2157-7439-3-133

Upload: siti-aisah-nurjanah

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 2157-7439-3-133

    1/5

    Research Article Open Access

    Nanomedicine & NanotechnologyAbdelhalim et al., J Nanomed Nanotechol 2012, 3:3

    http://dx.doi.org/10.4172/2157-7439.1000133

    Volume 3 Issue 3 1000133J Nanomed Nanotechol

    ISSN:2157-7439 JNMNT an open access journal

    Keywords: Gold nanoparticles; particle size; absorbance;fluorescence; spectroscopy

    Introduction

    One particularly exciting field o research involves the use o GNPsin the detection and treatment o cancer cells [1]. Current methods ocancer diagnosis and treatment are costly and can be very harmul tothe body. GNPs, however, offer an inexpensive route to targeting onlycancerous cells, leaving healthy cells untouched [2].

    Te very small size o nanoparticles (

  • 8/12/2019 2157-7439-3-133

    2/5

    Citation:Abdelhalim MAK, Mady MM, Ghannam MM (2012) Physical Properties of Different Gold Nanoparticles: Ultraviolet-Visible and Fluorescence

    Measurements. J Nanomed Nanotechol 3:133. doi:10.4172/2157-7439.1000133

    Page 2 of 5

    Volume 3 Issue 3 1000133J Nanomed Nanotechol

    ISSN:2157-7439 JNMNT an open access journal

    surace Plasmon band o GNPs has been widely investigated, studieson the photoluminescence rom GNPs are scarce [21].

    Te properties o NPs give them high potential or use in variousmedical applications, particularly in diagnostics and therapy. In thisstudy we would like to shed the light on the physical properties oGNPs because these effects have not been documented beore. TeUltraviolet-Visible and fluorescence properties o non-unctionalizedGNPs have not thus ar been comprehensively documented. Here weocus our attention in the absorption and fluorescence spectra o GNPsolutions as a unction o particle size and concentration. We also useransmission Electron Microscopy (EM) to evaluate the morphologyand exact size o the GNPs.

    Materials and Methods

    GNP size determination

    GNPs with nominal sizes o 10, 20 and 50 nm were purchased(Products MKN-Au-010; MKN-Au-020; MKN-Au-050, MK ImpexCorp, Canada) and used in this study. Te GNPs were dissolved inaqueous solution to give a concentration 0.01%. Te mean sizes,morphology and good particle size distribution or these GNPs wereevaluated rom the EM images. Te images indicate that the particlesare homogeneous in both shape and size. Te high electron densitieso the GNPs make EM as an effective way o characterizing theirmorphology and size.

    UV-Visible and fluorescence spectroscopy

    UVvisible characterization o solutions o 10, 20 and 50 nmGNPs at concentrations rom 0.210-3110-2% was perormed usinga UV-Visible spectrophotometer (UV-1601 PC, Shimadzu, Japan; H14

    grating (UV through shortwave NIR with optical resolution o 0.4nm)). Te absorbance measurements were made over the wavelengthrange o 250-700 nm using 1 cm path length quartz cuvettes, whichwere cleaned beore each use by sonicating them or 5 min in deionizedwater and then rinsing with deionized water. Te pH values o allsolutions remained at 6.3.

    Fluorescence characterization o the GNP solutions was perormedusing a FluoroMax-2 JOBAN YVON-SPEX, Instruments S.A., Inc.,France. Te fluorescence measurements were also made over thewavelength range o 250-700 nm.

    Results and Discussion

    Size and morphology of gold nanoparticles

    Te 10 and 20 nm GNPs show spherical morphology while the50 nm GNPs show hexagonal morphology. All GNPs show narrowparticle size distribution and good dispersion in the solution. Te meansizes or these GNPs were calculated rom the EM images. Mean sizeor 10 nm GNPs was 9.45 1.33 nm, 20 nm GNPs was 20.18 1.80 nmand 50 nm GNPs was 50.73 3.58 nm (Figure 1).

    UV-Visible spectroscopy

    Figure 2 shows the UVVisible absorption spectra o 10, 20 and 50nm GNPs; the maximum in the Au absorbance intensity varies around517 nm.

    Te optical properties such as absorption maxima and absorption

    intensity are particle size dependent. An intense absorption peak at 517nm is generally attributed to the surace plasmon excitation o smallspherical gold particles.

    10 20 50

    0

    10

    20

    30

    40

    50

    60

    MeanSize(nm)

    Gold nanoparticles Size (nm)

    Figure1: The size of different gold nanoparticles (n = 7).

    200 300 400 500 600 700 800

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    Abso

    rbance

    Wavelength (nm)

    GNPs sizes: 10, 20 and 50 nmS10nmC2.5S20nmC2.5S50nmC2.5

    Figure2:The UVVisible absorption spectra of 10, 20 and 50 nm GNPs.

    0 10 20 30 40 50 60

    0.040

    0.048

    0.056

    0.064

    0.072

    0.080

    517

    524

    532

    ExtinctionCoefficient

    Size (nm)

    Ext.Coeff

    Figure3: The variation in the extinction coefcient with GNPs size.

    http://dx.doi.org/10.4172/2157-7439.1000133http://dx.doi.org/10.4172/2157-7439.1000133
  • 8/12/2019 2157-7439-3-133

    3/5

    Citation:Abdelhalim MAK, Mady MM, Ghannam MM (2012) Physical Properties of Different Gold Nanoparticles: Ultraviolet-Visible and Fluorescence

    Measurements. J Nanomed Nanotechol 3:133. doi:10.4172/2157-7439.1000133

    Page 3 of 5

    Volume 3 Issue 3 1000133J Nanomed Nanotechol

    ISSN:2157-7439 JNMNT an open access journal

    Figure 3 shows the variation in the extinction coefficient withGNPs size. When the GNP size changed rom 10 nm to 50 nm, themaximum extinction o Surace Plasmon Band (SPB) shifed rom

    517 nm to 532 nm in the visible region which may be attributed tothe surace plasmon oscillation o ree electrons. Te surace plasmonresonance o the gold particles is red shifed with increase in particlesize in accordance with Mie theory [22].

    Figure 4shows the variation in the absorbance o 10, 20 and 50 nmGNPs with concentration (0.210-3110-2%). At a constant GNP size,the absorbance was ound to be proportional to the concentration ogold. Tis is not surprising, since the increased number o nanoparticlesalso provides increased surace or surace plasmon resonance.

    Te optical properties o gold are due to 5d (valence) and 6sp(conduction) electrons. Te outermost d and s electrons o theconstituent atoms must be treated together leading to six bands: five othem are airly flat, lying a ew eV below the Fermi level, and are usuallydenoted as d bands; the sixth one, which is almost ree-electron like isknown as the conduction band or sp band [23].

    Single photon luminescence rom gold has been described [23,24]as a three-step process as ollows: (i) excitation o electrons rom theoccupied d to the sp band which is above the Fermi level to generateelectronhole pairs, (ii) scattering o electrons and holes on thepicosecond time scale with partial energy transer to the phonon latticeand (iii) recombination o an electron rom an occupied sp band withthe hole resulting in photon emission.

    Fluorescence spectroscopy

    Te fluorescence spectra o 10, 20 and 50 nm GNP solutionsmeasured with an excitation wavelength o 308 nm are displayed inFigure 5. Te centre o the photoluminescence (PL) band appears at423 nm. An increase in fluorescence intensity with increasing GNP sizewas observed. Te incident light at 308 nm will lead to excitation o thesurace plasmon coherent electronic motion as well as the d electrons.Te applied concentration or each particle size was included in able1.

    At a fixed GNP size o 10 nm, the intensity o the emission bandincreased with increasing GNP concentration, and the trend wasconsistent with the changes corresponding to surace plasmon band oGNPs (Figure 6). Tese results indicate that the fluorescence emissionband intensity and the absorption band o GNPs were concentrationand particle size dependent.

    When quantitative analysis was perormed on the fluorescencespectra, the fluorescent intensity was increased linearly as theconcentration goes higher with correlation coefficient R2 = 0.995.

    Te results o this study are o high significance to the field onanotechnology or these reasons: Advances in nanotechnology haveidentified promising candidates or many biological and biomedicalapplications. Since the properties o NPs differ rom that o theirbulk materials, they are being increasingly exploited or medicalapplications. Nanoparticles (NPs) have potentially caused adverseeffects on organ, tissue, cellular, subcellular and protein levels due totheir unusual physicochemical properties [25-30].

    Abdelhalim and Jarrar [26-29], 2011 and 2012 have reported thatintraperitoneal administration o different sizes o GNPs inducedtoxicity in several organs such as liver, heart, kidneys and lungs thatbecame unable to deal with the accumulated residues resulting rommetabolic and structural disturbances caused by these NPs. Tese

    alterations were size-dependent with smaller ones (10 nm GNPs)induced the most effects and related to time exposure o GNPs [25-30].

    Te appearance o hepatocytes cytoplasmic degeneration and

    0 2 4 6 8 10

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Absorbance(au)

    Concentraton x10-3%

    size 10 nm: absorption band at 517 nmsize 20 nm: absorption band at 524 nmsize 50 nm: absorption band at 532 nm

    Figure4: The variation in the absorbance of 10, 20 and 50 nm GNPs withconcentration.

    350 400 450 500 550

    0

    500000

    1000000

    1500000

    2000000

    2500000

    3000000

    3500000

    Counts

    Wavelength (nm)

    Fluorescence

    Excitation at 308 nm

    10 nm GNPs

    20 nm GNPs

    50 nm GNPs

    Figure5: The uorescence spectra of GNP solutions measured with an

    excitation wavelength of 308 nm.

    350 400 450 500 550

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    320

    Fluo

    rescence

    Intensity

    Wavelength (nm)

    FluorescenceGNPs 10 nm

    Conc. 0.5 x 10-3%

    Conc. 0.8 x 10-3%

    Conc. 1.0 x 10-3%

    Conc. 2.5 x 10-3%

    Conc. 10 x 10-3%

    Figure6: The emission uorescence peak intensity for GNP of size 10nm atdifferent concentrations.

    http://dx.doi.org/10.4172/2157-7439.1000133http://dx.doi.org/10.4172/2157-7439.1000133
  • 8/12/2019 2157-7439-3-133

    4/5

    Citation:Abdelhalim MAK, Mady MM, Ghannam MM (2012) Physical Properties of Different Gold Nanoparticles: Ultraviolet-Visible and Fluorescence

    Measurements. J Nanomed Nanotechol 3:133. doi:10.4172/2157-7439.1000133

    Page 4 of 5

    Volume 3 Issue 3 1000133J Nanomed Nanotechol

    ISSN:2157-7439 JNMNT an open access journal

    nuclear destruction may suggest that GNPs interact with proteins andenzymes o the hepatic tissue interering with the antioxidant deencemechanism and leading to Reactive Oxygen Species (ROS) generationwhich in turn may induce stress in the hepatocytes to undergo atrophyand necrosis. One possible way o avoiding significant toxicity is to coatthe GNPs with biocompatible polymers. Now-a-days other experimentsto effectively demonstrate and avoid the possible side effects o GNPsin the in vivostudies are taken in consideration and conducted [26,29].

    Conclusions

    Te aim o the present study was to investigate the absorption andfluorescence spectra or 10, 20 and 50 nm GNPs at concentrations rom0.210-3to 110-2%.

    Te high electron density and homogeneity o GNPs make themhighly conspicuous under the EM.

    Te maximum absorption o SPB shifed rom 517 nm to 532nm, when the GNPs size changed rom 10 nm to 50 nm which mightbe attributed to the surace plasmon oscillation o the ree electrons.At a constant GNP size, the absorbance was proportional to theconcentration o gold. Te fluorescence emission band o the GNPs

    varied with GNP size and concentration. Te fluorescence emissionband intensity increased with increasing GNP size and concentration.

    Tis study demonstrates that the absorption and fluorescencespectra or different GNP sizes were size and concentration-dependent.

    Further experiments using absorbance and fluorescence spectra arerequired to be perormed afer the administration o GNPs throughdifferent routes in rats in vivo.

    Acknowledgements

    The authors are very grateful to NPST. This research was nancially supported

    by the National Science and Technology Innovation Plan (NSTIP), Research No.

    08-ADV206-02 and Research No. 09-NAN670-02,College of Science, King Saud

    University, Saudi Arabia.

    References

    1. Soppimath KS, Betageri G (2008) Nanosctructures for cancer diagnostics and

    therapy. Biomedical nanostructures: John Wiley & Sons Inc, New York.

    2. Pellequer Y, Lamprecht A (2009) Nanoscale cancer therapeutics.

    Nanotherapeutics: Drug delivery concepts in nanoscience. Pan Stanford

    Publishing, Chicago.

    3. Liu WT (2006) Nanoparticles and their biological and environmental

    applications. J Biosci Bioeng 102: 1-7.

    4. Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, et al. (2008) Enhanced thermal

    conductivity and viscosity of copper nanoparticles in ethylene glycol nanouid.

    J Appl Phys 103: 074301.

    5. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78: 585-594.

    6. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:

    1547-1562.

    7. Shrestha S, Yeung C, Nunnerley C, Tsang SC (2007) Comparison of

    morphology and electrical conductivity of various thin lms containing nano-

    crystalline praseodymium oxide particles. Sens Actuators A Phys 136: 191-

    198.

    8. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state.

    Chem Rev 92: 1709-1727.

    9. Tian ZQ, Bin R, Wu DY (2002) Surface-Enhanced Raman Scattering: From

    Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures.

    J Phys Chem B 106: 9463-9483.

    10. Kamat PV (2002) Photophysical, Photochemical and Photocatalytic Aspects of

    Metal Nanoparticles. J Phys Chem B 106: 7729-7744.

    11. Shipway AN, Eugenii K, Itamar W (2000) Nanoparticle Arrays on Surfaces for

    Electronic, Optical, and Sensor Applications. Chem Phys Chem 2000 1: 18-52.

    12. Kuwahara Y, Akiyama T, Yamada S (2001) Facile fabrication of

    photoelectrochemical assemblies consisting of gold nanoparticles and a

    Tris(2,2-bipyridine)ruthenium(II)viologen linked thiol. Langmuir 17: 5714-

    5716.

    13. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method

    for rationally assembling nanoparticles into macroscopic materials. Nature 382:

    607-609.

    14. Huber M, Wei TF, Muller UR, Lefebvre PA, Marla SS, et al. (2004) Gold

    nanoparticle probe-based gene expression analysis with unamplied total

    human RNA. Nucleic Acids Res 32: e137.

    15. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, et al. (2008) Gold

    nanoparticles for the development of clinical diagnosis methods. Anal Bioanal

    Chem 391: 943-950.

    16.Azzazy HM, Mansour MM, Kazmierczak SC (2006) Nanodiagnostics: a new

    frontier for clinical laboratory medicine. Clin Chem 52: 1238-1246.

    17. Fortina P, Kricka LJ, Surrey S, Grodzinski P (2005) Nanobiotechnology: the

    promise and reality of new approaches to molecular recognition. Trends

    Biotechnol 23: 168-173.

    18. Wilson R (2008) The use of gold nanoparticles in diagnostics and detection.

    Chem Soc Rev 37: 2028-2045.

    19. Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin

    Chem 53: 2002-2009.

    20. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer.

    Nano Today 2: 18-29.

    21. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold

    nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol

    Spectrosc 67: 1003-1006.

    22. Mie G (1908) Articles on the optical characteristics of turbid tubes, especially

    colloidal metal solutions. Ann Phys 25: 377.

    23. Lin A, Son DH, Ahn IH, Song GH, Han WT (2007) Visible to infrared

    photoluminescence from gold nanoparticles embedded in germano-silicateglass ber.Opt Express 15: 6374-6379.

    24. Wang H, Huff TB, Zweifel DA, He W, Low PS, et al. (2005) In vitroand in vivo

    two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci

    U S A 102: 15752-15756.

    25.Abdelhalim MA (2012) Exposure to gold nanoparticles produces pneumonia,

    brosis, chronic inammatory cell inltrates, congested and dilated blood

    vessels, and hemosiderin granule and emphysema foci. Journal of Cancer

    Science & Therapy 4: 46-50.

    26.Abdelhalim MA, Jarrar BM (2011) Gold nanoparticles administration induced

    prominent inammatory, central vein intima disruption, fatty change and Kupffer

    cells hyperplasia. Lipids Health Dis 10: 133.

    27.Abdelhalim MA, Jarrar BM (2011) The appearance of renal cells cytoplasmic

    degeneration and nuclear destruction might be an indication of GNPs toxicity.

    Lipids Health Dis 10: 147.

    28.Abdelhalim MA, Jarrar BM (2011) Renal tissue alterations were size-dependent

    with smaller ones induced more effects and related with time exposure of gold

    nanoparticles. Lipids Health Dis10: 163.

    Product type Product # MKN-Au-010 Gold

    nanoparticles in aqueous solution

    Product # MKN-Au-020 Gold

    nanoparticles in aqueous solution

    Product # MKN-Au-050 Gold

    nanoparticles in aqueous solution

    Number of particles/mL 5.7 x 1012

    particles/mL 7.0 x 1011

    particles/mL 4.5 x 1010particles/mL

    Concentration Concentration: 0.01% Au Concentration: 0.01% Au Concentration: 0.01% Au

    Size Size: 10 nm Size: 20 nm Size: 50 nm

    Table1: The applied concentration for each particle size.

    http://dx.doi.org/10.4172/2157-7439.1000133http://www.sciencedirect.com/science/article/pii/S138917230670620Xhttp://www.sciencedirect.com/science/article/pii/S138917230670620Xhttp://jap.aip.org/resource/1/japiau/v103/i7/p074301_s1?isAuthorized=nohttp://jap.aip.org/resource/1/japiau/v103/i7/p074301_s1?isAuthorized=nohttp://jap.aip.org/resource/1/japiau/v103/i7/p074301_s1?isAuthorized=nohttp://www.ncbi.nlm.nih.gov/pubmed/15923216http://www.ncbi.nlm.nih.gov/pubmed/15826019http://www.ncbi.nlm.nih.gov/pubmed/15826019http://www.nanoarchive.org/4849/http://www.nanoarchive.org/4849/http://www.nanoarchive.org/4849/http://www.nanoarchive.org/4849/http://pubs.acs.org/doi/abs/10.1021/cr00016a002http://pubs.acs.org/doi/abs/10.1021/cr00016a002http://pubs.acs.org/doi/abs/10.1021/jp0257449http://pubs.acs.org/doi/abs/10.1021/jp0257449http://pubs.acs.org/doi/abs/10.1021/jp0257449http://pubs.acs.org/doi/abs/10.1021/jp0209289http://pubs.acs.org/doi/abs/10.1021/jp0209289http://www.its.caltech.edu/~mankei/ee150sp03/Shipway_nanoparticle_arrays_chemphyschem_2000.pdfhttp://www.its.caltech.edu/~mankei/ee150sp03/Shipway_nanoparticle_arrays_chemphyschem_2000.pdfhttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://www.ncbi.nlm.nih.gov/pubmed/8757129http://www.ncbi.nlm.nih.gov/pubmed/8757129http://www.ncbi.nlm.nih.gov/pubmed/8757129http://www.ncbi.nlm.nih.gov/pubmed/15475384http://www.ncbi.nlm.nih.gov/pubmed/15475384http://www.ncbi.nlm.nih.gov/pubmed/15475384http://www.ncbi.nlm.nih.gov/pubmed/18157524http://www.ncbi.nlm.nih.gov/pubmed/18157524http://www.ncbi.nlm.nih.gov/pubmed/18157524http://www.ncbi.nlm.nih.gov/pubmed/16709623http://www.ncbi.nlm.nih.gov/pubmed/16709623http://www.ncbi.nlm.nih.gov/pubmed/15780707http://www.ncbi.nlm.nih.gov/pubmed/15780707http://www.ncbi.nlm.nih.gov/pubmed/15780707http://www.ncbi.nlm.nih.gov/pubmed/18762845http://www.ncbi.nlm.nih.gov/pubmed/18762845http://www.ncbi.nlm.nih.gov/pubmed/17890442http://www.ncbi.nlm.nih.gov/pubmed/17890442http://www.sciencedirect.com/science/article/pii/S1748013207700166http://www.sciencedirect.com/science/article/pii/S1748013207700166http://www.ncbi.nlm.nih.gov/pubmed/17084659http://www.ncbi.nlm.nih.gov/pubmed/17084659http://www.ncbi.nlm.nih.gov/pubmed/17084659http://www.ncbi.nlm.nih.gov/pubmed/19546942http://www.ncbi.nlm.nih.gov/pubmed/19546942http://www.ncbi.nlm.nih.gov/pubmed/19546942http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.ncbi.nlm.nih.gov/pubmed/21819574http://www.ncbi.nlm.nih.gov/pubmed/21819574http://www.ncbi.nlm.nih.gov/pubmed/21819574http://www.ncbi.nlm.nih.gov/pubmed/21859444http://www.ncbi.nlm.nih.gov/pubmed/21859444http://www.ncbi.nlm.nih.gov/pubmed/21859444http://www.ncbi.nlm.nih.gov/pubmed/21936889http://www.ncbi.nlm.nih.gov/pubmed/21936889http://www.ncbi.nlm.nih.gov/pubmed/21936889http://www.ncbi.nlm.nih.gov/pubmed/21936889http://www.ncbi.nlm.nih.gov/pubmed/21936889http://www.ncbi.nlm.nih.gov/pubmed/21936889http://www.ncbi.nlm.nih.gov/pubmed/21859444http://www.ncbi.nlm.nih.gov/pubmed/21859444http://www.ncbi.nlm.nih.gov/pubmed/21859444http://www.ncbi.nlm.nih.gov/pubmed/21819574http://www.ncbi.nlm.nih.gov/pubmed/21819574http://www.ncbi.nlm.nih.gov/pubmed/21819574http://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.omicsonline.org/1948-5956/JCST-04-046.pdfhttp://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/16239346http://www.ncbi.nlm.nih.gov/pubmed/19546942http://www.ncbi.nlm.nih.gov/pubmed/19546942http://www.ncbi.nlm.nih.gov/pubmed/19546942http://www.ncbi.nlm.nih.gov/pubmed/17084659http://www.ncbi.nlm.nih.gov/pubmed/17084659http://www.ncbi.nlm.nih.gov/pubmed/17084659http://www.sciencedirect.com/science/article/pii/S1748013207700166http://www.sciencedirect.com/science/article/pii/S1748013207700166http://www.ncbi.nlm.nih.gov/pubmed/17890442http://www.ncbi.nlm.nih.gov/pubmed/17890442http://www.ncbi.nlm.nih.gov/pubmed/18762845http://www.ncbi.nlm.nih.gov/pubmed/18762845http://www.ncbi.nlm.nih.gov/pubmed/15780707http://www.ncbi.nlm.nih.gov/pubmed/15780707http://www.ncbi.nlm.nih.gov/pubmed/15780707http://www.ncbi.nlm.nih.gov/pubmed/16709623http://www.ncbi.nlm.nih.gov/pubmed/16709623http://www.ncbi.nlm.nih.gov/pubmed/18157524http://www.ncbi.nlm.nih.gov/pubmed/18157524http://www.ncbi.nlm.nih.gov/pubmed/18157524http://www.ncbi.nlm.nih.gov/pubmed/15475384http://www.ncbi.nlm.nih.gov/pubmed/15475384http://www.ncbi.nlm.nih.gov/pubmed/15475384http://www.ncbi.nlm.nih.gov/pubmed/8757129http://www.ncbi.nlm.nih.gov/pubmed/8757129http://www.ncbi.nlm.nih.gov/pubmed/8757129http://pubs.acs.org/doi/abs/10.1021/la010566ghttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://pubs.acs.org/doi/abs/10.1021/la010566ghttp://www.its.caltech.edu/~mankei/ee150sp03/Shipway_nanoparticle_arrays_chemphyschem_2000.pdfhttp://www.its.caltech.edu/~mankei/ee150sp03/Shipway_nanoparticle_arrays_chemphyschem_2000.pdfhttp://pubs.acs.org/doi/abs/10.1021/jp0209289http://pubs.acs.org/doi/abs/10.1021/jp0209289http://pubs.acs.org/doi/abs/10.1021/jp0257449http://pubs.acs.org/doi/abs/10.1021/jp0257449http://pubs.acs.org/doi/abs/10.1021/jp0257449http://pubs.acs.org/doi/abs/10.1021/cr00016a002http://pubs.acs.org/doi/abs/10.1021/cr00016a002http://www.nanoarchive.org/4849/http://www.nanoarchive.org/4849/http://www.nanoarchive.org/4849/http://www.nanoarchive.org/4849/http://www.ncbi.nlm.nih.gov/pubmed/15826019http://www.ncbi.nlm.nih.gov/pubmed/15826019http://www.ncbi.nlm.nih.gov/pubmed/15923216http://jap.aip.org/resource/1/japiau/v103/i7/p074301_s1?isAuthorized=nohttp://jap.aip.org/resource/1/japiau/v103/i7/p074301_s1?isAuthorized=nohttp://jap.aip.org/resource/1/japiau/v103/i7/p074301_s1?isAuthorized=nohttp://www.sciencedirect.com/science/article/pii/S138917230670620Xhttp://www.sciencedirect.com/science/article/pii/S138917230670620Xhttp://dx.doi.org/10.4172/2157-7439.1000133
  • 8/12/2019 2157-7439-3-133

    5/5

    Citation:Abdelhalim MAK, Mady MM, Ghannam MM (2012) Physical Properties of Different Gold Nanoparticles: Ultraviolet-Visible and Fluorescence

    Measurements. J Nanomed Nanotechol 3:133. doi:10.4172/2157-7439.1000133

    Page 5 of 5

    Volume 3 Issue 3 1000133J Nanomed Nanotechol

    ISSN:2157-7439 JNMNT an open access journal

    Submit your next manuscript and get advantages of OMICS

    Group submissions

    Unique features:

    User friendly/feasible website-translation of your paper to 50 worlds leading languages

    Audio Version of published paper

    Digital articles to share and explore

    Special features:

    200 Open Access Journals

    15,000 editorial team

    21 days rapid review process

    Quality and quick editorial, review and publication processing

    Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc

    Sharing Option: Social Networking Enabled

    Authors, Reviewers and Editors rewarded with online Scientic Credits

    Better discount for your subsequent articles

    Submit your manuscript at: www.editorialmanager.com/biochem

    29.Abdelhalim MA, Jarrar BM (2011) Gold nanoparticles induced cloudy swelling

    to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism,

    binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver.

    Lipids Health Dis 10: 166.

    30.Abdelhalim MA (2011) Exposure to gold nanoparticles produces cardiac tissue

    damage that depends on the size and duration of exposure. Lipids Health Dis

    10: 205.

    http://dx.doi.org/10.4172/2157-7439.1000133http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/22073987http://www.ncbi.nlm.nih.gov/pubmed/22073987http://www.ncbi.nlm.nih.gov/pubmed/22073987http://www.ncbi.nlm.nih.gov/pubmed/22073987http://www.ncbi.nlm.nih.gov/pubmed/22073987http://www.ncbi.nlm.nih.gov/pubmed/22073987http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://www.ncbi.nlm.nih.gov/pubmed/21939512http://dx.doi.org/10.4172/2157-7439.1000133