221-02

Upload: ayobami-akindele

Post on 05-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 221-02

    1/15

    Wh

    tsubs

    each

    A g

    Fig

    Figu

    proc

    sepa

    prod

    matt

    devi

    prod

    sepa

    of

    for

    In

    t are

    ose otances

    other

    neral

    re 1.

    re 1

    ess.

    ration

    ucts.

    er or o

    ce and

    uct s

    ration

    atter

    ation

    roduc

    epara

    peratiinto t

    n com

    iew o

    Gene

    hows

    It co

    devic

    The

    sever

    is for

    reams

    gent.

    or en

    f a se

    tion to

    ion p

    ns wo or

    positio

    sepa

    al sep

    a sim

    prises

    e, th

    eed

    al stre

    ced to

    of

    The

    ergy

    ond p

    5

    Sepa

    ocess

    ich tore pr

    n.

    ation

    ration

    le sc

    four

    sep

    ay co

    ms, w

    be se

    iffere

    eparat

    nd g

    ase of

    ation

    s?

    ansfor

    oducts

    roces

    proces

    emati

    sectio

    ration

    nsist

    ich en

    arated

    t co

    on ag

    nerall

    matter

    roces

    m awhich

    ses

    s

    of a

    s: th

    agen

    f one

    ters th

    into

    posit

    nt can

    will

    .

    ses

    mixturdiffer

    separ

    feed,

    and

    strea

    separ

    t least

    on, b

    be a st

    cause

    e offrom

    ation

    the

    the

    of

    ation

    two

    y a

    eam

    the

    6

    Two important questions in separation processes

    1. How much separating agent is required?

    2. How fast can the separation be achieved?The keys to these questions are the mass balance

    analysis.

    Processing methods

    1. Single-stage process (batchwise or continuously)2. Multiple-stage process (batchwise or continuously)

    Equilibrium relations between phases1. Phase rule and equilibrium

    2. Gas-liquid equilibrium

  • 7/31/2019 221-02

    2/15

    Ap

    licati n of epar

    7

    tion roce ses

    8

  • 7/31/2019 221-02

    3/15

    Dist

    lled ater

    9

    Typ

    (1)

    **

    **

    Prod

    **

    *

    es of

    istilla

    ost pcapabl

    equirses e

    uction

    oil proair sep

    distilla

    epar

    tion p

    opularof pr

    s twoergy t

    proce

    ductioaration

    tion of

    tion

    ocess

    separaducin

    hases:acco

    ses usi

    ,,

    wine t

    10

    roce

    s:

    ion prpure

    liquidplish

    ng dist

    o cogn

    ses

    cess,

    substa

    and vsepara

    illatio

    ac and

    ce fro

    por,ion.

    spirits.

    mixt

    ure,

  • 7/31/2019 221-02

    4/15

    (2)

    *

    *

    *

    *

    Pro

    **

    *

    bsorp

    popula

    ransfe

    or viceequire

    ses th

    for gas

    uction

    scrubbemov

    emov

    tion/s

    r in en

    r gas c

    versa,s two

    e diffe

    and li

    proce

    ing sml of a

    CO2

    rippin

    ironm

    mpon

    hases:

    ent af

    uid.

    ses usi

    okestamoni

    rom ai

    11

    g pro

    ental a

    ent fro

    liquid

    inity

    ng abs

    ks,from

    r.

    esses:

    pplicat

    gas

    and g

    as co

    orber

    refiner

    ions,

    o liqui

    s,

    ponen

    ,

    d

    (3)

    *

    *

    *

    *

    Prod

    *

    *

    *

    iquid

    sed f

    operat

    ransfeanothe

    equir

    miscib

    ses th

    separa

    uction

    food p

    pharm

    oil pur

    liquid

    r proc

    on,

    r solubr,

    s two

    le liqui

    e diffe

    ion.

    proce

    ocessi

    ceutic

    ificatio

    extra

    sses t

    le com

    hases:

    ds,

    ent af

    ses usi

    g,

    al sepa

    n.

    12

    tion:

    at req

    ponent

    two i

    inity c

    ng ext

    ration,

    ires lo

    from

    misci

    ompon

    action

    w tem

    ne liq

    le or

    ents fo

    eratur

    id to

    artiall

    r

    e

  • 7/31/2019 221-02

    5/15

    (4)

    *

    **

    *

    Pro

    *

    **

    olid-li

    sed li

    matrix

    ransfeequire

    ses th

    uction

    inin

    food ppharm

    quid e

    uid to

    r solubs two

    e solu

    proce

    ,

    ocessiceutic

    tracti

    extrac

    le comhases:

    ility o

    ses usi

    g,al.

    13

    on:

    t com

    ponentsolid

    the c

    ng lea

    onent

    fromnd liq

    mpon

    hing

    rom a

    olid tid,

    nt for

    solid

    liquid

    separa

    ,

    ion.

    Pha

    e Tra

    Phase

    sfor

    iagra

    ation

    of

    14

    ater

  • 7/31/2019 221-02

    6/15

    Pha

    e Equilibrium

    15

    Equ

    ilibriu

    Single

    m-Sta

    Stage

    ed O

    Unit

    16

    eration

  • 7/31/2019 221-02

    7/15

    Equ

    ilibriu

    Multip

    m-Sta

    le Sta

    ed O

    ed Uni

    17

    eratio

    t

    n

    18

    Different Representation of VLE Data

    (1) Ideal solution & Raoult's Law:

    Raoult's Law states that, for an ideal solution, the

    equilibrium partial pressure of a component at a fixed

    temperature T equals the product of its vapor pressure

    (when it is pure) and its mole fraction in the liquid:

    For component A,

    PA = YAPT = PA*XAYA = (PA*/PT)XA

    where

    PA = equilibrium partial pressure of component-A

    in the gas at temperature T

    PA* = vapor pressure of pure liquid A at temperature T

    XA

    = liquid-phase mole fraction of component-A

    at temperature TYA = gas-phase mole fraction of component-A

    at temperature T

    PT = system total pressure

    Note: The vapor pressure is a constant at constant

    temperature.

    Hence, from the equation, we see that Raoult's Law

    predicts a linear equilibrium relationship between P

    and X.

  • 7/31/2019 221-02

    8/15

    Vap

    whe

    The

    solu

    Com

    Benz

    Etha

    n-he

    Tolu

    Wate

    r pres

    Antoi

    e A, B

    consta

    ion is

    ound

    ene

    ol

    tane

    ne

    r

    ures o

    e Equ

    ln P

    and C

    nt-te

    hown

    f pure

    ation:

    are co

    perat

    in the

    A

    13.85

    16.67

    13.85

    14.00

    16.2

    19

    liquid

    nstant

    re ph

    igure

    94 27

    58 36

    87 29

    98 31

    62 37

    an be

    /

    .

    se di

    below.

    B

    73.78

    74.49

    91.32

    03.01

    99.89

    estima

    gram

    C

    220.07

    226.45

    216.64

    219.79

    226.35

    ed usi

    for an

    g

    deal

    20

    For a binary mixture of A and B;

    PA = PA*XA ; PB = PB*XB = PB*(1 - XA)

    The partial pressures PA and PB vary linearly with XA.

    This is shown as PA vs. X and PB vs. X respectively in

    the Figure.

    For ideal gas mixture, the total pressure is the sum of

    the partial pressures.

    Total pressure PT = PA + PB

    Replacing for the partial pressures and re-arrange, we

    have:

    PT = ( PA* - PB* ) XA + PB*

    The total pressure varies linearly with XA . This is

    shown as PT vs. X in the Figure.

    In addition, PA = YA PT thus PA*XA = YA PT, and we

    have:

    Substitute into earlier equation to remove XA:

  • 7/31/2019 221-02

    9/15

    21

    PT PA* = (PA* - PB* ) ( YA PT ) + PA* PB*

    PT PA* - (PA* - PB* ) ( YA PT ) = PA* PB*

    The total pressure varies nonlinearly with YA. This isshown as PT vs. Y in the Figure.

    Also, since PA* XA = YA PT ; we have ,

    All the above equations are useful in determining the

    equilibrium variables X and Y.

    Boiling Points of Mixture of Liquids

    Even at constant pressure, depending on relative

    concentrations of each component in the liquid, many

    boiling point temperatures are possible for mixture of

    liquids (solutions). For mixture, we use the term bubble

    point when the liquid starts to boil, and dew point

    when the vapor starts to condense. For liquid solution,bubble points need not be the same as dew points.

    Indeed, boiling of a liquid mixture takes place over a

    range of boiling points. Likewise, condensation of a

    vapor mixture takes place over a range of condensation

    points.

    Pha

    e Dia ram (pressur

    22

    is constant):

  • 7/31/2019 221-02

    10/15

    Idea

    l Solut on: be zene

    23

    nd tol ene

    24

    Example 1: Determine the T-x-y relationship for

    ethanol and water using Antoine Equation assuming

    that ethanol-water form an ideal solution. Plot the

    resulting data. Please use ambient pressure.

    Solution: Ambient pressure = 101.3 kPa

    Take an example of 82.63185oC: 16.6758 3674.49/(82.63185 + 226.45)=4.7874PE* = 119.9885

    lnPW*=16.2620 3799.89/(82.63185 + 226.35)=PW* = 52.66227

    101.3 52.66227

    119.9885 52.66227 0.722419

    119.9885101.3 0.722419 0.855695

    XW = 1- XE = 1- 0.722419 = 0.277581

    YW = 1- YE = 1- 0.855695 = 0.144305

    Repeat this process for other temperatures, we have the

    following table:

  • 7/31/2019 221-02

    11/15

    The T-X-Y plot i as bel

    25

    ow:

    26

    Example 2: For the system of ethanol-water mixture at

    ambient pressure, determine

    1) What is the boiling point of pure ethanol and water?

    2) What is the bubble point temperature of a mixturecontaining 0.25 mole fraction of ethanol? What is its

    dew point temperature?

    3) What are the bubble and dew point temperatures of a

    solution containing 30 wt.% water?

    Solution: Ambient pressure = 101.3 kPa1)

    For pure ethanol, 101.3 4.618= 16.6758 3674.49/(T + 226.45)

    The normal boiling point of ethanol is T = 78.3 oC

    For pure water,

    101.3 4.618

    = 16.2620 3799.89/(T + 226.35)The normal boiling point of water is T = 100 oC

    2)

    Bubble point at XE = 0.25: from the Figure, TB = 92oC,

    the equilibrium YE = 0.46

    Dew point at YE = 0.25: from the Figure, TD = 96o

    C,

  • 7/31/2019 221-02

    12/15

    3) 3

    30w

    Tot

    Bub

    equi

    De

    % w/

    xW = 0

    % wat

    l mole

    X

    X

    le poi

    libriu

    point

    wate

    .3, con

    r =30/

    = 1.= 3.1

    = 1.6

    = 1 -

    t at X

    YE =

    at YE

    = 30

    vert to

    18 mol

    7 mol

    7/3.19

    W =

    E = 0.4

    0.68

    0.476

    27

    wate

    moles

    es wat

    s wat

    = 0.52

    .4765

    765: T

    5: TD

    + 70

    er + 70

    r + 1.

    35

    B = 87.

    91.8

    ethan

    /46 m

    2 mol

    5 oC, t

    C

    ol:

    les eth

    s etha

    e

    anol

    ol

    28

    (2) Tabulated data:

    The experimental VLE data are usually obtained using

    special stills where the temperature, pressure and

    concentrations of the components in liquid and vapor

    phases could be accurately determined.

    X, Y (mole fraction) x, y (mass fraction)

    for binary mixture (2-components):

    x = X*MWA/(X *MWA + (1-X) *MWB)

    ** derive the equations for n-component and for x X

    X ( e t h a n o l ) X ( w a t e r ) Y ( e t h a n o l ) Y ( w a t e r ) T ( C )

    0 1 0 1 1 0 0

    0 . 0 1 9 0 . 9 8 1 0 . 1 7 0 . 8 3 9 5 . 5

    0 . 0 7 2 1 0 . 9 2 7 9 0 . 3 8 9 1 0 . 6 1 0 9 8 9

    0 . 0 9 6 6 0 . 9 0 3 4 0 . 4 3 7 5 0 . 5 6 2 5 8 6 . 7

    0 . 1 2 3 8 0 . 8 7 6 2 0 . 4 7 0 4 0 . 5 2 9 6 8 5 . 3

    0 . 1 6 6 1 0 . 8 3 3 9 0 . 5 0 8 9 0 . 4 9 1 1 8 4 . 1

    0 . 2 3 7 7 0 . 7 6 2 3 0 . 5 4 4 5 0 . 4 5 5 5 8 2 . 7

    0 . 2 6 0 8 0 . 7 3 9 2 0 . 5 5 8 0 . 4 4 2 8 2 . 3

    0 . 3 2 7 3 0 . 6 7 2 7 0 . 5 8 2 6 0 . 4 1 7 4 8 1 . 5

    0 . 3 9 6 5 0 . 6 0 3 5 0 . 6 1 2 2 0 . 3 8 7 8 8 0 . 7

    0 . 5 0 7 9 0 . 4 9 2 1 0 . 6 5 6 4 0 . 3 4 3 6 7 9 . 80 . 5 1 9 8 0 . 4 8 0 2 0 . 6 5 9 9 0 . 3 4 0 1 7 9 . 7

    0 . 5 7 3 2 0 . 4 2 6 8 0 . 6 8 4 1 0 . 3 1 5 9 7 9 . 3

    0 . 6 7 6 3 0 . 3 2 3 7 0 . 7 3 8 5 0 . 2 6 1 5 7 8 . 7 4

    0 . 7 4 7 2 0 . 2 5 2 8 0 . 7 8 1 5 0 . 2 1 8 5 7 8 . 4 1

    0 . 8 9 4 3 0 . 1 0 5 7 0 . 8 9 4 3 0 . 1 0 5 7 7 8 . 1 5

    1 0 1 0 7 8 . 3

  • 7/31/2019 221-02

    13/15

    (3) raphi

    T-x-y

    al repr

    iagra

    esenta

    29

    ion: Exa

    solu

    Wh

    equiWh

    alco

    Solu

    At TWh

    Wh

    ple

    ion if

    t sho

    libriut is th

    ol?

    tion:

    B = 92.n xA =

    n xA =

    : Dete

    its b

    ld be

    with tbubbl

    5 oC:0.78 :

    0.95 :

    mine

    bble

    the et

    his sole point

    A = 0.TB = 7

    TB = 7

    30

    he co

    oint t

    anol

    tion?temp

    4, yA8.3

    oC

    8.3oC

    centra

    emper

    conten

    rature

    0.28

    tion o

    ture i

    of t

    of 78

    an al

    s 92.5

    e vap

    nd 95

    oholoC?

    r at

    wt%

  • 7/31/2019 221-02

    14/15

    (3)

    Det

    with

    raphi

    X-Y o

    rmine

    an 30,

    al repr

    McC

    the co

    60, 80

    esenta

    be-Th

    positi

    and 9

    31

    ion:

    ele di

    on of t

    mol.

    gram

    e vap

    etha

    r at e

    ol sol

    uilibri

    tion.

    m

    32

  • 7/31/2019 221-02

    15/15

    33

    (4) Relative Volatility (AB)

    AB = (YA XB)/(YB XA)

    YA = AB XA/(1 + (AB -1)XA)

    T(C) Kic4 KC6 alpha

    10 1.1 0.06 18.33333

    20 1.5 0.095 15.7894730 2 0.15 13.33333

    40 2.5 0.2 12.5

    50 3 0.3 10

    60 3.8 0.4 9.5

    70 4.6 0.54 8.518519

    80 5.5 0.7 7.857143

    90 6.5 0.9 7.222222

    Exa

    mixt

    X i c

    ple 4

    ure if t

    4

    : Plot

    he rela

    0

    0 . 1

    0 . 2

    0 . 3

    0 . 40 . 5

    0 . 6

    0 . 7

    0 . 8

    0 . 9

    1

    -Y di

    tive vo

    i c 4

    0 . 1 5

    0 . 2 9

    0 . 4 2

    0 . 50 . 6

    0 . 7

    0 . 7 9

    0 . 8 7

    0 . 9

    34

    gram

    latility

    0

    8 8 7 9

    8 2 4 6

    1 4 8 8

    3 1 2 52 9 6 3

    1 8 3 1

    8 6 5 8

    1 7 9 5

    3 8 6 5

    1

    for iso

    is kno

    utane

    wn to

    isopen

    e 1.7

    tane