2023-3 workshop on topics in quantum...

19
2023-3 Workshop on Topics in Quantum Turbulence E. Kozik 16 - 20 March 2009 ETH Zurich Switzerland Between the Kolmogorov and Kelvin-wave cascades

Upload: others

Post on 30-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

2023-3

Workshop on Topics in Quantum Turbulence

E. Kozik

16 - 20 March 2009

ETHZurich

Switzerland

Between the Kolmogorov and Kelvin-wave cascades

Page 2: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Between the Kolmogorov and Kelvin-wave cascades

UNIVERSITY OFMassachusetts Amherst

Evgeny Kozik (UMass, ETHZ)

Boris Svistunov (UMass)

Page 3: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Outline

• What do we learn from the decay of non-structured tangles?bottleneck-like effect, Kelvin-wave cascades

• Quasi-classical tangles in detailKolmogorov vs. Kelvin-wave cascadebottleneck proposalreconnection-driven crossover regime

• Finite T effectsScanning the cascade by mutual friction cutoff

Page 4: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

R0

Non-structured tangles at T=0: Decay Scenario overview

•Random reconnections at the largest scale

generate energy flux :0~ Rλ

2000

23 )/(ln~ −RaRκθ

Generation of Kelvin Waves

Nonlinear KW interactions are too weak to support the flux !θ

:0R<λ “Bottleneck” accumulation of energy…… until:

Svistunov (1995)•Self-reconnections

1~kbk

large amplitudes

Page 5: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

•Reconnections at :0~ Rλ

0R<λ•Self-reconnections at , large amplitudes:B.V. Svistunov (1995).

1~kbk

length scales

0R

Non-structured tangles at T=0: overview

0* R<<< λλ•Purely non-linear kinetics at ,small amplitudes:

1<<kbk

E.V. Kozik and B.V. Svistunov, Phys. Rev. Lett. 92, 035301 (2004).

3-kelvon scattering

ln k10−R phk1

*−λ

kbln ν)/(ln1 kkbk−∝

5/6−∝ kbk

amplitude spectrum

Page 6: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Superfluid Turbulence Behaving Classically

experiments:

J. Maurer and P. Tabeling, in superfluid He-4:

S. R. Stalp, L. Skrbek, and R. J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999).

D. I. Bradley, D. O. Clubb, S. N. Fisher, A. M. Gue'nault, R. P. Haley, C. J. Matthews, G. R. Pickett, V. Tsepelin, and K. Zaki, Phys. Rev. Lett. 96, 035301 (2006).

T=0 :

C. Nore, M. Abid, and M.E. Brachet, Phys. Rev. Lett. 78, 3896 (1997).

In simulations

Classical Kolmogorov law at large scales

3/53/2~)( −kkE ε

When turbulence is generated classically (by “stirring”)

He-3:

He-4: P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, and W. F. Vinen, Phys. Rev. Lett. 99, 265302 (2007).

Page 7: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Superfluid Turbulence Behaving Classically: general picture

• main parameter -- Kolmogorov energy flux ε

• is formed by the largest classical eddiesε

• classical eddy in a superfluid ↔ array of vortex lines →

The existence of the Richardson cascade in superfluids is not trivial !!!

Formal proof:Biot-Savart equation for quantized vortex lines:

30 0 0( ) / | |

4dr r r dl r rdt

κπ

= − × −∫ r

ik rk e dlω κ − ⋅= ∫In terms of vorticity, , becomes:

( )( ) ( ){ }

32

32k

q qk q k q

d qk q k qtω

ω ω ω ωπ

−− −

∂= × ⋅ − ⋅

∂ ∫Vorticity equation for an ideal incompressible classical fluid

( drops out!!!)κ

Page 8: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

smallest scales:

pure Kelvin-Wave cascade

Coupled motion at large scales: Kolmogorov cascade

0rsmallest eddy size

(vortex line orientation corr. rad.)

0linterline separation

What is different at T=0?

large-scale eddy

What lies between?

?

• How are the Kelvin waves generated?

• At what scales?

Page 9: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Energy Bottleneck idea

L'vov, Nazaranko, Rudenko, PRB 76, 024520 (2007).Kolmogorovregime

Kelvin-wave regime

Pure Kelvin-wave cascade is unable to sustain the Kolmogorov energy flux!

Bottleneck accumulation of energy

1)/ln( 00 >>=Λ al

key parameter:

~ 15 in He-4

energy flux ε

Page 10: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

One step back…

Kolmogorovregime

Kelvin-wave regime

Pure Kelvin-wave cascade is unable to sustain the Kolmogorov energy flux!

1)/ln( 00 >>=Λ al

key parameter:

~ 15 in He-4

The same as in non-structured tangles!

What about reconnections here as well?

Interline separation = lvortex-line curvature radius = l

1~ 2rec >>Λεε

energy flux due to reconnections:

!!!

energy flux ε

Anti-bottleneck???

Something must be happening before we reach the scale !!!l

Page 11: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Superfluid Turbulence Behaving Classically: Classical to Quantized crossover

T=0, only degrees of freedom --- vortex lines:

Kozik and Svistunov, 2007

SIv IvCompetition between and !

∫ −×−

= 30

00

||)(

4)(

rssdrsrv

πκ,)(svs =

scontaing

...∫

)()()( ISI svsvsv +=

restthe

...∫(self-induced) (induced by other lines)

rv /~SI κΛ

rNv r /~I κ

−rNnumber of lines in eddy of size r

Kolmogorov vs. quantized regime:Crossover scale:

1)/ln( 00 >>=Λ al~ 15 in He-4

controlling parameter

r

s

0l

Page 12: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

0r 0l

The crossover scale 0r

number of lines in an eddy of size

Kolmogorov regime ( ):

rκε /~ 3/43/1 rNr

3/1)(~ rvr ε

competes with the L.I.A. parameter)/ln(~)/ln( 000 alarr =Λ=Λ

Λ>>rN - quasi-classical regime

Λ<<rN - quantized regime

02/1

0 ~ lr Λcrossover scale

4/130 )/(~ εκΛlinterline separation

At the scale :0r

• vortex lines are moving independently

• bundle decoherence time > vortex-line turnover time

reconnections of bundles generation of Kelvin waves!!!

Page 13: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

An objection by L'vov, Nazaranko, and Rudenko:

The controversy!

Alamri, Youd, and Barenghi, 2008

However, in simulations:

PRB 76, 024520 (2007)

Bundle reconnections as seen by L’vov, et al.:

Page 14: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Scales below 0r

Reconnections of vortex-line bundles: continues self-similarly with the spectrum

004/1

b ~ rl <<<<Λ λλ

in the range of scales

210~ −− krbk

At the scale , → the notion of bundles looses meaning04/1

b ~ lΛλ 0~ lbk

Reconnections of nearest-neighbor lines at small angles:

scale bλ Reconnections at lead to energy build up with the spectrumbλ

b4/1

0c /~ λλλ <<<<Λlwithin the range

2/1b0 )(~ −klbk λ

At the scale , → self-reconnections take over the energy flux cλ ckb λ~

2/1kkbk ∝

• Bottleneck-like regime!

• Not a true cascade!

Page 15: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

From Kolmogorov to Kelvin-wave cascade ( large parameter )

SII ~ vv crossover to QT

reconnections of vortex bundles

reconnections between neighbors

in the bundle

self – reconnections

(vortex ring generation)

purely non-linear cascade of Kelvin waves

(no reconnections)

length scale

phonon radiation

1)/ln( 00 >>=Λ alPRB 77, 060502, (2008).

Page 16: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

From Kolmogorov to Kelvin-wave cascade at T=0

Spectrum of Kelvin waves in the quantized regime:

1. reconnections of bundles

3/53/2~)( −kkE ε

2. neighbor reconnections in the bundles

3. self-reconnections on single lines with vortex ring

emission

4. non-linear Kelvin-wave cascade on single lines without reconnections

Page 17: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

What happens if T is finite?

Kelvin waves decay due to the mutual friction:

Key parameter – mutual friction coefficient 0,)( 5 →∝= TTTαα

Dissipative energy flux (per unit line length):

)]([cutoff Tk α

Scanning the cascade: cutoffk cutoffk cutoffk cutoffk

lowering T

( EK and B. Svistunov, 2008 )

Vortex line length increase

Page 18: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Fitting experimental data, extracting the Kelvin-Wave spectrum

Vortex line length increase:

Kelvin-wave spectrum

Experiment: Walmsley, Golov, Hall, Levchenko, Vinen, PRL 99, 265302 (2007)

vortex line length

Walmsley and Golov, Phys. Rev. Lett. 100, 245301 (2008)

Stalp, Skrbek, and Donnelly, Phys. Rev. Lett. 82, 4831 (1999).

Page 19: 2023-3 Workshop on Topics in Quantum Turbulenceindico.ictp.it/event/a08146/session/16/contribution/12/material/0/0.pdf · 2023-3 Workshop on Topics in Quantum Turbulence E. Kozik

Conclusions

• A theoretical picture of the decay of Quasi-classical turbulence seems to emerge.

• The qualitative agreement between the theory and experiments is very promising

• Next steps: numerics (!), dissipation in 3He, rotating turbulence, calorimetry, (plausibly) Kelvin-wave spectroscopy, etc.