226 co2 capture from igcc by low-temperature syngas ... · process flow diagram ... low-temperature...

18
CO 2 capture from IGCC by low- 2 temperature syngas separation d ti l d ti f CO and partial condensation of CO 2 TCCS-6 Conference, June 15 th 2011, Trondheim David Berstad , Petter Nekså, Rahul Anantharaman [email protected] SINTEF Energy Research 1 1

Upload: hoanghuong

Post on 19-Aug-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

CO2 capture from IGCC by low-2 p ytemperature syngas separation

d ti l d ti f COand partial condensation of CO2

TCCS-6 Conference, June 15th 2011, TrondheimDavid Berstad, Petter Nekså, Rahul Anantharaman

[email protected] Energy Research

11

Presentation outline

Brief introduction to the DECARBit projectBrief introduction to the DECARBit project Vapour-liquid equilibria in H2–CO2 systems

Gives the expected CO2 capture ratio for phase separationp 2 p p p

Principal process-level design for low-temperature syngas separation and CO2 capture

Main results from process simulations Conclusions

22

The DECARBit project (2008–2011)p j ( ) Assess and research new techniques for pre-combustion CO2

tcapture Develop advanced oxygen production techniques Continue the development efforts in FP6 projects in the pre- Continue the development efforts in FP6 projects in the pre

combustion area for key enabling technologies Underpin the cost reduction objective Establish collaborative schemes with emerging large-scale CCS

initiatives in Europe Perform an assessment of the advanced pre-combustion capture Perform an assessment of the advanced pre combustion capture

techniques to the benefit of other energy intensive industries

33

The DECARBit project (2008–2011)p j ( )

CO2-selective membranes

CO b t CO2 sorbents Novel solvent systems Low-temperature

syngas separation

44

y g p

The DECARBit project (2008–2011)p j ( )

Unit Syngas after H2S removal, sweet shift and H O removalH2O removal

Temperature °C 30Pressure bar 35.0Flowrate kg/s 114Composition mol-%

H2 54.14CO 1.73CO2 38.39N2 4.792 9Ar 0.94H2O ppm levels

H S ppm levelsH2S ppm levels

Other 0.02

55

H2–CO2 vapour-liquid equilibria2 2 p q q100 %

Binary H2–CO2 mixtures at 220 K / -53°C

70 %

80 %

90 %o

50 %

60 %

apture ratio

Spano: 40% H2, 60% CO2

T&S: 40% H2, 60% CO2

PR: 40% H2, 60% CO2

Spano: 50% H2, 50% CO2

T&S 50% H2 50% CO2

20 %

30 %

40 %

CO2ca T&S: 50% H2, 50% CO2

PR: 50% H2, 50% CO2

Spano: 60% H2, 40% CO2

T&S: 60% H2, 40% CO2

PR: 60% H2, 40% CO2

Spano: 70% H2 30% CO2

0 %

10 %

0 10 20 30 40 50 60 70 80 90 100 110 120

Spano: 70% H2, 30% CO2

T&S: 70% H2, 30% CO2

PR: 70% H2, 30% CO2

0 10 20 30 40 50 60 70 80 90 100 110 120

Pressure [bar]Spano J, Heck C, Barrick P. Liquid-vapor equilibria of the hydrogen–carbon dioxide system. J. Chem. Eng. Data. 13(2), 169–171 (1968).Tsang C, Streett W. Phase equilibria in the H2/CO2 system at temperatures from 220 to 290 K and pressures to 172 MPa, Chem. Eng. Sci. 36, 993–1000 (1981)

66

1000 (1981).

Vapour-liquid equilibriap q q60% H2 – 40% CO2 mixture

100 % Target: ≥ 85% capture ratio

80 %

90 %

Target: ≥ 85% capture ratio

50%

60 %

70 %

ure ratio

30 %

40 %

50 %

CO2capt

217 K / ‐56°C

218 K / ‐55°C

0 %

10 %

20 % 219 K / ‐54°C

220 K / ‐53°C

0 %

0 10 20 30 40 50 60 70 80 90 100 110 120

Pressure [bar]

77

Process flow diagramg

Auxiliary refrigeration (Propane)

Power recovery expander

H2-rich fuel to gas turbine

(25 bar)

Shifted syngas(35 bar)

Recycle Auxiliary refrigeration (Ethane) H2-rich phase

Phase separation

CO2-rich phase

CO2(110 bar)

CO2purification

88

CO2 pump

Process flow diagramg

Auxiliary refrigeration (Propane)

Compression of syngas feed to 110 bar Pressure ratio: 3.1–3.2 Power: 21–23 MW

Power recovery expander

H2-rich fuel to gas turbine

(25 bar)

Shifted syngas(35 bar)

Recycle Auxiliary refrigeration (Ethane) H2-rich phase

Phase separation

CO2-rich phase

CO2(110 bar)

CO2purification

CO2 pump

99

Process flow diagramg

Ethane utility cooling

Auxiliary refrigeration (Propane)

Ethane utility cooling Syngas temperature: -56°C Vapour fraction: 0.64 (molar basis)

0.26 (mass basis)

Power recovery expander

H2-rich fuel to gas turbine

(25 bar)

Shifted syngas(35 bar)

Recycle Auxiliary refrigeration (Ethane) H2-rich phase

Phase separation

CO2-rich phase

CO2(110 bar)

CO2purification

CO2 pump

1010

Process flow diagramg

Auxiliary refrigeration (Propane)

>15 MW of combustibles (LHV basis) recovered from the CO2purification section (0.4 MW lost).

Power recovery expander

H2-rich fuel to gas turbine

(25 bar)

Shifted syngas(35 bar)

Recycle Auxiliary refrigeration (Ethane) H2-rich phase

Phase separation

CO2-rich phase

CO2(110 bar)

CO2purification

Recycle compression power: 2.3 MWCO2 pumping power: 0.9 MW

CO2 pump

1111

Process flow diagramg

Auxiliary refrigeration (Propane)

Liquid phase 99.7% CO2 81.2 kg/s

Power recovery expander

H2-rich fuel to gas turbine

(25 bar)

Shifted syngas(35 bar)

Recycle Auxiliary refrigeration (Ethane) H2-rich phase

Phase separation

CO2-rich phase

CO2(110 bar)

CO2purification

CO2 pump

1212

Process flow diagramg

Auxiliary refrigeration (Propane)Expansion of fuel to 25 bar Recoverable power: 13–14 MW

Power recovery expander

H2-rich fuel to gas turbine

(25 bar)

Shifted syngas(35 bar)

Recycle Auxiliary refrigeration (Ethane) H2-rich phase

Phase separation

CO2-rich phase

CO2(110 bar)

CO2purification

CO2 pump

1313

Main results

35090%

CCR and specific capture work

325

350

85 %

90 %

g CO2]

o

300

325

75 %

80 %

ork [kJ/kg

ture ra

tio

27570 %

apture wo

CO2capt

CO2 capture ratio

25060 %

65 % Ca

O captu e at o

Capture work

30 40 50 60 70 80 90 100 110 120

Syngas pressure [bar]

1414

Main resultsPower consumption decomposed

40CO2 i

14,555

25

30

35CO2 pumping

Recycle compression

Aux. refrigeration

Syngas compression

Expansion recovery

16,172

15,994

15

20

25

[MW]

Expansion recovery

Net power

7,237

13,480

22,793

16,330

5

10

Power [

‐2,441‐5,987

‐9,243‐13,918

‐10

‐5

0

‐15

10

35 bar 52 bar 72 bar 110 bar

Syngas pressure

1515

Syngas pressure

Main results

Isentropic efficiency

Simulation parameters

Isentropic efficiencySyngas compressor % 82Propane compressor % 82Eth % 82Ethane compressor % 82Recycle compressor % 80Power recovery fuel expander % 85Liquid CO2 pump % 80

Pressure dropHeat exchangers bar 0.2Inter‐ and after‐coolers bar 0.5

Temperature approachHeat exchanger pinch °C 3Heat exchanger pinch  C 3LMTD in propane–ethane cascade heat exchanger °C > 5

1616

Concluding remarksg A conceptual low-temperature syngas separation process for CO2

capture from IGCC has been developed and simulatedcapture from IGCC has been developed and simulated 85% capture ratio is achievable for shifted syngas with a CO2

concentration of 38 mol-%. Specific capture work for the considered system boundaries is around 330 kJ per kg CO2 captured

Partial capture is possible without the need of pre-compression Refrigeration cycles account for a significant part of the power Refrigeration cycles account for a significant part of the power

consumption and must be optimised Simulation of the overall IGCC with CO2 capture is required in order

to obtain a justified benchmarking with baseline technologies Syngas conditioning (water removal and desulphurisation) must be included

Overall performance analysis and techno-economic assessment, Overall performance analysis and techno economic assessment, equipment sizing and costing will be carried out in the last phase of DECARBit

1717

Acknowledgementsg

Participating industry partners

Funding industry partners

The research leading to these results has received funding from the European Union’s Seventh Frameworkfunding from the European Union s Seventh Framework Program (FP7/2007–2011) under grant agreement number 211971 (the DECARBit project).number 211971 (the DECARBit project).

1818