21352493-thermodynamic-formulas.pdf

Upload: kenneth-mayor

Post on 05-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    1/17

    Thermodynamics

    MTX 220 Formules

    Chapter 2 – Concepts & DefinitionsFormule Units

    Pressure F 

     P  A

    =Pa

    • Units21 1 / Pa N m=

    51 10 0.1bar Pa Mpa= =

    1 101325atm Pa=

    Specific VolumeV 

    vm

    =3

    /m kg 

    Density

    m

    V  ρ  =

     

    1

    v ρ  =

    3/kg m

    Static Pressure Variation

     P gh ρ ∆ = 

    ,↑= − ↓= +

    Pa

    Absolute Temperature( ) ( ) 273.15T K T C  = ° +

    Chapter 3 – Properties of a Pure SubstanceFormule Units

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    2/17

    Quality

    vapor 

    tot 

    m x

    m=

     (vapour mass fraction)

    1  liquid 

    tot 

    m x

    m− =

     (Liqui mass fraction)

    Specific Volume

     f fg v v xv= +  3 /m kg 

    Avera!e Specific Volume

    (1 )  f g v x v xv= − + (only t"o p#ase

    mi$ture)

    3 /m kg 

    %eal &!as la"

    c P P 

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    3/17

    Displacement /or+2 2

    1 1! Fdx PdV  = =∫ ∫     

    %nte!ration2

    2 1

    1

    ( )! PdV P V V  = = −

    ∫ 

       

    Specific /or+

    ! "

    m=

     ("or+ per unit mass)/  kg 

    Po"er (rate of "or+)! FV PV T  ω = = =0 0   ! 

    • VelocityV r ω =   /rad #

    •  TorqueT Fr =   Nm

    Polytropic Process

    ( 1)n ≠1 1 2 2

    n n n PV Con#t PV PV = = =

     

    n Pv C =

    • Polytropic '$ponent2

    1

    1

    2

    ln

    ln

     P 

     P nV 

     

       =      

    • n*11 1 2 2

     PV Con#t PV P V = = =

    Polytropic Process /or+

    1 2 2 2 1 1

    1( ) 1

    1! PV PV n

    n= − ≠

    −  

    • n*12

    1 2 2 21

    ln  V 

    ! PV V 

     =      

      

    Aiabatic Process0$ =

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    4/17

    onuction 2eat Transfer

    dT $ kA

    dx= −0

      .

    *conuctivity! 

    onvection 2eat Transfer

    $ hA T  = ∆0  . 

    h

    *convection coefficient

    -aiation 2eat Transfer 4 4( ) # amb

    $ A T T  εσ = −0   ! 

     Terminolo!y

    $

      * #eat

    1 2$

      * #eat transferre urin! t#e process bet"een state 1 an state 3

    $

      * rate of #eat transfer

      * "or+

    1 2! 

     * "or+ one urin! t#e c#an!e from state 1 to state 3

    ! 0 

    * rate of "or+ * Po"er4 1 /*1 56s

    Chapter # – The First $a% of Thermo'namicsFormule Units

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    5/17

     Total 'ner!y( ) ( ) % & K% P% d% d& d K% d P% = + + → = + +    

    'ner!y2 1 1 2 1 2

    d% $ ! % % $ !  δ δ = − → − = −    

    7inetic 'ner!y20.5 K% mV =    

    Potential 'ner!y2 1 2 1( ) P% mgZ P% P% mg Z Z = → − = −    

    %nternal 'ner!yliq vap liq f vap g  & & & mu m u m u= + → = +

    Specific %nternal 'ner!y

    of

    Saturate Steam(t"o8p#ase mass

    avera!e)

    (1 )  f g 

     f fg 

    u x u xu

    u u xu

    = − +

    = +

    /k kg 

     Total 'ner!y2 2

    2 12 1 2 1 1 2 1 2

    ( )( )

    2

    m V V & & mg Z Z $ !  

    −− + + − = −

       

    Specific 'ner!y20.5' u V gZ  = + +

    'nt#alpy

     ( & PV = +Specific 'nt#alpy

    h u Pv= +   /k kg 

    For %eal asses( ) Pv RT and u f T = =

    • 'nt#alpyh u Pv u RT  = + = +

    • - onstant( ) ( )u f t h f T  

    = → =Specific 'nt#alpy for

    Saturation State

    (t"o8p#ase mass

    avera!e)

    (1 ) f g 

     f fg 

    h x h xh

    h h xh

    = − +

    = +

    /k kg 

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    6/17

    Specific 2eat at

    onstant Volume  1 1

    v

    v v v

    $ & uC 

    m T m T T  

    δ δ δ 

    δ δ δ 

     = = =    

    ( ) ( )' i v ' i

    u u C T T  

    → − = −Specific 2eat at

    onstant Pressure  1 1

     p

     p p p

    $ ( hC 

    m T m T T  

    δ δ δ 

    δ δ δ 

     = = =    

    ( ) (' i p ' i

    h h C T T  → − = −

    Solis 0 Liquis %ncompressible. so v*constant

    c pC C C = =

      (Tables A49 0 A4:)

    2 1 2 1( )u u C T T  − = −

    2 1 2 1 2 1( )h h u u v P P  − = − + −

    %eal ash u Pv u RT  = + = +

    2 1 2 1( )

    vu u C T T  − ≅ −

    2 1 2 1( ) ph h C T T  − ≅ −

    'ner!y -ate( ) % $ ! rat' in out = − = + −00 0

    2 1 1 2 1 2   ( ) % % $ ! chang' in out → − = − = + −

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    7/17

    Chapter ( – First)$a% *nal'sis for * Control +olumeFormule Units

    Volume Flo" -ate

    V V dA AV  = =

    ∫ 

    0

      (usin! avera!e velocity)

    ;ass Flo" -ate

    V m VdA AV A

    v ρ ρ = = =∫ 0

      (usin! avera!e values)/kg #

    Po"er

     p! mC T  =0   0   V

     

    v! mC T  =0   0   V

     V m

    v=   00

    Flo" /or+ -ate flo"! PV mPv= =0 0   0

    Flo" Direction From #i!#er P to lo"er P unless si!nificant 7' or P'

    •  Total

    'nt#alpy21

    2tot h h V gZ  = + +

    %nstantaneous

    Process• ontinuity

    'quation  . .C V i '

    m m m= −

    ∑ ∑0 0 0

    • 'ner!y

    'quation. . . . . .C V C V C V i tot i ' tot  

     % $ ! m h m h= − + −∑ ∑00 0   0 0   First La"

    ( )2 21 1( )2 2i i i ' ' 'd% 

    $ m h V gZ m h V gZ !  dt 

    → + + + = + + + −∑ ∑0   00 0

    Steay State

    Process

    A steay8state #as no stora!e effects. "it# all properties

    constant "it# time

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    8/17

    • 'ner!y

    'quation. . . .C V i tot i C V ' tot '$ m h ! m h+ = +∑ ∑0   00 0

      (in * out)   First La"

    ( )

    2 21 1( )2 2i i i ' ' '

    $ m h V gZ ! m h V gZ  → + + + = + + +

    ∑ ∑0   00 0

    • Specific

    2eat

     Transfer  . .C V 

    $q

    m=

      0

    0

     /k kg 

    • Specific

    /or+   . .C V ! 

    "m

    =  0

    0

    /k kg 

    • SS Sin!leFlo" 'q4

    tot i tot 'q h " h+ = +  (in * out)

     Transient Process #an!e in mass (stora!e) suc# as fillin! or emptyin! of acontainer4

    • ontinuity

    'quation   2 1   i 'm m m m− = −∑ ∑

    • 'ner!y

    'quation   2 1 . . .C V C V i tot i ' tot ' % % $ ! m h m h− = − + −∑ ∑

    ( ) ( )2 22 1 2 2 2 2 1 1 1 11 12 2 % % m u V gZ m u V gZ − = + + − + +

    ( ) ( )2 2. 2 2 2 2 1 1 2 1 . .. .

    1 12 2C V i tot i ' tot ' C V  C V 

    $ m h m h m u V gZ m u V gZ !   + = + + + − + + − ∑ ∑

    Chapter , – The Secon $a% of Thermo'namicsFormule Units

    All

    ,! $

    can also be rates

    ,! $00

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    9/17

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    10/17

    • -eal

    -efri!erator   ) ) R%F Carnot R%F  R%F ( )

    $ T 

    ! T T β β = ≤ =

    Absolute Temp4 ) )

     ( ( 

    T $

    T $=

    Chapter - – .ntrop'Formule Units

    %nequality of lausis

    0$T 

    δ  ≤∫ =

    'ntropy

    r'v

    $d* 

    δ   ≡    

    /k kgK 

    #an!e of 'ntropy   2

    2 1

    1   r'v

    $* * 

    δ   − =      ∫ 

      /k kgK 

    Specific 'ntropy(1 )  f g  # x # x#= − +

     f fg  # # x#= +

    /k kgK 

    'ntropy #an!e

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    11/17

    • arnot ycle %sot#ermal 2eat Transfer>2

    1 22 1

    1

    1

     ( ( 

    $* * $

    T T δ − = =∫ 

     

    -eversible Aiabatic (%sentropic Process)>

    r'v

    $d* 

    δ   =    

     

    -eversible %sot#ermal Process>

    4

    3 44 3

    3   r'v   )

    $$* * 

    T T 

    δ   − = =    ∫ 

    -eversible Aiabatic (%sentropic Process)> 'ntropy

    ecrease in

    process 98: * t#e entropy increase

    in process 1834

    • -eversible

    2eat8Transfer

    Process

    2 2

    1 22 1

    1 1

    1 1   fg  fg 

    r'v

    hq$ # # # $

    m T mT T T  

    δ δ 

     − = = = = =    ∫ ∫ 

    ibbs 'quations Td# du Pdv= +

    Td# dh vdP  = −

    'ntropy eneration

     g'n

    $d* * 

    δ δ = +

    irr g'n! PdV T *  δ δ = −

    2 2

    2 1 1 2

    1 1

     g'n

    $* * d* *  

    δ − = = +∫ ∫ 

    'ntropy ?alance 'q4 %ntrop+ in out g'n= + − +V

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    12/17

    Principle of t#e

    %ncrease of 'ntropy   . .  0n't c m #urr g'nd* d* d* *  δ = + = ≥∑

    'ntropy #an!e

    • Solis 0

    Liquis2

    2 1

    1

    lnT 

     # # cT 

    − =

     

    -eversible Process>

    0 g'nd#   =

    Aiabatic Process>

    0dq =

    • %eal as onstant Volume>2

    22 1 0

    11

    lndT    v

     # # Cv RvT 

    − = +∫ 

     

    onstant Pressure>2

    22 1 0

    11

    lndT    P 

     # # Cp R P T 

    − = −∫ 

    onstant Specific 2eat>2 2

    2 1 01 1

    ln lnT v

     # # Cv RT v

    − = +

     

    2 22 1 0

    1 1

    ln lnT P 

     # # Cp RT P 

    − = −

    Stanar 'ntropy

    0

    00

    T  p

    T T 

    C  # dT 

    T = ∫ 

      /k kgK 

    #an!e in Stanar

    'ntropy   ( )0 0 22 1 2 11

    lnT T 

     P  # # # # R

     P − = − −   /k kgK 

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    13/17

    %eal as Uner!oin!

    an %sentropic Process2 2

    2 1 01 1

    0 ln lnT P 

     # # Cp RT P 

    − = = −

     

    0

    2 2

    1 1

     RCpT P 

    T P 

     → =  

     

     

    but

    0 0

    0 0

    1 p v

     p p

    C C  R k 

    C C k 

    −   −= =

     .

    0

    0

     p

    v

    C k 

    C =

     * ratio of

    specific #eats

    1

    2 1 2 1

    1 2 1 2

    ,

    k k 

    T v P v

    T v P v

    −  

    ⇒ = =    

    Special case of polytropic process "#ere + * n>

    k  Pv con#t =

    -eversible Polytropic

    Process for %eal as   1 1 2 2n n n PV con#t PV PV = = =

    1 1

    2 1 2 2 1

    1 2 1 1 2

    ,

    nn nn P V T P V 

     P V T P V 

    −   −  

    → = = =    

    • /or+   2 22 2 1 1 2 1

    1 2

    1 1

    ( )

    1 1n

     PV PV mR T T dV ! PdV con#t  

    V n n

    − −= = = =

    − −∫ ∫ 

    • Values for n %sobaric process>

    %sot#ermal Process>

    %sentropic Process>

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    14/17

    %soc#ronic Process>

    ,n v con#t  = ∞ =

    Chapter / – Secon)$a% *nal'sis for a Control +olumeFormule Unit

    s

    3n La" '$presse as a

    #an!e of 'ntropy   . .c m g'n

    d*    $* 

    dt T = +∑

      00

    'ntropy ?alance 'q4rat'of chang' in out g'n'ratio= + − +

    . . . .C V C V  i i ' ' g'n

    d* $m # m # *  

    dt T → = − + +∑ ∑ ∑

     000 0

    "#ere

    . . . .  ...

    C V c v A A , ,* #dV m # m # m # ρ = = = + +∫ 

    an

    . .  ...

     g'n g'n g'n A g'n ,* # dV * *   ρ = = + +∫ 0 0 00

    Steay State Process

    . . 0C V d* 

    dt  =

     

    . .

    . .

    C V ' ' i i g'n

    C V 

    $m # m # *  T → − = +∑ ∑ ∑

     0

    00 0

     

    • ontinuity eq4

    i 'm m m= =0 0 

    . .

    . .

    ( )   C V ' i g'nC V 

    $m # # *  

    T ⇒ − = +∑

      000

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    15/17

    • Aiabatic

    process   ' i g'n i # # # #= + ≥

     Transient Process

    ( )   . .. .

    C V i i ' ' g'nC V 

    $d m# m # m # *  

    dt T 

    = − + +∑ ∑ ∑ 0

    00 0

    ( )   . .2 2 1 1 1 2. .0

    C V i i ' ' g'nC V 

    $m # m # m # m # dt *  

    T → − = − + +∑ ∑   ∫ 

      00

    -eversible Steay State

    Process• %f Process

    -eversible 0

    Aiabatic

     

    ' i # #= 

    '

    ' i

    i

    h h vdP  − = ∫ 

    ( )2 2

    2 2

    ( )2

    ( )2

    i 'i ' i '

    '

    i 'i '

    i

    V V " h h g Z Z  

    V V vdP g Z Z  

    −= − + + −

    −= − + + −∫ 

    • %f Process is

    -eversible an

    %sot#ermal( )   . .. .

    . .

    1 C V ' i C V  

    C V 

    $m # # $

    T T − = =∑   00

    or

    ( )   . .C V ' i$

    T # # qm

    − = =0

    0

     

    ( ) ( )'

    ' i ' i

    i

    T # # h h vdP  → − = − − ∫ 

    • %ncompressible

    Flui( ) ( )

    2 2

    02

    ' i' i ' i

    V V v P P g Z Z  

    −− + + − =

      ?ernoulli 'q4

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    16/17

    • -eversible

    Polytropic

    Process

    for %eal as

    '

    n n

    i

    " vdP and Pv con#t C  = − = =∫ 

    ( ) ( )

    1

    1 1

    ' '

    ni i

    ' ' i i ' i

    dP " vdP C   P 

    n nR P v Pv T T 

    n n

    = − = −

    = − − = − −− −

    ∫ ∫ 

    • %sot#ermal

    Process (n*1)   ln' '

    'i i

    ii i

     P dP " vdP C Pv

     P P = − = − = −∫ ∫ 

    Principle of t#e

    %ncrease of 'ntropy   . . 0n't C V #urr    g'nd* d* d*  

    * dt dt dt  = + = ≥∑  0

    'fficiency

    •  Turbine

    a i '

     # i '#

    " h h

    " h hη 

      −= =

      Turbine "or+ is out

    • ompressor

    (Pump) # i '#

    a i '

    " h h

    " h hη    −= = −

      ompressor "or+ is in

    • oole

    ompressorT "

    "η  =

     

  • 8/15/2019 21352493-Thermodynamic-Formulas.pdf

    17/17