or white light illumination• hyperspectral

GOAL

GOAL

Ladar/Lidar

George BarbastathisMechanical Engineering Department

3D holographic hyperspectral imaging

( )λ,,, zyxf spectral components ofselected voxel are spread

out on detector plane

George BarbastathisMechanical Engineering Department

4D imaging (3D spatial + spectral) ; White Line illumination

Tilted, flat objectSpectral plane

Grating

#1#1

#1

Volume hologram CCD cameraf1

f2f3 f4

invert

1.5o

0.5mm

George BarbastathisMechanical Engineering Department

4D imaging: data analysis

lateral x

lateral x (pixel #)

inte

nsity

I

heig

ht z

(mm

)

lateral x (pixel #)

invert

George BarbastathisMechanical Engineering Department

4D imaging: data analysis

lateral x

lateral x (pixel #)

inte

nsity

I

heig

ht z

(mm

)

lateral x (pixel #)

dirt on mirrorsurface

invert

George BarbastathisMechanical Engineering Department

4D imaging: data analysis

lateral x

lateral x (pixel #)

inte

nsity

I

heig

ht z

(mm

)

lateral x (pixel #)

accuracyaccuracy

Accuracy < 20µm

invert

Page 16: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

16

George BarbastathisMechanical Engineering Department

4D imaging: depth discrimination in multiple spectral bands

Brightness ≡

Surface profile

(Depth)

( ) ( )( ) ⎟⎟

⎞⎜⎜⎝

⎛∝

λκ

2NAhump zzI

Color

George BarbastathisMechanical Engineering Department

Probing unknown 3D holograms

⎟⎠⎞

⎜⎝⎛ −

πλδ2

0fkx ( )yxI ′′,

?

( )zyx ′′′′′′ ,,ε

George BarbastathisMechanical Engineering Department

Diffraction from deformed 3D holograms

George BarbastathisMechanical Engineering Department

Experimental arrangement: transmission geometry

3D

George BarbastathisMechanical Engineering Department

Experiment: diffraction from indented 3D hologram

George BarbastathisMechanical Engineering Department

Fringe deformation due to indenter (transmission)indenter tip

Page 17: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

17

George BarbastathisMechanical Engineering Department

Deformed transmission 3D hologram in k-space

George BarbastathisMechanical Engineering Department

Deformed transmission 3D hologram in k-space

George BarbastathisMechanical Engineering Department

Deformed transmission 3D hologram in k-space

George BarbastathisMechanical Engineering Department

Experimental arrangement: reflection geometry

3D

George BarbastathisMechanical Engineering Department

Experiment: diffraction from indented 3D hologram

George BarbastathisMechanical Engineering Department

Fringe deformation due to indenter (reflection)

z

indenter tip

Page 18: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

18

George BarbastathisMechanical Engineering Department

Deformed reflection 3D hologram in k-space

George BarbastathisMechanical Engineering Department

The Conundrum: Making 3D lenses

photosensitivematerial

referencepoint source

of

plane wavesignal beam

referenceplane

• Exotic materials• Coherent 3D exposure

Need: • Established materials• Incoherent 3D exposure

3D lithography? 3D lithography?

George BarbastathisMechanical Engineering Department

Nanostructured Origami™ 3D Fabrication & Assembly

George BarbastathisMechanical Engineering Department

Fabrication Results Origami Theory

Precision Alignment using NanomagnetsEdge-to-Face Latching Demonstration

Corner Cube

100 µm

mµ2

NS

N

S

SN

SN

1 nN

Field Lines and Forces

(Provisional Patent filed 8/30/05)

Magnets

Membrane

Alignment Force

Animation of alignment

George BarbastathisMechanical Engineering Department

Nanostructured Origami™ Super Capacitor

dA

VQC ε==

++++++++++

-

Electrolyte

_________

ElectrodeElectrode

C C

Fabricated deviceSEM of carbon paint

Measured Capacitance: 1.0μFMeasured Capacitance density: 15F/g

++++

───

_

George BarbastathisMechanical Engineering Department

Summary

• 3D optics

– defocus ↔ contrast

– rainbow color management

– 3D spatial heterodyning

– applications in sensing & imaging

• 3D spatial heterodyning with subwavelength features?

Page 19: 2D Optics 3D Optics 3D Optics - Institute for Mathematics ... · *Caltech Optical Info. Proc. group **MIT 3D Optical Systems group Optics Letters27:854, 2002 George Barbastathis Mechanical

19

George BarbastathisMechanical Engineering Department

Acknowledgments

Students

• Arnab Sinha

• Wenyang Sun

• Kehan Tian

• Se Baek Oh

• Tina Shih

Co-Principal Investigators

• Demetri Psaltis Caltech

• Christophe Moser Ondax

• Wehai Liu Ondax

• Mark Neifeld U Arizona

• Wojciech Matusik MERL

• Henry I. Smith MIT

• Yang Shao-Horn MIT

• Funding

• Will Arora

• Hyun Jin In

• Paul Stellman

• Tony Nichol

• Nader Shaar