22nm & 16nm node junction scaling

53
22nm & 15nm Node Junction Scaling Options John Borland J.O.B. Technologies, Aiea, HI July 15, 2010

Upload: others

Post on 24-Dec-2021

23 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 22nm & 16nm Node Junction Scaling

22nm & 15nm Node Junction

Scaling Options

John Borland

J.O.B. Technologies, Aiea, HI

July 15, 2010

Page 2: 22nm & 16nm Node Junction Scaling

Outline• Introduction

– Technology Roadmap Options

• USJ Technology:

– p+ USJ 22nm node and beyond

– n+ USJ 22nm node and beyond

• Strain Technology

– pMOS 22nm node and beyond

– nMOS 22nm node and beyond

• Summary

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

2

Page 3: 22nm & 16nm Node Junction Scaling

Summary of Planar CMOS –vs-FinFET• VLSI Sym 2008: Planar CMOS to 22nm Node

– Intel said SRAM needs Bulk FinFET/Trigate at 16nm or Floating Body

Cell FD-SOI (Mark Bohr)

• IEDM 2008:

– Intel: Stated that FinFET not ready for 22nm node manufacturing (K.

Kuhn).

• VLSI Sym 2009:

– IBM: TC Chen stated at 16nm node body controlled devices (FD-SOI or

FinFET) will be required to extended CMOS to 11nm CMOS

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

3

Intel, VLSI Sym 2008

short course

Toshiba, VLSI Sym

2006, paper 9.2

-TSMC April 2010: Planar bulk at 20nm node 5th gen SiGe & 2nd gen Hik/MG, 14nm

node maybe FinFET (S.Y. Chiang)

Page 4: 22nm & 16nm Node Junction Scaling

FD/SOI With Dielectrically Isolated Back

Gates

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

4

IBM/YH, VLSI Sym 2010, paper, 4.4

G. Shahidi, IBM, VLSI Sym

2010, paper 13.5

Page 5: 22nm & 16nm Node Junction Scaling

Hybrid Localized SOI/Bulk Technology

Using Buried SiGe Layer/Channel

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

5

ST/LETI, VLSI Sym 2010, paper 6.2

Page 6: 22nm & 16nm Node Junction Scaling

Ultra-Thin-Body & Box (UTBB) FD-SOI

And Localized SOI (LSOI)

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

6

IBM Alliance, VLSI Sym 2010, paper 6.3

Page 7: 22nm & 16nm Node Junction Scaling

Intel’s 15nm

Node Floating

Body Cell

(FBC) FD-SOI

With Back

Gate Doping

Intel’s Silicon

on Replacemet

Insulator (SRI)

FBC Using

SiGe Etching

For LSOI

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

7

Intel, VLSI Sym 2010, paper

15.1

Intel, VLSI Sym 2010, paper

15.4

Tip implant before spacer

Page 8: 22nm & 16nm Node Junction Scaling

IEDM-2009: Intel 32nm

Node Low Leakage

Junctions

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

8

Page 9: 22nm & 16nm Node Junction Scaling

Outline• Introduction

– Technology Roadmap Options

• USJ Technology:

– p+ USJ 22nm node and beyond

– n+ USJ 22nm node and beyond

• Strain Technology

– pMOS 22nm node and beyond

– nMOS 22nm node and beyond

• Summary

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

9

Page 10: 22nm & 16nm Node Junction Scaling

J.O.B. Technology (Strategic

Marketing, Sales & Technology)

10

Implant Energy Versus Xj

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Xj (nm)

Imp

lan

t E

ne

rgy

(e

V)

B

BF2

BF3

B

BF3

BF2

32nm Node

45nm Node

Borland, Semiconductor International, Dec. 2006, p.49

22nm Node15nm Node Intel FBC/SOI 22nm

IBM ET-SOI

Page 11: 22nm & 16nm Node Junction Scaling

B, B18 & B36 Total Retained Dose (2nm oxide)

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

11

B36

B18

B18/2E15

B

55%

70%

64%

78%84%

60%

70%

85%

Borland et al., JOB

2nm

surf

ace

oxid

e

Page 12: 22nm & 16nm Node Junction Scaling

PCOR-SIMS Analysis

12Boron Xj (nm)

B %

In

2n

m S

urf

ace

Oxid

e

B

Page 13: 22nm & 16nm Node Junction Scaling

Proof Of Surface Reflectance/Backscatter On

Retained Dose Limit & Implant Oxide Growth

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

13

Ge Ox Xj R.Dose

H2 6.9nm 0.2nm

B 7.0nm 0.57nm 8.3nm 8.89E14

B18 6.9nm 0.45nm 7.7nm 8.44E14

B36 6.9nm 0.46nm 8.6nm 8.35E14

Ox 6.9nm 1.8nm

B 7.0nm 2.05nm 7.7nm 8.0E14

B18 6.7nm 2.18nm 7.6nm 6.09E14

B36 6.9nm 2.3nm 9.6nm 5.96E14

Ge shift due to oxide growth

Implant oxide growth

Renesas/JOB/EAG, SSDM-2010

Page 14: 22nm & 16nm Node Junction Scaling

PCOR-SIMS Analysis Of Surface Oxide &

Retained Dose

14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60 70 80 90 100

B Retained Dose %

Su

rfac

e O

xid

e T

hic

kn

ess

(nm

)

B36(R)

B18(R) B(R)

B(R)

B18 & B36(R)

Borland et al., JOB

Page 15: 22nm & 16nm Node Junction Scaling

Lower Residual Implant Damage &

Improve Device Leakage• Improve self-amorphization to reduce residual implant damage

with MSA

– Lower implant wafer temperature (cold or cryo-implantation) -10oC to

-160oC using chilled water of liquid nitrogen wafer cooling

– Use molecular dopants (B18H22, B36H44, As4 or P4) improves self-

amorphization

– Use heavier ions low dose for PAI & optimize amorphous depth (In, Sb

or Xe) at <5E13/cm2

• Stable defects and reduction in residual implant damage

thereby improving junction leakage

– Higher MSA peak temperature >1300oC

– Pre/post MSA diffusion-less spike/RTA 850-900oC

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

15

Page 16: 22nm & 16nm Node Junction Scaling

PLi Of Flash And 900C Spike+Flash

J.O.B. Technology (Strategic

Marketing, Sales &

Technology)

16Borland et al., JOB/Selete, IWJT 2007

Page 17: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

17

J.P. Lu, SMIC/KT, IWJT-2010 paper 1.5

Radiance spike/RTA signature

Page 18: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

18

Extension Results (Leakage)

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

900C spike Spike+FLA FLA+Spike Flash SPE SPE+FLA FLA+SPE

B200eV

5keVGe+B

890eVBF2

5keVGe+BF2

4keVB18H22

RsL Junction Leakage Current (A/cm2)

F effect: Noda (MRS 2008), Yamamoto

(IWJT 2008), England (IIT 2008 P41)

Yamamoto et al., IWJT 2008,

MSA pins F in substitutional

site and degrades leakage!

>1200C?Borland & Kiyama, JOB/DNS, IIT-2008

5keV Ge-PAI=9nm

Page 19: 22nm & 16nm Node Junction Scaling

Poly & USJ Activation Roadmap

Spike/RTA

+

Flash or Laser-poly dopant diffusion & activation

-improved Tox(inversion)

-USJ diffusion

65nm & 45nm NodeLower Temperature

Spike/RTA-poly dopant diffusion

Flash or Laser-improved poly dopant activation

-improved Tox(inversion)

-USJ diffusion-less activation

Flash, Laser or SPE-USJ diffusion-less activation

45nm 28nm Node

22nm Node

Borland, Semiconductor International,

Dec. 2006, p.49

IBM VLSI 2007 45nm

1000C Spike

Page 20: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

20

Timans, Mattson, Semicon/West WCJUG July 2008

Page 21: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

21

Kato, Selete, IWJT-2010 paper 1.7

Page 22: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

22

Page 23: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

23

EOR>9nm

EOR>32nm

EOR>16nm

Page 24: 22nm & 16nm Node Junction Scaling

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1175C

1225C

1275C

1325C

Laser Annealing Temperature

RsL

Ju

nct

ion

Lea

kag

e C

urr

ent

(A/c

m2)

24

Borland et al., IEEE-RTP-2009

Page 25: 22nm & 16nm Node Junction Scaling

50 10010Xj (nm)

RS

(ohms/sq.)

100

1000

500

5000

5005

50Boron solid solubility:

B <1225C (Bss=5E19/cm3) RD=1E15/cm2

B 1325C (Bss=1E20/cm3)

Ge+B 1325C (Bss=1.3E20/cm3)

Xe+B 1325C (Bss=3.5E20/cm3)

BF2 1175C (Bss=3E19/cm3) RD=5.5E14/cm2

BF2 1325C (Bss=4E19/cm3)

Ge+BF2 1175C (Bss=6E19/cm3)

Ge+BF2 1225C (Bss=6E19/cm3)

Ge+BF2 1275C (Bss=7E19/cm3)

Ge+BF2 1325C (Bss=8E19/cm3)

B36 1325C (Bss=1.2E20/cm3) RD=6.7E14/cm2

Ge+B36 1325C (Bss=1E20/cm3)

In+B36 1325C (Bss=1E20/cm3)

Xe+B36 1325C (Bss=1.2E20/cm3)

Borland et al., RTP-2009

Page 26: 22nm & 16nm Node Junction Scaling

Boron Dopant Activation With Laser Melt

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

26

K. Kuhn, Intel, IWJT-2010 paper K2

1E15 dose: Rs=205 Bss=1.7E20/cm3

2E15 dose: Rs=132 Bss=3E20/cm3

4E15 dose: Rs=91 Bss=4E20/cm3

1E16 does: Rs=73 Bss=5E20/cm3

Page 27: 22nm & 16nm Node Junction Scaling

J.O.B. Technology (Strategic

Marketing, Sales & Technology)

27

22nm Node Dopant Options: Enhanced SDE &

HALO Dopant Activation/Amorphization• pMOS

– pSDE (1-3E15/cm2 dose limited by Bss?)• B: 100eV/1E15 (need PAI?)

• BF2: 500eV/1E15 (dose lose!)

• B18: 2keV/5E13 (self-amorphization)

• B36H44: 4keV/2.5E13 (self-amorphization)

– HALO (3E13/cm2 dose)• As: 20keV/3E13

• As2: 40keV/1.5E13

• As4: 80keV/7.5E12

• Sb: 35keV/3E13 (self-amorphization)

• nMOS – nSDE (1E15/cm2 or > dose)

• As: 1keV/1E15

• As2: 2keV/5E14

• As4: 4keV/2.5E14

• P: 500eV/1E15

• P2: 1keV/5E14

• P4: 2keV/2.5E14

• Sb: 1.7keV/1E15 (self-amorphization)

– HALO (3E13/cm2 dose)• BF2: 20keV/3E13

• In: 45keV/3E13 dose (self-amorphization but limited by Inss?) In+B!

• B18: 80keV/1.5E12

<850C Spike/RTA

>1350C Flash or Laser

Page 28: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

28

Mineji et al., NEC/JOBTech/Nissin, IWJT-2007

Borland et al.,

IEEE/RTP-

2009

Page 29: 22nm & 16nm Node Junction Scaling

For 22nm Node p+ USJ

Formation Using PAI & HALO

Implantation With Laser

AnnealingJohn O. Borland, J.O.B. Technologies, Aiea, HI

John Marino, EAG, East Windsor, NJ

Michael Current, Frontier Semiconductor, San Jose, CA

B.L. Darby, University of Florida, Gainesville, FL

IIT June 8, 2010

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

29

Page 30: 22nm & 16nm Node Junction Scaling

Experimental Matrix Split Conditions

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

30

20keV/3E13 35keV/3E13

No HALO As-HALO Sb-HALO

•B (200eV/1E15) X X X

•With Ge-PAI (3keV/5E14) X X X

•With Ge-PAI (10keV/5E14) X X X

•With Xe-PAI (5keV/5E13) X X X

•With Xe-PAI (14keV/5E13) X X X

•With In-PAI (5keV/5E13) X X X

•With In-PAI (14keV/5E13) X X X

•With B36 (100eV/1E15) X X X

•With B36 (500eV/5E13) X X X

Laser Anneal Pattern

Page 31: 22nm & 16nm Node Junction Scaling

X-TEM Results For As-HALO & Sb-HALO

Showing No Amorphization

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

31

Surface

Page 32: 22nm & 16nm Node Junction Scaling

No PAI: B, As & Sb HALO

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

32

Condition Native oxide Xj B-Diffusion

B 2.4nm 8.7nm 3.0nm

As-HALO 2.2nm 10.0nm 3.5nm

Sb-HALO 2.0nm 9.8nm 2.4nm

Page 33: 22nm & 16nm Node Junction Scaling

Ge-PAI: B, As & Sb HALO

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

33

Condition Native oxide Xj B-Diffusion

B 1.9nm 8.3nm 6.1nm

As-HALO 2.2nm 9.0nm 5.0nm

Sb-HALO 2.1nm 8.5nm 5.5nm

HALO reduces Ge-PAI TED

Page 34: 22nm & 16nm Node Junction Scaling

No HALO Rs & Junction Leakage

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

34

Leakage (uA/cm2)Leakage (uA/cm2)

Leakage (uA/cm2) Leakage (uA/cm2)

Page 35: 22nm & 16nm Node Junction Scaling

As & Sb HALO Rs & Junction Leakage

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

35

Leakage (uA/cm2) Leakage (uA/cm2)

Page 36: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

36

Nagayama, Nissin, IWJT-2010 paper 3.4

Box-like

profile for P

when C dose

increases

between 1-

2E15/cm2

Pss=1.5E20/cm3 what is leakage values!

Page 37: 22nm & 16nm Node Junction Scaling

J.O.B. Technology (Strategic

Marketing, Sales &

Technology)

37

Dopant Solid Solubility Limits In Silicon

Page 38: 22nm & 16nm Node Junction Scaling

J.O.B. Technology (Strategic

Marketing, Sales & Technology)

38

Higher n+ Phos. Dopant Activation

>1.8E21/cm3!

H. Kennel et al., Intel, NIST meeting, March 2006

How to get Pss=>1.8E21/cm3?

Compare 1350C to Melt (>1407C)

Page 39: 22nm & 16nm Node Junction Scaling

Mineji et al., NEC/JOB/Nissin, IWJT-2007

Borland, IIT-2008

In-Temp?

Page 40: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

40

IEEE/RTP 2009

Page 41: 22nm & 16nm Node Junction Scaling

Ni Silicide Improvements With By

Shallow Room Temp Si-PAI, Xe-PAI or

Cold C-PAI

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

41

T. Renau, VSEA, IWJT-2010 paper K1 S. Deshpande, IBM, IWJT-2010 paper 4.1

Page 42: 22nm & 16nm Node Junction Scaling

Outline• Introduction

– Technology Roadmap Options

• USJ Technology

– p+ USJ 22nm node and beyond

– n+ USJ 22nm node and beyond

• Strain Technology

– pMOS 22nm node and beyond

– nMOS 22nm node and beyond

• Next

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

42

Page 43: 22nm & 16nm Node Junction Scaling

Heated 300C HALO Implantation

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

43

S. Deshpande, IBM, IWJT-2010 paper 4.1

Issue for eSiGe-

SDE or disposable

spacer process

flow!

Page 44: 22nm & 16nm Node Junction Scaling

eSiGe Strain

Relaxation By p+ SDE

Implant

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

44

AMD/Dresden, Insights-2009

Page 45: 22nm & 16nm Node Junction Scaling

AMD RTP 2007 Paper

J.O.B. Technology (Strategic

Marketing, Sales &

Technology)

45

Page 46: 22nm & 16nm Node Junction Scaling

April 2010 ECS Meeting Vancouver,

Canada

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

46

S. Govindaraju et al., Intel, ECS Transactions, vol. 28, no.1, p.81, 2010.

Issue for

disposable

spacer process

flow!

Page 47: 22nm & 16nm Node Junction Scaling

Intel’s 32nm Node Low Power RF CMOS

SOC Technology

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

47

Intel, VLSI Sym 2010, paper 13.2

Looks like 45nm eSiGe Looks like 65nm eSiGe

Page 48: 22nm & 16nm Node Junction Scaling

April 2010 ECS Meeting Vancouver,

Canada

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

48

Dube et al., IBM/GF, ECS Transactions, vol.28, no.1, p.63, 2010.

In-situ SiCP=3E20/cm3 at C=1.7% Also, 1-2wph!

Page 49: 22nm & 16nm Node Junction Scaling

22nm Node n+ SiC Stressor

Using Deep PAI+C7H7+P4 With

Laser Annealing

John Borland1, Masayasu Tanjyo2, Nariaki Hamamoto2, Tsutomu Nagayama2, Shankar

Muthukrishnan3, Jeremy Zelenko3, Iad Mirshad4, Walt Johnson4, Temel Buyuklimanli5, Steve

Robie5, Hiroshi Itokawa6, Ichiro Mizushima6 and Kyoichi Suguro6

1) J.O.B. Technologies, Aiea, HI

2) Nissin Ion Equipment, Kyoto, Japan

3) Applied Materials, Sunnyvale, CA

4) KLA-Tencor, San Jose, CA

5) EAG, Sunnyvale, CA

6) Toshiba Corporation, Yokohama, Japan

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

49

IEEE/RTP-2009

Page 50: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

50

Page 51: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

51

Page 52: 22nm & 16nm Node Junction Scaling

J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

52

Itokawa, Toshiba/IBM, IWJT-

2010 papers 3.2 & 6.14

Keep Csub to

<1.3% and use

850C SPE+MSA

OK to have 1% C in channel

under the gate stack (mid-

E19/cm3)?

Page 53: 22nm & 16nm Node Junction Scaling

SUMMARY• 22nm Node (2011-2012)

– Planar Bulk CMOS by Intel & IBM/Alliance Foundry

– Planar PD-SOI by IBM/Alliance

– USJ <10nm using MSA+spike/RTA diffusion-less annealing

• p+(B, B10 or B18/36)

• n+(As or P+C)

– Channel mobility enhancement

• pMOS: eSiGe or SiGe-channel

• nMOS: eSiC by Epi or C+P implant

• 15nm Node (2013-2015) & 11nm Node (2015-2017)

– Planar CMOS:

• Hybrid bulk and localized FD-SOI with back-gate (Intel &

IBM/Alliance Foundry)

• FD-SOI with back-gate: IBM/Alliance

– FinFET CMOS?J.O.B. Technologies (Strategic

Marketing, Sales &

Technology)

53