26430718 chapter 5 hydraulic circuit analysis

4
  Hydraulic Circuit Analysis Problem 5.37M: For the sistem of figure 5.33, if P1=7 bar, solve for P2. The pipe is 15 m long, has a 38 mm ID Solution:  Rumus:  V = Q/A  UNITS METRIC Input Output 7 1.76 15 670 0.04 f  0.096 0 19.6 throughout, and lies in a horizontal plane.Q = 0.002 m³/s of oil (sg = 0.9 and v = 0.0001m³/s). NR = VD / V  f = 64 / NR  Le = 2 (KD / f)elbow+(KD / f)valve+Lpipe HL = f x (Le/D) x (V²/2g)  γ = 1000 x sg x g  P (N/m²) =  γ x HL  P2 (bar) = ΔP - P1 P1 (bar) V (m/s) Lpipe (m) NR Dpipe (m) Q (m³/s)  Le

Upload: jaroslav-kuruc

Post on 04-Oct-2015

213 views

Category:

Documents


0 download

DESCRIPTION

hydraulic

TRANSCRIPT

  • Hydraulic Circuit Analysis

    Problem 5.37M:

    For the sistem of figure 5.33, if P1=7 bar, solve for P2. The pipe is 15 m long, has a 38 mm ID

    Solution:

    Rumus: V = Q/A

    UNITS METRIC

    Input Output

    7 1.76

    15 670

    0.04 f 0.096

    0 19.6

    throughout, and lies in a horizontal plane.Q = 0.002 m/s of oil (sg = 0.9 and v = 0.0001m/s).

    NR = VD / V

    f = 64 / NR

    Le = 2 (KD / f)elbow+(KD / f)valve+Lpipe

    HL = f x (Le/D) x (V/2g)

    = 1000 x sg x g

    P (N/m) = x HL

    P2 (bar) = P - P1

    P1 (bar) V (m/s)

    Lpipe (m) NR

    Dpipe (m)

    Q (m/s) Le

  • 0.9 7.80

    0 8829

    3.14 68841

    10 0.69

    0.75 6.31

    sg HL

    v (cs)

    P (N/m)

    K valve P (bar)

    K elbow P2 (bar)

  • Hydraulic Circuit Analysis

    Problem 5.38E:

    while moving in the extending direction.Take frictional pressure losses into account. The pump

    produces a pressure increase of 1000 psi from the inlet port to the discharge port and a flow rate of

    40 gpm.

    Pipe No. Length ( ft ) Pipe No. Length ( ft )

    1 2 1.5 8 5 1.0

    2 6 1.5 9 5 0.75

    3 2 1.5 10 5 0.75

    4 50 1.0 11 60 0.75

    5 10 1.0 12 10 0.75

    6 5 1.0 13 20 0.75

    7 5 1.0

    Fig. 5.34Solution:

    Rumus:

    V =0.408 Q D

    x h F = P x A

    Input Output

    0 7.25 906.67

    50 16.3 1360

    8 12.24 1020

    4 29.01 1813

    1000 21.8 1360

    40 0.0706

    0.75 0.0471

    Elbow 90 0.0627

    3.14 0.0353

    0.0471

    5.84 2.03

    195 67.8

    19.26 6.69

    83.6 29.0

    509 177

    45303 30

    6919 38383

    For the fluid power system in Fig. 5.34, determine the external load F that the hydraulic can sustain

    Dia (in) Dia (in)

    HL = (f .L / D) v/2g

    Q return line(gpm) = Q( dpiston- drod ) / drpiston

    NR = V x D f = 64 / NR

    P =

    (ft/s) V (ft/s) 1,2,3 NR 1,2,3 (lb/ft) V (ft/s) 4,5,6 NR 1,2,3

    dpiston(in) V (ft/s) 7,8 NR 7,8

    drod(in) V (ft/s) 9,10 NR 9,10

    P (psi) V (ft/s) 11,12,13 NR 11,12,13

    Q (gpm) f 1,2,3

    K factor f 4,5,6

    f 7,8

    f 9,10

    f 11,12,13

    HL(ft)1, 2,3 P (psi) 1,2,3

    HL(ft) 4,5,6 P (psi) 4,5,6

    HL (ft) 7,8 P (psi) 7,8

    HL (ft) 9,10 P (psi) 9,10

    HL(ft) 11,12,13 P (psi) 11,12,13

    F(lb)ext. Q return line(gpm)

    F(lb)retr. F (lb)

  • Hydraulic Circuit Analysis

    Problem 5.39E:For the sistem of problem 5.38, determine the heat-generation rate due to frictional pressure losses.

    Solution :

    Rumus:

    HPloss = P (psi) x Q (gpm)1714

    HPloss = P(psi)1, 2,3 + P(psi) 4,5,6 + P(psi) 9,10 x Q (gpm) +1714 1714

    Sinse 1 HP = 42.4 BTU/min

    Heat generation rate =42.4 x HPloss BTU/min or BTU/hr

    UNITS METRIC

    Input Output

    P (psi) 1,2,3 2.03 HPloss 5.57

    68 Q gener.(btu/min) 236

    6.69 Q gener.(btu/hr) ###

    29.0

    P (psi) 11,12,13 177

    Q (gpm) 40

    Qreturn (gpm) 30

    P(psi) 7,8 + P(psi) 11,12,13, x Q (gpm)

    P (psi) 4,5,6

    P (psi) 7,8

    P (psi) 9,10

    5.37M5.38E5.39E