2717 spring 2002

Upload: combatps1

Post on 25-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 2717 spring 2002

    1/132

    Image Quality Metric

    Image quality metrics

    Mutual information (cross-entropy) m Intuitive definition Rigorous definition using entropy Example: two-point resolution pr Example: confocal microscopy

    Square error metric Receiver Operator Characteristic (RO

    Heterodyne detection

    MIT 2.717Image quality metrics p-1

  • 7/25/2019 2717 spring 2002

    2/132

    Linear inversion model

    object

    channel

    Hf

    hardwarea

    (me

    field

    propagation detection

    inversion problem:determinef, given the measurement g =H

    noise-to-signal ratio (NSR) =

    powesignal(average

    variance)(noise

    normalizing signal power to 1

    MIT 2.717Image quality metrics p-2

  • 7/25/2019 2717 spring 2002

    3/132

    Mutual information (cross-en

    object

    channel

    Hf

    hardwarea

    (me

    field

    propagation detection

    2

    1ln=

    n1

    eigenvkC

    + of2

    2

    k=1

    MIT 2.717Image quality metrics p-3

  • 7/25/2019 2717 spring 2002

    4/132

    The significance of eigenval

    n

    n-1

    1

    02

    2

    2

    (aka

    is worth)

    =

    =

    n

    k 12

    1C

    ...

    ...

    rank ofmeasurement

    how manydimensions

    the measurement l

    n n1 2

    eigenvalues of HMIT 2.717Image quality metrics p-4

  • 7/25/2019 2717 spring 2002

    5/132

    Precision of measuremen

    2k

    2

    n11ln +

    2 2 2t t 1

    noise floor

    C

  • 7/25/2019 2717 spring 2002

    6/132

    Formal definition of cross-entr

    EntropyEntropy in thermodynamics (discrete systems): log2[how many are the possible states of the sy

    E.g. two-state system: fair coin, outcome=heads

    Entropy=log22=1

    Unfair coin: seems more reasonable to weigh according to their frequencies of occurence (i.e.

    )Entropy =

    p( logstate p(state2states

    MIT 2.717Image quality metrics p-6

  • 7/25/2019 2717 spring 2002

    7/132

    Formal definition of cross-entr

    Fair coin: p(H)=1/2; p(T)=1/2

    b1

    1Entropy =

    2

    1 1 1

    log2

    2log2 =2

    2

    Unfair coin: p(H)=1/4; p(T)=3/4

    1Entropy =

    4

    1 3log

    4

    4log2

    3

    = 81.02

    4

    Maximum entropyMaximum entropy Maximum uncMaximum unc

    MIT 2.717Image quality metrics p-7

  • 7/25/2019 2717 spring 2002

    8/132

    Formal definition of cross-entr

    Joint Entropy

    Joint Entropylog2[how many are the possible states of a comb

    obtained from the Cartesian product of two

    EntropyJoint ( YX ) = yxp )log , ( , 2states states

    Xx Yy

    object EntroJointE.g.

    hardware

    channel

    a(me

    fieldpropagation detectionHf

    MIT 2.717Image quality metrics p-8

  • 7/25/2019 2717 spring 2002

    9/132

    Formal definition of cross-entr

    Conditional Entropy

    Conditional Entropylog2[how many are the possible states of a comb

    given the actual state of one of the two vari

    EntropyCond. (Y |X ) = yxp )log( , 2states states

    Xx Yy

    object EntroCond.E.g.

    hardware

    channel

    a(me

    fieldpropagation detectionHf

    MIT 2.717Image quality metrics p-9

  • 7/25/2019 2717 spring 2002

    10/132

    Formal definition of cross-entr

    object

    hardwarechannel

    a

    (me

    field

    propagation detectionHf

    adds uncertainty to the measurement wrt tNoise adds uncertainty

    eliminates informationeliminates information from the measurement

    MIT 2.717Image quality metrics p-10

  • 7/25/2019 2717 spring 2002

    11/132

    Formal definition of cross-entr

    uncertainty added due to noiserepresentation bySeth Lloyd, 2.100 EntropyCond. ( GF )|

    Entropy( )F(

    ),C GFEn

    information incontained c

    in the object in the

    EntropyCond. ( FG )

    cr| (aka muinformation eliminated due to noise

    MIT 2.717Image quality metrics p-11

  • 7/25/2019 2717 spring 2002

    12/132

    Formal definition of cross-entr

    ( )FEntropy

    (

    ),

    (

    )|

    ( ),C

    GFEntropyJoint

    GFEntropyCond. ECond.

    GF

    MIT 2.717Image quality metrics p-12

  • 7/25/2019 2717 spring 2002

    13/132

    Formal definition of cross-entr

    FF GGinformationinformation

    sourcesource(object)(object)

    infinf

    rr(me(mea

    Corruption source (Noise)Corruption source (Noise)

    Physical ChannelPhysical Channel

    (transform)(transform)

    , |C( GF ) =Entropy(F ) EntropyCond. ( GF )

    |=Entropy(G ) EntropyCond. ( FG )

    =Entropy(F ) +Entropy(G ) EntJoint

    MIT 2.717Image quality metrics p-13

  • 7/25/2019 2717 spring 2002

    14/132

    Entropy & Differential Entr

    Discrete objects (can take values among a discrete set of

    definition of entropy

    ( )log2 xpEntropy = xp ( )k kk

    unit: 1 bit (=entropy value of a YES/NO question wi

    uncertainty) Continuous objects (can take values from among a contin

    definition of differential entropy

    ( )ln xp

    EntropyDiff. =

    xp ( )dx

    ( )X

    unit: 1 nat (=diff. entropy value of a significant digitrepresentation of a random number, divided by ln10)

    MIT 2.717Image quality metrics p-14

  • 7/25/2019 2717 spring 2002

    15/132

    Image Mutual Information (

    object

    channel

    Hf

    hardwarea

    (me

    field

    propagation detection

    Assumptions: (a) Fhas Gaussian statistics(b) white additive Gaussian noise (waGi.e. g=Hf+wwhere Wis a Gaussian random vector wcorrelation matrix

    Then C GF,( )=n1 +

    1ln

    2

    2k

    k eige:=2 1k

    MIT 2.717Image quality metrics p-15

  • 7/25/2019 2717 spring 2002

    16/132

    Mutual information &

    degrees of freedom

    n

    n-1

    1

    0 2n

    21n

    22

    ...

    ...

    rank ofmeasurement

    mutual

    =

    +=

    n

    k

    k

    12

    2

    2

    1C

    H

    2

    MIT 2.717

    1ln

    informationAs noise increases one rank of is

    overcomes a ne the remaining ran

    Image quality metrics p-16

  • 7/25/2019 2717 spring 2002

    17/132

    Example: two-point resolut

    Finite-NA imaging system, unit magnificatio

    Two point-sources Two point-detectors

    ~AfA A

    (object) (measurement)

    x

    ~BfB B

    Classica

    noiseless

    Ag Bg

    intensitiesintensity

    emitted @detector

    plane

    MIT 2.717Image quality metrics p-17

  • 7/25/2019 2717 spring 2002

    18/132

    Cross-leaking power

    A~

    B~

    ss

    B

    A

    g

    g

    =

    =

    s =

    MIT 2.717Image quality metrics p-18

  • 7/25/2019 2717 spring 2002

    19/132

    IMI for two-point resolution p

    =1 1s ( ) H = 2det 1H =

    s=1 2s

    1 s1 H

    1

    =

    2

    11

    s

    s

    2(1 ) (1ln

    1ln +1

    2

    1( GF ) s C + +=,2

    2

    MIT 2.717Image quality metrics p-19

  • 7/25/2019 2717 spring 2002

    20/132

    IMI vs source separation

    (

    )

    SNR =

    s0s1MIT 2.717Image quality metrics p-20

  • 7/25/2019 2717 spring 2002

    21/132

    IMI for rectangular matrice

    H

    = =

    H

    underdeterminedunderdetermined overdetermioverdetermi(more unknowns than (more measure

    measurements) than unknow

    eigenvalues cannot be computed, but insteadwe compute the singular valuessingular values of the

    rectangular matrix

    MIT 2.717Image quality metrics p-21

  • 7/25/2019 2717 spring 2002

    22/132

    IMI for rectangular matrice

    HT

    H

    = square ma

    Trecall pseudo-inverse f =( HH )

    inversion operation associated with rank of

    Tseigenvalue ( HH ) aluessingular v (

    MIT 2.717Image quality metrics p-22

  • 7/25/2019 2717 spring 2002

    23/132

    IMI for rectangular matrice

    object

    channel

    Hf

    hardwarea

    (me

    field

    propagation detection

    under/over deter

    n1+

    k2

    singulo1ln=

    C

    2

    k=1

    MIT 2.717Image quality metrics p-23

  • 7/25/2019 2717 spring 2002

    24/132

    Confocal microscope

    Sm

    Intensity

    object

    beam

    splitter

    pivirtual slice

    detector

    nhole

    Dep

    Lig

    L

    De

    L

    MIT 2.717

    Image quality metrics p-24

  • 7/25/2019 2717 spring 2002

    25/132

    Depth resolution vs. noi

    point sources,

    Object structure: mutually

    incoherent

    optical axis

    sampling distance

    Imaging method

    correspondence intensity

    measurements

    CFM

    object scanning

    direction

    MIT 2.717Image quality metrics p-25

  • 7/25/2019 2717 spring 2002

    26/132

    Depth resolution

    vs. noise & pinhole size

    units: Rayleigh distanceMIT 2.717Image quality metrics p-26

  • 7/25/2019 2717 spring 2002

    27/132

    IMI summary

    It quantifies the number of possible states of the object thimaging system can successfully discern; this includes

    the rank of the system, i.e. the number of object dimthe system can map

    the precision available at each rank, i.e. how many s

    digits can be reliably measured at each available dim An alternative interpretation of IMI is the game of 20 q

    many questions about the object can be answered reliablimage information?

    IMI is intricately linked to image exploitation for applicamedical diagnosis, target detection & identification, etc.

    Unfortunately, it can be computed in closed form only foGaussian statistics of both object and image; other more models are usually intractable

    MIT 2.717Image quality metrics p-27

  • 7/25/2019 2717 spring 2002

    28/132

    Other image quality metri

    Mean Square Error (MSQ) between object and image Mean Square Error (MSQ)

    2( f ) ofresult E f fk ==

    k k

    inversionobjectsamples

    e.g. pseudoinverse minimizes MSQ in an overdeterm

    obvious problem: most of the time, we dont know w

    more when we deal with Wiener filters and regulariz

    Receiver Operator ChaReceiver Operator Charracteacterriisstictic

    measures the performance of a cognitive system (hum

    computer program) in a detection or estimation task image data

    MIT 2.717Image quality metrics p-28

  • 7/25/2019 2717 spring 2002

    29/132

    Receiver Operator Characte

    Target detect

    Example: med H0 (null hypno tumor H1 = tumor

    TP = true posiidentification FP = false posalarm)

    MIT 2.717Image quality metrics p-29

  • 7/25/2019 2717 spring 2002

    30/132

    MIT 2.717

    Intro to Inverse Problems p-1

    Introduction to Inverse Pro

    What is an image? Attributes and Represen

    Forward vs Inverse Optical Imaging as Inverse Problem

    Incoherent and Coherent limits

    Dimensional mismatch: continuous vs d

    Singular vs ill-posed

    Ill-posedness: a 22 example

  • 7/25/2019 2717 spring 2002

    31/132

    MIT 2.717

    Intro to Inverse Problems p-2

    Basic premises

    What you see or imprint on photographic film is a very

    interpretation of the word image

    Image is a representation of a physical object having cer

    Examples of attributes

    Optical image: absorption, emission, scatter, color w

    Acoustic image: absorption, scatter wrt sound Thermal image: temperature (black-body radiation)

    Magnetic resonance image: oscillation in response to

    frequency EM field

    Representation: a transformation upon a matrix of attribu

    Digital image (e.g. on a computer file)

    Analog image (e.g. on your retina)

  • 7/25/2019 2717 spring 2002

    32/132

    MIT 2.717

    Intro to Inverse Problems p-3

    How are images formed

    Hardware

    elements that operate directly on the physical entity

    e.g. lenses, gratings, prisms, etc. operate on the optic

    e.g. coils, metal shields, etc. operate on the magnetic

    Software

    algorithms that transform representations

    e.g. a radio telescope measures the Fourier transform

    (representation #1); inverse Fourier transforming lea

    representation in the native object coordinates (rep

    #2); further processing such as iterative and nonlinea

    lead to a cleaner representation (#3).

    e.g. a stereo pair measures two aspects of a scene (re#1); a triangulation algorithm converts that to a bino

    with depth information (representation #2).

  • 7/25/2019 2717 spring 2002

    33/132

    MIT 2.717

    Intro to Inverse Problems p-4

    Who does what

    In optics,

    standard hardware elements (lenses, mirrors, prisms)

    limited class of operations (albeit very useful ones);

    operations are

    linear in field amplitude for coherent systems

    linear in intensity for incoherent systems a complicated mix for partially coherent systems

    holograms and diffractive optical elements in genera

    more general class of operations, but with the same l

    constraints as above

    nonlinear, iterative, etc. operations are best done wit

    components (people have used hardware for these putends to be power inefficient, expensive, bulky, unre

    these systems seldom make it to real life applications

  • 7/25/2019 2717 spring 2002

    34/132

    MIT 2.717

    Intro to Inverse Problems p-5

    Imaging channels

    PhysicsPhysics

    AlgorithmsAlgorithms

    Information generatorsInformation generators

    Wave sourcesWave sources

    Wave scatterersWave scatterers

    ImagingImagingCommunicationCommunication

    StorageStorage

    Processing elementsProcessing elements

    GOAL:GOAL:MaximizeMaximize informinform

  • 7/25/2019 2717 spring 2002

    35/132

    MIT 2.717

    Intro to Inverse Problems p-6

    Generalized (cognitive) represent

    Situation of

    interest

    encoded into

    a scene

    optical system produces a (geometrically

    similar) image

    Classical inverse problem viewClassical inverse problem view--pointpoint

    Situation of

    interestYY

    /

    encoded into

    a scene

    optical system produces an information-rich

    light intensity patternan

    NonNon--imaging or generalized sensor viewimaging or generalized sensor view--pointpoint

    Advantages: - optimum resource allocation

    - better reliability

    - adaptive, attentive operation

    if necessary (requires resou

    e.g. is there a tanke.g. is there a tank

    in the scene?in the scene?

  • 7/25/2019 2717 spring 2002

    36/132

    MIT 2.717

    Intro to Inverse Problems p-7

    Forward problem

    hardware

    channel

    at

    (me

    object

    fieldpropagation detection

    object me

    The Forward Problem answers the following quest

    Predict the measurement given the object attribu

  • 7/25/2019 2717 spring 2002

    37/132

    MIT 2.717

    Intro to Inverse Problems p-8

    Inverse problem

    hardware

    channel

    at

    (me

    object

    fieldpropagation detection

    object

    representationme

    The Inverse Problem answers the following questi

    Form an object representation given the measurem

  • 7/25/2019 2717 spring 2002

    38/132

    MIT 2.717

    Intro to Inverse Problems p-9

    Optical Inversion

    amplitude object

    (dark A on bright

    background)

    free space

    (Fresnel)

    propagation

    free space

    (Fresnel)

    propagation

    free space

    (Fresnel)

    propagation

    lens lensarra

    sen

    amplitude

    representationm

  • 7/25/2019 2717 spring 2002

    39/132

    MIT 2.717

    Intro to Inverse Problems p-10

    Optical Inversion: cohere

    ( )yxf , ( ) ( ) ( coh ,,, = yxxhyxfyxI

    Nonlinear problemNonlinear problem

    object

    amplitudeintensity measurement at the ou

    Note: I could make the problem linear if I could m

    amplitudes directly (e.g. at radio frequencies)

  • 7/25/2019 2717 spring 2002

    40/132

    MIT 2.717

    Intro to Inverse Problems p-11

    Optical Inversion: incoher

    ( )yxI ,obj ( ) ( ) ( = xhyxIyxI ,, incohobjmeas

    Linear problemLinear problem

    object

    intensityintensity measurement at the ou

  • 7/25/2019 2717 spring 2002

    41/132

    MIT 2.717

    Intro to Inverse Problems p-12

    Dimensional mismatch

    The object is a continuous function (amplitude or inten

    assuming quantum mechanical effects are at sub-nanome

    much smaller than the scales of interest (100nm or more

    i.e. the object dimension is uncountably infinite

    The measurement is discrete, therefore countable and

    To be able to create a 1-1 object representation from thmeasurement, I would need to create a 1-1 map from a fi

    integers to the set of real numbers. This is of course imp

    the inverse problem is inherently ill-posed

    We can resolve this difficulty by relaxing the 1-1 require

    therefore, we declare ourselves satisfied if we sampl

    with sufficient density (Nyquist theorem) implicitly, we have assumed that the object lives in a

    dimensional space, although it looks like a continu

  • 7/25/2019 2717 spring 2002

    42/132

    MIT 2.717

    Intro to Inverse Problems p-13

    Singularity and ill-posedn

    Under the finite-dimensional object assumption, the linear in

    is converted from an integral equation to a matrix eq

    ( ) ( ) ( )yyxxhyxfyxg d,,, = fg H=

    If the matrix H is rectangular, the problem may be overco

    underconstrained

    If the matrix H is square and has det(H)=0, the problem is

    can only be solved partially by giving up on some object di

    (i.e. leaving them indeterminate)

    If the matrix H is square and det(H) is non-zero but smallproblem may be ill-posed or unstable: it is extremely sensit

    in the measurement f

  • 7/25/2019 2717 spring 2002

    43/132

    MIT 2.717

    Intro to Inverse Problems p-14

    Resolution: a toy problem

    x

    Two point-sources

    (object)

    Two point-detectors

    (measurement)

    Finite-NA imaging system

    A~

    B~

    A

    B

  • 7/25/2019 2717 spring 2002

    44/132

    MIT 2.717

    Intro to Inverse Problems p-15

    Cross-leaking power

    A~

    B~

    ss

    B

    A

    I

    I

    =

    =

  • 7/25/2019 2717 spring 2002

    45/132

    MIT 2.717

    Intro to Inverse Problems p-16

    Ill-posedness in two-point inv

    =

    1

    1

    s

    sH

    ( )

    2

    1det s=

    H

    =

    1

    1

    1

    12

    1

    s

    s

    sH

  • 7/25/2019 2717 spring 2002

    46/132

    Applications of Statistical O

    Radio Astronomy

    Michelson Stellar Interferometry

    Rotational Shear Interferometer (RS

    Optical Coherence Tomography (OC

    MIT 2.717

    Apps of Stat Optics p-1

  • 7/25/2019 2717 spring 2002

    47/132

    Radio Telescope

    (Very Large Array, VLA

    27 Antennae (pa

    diameter 25m, we

    Y radius range

    1km and 36km

    wavelengths 90c

    resolution 200-1smallest configura

    arcsec in largest c

    signals are multi

    correlated at centr

    obtain (x,y).

    van Cittert-Zernwww.nrao.edu is used to invert th

    and obtain the so

    e.g. a constellation

    MIT 2.717

    Apps of Stat Optics p-2

  • 7/25/2019 2717 spring 2002

    48/132

    VLA images

    These four images areimages of a large sola

    17 June 1989. The r

    images are optical im

    superimposed contou

    as seen with the VLA

    GHz. The four image

    times during the

    progression toward m(bottom right). Thi

    accompanied by a c

    The two H alpha ribb

    "footpoints" of an ar

    which arch NE/SW

    strongest toward the

    sunspots appear dark event, the magnetic

    emits radio waves

    from www.aoc.nrao.edu magnetically conjuga

    (b). The entire magneMIT 2.717 two footpointsApps of Stat Optics p-3

  • 7/25/2019 2717 spring 2002

    49/132

    VLA images

    from www.aoc.nrao.edu

    This is a radar image of Mars, made with the Goldstone-VLin 1988. Red areas are areas of high radar reflectivity. The

    cap, at the bottom of the image, is the area of highest reflect

    areas of high reflectivity are associated with the giant shield

    Tharsis ridge. The dark area to the West of the Tharsis ridMIT 2.717 detectable radar echoes, and thus was dubbed the "SteaApps of Stat Optics p-4

  • 7/25/2019 2717 spring 2002

    50/132

    VLA images

    The center of the Milky Way

    from www.aoc.nrao.edu

    MIT 2.717

    Apps of Stat Optics p-5

  • 7/25/2019 2717 spring 2002

    51/132

    VLA images

    from www.aoc.nrao.edu

    The galaxy M81 is a spiral galaxy about 11 million light-years f

    50,000 light-years across. This VLA image was made using datathe VLA's four standard configurations for a total of more than

    time. The spiral structure is clearly shown in this image, whic

    intensity of emission from neutral atomic hydrogen gas. In this

    red indicates strong radio emission and blue weakerMIT 2.717

    Apps of Stat Optics p-6

  • 7/25/2019 2717 spring 2002

    52/132

    from www.aoc.nrao.edu

    MIT 2.717

    Apps of Stat Optics p-7

    This pair of images illustrates the need to study celes

    wavelengths in order to get "the whole picture" of whaobjects. At left, you see a visible-light image of the M

    This image largely shows light coming from stars in

    radio image, made with the VLA, shows the hydrogen

    of gas connecting the galaxies. From the radio image,

    this is an interacting group of galaxies, not is

  • 7/25/2019 2717 spring 2002

    53/132

    Michelson Stellar Interferom

    Optical version of the van Cittert-Zernicke theorem

    Since multiplication cannot be performed directly, it is done throug

    (Youngs interferometer) Extreme requirements on mechanical and thermal stability (better th

    between the two arms)

    Alternative: intensity interferometer (or Hanbury Brown Twiss

    MIT 2.717 from www.physics.usydApps of Stat Optics p-8

  • 7/25/2019 2717 spring 2002

    54/132

    Hanbury Brown Twiss

    interferometer

    from www.physics.usyd.edu.au/astron/susi

    MIT 2.717

    Apps of Stat Optics p-9

  • 7/25/2019 2717 spring 2002

    55/132

    The Rotational Shear Interfer

    folding mirror

    folding mirror

    beam splitter

    dither

    translation

    stage

    sensor

    input aperture

    rotating object

    by David MIT 2.717

    Apps of Stat Optics p-10www.fit

  • 7/25/2019 2717 spring 2002

    56/132

    Experimental RSI implementation (Univers

    cooling fan

    shutter

    )

    camera

    platform linear bearings

    mirr

    long-travel platform (2

    Princeton Instruments camera

    Aerot

    by David MIT 2.717

    Apps of Stat Optics p-11www.fit

  • 7/25/2019 2717 spring 2002

    57/132

    Close-up view of the Interferometer Section o

    shutter

    input

    aperture

    magnetic

    90

    mirror

    flexure

    stage

    coupling

    shearing

    by David MIT 2.717

    Apps of Stat Optics p-12www.fit

  • 7/25/2019 2717 spring 2002

    58/132

    Mobile RSI

    (University of Illinois a

    Distant Focus Corporat

    by David MIT 2.717

    Apps of Stat Optics p-13www.fit

  • 7/25/2019 2717 spring 2002

    59/132

    EXPERIMENTAL RESULTEXPERIMENTAL RESULT

    2-D spatial / 1-D spectral RSI reconstruct

    Experimental Setup

    Color Composite Image R

    by David J. Brady, Duke University

    www.fitzpatrick.duke.edu/disp/

    Green (520-570 nm) BMIT 2.717

    Apps of Stat Optics p-14

  • 7/25/2019 2717 spring 2002

    60/132

    The Rotational Shear Interfer

    folding mirror

    folding mirror

    beam splitter

    dither

    translation

    stage

    sensor

    input aperture

    rotating object

    by David MIT 2.717

    Apps of Stat Optics p-15www.fit

  • 7/25/2019 2717 spring 2002

    61/132

    MIT 2.717

    Apps of Stat Optics p-16

    What does the RSI measur

    Input field Folding prism

    at Arm 1

    Folding prism

    at Arm 2 (=90o)

    at

    Input field

    Arm 2

    Arm 1To Camera

    S

  • 7/25/2019 2717 spring 2002

    62/132

    Intensity on the RSI Sensor P

    The field on arm 1 is:

    E x y) =E x cos 2 +y sin 2, x sin 2 y cos 2)

    The field on arm 2 is:

    2 ( , o(

    1 ( , o(

    E x y) =E x cos 2 y sin 2,x sin 2 y cos 2)

    2I x y) = E1 +E2

    2

    s( ,

    2 *= + +E E2 +E E

    *E1 E2 1 1 2

    = +

    I2

    +

    I1

    =

    2y sin 2 , y =

    2xsin 2 ,x =

    2x cos 2 +

    x y y( , =o o

    +*

    by David MIT 2.717

    Apps of Stat Optics p-17www.fit

  • 7/25/2019 2717 spring 2002

    63/132

    Coherence imaging using theCoherence imaging using the

    , , ,) +

    dc InterRe (x ,

    yxy jk l i

    ),,,,( vyxyxS jilk

    0),,,(

    =

    jilk yxyxJ

    ),,,( qyx

    Re (

    4-D Fourier transform

    S

    by David MIT 2.717

    Apps of Stat Optics p-18www.fitz

  • 7/25/2019 2717 spring 2002

    64/132

    Mutual Intensity

    Example RSI Images

    2 point

    sources

    Experimental

    by David MIT 2.717

    Apps of Stat Optics p-19www.fit

  • 7/25/2019 2717 spring 2002

    65/132

    MIT 2.717J

    wk1-b p-1

    Welcome to ...

    2.717J/M

    Optical En

  • 7/25/2019 2717 spring 2002

    66/132

    This class is about

    Statistical Optics

    models of random optical fields, their propagation an

    properties (i.e. coherence)

    imaging methods based on statistical properties of lig

    imaging, coherence tomography

    Inverse Problems to what degree can a light source be determined by m

    of the light fields that the source generates?

    how much information is transmitted through an im

    system? (related issues: what does _resolution_ reall

    is the space-bandwidth product?)

    MIT 2.717J

    wk1-b p-2

  • 7/25/2019 2717 spring 2002

    67/132

    The van Cittert-Zernike theo

    Very Large Array (VLA)radio

    waves

    +Fourier

    Cross-Correlation

    transform

    Galaxy, ~100 million

    light-years away

    optical imageMIT 2.717J

    wk1-b p-3

  • 7/25/2019 2717 spring 2002

    68/132

    Optical coherence tomogra

    Coro

    Image credits:

    www.lightlabimaging.com

    Intes

    MIT 2.717J Esophagus

    wk1-b p-4

  • 7/25/2019 2717 spring 2002

    69/132

    Inverse Radon transform(aka Filtered Backprojection)

    The hardware

    The principle

    Magnetic Resonance Imaging (MRI)Image credits:

    www.cis.rit.edu/htbooks/mri/

    www.ge.com

    MIT 2.717J The image

    wk1-b p-5

  • 7/25/2019 2717 spring 2002

    70/132

    You can take this class i

    You took one of the following classes at MIT

    2.996/2.997 during the academic years 97-98 and 99

    2.717 during fall 00

    2.710 during fall 01

    OR

    You have taken a class elsewhere that covered GeometriDiffraction, and Fourier Optics

    Some background in probability & statistics is helpful bu

    necessary

    MIT 2.717J

    wk1-b p-6

  • 7/25/2019 2717 spring 2002

    71/132

    Syllabus (summary)

    Review of Fourier Optics, probability & statistics 4 week

    Light statistics and theory of coherence 2 weeks

    The van Cittert-Zernicke theorem and applications of sta

    to imaging 3 weeks

    Basic concepts of inverse problems (ill-posedness, regul

    examples (Radon transform and its inversion) 2 weeks Information-theoretic characterization of imaging chann

    Textbooks:

    J. W. Goodman,Statistical Optics, Wiley.

    M. Bertero and P. Boccacci,Introduction to Inverse Pro

    Imaging, IoP publishing.

    MIT 2.717J

    wk1-b p-7

  • 7/25/2019 2717 spring 2002

    72/132

    What you have to do

    4 homeworks (1/week for the first 4 weeks)

    3 Projects:

    Project 1: a simple calculation of intensity statistics f

    in Goodman (~2 weeks, 1-page report)

    Project 2: study one out of several topics in the appli

    coherence theory and the van Cittert-Zernicke theoreGoodman (~4 weeks, lecture-style presentation)

    Project 3: a more elaborate calculation of informatio

    imaging channels based on prior work by Barbastath

    (~4 weeks, conference-style presentation)

    Alternative projects ok

    No quizzes or final exam

    MIT 2.717J

    wk1-b p-8

  • 7/25/2019 2717 spring 2002

    73/132

    Administrative

    Broadcast list will be setup soon Instructors coordinates

    George Barbastathis

    Please do not phone-call

    Office hours TBA

    Class meets

    Mondays 1-3pm (main coverage of the material)

    Wednesdays 2-3pm (examples and discussion)

    presentations only: Wednesdays 7pm-??, pizza serve

    MIT 2.717J

    wk1-b p-9

  • 7/25/2019 2717 spring 2002

    74/132

    The 4F system

    1f 1f 2f 2f

    x y(

    , )

    G1

    g1g1 yx f1,f1

    object planeFourier plane I

    MIT 2.717J

    wk1-b p-10

  • 7/25/2019 2717 spring 2002

    75/132

    The 4F system

    1f 1f 2f 2f

    ( )vuG ,1

    x

    y

    x

    v

    u

    sin

    sin

    =

    =

    x y(

    , )

    G1

    g1g1 yx f1,f1

    object planeFourier plane I

    MIT 2.717J

    wk1-b p-11

  • 7/25/2019 2717 spring 2002

    76/132

    The 4F system with FP aper

    1f 1f 2f 2f

    ryxcirc

    ( )G ,1

    x

    vu

    ( )

    1G1

    h

    , g (

    , )

    f1 f1 Rg1 yx

    object planeFourier plane: aperture-limited Imag

    MIT 2.717J (i.e. lwk1-b p-12

  • 7/25/2019 2717 spring 2002

    77/132

    The 4F system with FP aper

    Transfer function: Impulse resp

    circular aperture Airy functi

    Rr

    circ r

    jinc

    R f2

    MIT 2.717J

    wk1-b p-13

  • 7/25/2019 2717 spring 2002

    78/132

    Coherent vs incoherent ima

    field inoptical

    system

    Coherent fi

    intensity in Incoherent inteoptical

    system

    MIT 2.717J

    wk1-b p-14

  • 7/25/2019 2717 spring 2002

    79/132

    Coherent vs incoherent ima

    Coherent impulse response xh(field infield out)

    (

    ,Coherent transfer function H ( vu ) =F(FT of field inFT of field out)

    ~Incoherent impulse response yxh ) =(

    ,(intensity inintensity out)

    ~Incoherent transfer function H ( vu ) =FT{,

    (FT of intensity inFT of intensity out)=H (u

    ~H ( vu ) (MTFFunctionTransferModulation:,

    ~

    H ( vu ) (OTF)FunctionTransferOptical:,MIT 2.717J

    wk1-b p-15

  • 7/25/2019 2717 spring 2002

    80/132

    Coherent vs incoherent ima

    1f 1f 2f 2f

    2a

    H( )uH

    1 1

    u

    au 2uc cu =cf1

    Coherent illumination Incoherent ill

    MIT 2.717J

    wk1-b p-16

  • 7/25/2019 2717 spring 2002

    81/132

    Aberrations: geometrica

    P

    Non-

    ove

    (G

    im

    Spheric

    Origin of aberrations: nonlinearity of Snells law (n sin=const.,

    relationship would have been n=const.)

    Aberrations cause practical systems to perform worse than diffra

    Aberrations are best dealt with using optical design software (Co

    Zemax); optimized systems usually resolve ~3-5(~1.5-2.5m in

    MIT 2.717J

    wk1-b p-17

  • 7/25/2019 2717 spring 2002

    82/132

    Aberrations: wave

    ,Aberration-free impulse response h ndiffractio ( yx

    limited

    Aberrations introduce additional phase delay to the impu

    , ,haberrated ( yx ) = h ndiffractio ( xlimited

    c2u

    ( )~

    1 (

    uHunab

    diffr

    lim

    Effect of aberrations

    on the MTF

    MIT 2.717J

    wk1-b p-18

  • 7/25/2019 2717 spring 2002

    83/132

    Optics Overview

    MIT 2.71/2.710

    Review Lecture p-1

  • 7/25/2019 2717 spring 2002

    84/132

    What is light?

    Light is a form of electromagnetic energy detected th

    effects, e.g. heating of illuminated objects, conversion of

    current, mechanical pressure (Maxwell force) etc.

    Light energy is conveyed through particles: photons

    ballistic behavior, e.g. shadows

    Light energy is conveyed through waves

    wave behavior, e.g. interference, diffraction

    Quantum mechanics reconciles the two points of view, th

    wave/particle duality assertion

    MIT 2.71/2.710

    Review Lecture p-2

  • 7/25/2019 2717 spring 2002

    85/132

    Particle properties of ligh

    Photon=elementary light particle

    Mass=0

    Speed c=3108 m/sec

    According to Special Relativity, a massAccording to Special Relativity, a mass--less particle tless particle tr

    at light speed can still carry momentum!at light speed can still carry momentum!

    relates the dual pEnergy E=h

    nature of light;h=Plancks constant

    is the temporal

    =6.626210-34 J sec frequency of the MIT 2.71/2.710

    Review Lecture p-3

  • 7/25/2019 2717 spring 2002

    86/132

    Wave properties of light

    1/

    angular frequency

    : wavelength

    (spatial period)

    k=2/

    wavenumber

    : temporalfrequency

    =2

    E: electricfield

    MIT 2.71/2.710

    Review Lecture p-4

  • 7/25/2019 2717 spring 2002

    87/132

    Wave/particle duality for li

    Photon=elementary light particle

    Mass=0

    Speed c=3108 m/sec

    Energy E=h

    h=Plancks constant

    c=

    Dispersion=6.626210-34 J sec

    (holds in vacu=frequency (sec-1)

    =wavelength (m)

    MIT 2.71/2.710

    Review Lecture p-5

  • 7/25/2019 2717 spring 2002

    88/132

    Light in matter

    light in vacuum

    light in matter

    Speed c=3108 m/sec Speed c/n

    n : refractive index(or index of refrac

    Absorption coefficient 0 Absorption coeffic

    energy decay coef

    after distanceL : e

    E.g. vacuum n=1, air n 1;

    glass n1.5; glass fiber has 0.25dB/km=

    MIT 2.71/2.710

    Review Lecture p-6

  • 7/25/2019 2717 spring 2002

    89/132

    Materials classification

    Dielectrics

    typically electrical isolators (e.g. glass, plastics)

    low absorption coefficient

    arbitrary refractive index

    Metals

    conductivity

    large absorption coefficient

    Lots of exceptions and special cases (e.g. artificial diele

    Absorption and refractive index are related through the K

    Kronig relationship (imposed by causality)

    absorption

    refractive index

    MIT 2.71/2.710

    Review Lecture p-7

  • 7/25/2019 2717 spring 2002

    90/132

    Overview of light sourcenon-Laser

    Thermal:polychromatic,

    spatially incoherent

    (e.g. light bulb)

    Gas discharge: monochromatic,spatially incoherent

    (e.g. Na lamp)

    Light emitting diodes (LEDs):

    monochromatic, spatially

    incoherent

    La

    Continuous wa

    strictly monoch

    spatially cohere

    (e.g. HeNe, Ar+

    Pulsed: quasi-m

    spatially cohere

    (e.g. Q-switche

    ~nsec

    pulse

    mono/poly-chromatic = single/multi co

    MIT 2.71/2.710

    Review Lecture p-8

  • 7/25/2019 2717 spring 2002

    91/132

    Monochromatic, spatially coh

    1/ , we

    descript

    light nice, r

    stabiliz

    good ap

    most o

    rough ap pulsed

    laser sou

    more co

    Incoherent: random, irregular waveform

    MIT 2.71/2.710

    Review Lecture p-9

  • 7/25/2019 2717 spring 2002

    92/132

    The concept of a monochrom

    ray

    direc

    energy p

    lig

    t=0(frozen)

    wavefronts

    In homogeneous media,

    light propagates in rectilinear path

    MIT 2.71/2.710

    Review Lecture p-10

  • 7/25/2019 2717 spring 2002

    93/132

    The concept of a monochrom

    ray

    direc

    energy p

    lig

    t=t(advanced)

    wavefronts

    In homogeneous media,

    light propagates in rectilinear path

    MIT 2.71/2.710

    Review Lecture p-11

  • 7/25/2019 2717 spring 2002

    94/132

    The concept of a polychromati

    t=0(frozen)

    energ

    prett

    all wav

    propag

    thwavefronts

    In homogeneous media,

    light propagates in rectilinear path

    MIT 2.71/2.710

    Review Lecture p-12

  • 7/25/2019 2717 spring 2002

    95/132

    Fermat principle

    light

    ray

    P

    P

    is chosen to minimi

    zyxn ) dl path integral, comp( , ,alternative path

    (aka minimum pathprinciple)

    Consequences: law of reflection, law of refr

    MIT 2.71/2.710

    Review Lecture p-13

  • 7/25/2019 2717 spring 2002

    96/132

    The law of reflection

    P

    P

    O

    O

    a)

    instead of P

    b) Alternative p

    longer than POP

    c) Therefore, lig

    symmetric path P

    P

    mirror

    Consider virt

    MIT 2.71/2.710

    Review Lecture p-14

  • 7/25/2019 2717 spring 2002

    97/132

    The law of refraction

    n n

    reflected

    refrac

    incident

    =

    sinsin nn Snells Law of

    MIT 2.71/2.710

    Review Lecture p-15

  • 7/25/2019 2717 spring 2002

    98/132

    Optical waveguide

    TIR

    Tn

    n

    nn

    =1.51

    =1.5105

    =1.511.00

    Planar version: integrated optics

    Cylindrically symmetric version:fiber optics

    Permit the creation of light chips and light cables, resp

    light is guided around with few restrictions

    Materials research has yielded glasses with very low losse Basis for optical telecommunications and some imaging (e

    and sensing (e.g. pressure) systems

    MIT 2.71/2.710

    Review Lecture p-16

  • 7/25/2019 2717 spring 2002

    99/132

    Refraction at a spherical sur

    point

    source

    MIT 2.71/2.710

    Review Lecture p-17

  • 7/25/2019 2717 spring 2002

    100/132

    Imaging a point source

    point

    source

    Lens

    MIT 2.71/2.710

    Review Lecture p-18

  • 7/25/2019 2717 spring 2002

    101/132

    Model for a thin lens

    1st FP

    at 1st FP

    f

    point object

    focal length

    plane wave (or parallel ra

    image at infinity

    MIT 2.71/2.710

    Review Lecture p-19

  • 7/25/2019 2717 spring 2002

    102/132

    Model for a thin lens

    at 2nd F

    f

    point im

    focal length

    plane wave (or parallel ray bundle);

    object at infinity

    MIT 2.71/2.710

    Review Lecture p-20

  • 7/25/2019 2717 spring 2002

    103/132

    Huygens principle

    optical

    MIT 2.71/2.710

    Each point on thacts as a second

    emitting a sphe

    The wavefront

    propagation dis

    result of superim

    these spherical

    wavefrontsReview Lecture p-22

  • 7/25/2019 2717 spring 2002

    104/132

    Why imaging systems are ne

    Each point in an object scatters the incident illumination into a

    according to the Huygens principle.

    A few microns away from the object surface, the rays emanatin

    object points become entangled, delocalizing object details.

    To relocalize object details, a method must be found to reassig

    the rays that emanated from a single point object into another p

    (the image.)

    The latter function is the topic of the discipline of Optical Imag

    MIT 2.71/2.710

    Review Lecture p-23

  • 7/25/2019 2717 spring 2002

    105/132

    Imaging condition: ray-tra

    2nd FP

    1st FP

    object

    chiefray

    thin lens (+)

    Image point is located at the common intersection of all

    emanate from the corresponding object point

    The two rays passing through the two focal points and thcan be ray-traced directly

    The real image is inverted and can be magnified or dem

    MIT 2.71/2.710

    Review Lecture p-24

  • 7/25/2019 2717 spring 2002

    106/132

    Imaging condition: ray-tra

    2nd FP

    1st FP

    object

    chiefray

    thin lens (+)

    s s

    ox

    io

    Lateral Angular Lens Law

    magnification magnification

    1 1 1M

    s

    s

    x

    x

    oi=

    o i

    M

    s

    s

    i=

    o

    + = =fsso

    MIT 2.71/2.710

    Review Lecture p-25

    x a

    i

  • 7/25/2019 2717 spring 2002

    107/132

    Imaging condition: ray-tra

    2nd FP

    1st FP

    object

    (virtual)

    chiefray

    thin lens (+)

    image

    The ray bundle emanating from the system is divergent;

    image is located at the intersection of the backwards-exten

    The virtual image is erect and is magnified When using a negative lens, the image is always virtual,

    demagnified

    MIT 2.71/2.710

    Review Lecture p-26

  • 7/25/2019 2717 spring 2002

    108/132

    Tilted object:

    the Scheimpflug conditio

    The object plane and the image plane

    intersect at the plane of the thin lens.

    MIT 2.71/2.710

    Review Lecture p-27

  • 7/25/2019 2717 spring 2002

    109/132

    Lens-based imaging

    Human eye

    Photographic camera

    Magnifier

    Microscope

    Telescope

    MIT 2.71/2.710

    Review Lecture p-28

  • 7/25/2019 2717 spring 2002

    110/132

    The human eye

    Remote object (unaccommodated eye)

    Near object (accommodated eye)

    MIT 2.71/2.710

    Review Lecture p-29

  • 7/25/2019 2717 spring 2002

    111/132

    The photographic camer

    F

    )

    detector array digital imaging

    meniscus

    lens

    or (nowadays

    zoom lens

    MIT 2.71/2.710

    Review Lecture p-31

  • 7/25/2019 2717 spring 2002

    112/132

    The pinhole camera

    object

    imageopaquescreen

    pin

    hole

    The pinhole camera blocks all but one ray per object point from

    image spacean image is formed (i.e., each point in image sp

    a single point from the object space). Unfortunately, most of the light is wasted in this instrument.

    Besides, light diffracts if it has to go through small pinholes as

    diffraction introduces undesirable artifacts in the image.

    MIT 2.71/2.710

    Review Lecture p-35

  • 7/25/2019 2717 spring 2002

    113/132

    Field of View (FoV)

    FoV=angle that the chief ray from an object ca

    towards the imaging system

    MIT 2.71/2.710

    Review Lecture p-36

  • 7/25/2019 2717 spring 2002

    114/132

    Numerical Aperture

    n

    medium of

    refr. index

    Numerical Ape

    : half-angle subtended by (NA) = n sin

    the imaging system froman axial object Speed (f/#)=1/2

    pronounced f-number

    f/8 means (f/#)=8.

    MIT 2.71/2.710

    Review Lecture p-37

  • 7/25/2019 2717 spring 2002

    115/132

    Resolution

    ?

    x

    How far can two distinct point objects

    before their images cease to be distinguis

    MIT 2.71/2.710

    Review Lecture p-38

  • 7/25/2019 2717 spring 2002

    116/132

    Factors limiting resolution i

    imaging system

    Intricately related; assessmen

    quality depends on the degree th

    Diffraction

    Aberrations problem is solvable (i.e. its2.717 sp02 for detai Noise

    electronic noise (thermal, Poisson) in camer

    multiplicative noise in photographic film

    stray light

    speckle noise (coherent imaging systems on

    Sampling at the image plane

    camera pixel size

    photographic film grain size

    MIT 2.71/2.710

    Review Lecture p-39

  • 7/25/2019 2717 spring 2002

    117/132

    Point-Spread Function

    Light distribution

    near the Gaussian = PS(geometric) focus

    Point source

    (ideal)

    2z ~

    NA

    2

    The finite extent of the PSF causes blur in t

    MIT 2.71/2.710

    Review Lecture p-40

  • 7/25/2019 2717 spring 2002

    118/132

    Diffraction limited resolut

    object

    spacing

    )

    )

    x

    lateral coordinate at image plane (arbitrary units

    lightintensity

    (arbitraryu

    nits

    Point objects justx

    22.1 Rayleig

    resolvable when (NA) cri

    MIT 2.71/2.710

    Review Lecture p-41

  • 7/25/2019 2717 spring 2002

    119/132

    Wave nature of light

    Diffraction

    broadening of

    point images

    diffracti

    Inteference

    ??

    ?Fabry-Perot interferometer

    Michelson interferometer

    (o

    Polarization: polaroids, dichroics, liquid crysta

    MIT 2.71/2.710

    Review Lecture p-42

  • 7/25/2019 2717 spring 2002

    120/132

    Diffraction grating

    incident Grating spatial frequenplane

    Angular separation between diffractwave

    m

    =1

    m=3

    m=2

    m=1

    m=2

    m=3

    m=0 straight-through or

    Condition for cons

    =

    m22

    sin =m

    MIT 2.71/2.710 diffraction orderReview Lecture p-43

  • 7/25/2019 2717 spring 2002

    121/132

    Grating dispersion

    An

    (or

    dis

    polychromatic

    (white)

    lightGlass prism:

    normal dispersion

    MIT 2.71/2.710

    Review Lecture p-44

  • 7/25/2019 2717 spring 2002

    122/132

    Fresnel diffraction formul

    xy

    z

    xy

    outg(

    )g ,in yx

    2

    (

    x

    x) +

    1

    x

    y

    z

    x

    y

    outG(

    )G ,in vu

    z (

    , )gout (

    zyx , ;

    )

    2

    i=

    exp i

    g yx expinzi z

    Gout , ;( zvu )

    =exp i

    Gin

    { (-exp i uzz ( vu ) 22 +v,MIT 2.71/2.710

    Review Lecture p-45

  • 7/25/2019 2717 spring 2002

    123/132

    1

    Fresnel diffractionas a linear, shift-invariant system

    2x +

    y2

    z

    Thin transparencyyxh =

    1

    )( , i

    exp i

    z

    2) exp( yxt , zi

    ( )

    (

    )

    ),(,

    ),(

    1

    2

    g

    g

    =

    =

    yxtyx

    yx

    (2g

    g

    =

    impulse response

    convolution

    g yx,

    Fourier

    transform

    (

    ) (

    )G ,2

    2G

    G

    =multiplication

    plane wave

    spectrum vu

    transfer function

    exp{ (u ) z( vu ) 2 + 2H =exp i2 i v z,MIT 2.71/2.710

    Review Lecture p-46

  • 7/25/2019 2717 spring 2002

    124/132

  • 7/25/2019 2717 spring 2002

    125/132

    2 . b ) D e r i v e a n d p l o t t h e i n t e n s i t y d i s t r i b u t i o n a t t h e o u t p u t p l a n e u s i n g t h e

    a b o v e a s s u m p t i o n .

    t(x)

    1

    ...X/2 X/2

    ...

    x

    0

    F i g u r e 2 A

    input nonlinear output

    ff f f

    transparencyplane plane

    illumination

    F i g u r e 2 B

    Iout

    IinIthr

    Isat

    F i g u r e 2 C

    2

  • 7/25/2019 2717 spring 2002

    126/132

    3 . A c o m m o n l y c i t e d q u a n t i t y d e t e r m i n i n g t h e s e r i o u s n e s s o f a b e r r a t i o n s o f a n o p -

    t i c a l s y s t e m i s t h e S t r e h l n u m b e r D , w h i c h i s d e n e d a s t h e r a t i o o f t h e l i g h t

    i n t e n s i t y a t t h e m a x i m u m o f t h e p o i n t - s p r e a d f u n c t i o n o f t h e s y s t e m w i t h a b e r r a -

    t i o n s t o t h a t s a m e m a x i m u m f o r t h a t s y s t e m i n t h e a b s e n c e o f a b e r r a t i o n s ( i . e . ,

    t h e d i r a c t i o n - l i m i t e d c a s e b o t h m a x i m a a r e a s s u m e d t o e x i s t o n t h e o p t i c a l

    a x i s ) .

    3 . a ) P r o v e t h a t D i s e q u a l t o t h e n o r m a l i z e d v o l u m e u n d e r t h e o p t i c a l t r a n s f e r

    f u n c t i o n o f t h e a b e r r a t e d i m a g i n g s y s t e m t h a t i s , p r o v e

    R R

    H

    + 1

    a b e r r a t e d

    ( u v ) d u d v

    D =

    R R

    1

    H

    + 1

    d i r { l i m

    ( u v ) d u d v

    1

    3 . b ) A r g u e t h a t D i s a r e a l n u m b e r a n d t h a t D 1 a l w a y s .

    4 . S k e t c h t h e u a n d v c r o s s - s e c t i o n s o f t h e o p t i c a l t r a n s f e r f u n c t i o n o f a n i n c o h e r e n t

    i m a g i n g s y s t e m h a v i n g a s a p u p i l f u n c t i o n t h e t w o - p i n h o l e c o m b i n a t i o n s h o w n

    i n F i g u r e 4 . A s s u m e w < d . D o n o t u s e M a t l a b f o r t h i s c a l c u l a t i o n . E x p l a i n

    b r i e y t h e a p p e a r a n c e o f y o u r s k e t c h e s , a n d b e s u r e t o l a b e l t h e v a r i o u s c u t o

    f r e q u e n c i e s a n d c e n t e r f r e q u e n c i e s .

    x

    y

    d2

    2w

    2w

    F i g u r e 4

    3

  • 7/25/2019 2717 spring 2002

    127/132

    5 . A n o j b e c t w i t h s q u a r e - w a v e a m p l i t u d e t r a n s m i t t a n c e i d e n t i c a l t o t h e g r a t i n g o f

    F i g u r e 2 A i s i m a g e d b y a l e n s w i t h a c i r c u l a r p u p i l f u n c t i o n . T h e f o c a l l e n g t h o f

    t h e l e n s i s 1 0 c m , t h e f u n d a m e n t a l f r e q u e n c y o f t h e s q u a r e w a v e i s 1 = X = 1 0 0 c y -

    c l e s / m m , t h e o b j e c t d i s t a n c e i s 2 0 c m , a n d t h e w a v e l e n g t h i s 1 m . W h a t i s

    t h e m i n i m u m l e n s d i a m e t e r t h a t w i l l y i e l d a n y v a r i a t i o n s o f i n t e n s i t y a c r o s s t h e

    i m a g e p l a n e f o r t h e c a s e s o f

    5 . a ) C o h e r e n t o b j e c t i l l u m i n a t i o n ?

    5 . b ) I n c o h e r e n t o b j e c t i l l u m i n a t i o n ?

    H i n t T h e F o u r i e r s e r i e s e x p a n s i o n o f t h e s q u a r e w a v e o f F i g u r e 2 A i s

    o

    X

    1

    n = + 1

    n

    n

    n x

    t ( x ) = s i n c e x p i 2

    2 2 X

    n = 1

    w h e r e s i n c ( ) = s i n ( ) = ( ) .

    4

  • 7/25/2019 2717 spring 2002

    128/132

  • 7/25/2019 2717 spring 2002

    129/132

    4 . a ) S h o w t h a t t h e P E i s m i n i m i z e d i f w e s e l e c t

    V

    V

    1

    + V

    2

    0

    = :

    2

    4 . b ) U s i n g t h e o p t i m u m t h r e s h o l d , c a l c u l a t e t h e P E i n t e r m s o f t h e \ e r r o r f u n c -

    t i o n "

    Z

    2

    z

    e r f ( z ) =

    p

    e

    t

    2

    d t :

    0

    N o t e s : ( 1 ) T h e a b o v e - d e s c r i b e d p r o c e s s o f s e l e c t i n g a d e t e c t i o n t h r e s h o l d i s k n o w n

    a s \ B a y e s d e c i s i o n . " ( 2 ) T h e e r f d e n i t i o n a b o v e i s a f t e r A b r a m o w i t z & S t e g u n ,

    H a n d b o o k o f M a t h e m a t i c a l F u n c t i o n s , D o v e r 1 9 7 2 ( p . 2 9 7 ) . T h e c o n s t a n t s a n d

    i n t e g r a l l i m i t s a r e s o m e t i m e s d e n e d d i e r e n t l y i n t h e l i t e r a t u r e .

    5 . N o r m a l i z a t i o n . L e t f X

    k

    g b e a s e q u e n c e o f m u t u a l l y i n d e p e n d e n t r a n d o m v a r i -

    a b l e s w i t h a c o m m o n d i s t r i b u t i o n . S u p p o s e t h a t t h e X

    k

    a s s u m e o n l y p o s i t i v e

    X

    1

    v a l u e s a n d t h a t E V f X

    k

    g = x

    k

    = a a n d E V = b e x i s t . L e t

    k

    S

    n

    = X

    1

    + : : : + X

    n

    :

    P r o v e t h a t E V f S

    1

    i s n i t e a n d t h a t g

    n

    X

    k

    1

    E V = f o r k = 1 : : : n :

    S

    n

    n

    6 . U n b i a s e d e s t i m a t o r . L e t X

    1

    : : : X

    n

    b e m u t u a l l y i n d e p e n d e n t r a n d o m v a r i -

    a b l e s w i t h a c o m m o n d i s t r i b u t i o n l e t i t s m e a n b e , i t s v a r i a n c e

    2

    . L e t

    X

    1

    + : : : + X

    n

    X = :

    n

    P r o v e t h a t

    n

    X

    1

    2

    =

    n 1

    E V

    (

    X

    k

    X

    2

    )

    :

    k = 1

    ( N o t e : I n s t a t i s t i c s , X i s c a l l e d a n u n b i a s e d e s t i m a t o r o f x = E V f X g , a n d

    P

    2

    X

    k

    X = ( n 1 ) i s a n u n b i a s e d e s t i m a t o r o f

    2

    .

    2

  • 7/25/2019 2717 spring 2002

    130/132

  • 7/25/2019 2717 spring 2002

    131/132

  • 7/25/2019 2717 spring 2002

    132/132

    E in

    EoutM

    m

    Electron

    Nucleus

    b

    k

    5 . W h y i s t h e s k y b l u e ? I n 1 8 9 9 , L o r d R a y l e i g h o b s e r v e d t h a t w h e n w e l o o k a t t h e

    s k y , w e s e e l i g h t s c a t t e r e d f r o m p a r t i c l e s i n t h e a t m o s p h e r e , p r i m a r i l y n i t r o g e n .

    H e t h e n p r o p o s e d t h e m o d e l s h o w n a b o v e i n o r d e r t o q u a n t i f y t h e s c a t t e r i n g

    p r o c e s s . T h e g u r e s h o w s a n e l e c t r o n w i t h m a s s m b o u n d t o t h e n u c l e u s w i t h

    a s p r i n g w i t h s p r i n g c o n s t a n t k a n d f r i c t i o n c o e c i e n t b . T h e n u c l e u s h a s m a s s

    M m . A f o r c e i s a p p l i e d t o t h e e l e c t r o n d u e t o t h e e l e c t r i c e l d o f t h e

    i n c i d e n t s u n l i g h t . T h e s c a t t e r e d e l d i s t h e n p r o p o r t i o n a l t o t h e a c c e l e r a t i o n o f

    t h e e l e c t r o n .

    5 . a ) F o r m u l a t e a o n e - d i m e n s i o n a l m o d e l f o r t h e s c a t t e r i n g p r o c e s s d e s c r i b e d

    a b o v e . ( H i n t : m o d e l t h e n u c l e u s a s i m m o b i l e . )

    5 . b ) A s s u m i n g t h a t t h e p o w e r s p e c t r a l d e n s i t y o f s u n l i g h t i s p r e t t y m u c h c o n -

    s t a n t o v e r t h e e n t i r e e l e c t r o m a g n e t i c s p e c t r u m , d e r i v e a n e x p r e s s i o n f o r t h e

    p o w e r s p e c t r u m o f t h e s c a t t e r e d l i g h t .