2019 lec13 nyquist - uniroma1.itlanari/controlsystems/cs - lectures/lec13_nyquist.pdf · lanari: cs...

32
Nyquist stability criterion L. Lanari Control Systems

Upload: others

Post on 18-Mar-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Nyquist stability criterionL. Lanari

Control Systems

Page 2: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 2

Outline

• polar plots when F(j!) has no poles on the imaginary axis

• Nyquist stability criterion (first version)

• what happens when F(j!) has poles on the imaginary axis

• Nyquist stability criterion (general case)

• general feedback system

• stability margins (gain and phase margin)

• Bode stability criterion

• effect of a delay in a feedback loop

Goal: establish a necessary and sufficient stability criterion for the asymptotic stability of

the closed-loop system based on the information (Nyquist plot) of the open-loop system

Page 3: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 3

Unit negative feedback

-

+

• in a unit feedback system, the closed-loop system has hidden modes if and only if

the open loop has them

• the open-loop hidden modes are inherited unchanged by the closed loop

we have seen that

therefore we make the hypothesis that there exists

no open-loop hidden eigenvalue with non-negative real part (since this would be inherited by the closed-loop system)

closed-loop systemtransfer function

stability of the closed loop is only determined by the closed-loop poles

W(s)F (s)

Page 4: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 4

We are going to determine the

stability of the closed-loop system from the open-loop system features

(i.e. the graphical representation of the open-loop frequency response F(j!))

Nyquist diagram: (closed) polar plot of F(j!) with � 2 (�1,1)

we plot the magnitude and phase on the same plot using the frequency as a parameter, that

is we use the polar form for the complex number F(j!)

in !1

F(j!1)

in !2

F(j!2)

F(-j!) = F *(j!)

being F(s) a rational function

(or rational function + delay)

and therefore the plot for negative

angular frequencies ! is the symmetric

wrt the real axis of the one obtained for

positive !

� 2 (�1, 0]

� 2 [0,1)

mirror imagepositivephase

+

Re

Im

|F (j!)| = |F (�j!)|<latexit sha1_base64="NekpRQC7vWjzC4b+1swZIZAuJCU=">AAACBXicbVDLSgMxFM3UV62vUZe6CBahLiwzWrQuhIIgLivYB7RDyaSZNjYzGZKMUKbduPFX3LhQxK3/4M6/MTMtxdeBwLnn3MvNPW7IqFSW9Wlk5uYXFpeyy7mV1bX1DXNzqy55JDCpYc64aLpIEkYDUlNUMdIMBUG+y0jDHVwkfuOOCEl5cKOGIXF81AuoRzFSWuqYu6PLwm2b+6SHDkbwHOrycFZ3zLxVtFLAv8SekjyYotoxP9pdjiOfBAozJGXLtkLlxEgoihkZ59qRJCHCA9QjLU0D5BPpxOkVY7ivlS70uNAvUDBVv0/EyJdy6Lu600eqL397ifif14qUV3ZiGoSRIgGeLPIiBhWHSSSwSwXBig01QVhQ/VeI+0ggrHRwuTSEswQns5P/kvpR0T4ulq5L+Up5GkcW7IA9UAA2OAUVcAWqoAYwuAeP4Bm8GA/Gk/FqvE1aM8Z0Zhv8gPH+BWTjl1c=</latexit>

\F (j!) = �\F (�j!)<latexit sha1_base64="fnC14LNkk1pTEIPrLhmNzhcVND0=">AAACEHicbZDLSsNAFIYnXmu9RV26GSxiXbSkWrQuhIIgLivYCzShTKan7djJJMxMhFL6CG58FTcuFHHr0p1vY5LWotYfBn6+cw5nzu8GnCltWZ/G3PzC4tJyaiW9ura+sWlubdeUH0oKVepzXzZcooAzAVXNNIdGIIF4Loe627+I6/U7kIr54kYPAnA80hWswyjREWqZBzYRXQ74Mntr+x50ySE+x7kpzH3Tlpmx8lYiPGsKE5NBE1Va5ofd9mnogdCUE6WaBSvQzpBIzSiHUdoOFQSE9kkXmpEVxAPlDJODRng/Im3c8WX0hMYJ/TkxJJ5SA8+NOj2ie+pvLYb/1Zqh7pScIRNBqEHQ8aJOyLH2cZwObjMJVPNBZAiVLPorpj0iCdVRhukkhLNYJ9OTZ03tKF84zhevi5lyaRJHCu2iPZRFBXSKyugKVVAVUXSPHtEzejEejCfj1Xgbt84Zk5kd9EvG+xdmB5sI</latexit>

F(-j!) = F *(j!)

Page 5: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 5

10−2

100

102

−100

−80

−60

−40

−20

0

20

Phase (deg)

frequency (rad/s)

10−2

100

102

0

0.2

0.4

0.6

0.8

1

frequency (rad/s)

Magnitude

10−2

100

102

−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency (rad/s)

Magnitude (dB)

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

ω1

ω2

ω3

ω4

ω5

ω6

ω7

Im

Re

polar plot of F(j!) can be obtained from the Bode diagrams (magnitude and phase information)

some polar plots

dB not in dB

F (s) =1

s+ 1

Hyp. no open-loop poles on the imaginary axis (i.e. with Re[.] = 0)

|F (j!3)|<latexit sha1_base64="F8m5T0L4Z65aZM3MStV6lRDt8aI=">AAAB9XicbVDLSgMxFM3UV62vqks3wSLUTZnaonVXEMRlBfuAdiyZNNPGZpIhyShl2v9w40IRt/6LO//GzHQQtR64cDjnXu69xw0YVdq2P63M0vLK6lp2PbexubW9k9/daykRSkyaWDAhOy5ShFFOmppqRjqBJMh3GWm744vYb98TqajgN3oSEMdHQ049ipE20u30snjXEz4Zon7leNrPF+ySnQAuknJKCiBFo5//6A0EDn3CNWZIqW7ZDrQTIakpZmSW64WKBAiP0ZB0DeXIJ8qJkqtn8MgoA+gJaYprmKg/JyLkKzXxXdPpIz1Sf71Y/M/rhtqrORHlQagJx/NFXsigFjCOAA6oJFiziSEIS2puhXiEJMLaBJVLQjiPcfr98iJpnZTKlVL1ulqo19I4suAAHIIiKIMzUAdXoAGaAAMJHsEzeLEerCfr1Xqbt2asdGYf/IL1/gXDmJIk</latexit>

\F (j!3)<latexit sha1_base64="H+vwYjDixoraPr4TTqs/xXg3UGY=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZTUFq23giAeK9gPaEvYbKfp2s0m7G6EUOpf8eJBEa/+EG/+G5M0iFofDDzem2FmnhNwprRlfRq5ldW19Y38ZmFre2d3z9w/6Cg/lBTa1Oe+7DlEAWcC2pppDr1AAvEcDl1nepn43XuQivniVkcBDD3iCjZmlOhYss3igAiXA74q3w18D1xi105ss2RVrBR4mVQzUkIZWrb5MRj5NPRAaMqJUv2qFejhjEjNKId5YRAqCAidEhf6MRXEAzWcpcfP8XGsjPDYl3EJjVP158SMeEpFnhN3ekRP1F8vEf/z+qEeN4YzJoJQg6CLReOQY+3jJAk8YhKo5lFMCJUsvhXTCZGE6jivQhrCRYKz75eXSee0Uq1V6jf1UrORxZFHh+gIlVEVnaMmukYt1EYURegRPaMX48F4Ml6Nt0VrzshmiugXjPcvZ9KUEg==</latexit>

Page 6: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist

Nyquist plot intersects the real axis in -1 therefore such that

6

The closed-loop system W(s) has poles with Re[.] = 0

if anf only if

the Nyquist plot of F (j!) passes through the critical point (-1,0)

Proof.

F (j�̄) = �1

F (j�̄) + 1 = 0

W (s) =F (s)

1 + F (s)

9 !̄

that is Being the closed-loop transfer function given by

this shows that is a pole of W(s)s = j�̄

(and vice versa).

fact I

Page 7: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 7

fact II

let us define

• nF+ the number of open-loop poles with positive real part

• nW+ the number of closed-loop poles with positive real part

• Ncc the number of encirclements the Nyquist plot of F (j!) makes

around the point (-1, 0) counted positive if counter-clockwise

a direct application of Cauchy’s principle of argument gives

Hyp. no open-loop poles on the imaginary axis (i.e. with Re[.] = 0)

Ncc = nF+ - nW+

Obviously if the encirclements are defined positive clockwise, let them be Nc, the relationship changes sign and becomes Nc = nW+ - nF+

Page 8: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 8

Hyp. no open-loop poles on the imaginary axis (i.e. with Re[.] = 0)

(this hypothesis guarantees that, if F (s) is strictly proper, the polar plot of F (j!) is a

closed contour and therefore we can determine the number of encirclements)

In order to guarantee closed-loop stability, we need nW+ = 0 (no closed-loop poles with

positive real part) and no poles with zero real part (which we saw being equivalent to asking

that the Nyquist plot of F (j!) does not pass through the point (-1, 0))

If the open-loop system has no poles on the imaginary axis,

the unit negative feedback system is asymptotically stable

if and only if i) the Nyquist plot does not pass through the point (-1, 0)

ii) the number of encirclements around the point (-1, 0), counted positive if counter-

clockwise, is equal to the number of open-loop poles with positive real part, i.e.

Ncc = nF+

Nyquist stability criterion (first version)

Page 9: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 9

Remarks

• if the open-loop system has no positive real part poles (nF+ = 0) then we obtain the

simple N&S condition Ncc = 0 which requires the Nyquist plot not to encircle (-1, 0)

• if the stability condition is not satisfied (and Ncc exists) then we have an unstable

closed-loop system with nW+ = nF+ - Ncc positive real part poles

• condition i), which ensures that the closed-loop system does not have poles with zero

real part, could be omitted by noting that if the Nyquist plot goes through the critical

point (-1, 0) then the number of encirclements is not well defined

00 - 1 + 1 0 - 2 0 - 2 - 1 0

examples on the number of encirclements depending on where is the critical point

0 002 2 1

Page 10: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 10

10−2

100

102

−200

−150

−100

−50

0

50

Phase (deg)

frequency (rad/s)

10−2

100

102

0

0.2

0.4

0.6

0.8

1

frequency (rad/s)

Magnitude

10−2

100

102

−80

−70

−60

−50

−40

−30

−20

−10

0

frequency (rad/s)

Magnitude (dB)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

ω1

ω2

ω3

ω4

ω5

ω6

Im

Re

F (s) =100

(s+ 10)2

in dB not in dB

Ncc = nF+ = 0

phase

open loop system

Nyquist criterion is verified thus the closed-loop system is asymptotically stable

Nyquist plot

example I

Page 11: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 11

F (s) =10

(s+ 1)2(s+ 10)

10−2

100

102

−300

−250

−200

−150

−100

−50

0

50

Phase (deg)

frequency (rad/s)10

−210

010

20

0.2

0.4

0.6

0.8

1

frequency (rad/s)

magnitude

10−2

100

102

−80

−70

−60

−50

−40

−30

−20

−10

0

frequency (rad/s)

magnitude (dB)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

← Zoom

Im

Re

−0.1 −0.08 −0.06 −0.04 −0.02 0−0.05

0

0.05

Zoom

Im

Re

!"

#$

%&'!()

%! (!%! * !

exact “by hand”

important to determine that this intersection is on the right of -1

phase

open loop system

magnitude (dB) magnitude

Nyquist plot

example II

Page 12: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 12

10−2

100

102

−350

−300

−250

−200

−150

−100

−50

0

Phase (deg)

frequency (rad/s)10

−210

010

20

0.2

0.4

0.6

0.8

1

frequency (rad/s)

Magnitude

10−2

100

102

−60

−50

−40

−30

−20

−10

0

frequency (rad/s)

Magnitude (dB)

−0.5 0 0.5 1−1

−0.5

0

0.5

1

← Zoom

Im

Re

−0.1 −0.05 0 0.05 0.1−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Zoom

Im

Re

!"

#$

%&'!()

%! (!%! * !

important to determine that this intersection is on the right of -1

F (s) =�10(s� 1)

(s+ 1)2(s+ 10)

exact “by hand”

phase

open loop system

magnitude (dB) magnitude

Nyquist plot

example III

Page 13: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 13

10−2

100

102

0

0.5

1

1.5

2

frequency (rad/s)

Magnitude

10−2

100

102

−40

−30

−20

−10

0

10

frequency (rad/s)

Magnitude (dB)

10−2

100

102

−250

−200

−150

−100

−50

0

Phase (deg)

frequency (rad/s)

−2 −1.5 −1 −0.5 0

−1

−0.5

0

0.5

1

ω1

ω2

ω3

ω4

ω5

ω6

ω7

Im

Re

F (s) =2

s� 1

Ncc = nF+ = 1

exactunstable open-loop system

Nyquist criterion is verified: closed-loop system

is asymptotically stable

increasing !

phasemagnitude (dB) magnitude

Nyquist plot

example IV

Page 14: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 14

Let’s remove the hypothesis of “no open-loop poles on the imaginary axis” (i.e. with Re[.] = 0)

open-loop poles on the imaginary axis (i.e. with Re[.] = 0) come from:

• one or more integrators (pole in s = 0)

• resonance (imaginary poles in s = +/- j!n)

and give a discontinuity in the phase

• passing from ¼/2 to -¼/2 when ! switches from 0- to 0+

• or from 0 to -¼ when ! switches from !n- to !n+

while the magnitude is at infinity

In order to obtain a closed polar plot, we introduce closures at infinity which consists in

rotating of ¼ clockwise with an infinite radius (for every pole with Re[.] = 0) for increasing frequencies, at those values of the frequency corresponding to singularities of the transfer function F (s) lying on the imaginary axis (poles of the open-loop system with Re[.] = 0)

F (s) =1

s(s+ 1)

! = 0-

! = 0+

! = + ∞

! = - ∞

! = 0-

! = 0+

R = + ∞

closureat infinity

Page 15: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 15

F (s) =K

(s2 + ⇥21)(1 + �1s)

F (s) =K

(s2 + ⇥21)

2(1 + �1s)

F (s) =K(1 + �2s)

s2(s2 + ⇥21)(1 + �1s)

¼ clockwise at infinity from ! = 0- to ! = 0+

2¼ clockwise at infinity from ! = 0- to ! = 0+

3¼ clockwise at infinity from ! = 0- to ! = 0+

¼ clockwise at infinity from ! = -!1- to ! = -!1

+

¼ clockwise at infinity from ! = !1- to ! = !1

+

2¼ clockwise at infinity from ! = -!1- to ! = -!1

+

2¼ clockwise at infinity from ! = !1- to ! = !1

+

¼ clockwise at infinity from ! = -!1- to ! = -!1

+

¼ clockwise at infinity from ! = !1- to ! = !1

+

2¼ clockwise at infinity from ! = 0- to ! = 0+

F (s) =K(1 + �2s)

s3(1 + �1s)

F (s) =K

s2(1 + �1s)

F (s) =K

s(1 + �1s)

closures at infinity examples

Page 16: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 16

Let the open-loop system have nF+ poles with positive real part.

The unit negative feedback system is asymptotically stable

if and only if

i) the Nyquist plot does not pass through the point (-1, 0)

ii) the number of encirclements around the point (-1, 0) counted positive if counter-

clockwise is equal to the number of open-loop poles with positive real part, i.e.

Ncc = nF+

Nyquist stability criterion (no restriction on open-loop poles)

That is the result shown before, valid under the hypothesis of no open-loop poles on the imaginary axis (i.e. with Re[.] = 0), still holds provided we define how to obtain the closures at infinity.

Page 17: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 17

10−2

100

102

−60

−40

−20

0

20

40

frequency (rad/s)

Magnitude (dB)

exactapprox

−0.5 0 0.5 1−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

← Zoom

Im

Re

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05

−0.2

−0.1

0

0.1

0.2

0.3

Zoom

Im

Re

10−2

100

102

−300

−250

−200

−150

−100

−50

0

Phase (deg)

frequency (rad/s)

exactapprox

!"

#$

%&'!(

%&'!)

)*

%! )!%! ( !

F (s) =100

s(s+ 10)2

the zoom is just to show that the phase goes to -3 ¼/2

Ncc = nF+ = 0

¼ clockwise with infinite radiusfrom 0- to 0+

example V

Page 18: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 18

10−2

10−1

100

101

102

−60

−40

−20

0

20

40

frequency (rad/s)

magnitude (dB)

10−2

10−1

100

101

102

−300

−250

−200

−150

−100

−50

0

Phase (deg)

frequency (rad/s)

exactapprox

!"

#$

%&'! (

(' %&)!

%&'!*

%&('!*

%&('! (

%! (!

%! * !

F (s) =1

(s+ 1)(s2 + 1)one pole in + jone pole in -j

¼ clockwise with infinite radius from -1- to -1+

¼ clockwise with infinite radius from 1- to 1+

example VI

Page 19: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 19

10−2

100

102

−60

−40

−20

0

20

40

frequency (rad/s)

Magnitude (dB)

−8 −6 −4 −2 0 2 4−8

−6

−4

−2

0

2

4

6

8

← Zoom

Im

Re

−0.1 −0.05 0 0.05 0.1−0.1

−0.05

0

0.05

0.1

Zoom

Im

Re

10−2

100

102

−300

−250

−200

−150

−100

−50

0

Phase (deg)

frequency (rad/s)

exactapprox

!"

#$

%&'!(

%&'!)

)*

%! )!

%! ( !

F (s) =s2 + 100

s(s+ 1)(s+ 10)

¼ clockwise with infinite radiusfrom 0- to 0+

example VII

Page 20: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 20

10−2

100

102

−60

−40

−20

0

20

40

frequency (rad/s)

magnitude (dB)

exactapprox

−8 −6 −4 −2 0 2 4−8

−6

−4

−2

0

2

4

6

8

← Zoom

Im

Re

−0.1 −0.05 0 0.05 0.1−0.1

−0.05

0

0.05

0.1

Zoom

Im

Re

10−2

100

102

−300

−250

−200

−150

−100

−50

0

−πPhase (deg)

frequency (rad/s)

exactapprox

!"

#$

%&'!(

%&'!)

)*+, %! )!%! ( !

¼ clockwise with infinite radiusfrom 0- to 0+

F (s) =K(s+ 1)

s(s/10� 1)

for K = 1 plot crosses (-1, 0)

example VIII

Page 21: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 21

10−2

10−1

100

101

102

−40

−30

−20

−10

0

10

20

30

40

frequency (rad/s)

Magnitude (dB)

F1

F2

10−2

10−1

100

101

102

−600

−500

−400

−300

−200

−100

0

Phase (deg)

frequency (rad/s)

F1

F2

!"

#$

%&'!(

%&'!)

)* %! )!%! ( !

!"

#$

%&'!(

%&'!)

)* %! )!%! ( !

F1(s) =1

s(s+ 1)

5 times ¼ clockwise with infinite radiusfrom 0- to 0+

F2(s) =1

s5(s+ 1)

example IX

F1(j!)

<latexit sha1_base64="7rDcaUa07/m0e+M6Ef0pmnUeX3o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquFOyxIIjHCvYDukvJptk2NtksSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305hY3Nre6e4W9rbPzg8Kh+fdLRMFaFtIrlUvRBryllM24YZTnuJoliEnHbDyc3c7z5RpZmMH8w0oYHAo5hFjGBjJf924FUffSnoCF8OyhW35i6A1omXkwrkaA3KX/5QklTQ2BCOte57bmKCDCvDCKezkp9qmmAywSPatzTGguogW9w8QxdWGaJIKluxQQv190SGhdZTEdpOgc1Yr3pz8T+vn5qoEWQsTlJDY7JcFKUcGYnmAaAhU5QYPrUEE8XsrYiMscLE2JhKNgRv9eV10rmqefVa/b5eaTbyOIpwBudQBQ+uoQl30II2EEjgGV7hzUmdF+fd+Vi2Fpx85hT+wPn8AdwUkOU=</latexit>

F2(j!)

<latexit sha1_base64="TxkrpKR9AJ/2kLhu+/N6kLajZqM=">AAAB83icbVBNSwMxEM36WetX1aOXYBHqpeyWgj0WBPFYwX5AdynZdLaNTbJLkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhQln2rjut7OxubW9s1vYK+4fHB4dl05OOzpOFYU2jXmseiHRwJmEtmGGQy9RQETIoRtObuZ+9wmUZrF8MNMEAkFGkkWMEmMl/3ZQqzz6sYARuRqUym7VXQCvEy8nZZSjNSh9+cOYpgKkoZxo3ffcxAQZUYZRDrOin2pICJ2QEfQtlUSADrLFzTN8aZUhjmJlSxq8UH9PZERoPRWh7RTEjPWqNxf/8/qpiRpBxmSSGpB0uShKOTYxngeAh0wBNXxqCaGK2VsxHRNFqLExFW0I3urL66RTq3r1av2+Xm428jgK6BxdoAry0DVqojvUQm1EUYKe0St6c1LnxXl3PpatG04+c4b+wPn8Ad2hkOY=</latexit>

Page 22: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 22

general negative feedback

-

+

F2(s)

F1(s) F1(s)F2(s)+

-for stability these two schemes are equivalent

F2(s) = N2(s)/D2(s)

F1(s) = N1(s)/D1(s)

W2(s) =F1(s)F2(s)

1 + F1(s)F2(s)

=N1(s)N2(s)

D2(s)D1(s) +N1(s)N2(s)

W1(s) =F1(s)

1 + F1(s)F2(s)

=N1(s)D2(s)

D2(s)D1(s) +N1(s)N2(s)

same denominatorsame polessame stability properties

Page 23: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 23

Typical pattern for a control system:

open-loop system with no positive real part poles nF+ = 0, therefore the closed-loop system

will be asymptotically stable if and only if the Nyquist plot makes no encirclements around

the point (-1, 0). We want to explore how the closed-loop stability varies as a gain K in the

open-loop system increases.

! = 0+

! = 0- Im

Re! = + ∞

! = - ∞

-1

-

+K F (s)

as K increases

As K increases over a critical value

the closed-loop system goes from

asymptotically stable to unstable

Page 24: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 24

In this context, the proximity to the critical point (-1, 0) is an indicator of the proximity of

the closed-loop system to instability.

We can define two quantities:

! = 0+

! = 0- Im

Re! = + ∞ -1

1/kGMIf we multiply F (j!) by the quantity

kGM the Nyquist diagram will pass

through the critical point

F (j!)

kGM F (j!)

gain margin kGM

the gain margin kGM is the smallest gain

factor that the closed-loop system can

tolerate (strictly) before it becomes

unstable

only positive angular frequencies are shownfor ease of exposition

⇥⇡ : \F (j⇥⇡) = ��

kGM =1

|F (j��)|kGM |dB = �|F (j��)|dB

! ¼

Page 25: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 25

Im

Re! = + ∞ -1

F (j!)

PM

phase margin PM

the phase margin PM is the amount of

lag the closed-loop system can tolerate

(strictly) before it becomes unstable

! c angular frequency at which the gain is unity

is defined as crossover frequency(or gain crossover frequency)

F (j! c)

�c : |F (j�c)| = 1

�c : |F (j�c)|dB = 0 dB

PM = � + \F (j⇥c)

Page 26: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 26

Im

Re! = + ∞ -1

F (j!)

PM

(A)

(B)

(C)

(B) same gain margin as (A) but different phase margin

(C) same phase margin as (A) but different gain margin

1/kGM

real “distance”

Im

Re

Page 27: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 27

10−1

100

101

102

103

−270

−180

−90

0

Phase (deg)

frequency (rad/s)

ωc ωπ

10−1

100

101

102

103

−60

−40

−20

0

20

frequency (rad/s)

Magnitude (dB)

ωc ωπ

stability margins on Bode

kGM |dB = �|F (j��)|dBPM = � + \F (j⇥c)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Im

Re

- kGM|dB

PM

F (s) =1000

s(s+ 10)2

Page 28: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 28

10−1

100

101

102

−40

−20

0

20

frequency (rad/s)

Magnitude (dB)

F1(s)

F2(s)

10−1

100

101

102

−270

−180

−90

0

Phase (deg)

frequency (rad/s)

F1(s) =500

s(s+ 10)2

F1(s) =6000

s(s+ 10)2

these are scaled (by 0.5 and 6) wrt the previous system

both have same phasebut different crossover

frequencies and therefore different phase margins

negative phase margin(and thus for this example a non-zero Ncc)

positive phase margin (and thus for this example Ncc = 0)

both systems with nF+ = 0 asymptotically stableclosed-loop system

unstableclosed-loop system

(suggested exercise: check with Routh)

Page 29: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 29

Bode stability theoremLet the open-loop system F (s) be with no positive real part poles (i.e. nF+ = 0) and

such that there exists a unique crossover frequency !c (i.e. such that | F (j!c) | = 1)

then the closed-loop system is asymptotically stable

if and only if

the open-loop system’s generalized gain is positive

&

the phase margin (PM) is positive

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Im

Re10

−210

−110

010

110

2−270

−180

−90

0

Phase (deg)

frequency (rad/s)

F (s) =1.5(1� s)

(s+ 1)(2s+ 1)(0.5s+ 1)

−60

−40

−20

0

Magnitude (dB)

Ncc = nF+ = 0

Page 30: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 30

Bode stability theorem

• stability margins are useful to evaluate stability robustness wrt parameters variations (for example the gain margin directly states how much gain variation we can tolerate)

• phase margin is also useful to evaluate stability robustness wrt delays in the feedback loop. Recall that, from the time shifting property of the Laplace transform, a delay is modeled by e-sT and that

|e�j�T | = 1

\e�j�T = ��T

-

+F (s)e-sT

\e�j�T = ��Ta delay introduces a phase lag and therefore it can easily “destabilize” a system (note that the abscissa in the Bode diagrams is in log10 scale so the phase decreases very fast)

|e�j�T | = 1 a delay in the loop does not alter the magnitude (0 dB contribution)

delayof T sec

Page 31: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 31

Special cases

• infinite gain margin

-1

Im

Re

-1

Im

Re

• infinite phase margin

Page 32: 2019 Lec13 Nyquist - uniroma1.itlanari/ControlSystems/CS - Lectures/Lec13_Nyquist.pdf · Lanari: CS - Stability - Nyquist 8 Hyp. no open-loop poles on the imaginary axis (i.e. with

Lanari: CS - Stability - Nyquist 32

Particular example

−20

−10

0

10

Magnitude (dB)

−2 −1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Im

Re

−0.03 −0.02 −0.01 0−0.01

−0.005

0

0.005

0.01

Im

Re

10−1

100

101

−180

−90

0

Phase (deg)

frequency (rad/s)

F (s) =0.38(s2 + 0.1s+ 0.55)

s(s+ 1)(s/30 + 1)(s2 + 0.06s+ 0.5)

good gain and phase margins but close to critical point

zoom to see the gain margin