· 2017. 12. 6. · transfer modules that interface analog signals with allen-bradley plc-3 and...

188
1 User Manual High Resolution Isolated Analog Modules (Cat. No. 1771ĆN Series) AllenĆBradley

Upload: others

Post on 23-Jan-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

1

13

2

Because of the variety of uses for the products described in thispublication those responsible for the application and use of theseproducts must satisfy themselves that all necessary steps have beentaken to assure that each application and use meets all performance andsafety requirements including any applicable laws regulations codesand standards In no event will Rockwell Automation be responsible orliable for indirect or consequential damage resulting from the use orapplication of these products

Any illustrations charts sample programs and layout examples shownin this publication are intended solely for purposes of example Sincethere are many variables and requirements associated with any particularinstallation Rockwell Automation does not assume responsibility orliability (to include intellectual property liability) for actual use basedupon the examples shown in this publication

AllenndashBradley publication SGIndash11 Safety Guidelines for ApplicationInstallation and Maintenance of SolidndashState Control (available fromyour local Rockwell Automation office) describes some importantdifferences between solidndashstate equipment and electromechanicaldevices that should be taken into consideration when applying productssuch as those described in this publicationReproduction of the contents of this copyrighted publication in whole orpart without written permission of Rockwell Automation is prohibited

Throughout this publication notes may be used to make you aware ofsafety considerations The following annotations and their accompanyingstatements help you to identify a potential hazard avoid a potentialhazard and recognize the consequences of a potential hazard

WARNING

Identifies information about practices orcircumstances that can cause an explosion in ahazardous environment which may lead to personalinjury or death property damage or economic loss

ATTENTION

Identifies information about practices orcircumstances that may lead to personal injury ordeath property damage or economic loss

IMPORTANTIdentifies information that is critical forsuccessful application and understanding of theproduct

13 1313

3

Environment and Enclosure

This equipment is intended for use in a PollutionDegree 2 industrial environment in overvoltageCategory II applications (as defined in IEC publication60664ndash1) at altitudes up to 2000 meters withoutderating

This equipment is considered Group 1 Class Aindustrial equipment according to IECCISPRPublication 11 Without appropriate precautions theremay be potential difficulties ensuring electromagneticcompatibility in other environments due to conductedas well as radiated disturbance

This equipment is supplied as ldquoopen typerdquo equipmentIt must be mounted within an enclosure that is suitablydesigned for those specific environmental conditionsthat will be present and appropriately designed toprevent personal injury resulting from accessibility tolive parts The interior of the enclosure must beaccessible only by the use of a tool Subsequentsections of this publication may contain additionalinformation regarding specific enclosure type ratingsthat are required to comply with certain product safetycertifications

See NEMA Standards publication 250 and IECpublication 60529 as applicable for explanations ofthe degrees of protection provided by different types ofenclosures Also see the appropriate sections in thispublication as well as the AllenndashBradley publication1770ndash41 (ldquoIndustrial Automation Wiring andGrounding Guidelinesrdquo) for additional installationrequirements pertaining to this equipment

ATTENTION 13

This equipment is sensitive to electrostatic dischargewhich can cause internal damage and affect normaloperation Follow these guidelines when you handlethis equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

4

13

13

This manual shows you how to use your high resolution isolatedanalog series inputoutput modules with an Allen-Bradleyprogrammable controller It helps you install program calibrate andtroubleshoot your modules

You must be able to program and operate an Allen-Bradleyprogrammable controller (PLC) to make efficient use of your analogmodule In particular you must know how to program block transferinstructions

We assume that you know how to do this in this manual If you donot refer to the appropriate PLC programming and operationsmanual before you attempt to program this module

In this manual we refer tobull the individual module as the ldquomodulerdquo

bull the programmable controller as the ldquocontrollerrdquo or theldquoprocessorrdquo

This manual is divided into seven chapters The following chartshows each chapter with its corresponding title and a brief overviewof the topics covered in that chapter

13 13

$ amp $

$( $ $$)

$$ ( + ( - $ $

$ $amp

0 $$ $ $ +

1 $ amp $ $ $ $$ $ +

2 $ $

3 $ $

$4 amp 5 $6

$4 + 3 $ $ - 78

373- $9

$4 + 3 $ $ - 8 7

373- $9

13 13

13

13

Using this ManualPndash2

13

13 13

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 72

373- $9

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 71

373- $9

$4 + 3 $ $ - 0 70

373- $9

$4 + 3 $ $ - 2 7

373- $9

$4 lt+ 3 $ $ - 1 7

373- $9

$4 =+ 3 $ $ - 7

373- $9

$4 gt gt7amp $ gt

You can install your module in any system that uses Allen-Bradleyprocessors that support block transfer and the 1771 IO structure

Contact your nearest Allen-Bradley office for more informationabout your programmable controllers

These modules can only be used with 1771-A1B A2B A3B A3B1A4B or later 1771 IO chassis and 1771-AM1 -AM2 chassisCommunication between the analog module and the processor isbidirectional The processor block-transfers output data through theoutput image table to the module and block-transfers input data fromthe module through the input image table The module also requiresan area in the data table to store the read block and write block dataIO image table use is an important factor in module placement andaddressing selection Refer to the table below

13 13

13 13

13

13$

13$

13$

13

13$

13 amp()13 amp)13 ()13

13 amp 8 8 8 1 5 5 5

A 13( ( 0 9 A 13( ( ( ( 0( 13( 13 95 A A $ $

13

13 13

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 2:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

2

Because of the variety of uses for the products described in thispublication those responsible for the application and use of theseproducts must satisfy themselves that all necessary steps have beentaken to assure that each application and use meets all performance andsafety requirements including any applicable laws regulations codesand standards In no event will Rockwell Automation be responsible orliable for indirect or consequential damage resulting from the use orapplication of these products

Any illustrations charts sample programs and layout examples shownin this publication are intended solely for purposes of example Sincethere are many variables and requirements associated with any particularinstallation Rockwell Automation does not assume responsibility orliability (to include intellectual property liability) for actual use basedupon the examples shown in this publication

AllenndashBradley publication SGIndash11 Safety Guidelines for ApplicationInstallation and Maintenance of SolidndashState Control (available fromyour local Rockwell Automation office) describes some importantdifferences between solidndashstate equipment and electromechanicaldevices that should be taken into consideration when applying productssuch as those described in this publicationReproduction of the contents of this copyrighted publication in whole orpart without written permission of Rockwell Automation is prohibited

Throughout this publication notes may be used to make you aware ofsafety considerations The following annotations and their accompanyingstatements help you to identify a potential hazard avoid a potentialhazard and recognize the consequences of a potential hazard

WARNING

Identifies information about practices orcircumstances that can cause an explosion in ahazardous environment which may lead to personalinjury or death property damage or economic loss

ATTENTION

Identifies information about practices orcircumstances that may lead to personal injury ordeath property damage or economic loss

IMPORTANTIdentifies information that is critical forsuccessful application and understanding of theproduct

13 1313

3

Environment and Enclosure

This equipment is intended for use in a PollutionDegree 2 industrial environment in overvoltageCategory II applications (as defined in IEC publication60664ndash1) at altitudes up to 2000 meters withoutderating

This equipment is considered Group 1 Class Aindustrial equipment according to IECCISPRPublication 11 Without appropriate precautions theremay be potential difficulties ensuring electromagneticcompatibility in other environments due to conductedas well as radiated disturbance

This equipment is supplied as ldquoopen typerdquo equipmentIt must be mounted within an enclosure that is suitablydesigned for those specific environmental conditionsthat will be present and appropriately designed toprevent personal injury resulting from accessibility tolive parts The interior of the enclosure must beaccessible only by the use of a tool Subsequentsections of this publication may contain additionalinformation regarding specific enclosure type ratingsthat are required to comply with certain product safetycertifications

See NEMA Standards publication 250 and IECpublication 60529 as applicable for explanations ofthe degrees of protection provided by different types ofenclosures Also see the appropriate sections in thispublication as well as the AllenndashBradley publication1770ndash41 (ldquoIndustrial Automation Wiring andGrounding Guidelinesrdquo) for additional installationrequirements pertaining to this equipment

ATTENTION 13

This equipment is sensitive to electrostatic dischargewhich can cause internal damage and affect normaloperation Follow these guidelines when you handlethis equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

4

13

13

This manual shows you how to use your high resolution isolatedanalog series inputoutput modules with an Allen-Bradleyprogrammable controller It helps you install program calibrate andtroubleshoot your modules

You must be able to program and operate an Allen-Bradleyprogrammable controller (PLC) to make efficient use of your analogmodule In particular you must know how to program block transferinstructions

We assume that you know how to do this in this manual If you donot refer to the appropriate PLC programming and operationsmanual before you attempt to program this module

In this manual we refer tobull the individual module as the ldquomodulerdquo

bull the programmable controller as the ldquocontrollerrdquo or theldquoprocessorrdquo

This manual is divided into seven chapters The following chartshows each chapter with its corresponding title and a brief overviewof the topics covered in that chapter

13 13

$ amp $

$( $ $$)

$$ ( + ( - $ $

$ $amp

0 $$ $ $ +

1 $ amp $ $ $ $$ $ +

2 $ $

3 $ $

$4 amp 5 $6

$4 + 3 $ $ - 78

373- $9

$4 + 3 $ $ - 8 7

373- $9

13 13

13

13

Using this ManualPndash2

13

13 13

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 72

373- $9

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 71

373- $9

$4 + 3 $ $ - 0 70

373- $9

$4 + 3 $ $ - 2 7

373- $9

$4 lt+ 3 $ $ - 1 7

373- $9

$4 =+ 3 $ $ - 7

373- $9

$4 gt gt7amp $ gt

You can install your module in any system that uses Allen-Bradleyprocessors that support block transfer and the 1771 IO structure

Contact your nearest Allen-Bradley office for more informationabout your programmable controllers

These modules can only be used with 1771-A1B A2B A3B A3B1A4B or later 1771 IO chassis and 1771-AM1 -AM2 chassisCommunication between the analog module and the processor isbidirectional The processor block-transfers output data through theoutput image table to the module and block-transfers input data fromthe module through the input image table The module also requiresan area in the data table to store the read block and write block dataIO image table use is an important factor in module placement andaddressing selection Refer to the table below

13 13

13 13

13

13$

13$

13$

13

13$

13 amp()13 amp)13 ()13

13 amp 8 8 8 1 5 5 5

A 13( ( 0 9 A 13( ( ( ( 0( 13( 13 95 A A $ $

13

13 13

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 3:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

3

Environment and Enclosure

This equipment is intended for use in a PollutionDegree 2 industrial environment in overvoltageCategory II applications (as defined in IEC publication60664ndash1) at altitudes up to 2000 meters withoutderating

This equipment is considered Group 1 Class Aindustrial equipment according to IECCISPRPublication 11 Without appropriate precautions theremay be potential difficulties ensuring electromagneticcompatibility in other environments due to conductedas well as radiated disturbance

This equipment is supplied as ldquoopen typerdquo equipmentIt must be mounted within an enclosure that is suitablydesigned for those specific environmental conditionsthat will be present and appropriately designed toprevent personal injury resulting from accessibility tolive parts The interior of the enclosure must beaccessible only by the use of a tool Subsequentsections of this publication may contain additionalinformation regarding specific enclosure type ratingsthat are required to comply with certain product safetycertifications

See NEMA Standards publication 250 and IECpublication 60529 as applicable for explanations ofthe degrees of protection provided by different types ofenclosures Also see the appropriate sections in thispublication as well as the AllenndashBradley publication1770ndash41 (ldquoIndustrial Automation Wiring andGrounding Guidelinesrdquo) for additional installationrequirements pertaining to this equipment

ATTENTION 13

This equipment is sensitive to electrostatic dischargewhich can cause internal damage and affect normaloperation Follow these guidelines when you handlethis equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

4

13

13

This manual shows you how to use your high resolution isolatedanalog series inputoutput modules with an Allen-Bradleyprogrammable controller It helps you install program calibrate andtroubleshoot your modules

You must be able to program and operate an Allen-Bradleyprogrammable controller (PLC) to make efficient use of your analogmodule In particular you must know how to program block transferinstructions

We assume that you know how to do this in this manual If you donot refer to the appropriate PLC programming and operationsmanual before you attempt to program this module

In this manual we refer tobull the individual module as the ldquomodulerdquo

bull the programmable controller as the ldquocontrollerrdquo or theldquoprocessorrdquo

This manual is divided into seven chapters The following chartshows each chapter with its corresponding title and a brief overviewof the topics covered in that chapter

13 13

$ amp $

$( $ $$)

$$ ( + ( - $ $

$ $amp

0 $$ $ $ +

1 $ amp $ $ $ $$ $ +

2 $ $

3 $ $

$4 amp 5 $6

$4 + 3 $ $ - 78

373- $9

$4 + 3 $ $ - 8 7

373- $9

13 13

13

13

Using this ManualPndash2

13

13 13

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 72

373- $9

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 71

373- $9

$4 + 3 $ $ - 0 70

373- $9

$4 + 3 $ $ - 2 7

373- $9

$4 lt+ 3 $ $ - 1 7

373- $9

$4 =+ 3 $ $ - 7

373- $9

$4 gt gt7amp $ gt

You can install your module in any system that uses Allen-Bradleyprocessors that support block transfer and the 1771 IO structure

Contact your nearest Allen-Bradley office for more informationabout your programmable controllers

These modules can only be used with 1771-A1B A2B A3B A3B1A4B or later 1771 IO chassis and 1771-AM1 -AM2 chassisCommunication between the analog module and the processor isbidirectional The processor block-transfers output data through theoutput image table to the module and block-transfers input data fromthe module through the input image table The module also requiresan area in the data table to store the read block and write block dataIO image table use is an important factor in module placement andaddressing selection Refer to the table below

13 13

13 13

13

13$

13$

13$

13

13$

13 amp()13 amp)13 ()13

13 amp 8 8 8 1 5 5 5

A 13( ( 0 9 A 13( ( ( ( 0( 13( 13 95 A A $ $

13

13 13

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 4:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

4

13

13

This manual shows you how to use your high resolution isolatedanalog series inputoutput modules with an Allen-Bradleyprogrammable controller It helps you install program calibrate andtroubleshoot your modules

You must be able to program and operate an Allen-Bradleyprogrammable controller (PLC) to make efficient use of your analogmodule In particular you must know how to program block transferinstructions

We assume that you know how to do this in this manual If you donot refer to the appropriate PLC programming and operationsmanual before you attempt to program this module

In this manual we refer tobull the individual module as the ldquomodulerdquo

bull the programmable controller as the ldquocontrollerrdquo or theldquoprocessorrdquo

This manual is divided into seven chapters The following chartshows each chapter with its corresponding title and a brief overviewof the topics covered in that chapter

13 13

$ amp $

$( $ $$)

$$ ( + ( - $ $

$ $amp

0 $$ $ $ +

1 $ amp $ $ $ $$ $ +

2 $ $

3 $ $

$4 amp 5 $6

$4 + 3 $ $ - 78

373- $9

$4 + 3 $ $ - 8 7

373- $9

13 13

13

13

Using this ManualPndash2

13

13 13

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 72

373- $9

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 71

373- $9

$4 + 3 $ $ - 0 70

373- $9

$4 + 3 $ $ - 2 7

373- $9

$4 lt+ 3 $ $ - 1 7

373- $9

$4 =+ 3 $ $ - 7

373- $9

$4 gt gt7amp $ gt

You can install your module in any system that uses Allen-Bradleyprocessors that support block transfer and the 1771 IO structure

Contact your nearest Allen-Bradley office for more informationabout your programmable controllers

These modules can only be used with 1771-A1B A2B A3B A3B1A4B or later 1771 IO chassis and 1771-AM1 -AM2 chassisCommunication between the analog module and the processor isbidirectional The processor block-transfers output data through theoutput image table to the module and block-transfers input data fromthe module through the input image table The module also requiresan area in the data table to store the read block and write block dataIO image table use is an important factor in module placement andaddressing selection Refer to the table below

13 13

13 13

13

13$

13$

13$

13

13$

13 amp()13 amp)13 ()13

13 amp 8 8 8 1 5 5 5

A 13( ( 0 9 A 13( ( ( ( 0( 13( 13 95 A A $ $

13

13 13

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 5:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

13

13

This manual shows you how to use your high resolution isolatedanalog series inputoutput modules with an Allen-Bradleyprogrammable controller It helps you install program calibrate andtroubleshoot your modules

You must be able to program and operate an Allen-Bradleyprogrammable controller (PLC) to make efficient use of your analogmodule In particular you must know how to program block transferinstructions

We assume that you know how to do this in this manual If you donot refer to the appropriate PLC programming and operationsmanual before you attempt to program this module

In this manual we refer tobull the individual module as the ldquomodulerdquo

bull the programmable controller as the ldquocontrollerrdquo or theldquoprocessorrdquo

This manual is divided into seven chapters The following chartshows each chapter with its corresponding title and a brief overviewof the topics covered in that chapter

13 13

$ amp $

$( $ $$)

$$ ( + ( - $ $

$ $amp

0 $$ $ $ +

1 $ amp $ $ $ $$ $ +

2 $ $

3 $ $

$4 amp 5 $6

$4 + 3 $ $ - 78

373- $9

$4 + 3 $ $ - 8 7

373- $9

13 13

13

13

Using this ManualPndash2

13

13 13

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 72

373- $9

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 71

373- $9

$4 + 3 $ $ - 0 70

373- $9

$4 + 3 $ $ - 2 7

373- $9

$4 lt+ 3 $ $ - 1 7

373- $9

$4 =+ 3 $ $ - 7

373- $9

$4 gt gt7amp $ gt

You can install your module in any system that uses Allen-Bradleyprocessors that support block transfer and the 1771 IO structure

Contact your nearest Allen-Bradley office for more informationabout your programmable controllers

These modules can only be used with 1771-A1B A2B A3B A3B1A4B or later 1771 IO chassis and 1771-AM1 -AM2 chassisCommunication between the analog module and the processor isbidirectional The processor block-transfers output data through theoutput image table to the module and block-transfers input data fromthe module through the input image table The module also requiresan area in the data table to store the read block and write block dataIO image table use is an important factor in module placement andaddressing selection Refer to the table below

13 13

13 13

13

13$

13$

13$

13

13$

13 amp()13 amp)13 ()13

13 amp 8 8 8 1 5 5 5

A 13( ( 0 9 A 13( ( ( ( 0( 13( 13 95 A A $ $

13

13 13

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 6:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

Using this ManualPndash2

13

13 13

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 72

373- $9

$4 + 3 $ $ - 7

373- $9

$4 + 3 $ $ - 71

373- $9

$4 + 3 $ $ - 0 70

373- $9

$4 + 3 $ $ - 2 7

373- $9

$4 lt+ 3 $ $ - 1 7

373- $9

$4 =+ 3 $ $ - 7

373- $9

$4 gt gt7amp $ gt

You can install your module in any system that uses Allen-Bradleyprocessors that support block transfer and the 1771 IO structure

Contact your nearest Allen-Bradley office for more informationabout your programmable controllers

These modules can only be used with 1771-A1B A2B A3B A3B1A4B or later 1771 IO chassis and 1771-AM1 -AM2 chassisCommunication between the analog module and the processor isbidirectional The processor block-transfers output data through theoutput image table to the module and block-transfers input data fromthe module through the input image table The module also requiresan area in the data table to store the read block and write block dataIO image table use is an important factor in module placement andaddressing selection Refer to the table below

13 13

13 13

13

13$

13$

13$

13

13$

13 amp()13 amp)13 ()13

13 amp 8 8 8 1 5 5 5

A 13( ( 0 9 A 13( ( ( ( 0( 13( 13 95 A A $ $

13

13 13

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 7:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

Using this Manual Pndash3

13

You can place your analog module in any IO module slot of theIO chassis

Do not put the analog module in the same module group as a digitalhigh density module unless you are using 1 or 12-slot addressingAvoid placing the analog module close to ac modules or high voltagedc modules

For a list of publications with information on Allen-Bradleyprogrammable controller products consult our publication indexSD499

13

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 8:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

Using this ManualPndash4

13

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 9:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

13

amp

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp $ 9 9 9

7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 5 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7) 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9

- 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

013- amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$)gt 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt13 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

gt131 $ gt13171 )4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ amp 3 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt13 19 9 9 9 9 9 9 9 9 9 9

amp gt$$ 13 gt131 29 9 9 9 9 9 9 9 9 9 9

amp 3) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table of Contents

+ 13 1313

13 13-13

13

13 13 13

13

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 10:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

Table of Contents13

13

0

B 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 09 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ C D E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

36 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 amp 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

E 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$$ 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 009 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 3 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ + 3 - 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 019 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ $ 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 029 9

-$ $ 0 029 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ $ 0 09 9

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-$ 1 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ 1 08

09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ -$ ) 0

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13 13

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 11:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer

Table of Contents 13

13

1

B 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ ) 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

C D + 3 $ $ 19 9 9 9 9 9 9 9 9 9 9 9 9 9

C D $ C7D + 3 $ )$ 19

amp 109 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 119 9 9 9 9 9 9 9 9 9

amp 129 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

7-$ amp -$ 19 9 9 9 9 9 9 9 9

amp 19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2

B 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

5 $ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 289 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3

B 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

3 )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ )$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 09 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9 9 9

+ 3 $ 7-$ 8 $ 9 9 9 9

13 5

13 13

131313

513

13$ 13$

1313

13 6 7 amp33amp)

5 13

Table of Contents13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 8 $ 9 9 9 9

+ 3 - 7-$ 8 $ 9 9 9

+ 3 $ -$ 8 $ 19 9 9 9

+ 3 $ 7-$ 8 $ 29 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 1

+ 3 $ 7-$ 7 $ 2

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 72 $

+ 3 - 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 72 $ 2

+ 3 $ 7-$ 72 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 8

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $

+ 3 - 7-$ 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ 2

+ 3 $ 7-$ 7 $

4 9

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 71 $

+ 3 - 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 71 $ 2

+ 3 $ 7-$ 71 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 7 6 amp33amp)

5 13

13$ 13$

1313

13 ( ( amp33amp)

5 13

13$ 13$

1313

13 ( 2 amp33amp)

5 13

13$ 13$

1313

13 amp 3 amp33amp)

5 13

13$ 13$

1313

13 -1 amp33amp)

5 13

Table of Contents 13

13

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 0 70 $

+ 3 - 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 0 70 $ 2

+ 3 $ 7-$ 0 70 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 2 7 $

+ 3 - 7-$ 2 7 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 2 7 $ 2

+ 3 $ 7-$ 2 7 $ 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 1 7 $ lt29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ 7-$ 1 7 $ lt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4

- 3 $4 =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 - + 7 $ =

+ 3 - 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 3 $ -$ 7 $ =2

+ 3 $ 7-$ 7 $ =9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

4 lt

amp $ gt gt9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

13$ 13$

1313

13 0 0 amp33amp)

5 13

13$ 13$

1313

13 2 ( amp33amp)

5 13

13$ 13$

1313

13 1 amp33amp)

5 13

13$ 13$

1313

13 3 amp amp33amp)

5 13

5 13 lt1313

Table of Contents13

13

13

13 13

This chapter gives you information on

bull features of the inputoutput modules

bull how the modules communicate with programmable controllers

The high resolution isolated analog modules are intelligent blocktransfer modules that interface analog signals with Allen-BradleyPLC-3 and PLC-5 family programmable controllers that have blocktransfer capability Block transfer programming moves input datawords from the modulersquos memory to a designated area in theprocessor data table in a single scan It also moves configurationwords and output data from the processor data table to modulememory

The N-series family includes modules with both analog inputs andoutputs on the same module The modules use 16-bitanalog-to-digital converters and 14-bit digital-to-analog convertersfor high resolution and accuracy All of these modules require only asingle slot in the IO chassis and do not require an external powersupply

Since the N-series modules are combination modules with input andoutput capabilities on the same module block transfer reads from themodule are structured differently from dedicated input or outputmodules Normally block transfer read information is contiguousand is stored in contiguous locations in the data block N-seriesmodules transmit channel data on an individual basis with statusinformation in between This results in non-contiguous blocks ofdata in non-contiguous data locations Care must be taken whentransferring this information Additional programming may berequired

IMPORTANTUse with PLC-2 family programmablecontrollers is not recommended Refer tochapter 3 page 3-2

Input data is converted to a specified data type in a digital format tobe transferred to the processorrsquos data table on request Output data isconverted to analog signals and sent to the appropriate outputchannels If real time sampling is selected block transfer reads willonly occur at the time selected Consequently the minimum intervalbetween block transfer reads is the same as the total input updatetime for each analog input module (25ms)

=

13 13

1ndash2 Overview of the High Resolution Isolated Analog Modules

13

The modules have either four or eight channels each electricallyisolated from each other and from the backplane Input and outputterminations are made through prefabricated cables which connect toremote termination panels (RTP) The modules are compatible withall 1771-A1B A2B A3B A3B1 A4B and later 1771 universalIO chassis In addition they can be used in 1771-AM1 and -AM2chassis

The analog modules are comprised of modular analog signalconditioning blocks that are plugged into a common circuit board

These signal conditioning blocks provide the following

bull 4ndash20mA output range

bull 0ndash50mA output range

bull +10V output (scalable +5V 0-5V 0-10V etc)

bull thermocouple input (+100mV)

bull +5V input (+20mA with resistor RTP)

bull +10V input (+20mA with resistor RTP)

bull 4ndash20mA input with sourcingsinking input

bull 1ndash650 ohm RTD input

Your particular module may have a combination of the aboveconditioning blocks

The N-Series analog modules feature

bull scaling of data to engineering units

bull self-calibration (external reference required)

bull software configuration

bull user-selectable high and low alarms with deadband (hysteresis)

bull self diagnostics

bull input open circuit detection

bull programmable ramped outputs

Specific analog modules have these additional features

bull Thermocouple input channels

ndash input channels configurable for thermocouple input ranges mdash Types B E J K R S and T thermocouples (1771-NT2 alsoincludes types C and N)

ndash cold junction compensationndash scaling to selected temperature range in oC or oFndash temperature resolution mdash

up to 003oC006degF (E J K T N) up to 01oC02degF (B R S)up to 007oC01degF (C)

ndash millivolt resolution up to 1 microvolt

8 13

1313 13

13 5 13

1ndash3Overview of the High Resolution Isolated Analog Modules

13

bull RTD input channels

ndash reports oC oF or ohms for 100Ω platinum 120Ω nickel or 10Ω copper sensors

ndash reports ohms for other types of sensorsndash 01oC01oF resolution on 100Ω platinum sensorndash resistance resolution to 10mΩ

bull +5V and +10V input channels mdash can be used with remotetermination panel resistor to achieve a nonsourcing current input

bull 4-20mA input with internal loop power supply

bull plusmn10V output channels

bull 0-25mA output channels

bull 0-50mA output channels

13

The following are standard catalog numbers and their respectivechannel configurations

13 amp ( 0 1 2 3 7 13

4

13amp 0 0 0 0 0 0 0 0

13E F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13E FE FE FE FE FE FE FE FE

13E F1E GFH F1E GFH F1E GFH F1E GFH 3 3 3 3

13E3 F1E GFH F1E GFH F1E GFH F1E GFH FE73 FE73 FE73 FE73

13 3 3 3 3 3 3 3 3

133 FE73 FE73 FE73 FE73 FE73 FE73 FE73 FE73

133 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73 17F11E73

13 1 1 1 1 1 1 1 1

13E FE FE FE FE FE FE FE FE

1303 1 1 FE73 FE73

130amp 1 1 0 0

13amp 1 1 0 0 0 0 0 0

13 1 1 3 3 3 3 3 3

133 1 1 FE73 FE73 FE73 FE73 FE73 FE73

13E FE FE FE FE FE FE FE FE

13E 1 1 F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH F1E GFH

13I 1 1 1 1 1 3 3 E73

13I 1 1 1 1 3 3 E73 E73

13I 1 1 1 1 3 3 3 E73

13I0 1 1 1 1 1 1 3 E73

13gt $ gt 13 $9

1ndash4 Overview of the High Resolution Isolated Analog Modules

13

The processor transfers data to and from the module using BTW(block transfer write) and BTR (block transfer read) instructions inyour ladder diagram program These instructions let the processorobtain input values and status from the module and let you establishthe modulersquos mode of operation (Figure NO TAG)

1 The processor transfers your configuration data output data andcalibration values to the module using a block transfer writeinstruction

2 External input devices generate analog signals that are transmittedto the module Internal output circuitry generates analog signalsthat drive field devices

3 The module converts the analog signals into binary or BCDformat and stores theses values until the processor requests theirtransfer

amp

1313 + 1313 13

gt Ggt13170 ampH

$ $

3-

3

5

2

3

13

1

4

$

3 $

4 When instructed by your ladder program the processor performsa read block transfer of the values and stores them in a data table

5 The processor and module determine that the transfer was madewithout error and that input values are within specified range

6 Your ladder program can use andor move the data (if valid)before it is written over by the transfer of new data in asubsequent transfer

See chapter 4 ldquoConfiguring the Modulerdquo for more information

The accuracy of each of the high resolution isolated analog modulesis described in Appendix A

In this chapter you read about the functional aspects of the analogmodules and how they communicate with programmable controllers

13+ 1313

13 13 13

13 +

1313

5

13

13

This chapter gives you information on

813 1313 13 5

5 5 $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ gt 9 9 9 9 9 9 9 9 9 9 9 9 9

$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1

0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

amp $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

+ 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

$ $ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Before installing your module in the IO chassis you must

13 gt 13gt

7 9

$ 7

$ +

ATTENTION 13

This equipment is sensitive to electrostaticdischarge which can cause internal damage andaffect normal operation Follow these guidelineswhen you handle this equipment

bull Touch a grounded object to discharge potentialstatic

bull Wear an approved grounding wriststrapbull Do not touch connectors or pins on component

boardsbull Do not touch circuit components inside the

equipmentbull If available use a staticndashsafe workstationbull When not in use keep modules in appropriate

staticndashsafe packaging

Your module receives its power through the 1771 IO chassisbackplane from the chassis power supply The maximum currentdrawn by the module from this supply ranges from 15 to 33Adependent upon the particular type of module Refer to thespecifications in appendix A for standard modules

=

13 13 13

13-13

13

13+

13

-

2ndash2 Installing the Module

13

Add this value to the requirements of all other modules in the IOchassis to prevent overloading the chassis backplane andorbackplane power supply

Place your module in any slot of the IO chassis except for theextreme left slot This slot is reserved for processors or adaptermodules

Group your modules to minimize adverse affects from radiatedelectrical noise and heat We recommend the following

bull Group analog and low voltage dc modules away from ac modulesor high voltage dc modules to minimize electrical noiseinterference

bull Do not place this module in the same IO group with a discretehigh-density IO module when using 2-slot addressing Thismodule uses a byte in both the input and output image tables forblock transfer

To install your module in an IO chassis

1 First turn off power to the IO chassis

ATTENTION

Remove power from the 1771 IO chassisbackplane and disconnect the cable from themodule before removing or installing an IOmodule

bull Failure to remove power from the backplanecould cause injury or equipment damage due to

possible unexpected operation

bull Failure to remove power from the backplanecould cause module damage degradation ofperformance or injury

ATTENTION

Observe the following precautions when insertingor removing keys

bull insert or remove keys with your fingers

bull make sure that key placement is correct

Incorrect keying or the use of a tool can result indamage to the backplane connector and possiblesystem faults

13

lt1313

13 13

2ndash3Installing the Module

13

+ $ + $ + $9

+ $J (2 $ (7

( $ 0

5 $ $ $ + $ $ 9

13

7

$ 4 $ $9

$ 1313

= $

ATTENTION

Remove power from the 1771 IO chassisbackplane and field wiring arm before removingor installing an IO module

bull Failure to remove power from the backplane orwiring arm could cause module damage degra-dation of performance or injury

bull Failure to remove power from the backplanecould cause injury or equipment damage due topossible unexpected operation

1 Place the module in the plastic tracks on the top and bottom of theslot that guides the module into position

2 Do not force the module into its backplane connector Apply firmeven pressure on the module until it is firmly seated in thechassis Note The chassis locking bar will not close if allmodules are not seated properly

13

13

2ndash4 Installing the Module

13

amp + $ $9 + + 9

13( 13( 13( 13( 130 7 13( 13( 13( 130 amp 7

+

$ $

$

$

8

$ $

+ +

amp $ 9

3 Connect the 1771-NC cable to the module as shown in Figure 21

A Slide the locking bar up

B Insert the cable connector into the mating connector on thefront of the module

C Slide the locking bar down over the mating pins on themodule to lock the connector onto the module

8 (amp

13 13 813 13 13

9 + 9 9 99 amp$ + $ +9

gt+

$

13

2ndash5Installing the Module

13

The N-series modules are cable-connected to a remote terminationpanel using cat no 1771-NC6 (6 ft) or -NC15 (15 ft) cables

Variations of remote termination panels are used depending on thetype of module used These are

13

13

133 $ B

133 $ K $ 013 F1E G 1 4 70 70( 1E719H

1330 13 + 13 $ 4

1330 013 + $ B

13300 13 013 + 13 $ 4

30 $ 300 $ $ $ B $$

$ 9

The remote termination panels are designed for mounting onstandard DIN 1 or DIN 3 mounting rails

13

2ndash6 Installing the Module

13

8 ((

13 13 13 13 13

19G092H

9G19H

9G19H

91G889H

9G1890H

0ampA 00

ampA A 0

22

9G1890H

9G1890H

+

GH

lt

ltltlt0

lt

ltltlt0

lt8

ltlt2lt1

(

13 13 1313 13 13 8 B amp 13+C

13 13 13 13 13 13 13 13

F

F F F

E 13 G

413 3 13

Gamp 7

13

amp$ amp H amp$ amp amp$ ampGamp7amp+H

amp$ amp

13 13

13 13 13 13

gt

F F

4 GH

E 13 13 3 gt$ GH

amp$ amp amp$ amp GH

- 013 3( 0 9 $ 13amp $ 9 92 $9

2ndash7Installing the Module

13

8 (

13 13

A A A amp A amp$

3 $ 13

013

13gt 3 -( - $ - 9 $ gt9

30

$ $ 13

3

3 $ 13

$ $ 13

A A A amp A amp$

13gt 3 -( - $ - 9 $ gt9

4gt

2ndash8 Installing the Module

13

Field wiring to the remote termination panel is the same for allremote termination panel variations Refer to Figure 24

Each channel has 4 connections R I O and S

bull R = return

bull I = input

bull O = output

bull S = shield

Channel 1 would use R1 I1 O1 and S1 channel 2 would use R2I2 O2 and S2 and so on for the remaining channels

To connect field wiring to the remote termination panel

1 Strip 38 inch (925 mm) of insulation from the 22-12 AWG wire

2 Insert the wire into the open connector slot

3 Tighten the screw to 44ndash52 lbndashin (05ndash06Nm) to clamp thewire

8 (0

13 13 13 13

3 G3H

2

J ( ( ( $ amp9$ 3 3 9 ( ( ( $ ampK ( (( $ ampK $ 9

A

A

8

amp A $

A

2ndash9Installing the Module

13

Figure 25 shows how to connect 4-wire sensors to the remotetermination panel A 4-wire sensor has two pairs of leads one pairfor each resistor junction One wire of the four is not used (it doesnot matter which one) This leaves three wires ndash one pair and onesingle wire You must connect the single wire to the terminal markedldquoO_rdquo You connect the remaining pair of wires to terminals ldquoI_rdquo andldquoR_rdquo It doesnrsquot matter which wire of the pair connects to terminalldquoI_rdquo and which wire connects to terminal ldquoR_rdquo so long as all threewires are the same AWG gauge

8 (1

13 0) 513 13 13 13

$

gt $

amp $

1

13gt J

3 4 GH 3 $ GH 3 GH

3

13 0)

513

2ndash10 Installing the Module

13

The 1771-NIS 1771-NBSC and 1771-NB4S modules aresourcingsinking input modules These modules can supply thenecessary loop power for 2-wire transmitters connected to the inputAll loop power functionality is contained within the analog moduleExamples of typical configurations are shown in Figure 26No external resistors are required

8 (2

4 13 5135$ 13

0E $

13- 330

0E $

0E $

013- 3

0E $

13- 3

0E $

$

013

G H

G+ H

G+ H

Inputs can be configured as sourcing or sinking inputs For sourcinginputs the N-series module supplies the loop power For sinkinginputs you supply the loop power

When the loop power is supplied externally the 16-bit resolutionprovides 65535 counts over the 0ndash20mA current range Thisprovides about twice the resolution of voltage inputs with externalresistors

513 13

13

2ndash11Installing the Module

13

If you are not using thermocouples you can terminate the analogmodule to a terminal block by cutting the 25-pin RTP end connectoroff the standard cable and wiring to your terminal block Refer toTable 2B for wire termination designations

(

13 13

13 13 1313 13 1313 1313

5 3) 1313 1313 5 3) 1313 1313

+ 1 +

+7- 1 1 +7-

-7+ 1 -7+

0 2 0

2 7+ 2 2 2 7+

1 - 2 1 -

7+ 7+

7- 7-

0 8

0 0 1 7+ 8 8 1 7+

0 0 7- 8 0 7-

$ lt3

2 $3

$7-

$ 13 +

2ndash12 Installing the Module

13

When using shielded cable or shielded thermocouple extension wireground the foil shield and drain wire only at one end of the cableWe recommend that you wrap the foil shield and drain wire togetherand connect them to the ldquoSrdquo connection on the RTP for the particularchannel All shield connections are internally connected together inthe RTP so that only one wire is required to ground the entire remotetermination panel Connect a wire from the ldquoSHrdquo connection on theRTP to a ground stud on the metal cabinet in which the remotetermination panel is mounted

If you do not want to ground a particular shield at the RTP you canremove the jumper for that particular channel This will allow theshield to float at the RTP end To remove a jumper you must cut itout Once the jumper is removed it cannot be replaced Clip asclose to the circuit board as possible at both ends to completelyremove it The jumpers (Figure 27) are labeled J1 through J8corresponding to channels 1 through 8 respectively

8 (3

1313

lt

lt

lt

lt0

lt8

lt

lt2

lt1

lt 0

lt 1 8

Refer to publication 1770-41 Programmable Controller Wiring andGrounding Guidelines for additional information

913 8

2ndash13Installing the Module

13

The front panel of the analog module contains two bi-colorindicators a redgreen RUNFLT (fault) indicator and a redgreenCALCOM indicator (Figure 28)

8 (7

13 13

7gt3

gt7

1813

7 $9 3 $ $ + 9 $$ 9

7 $9 3 $ $ + $9 $ ( 7gt3 $ $9

At power-up an initial module self-check occurs The RUNFLTindicator will be green when the check is completed satisfactorily Itwill flash green until the first valid block transfer write has beenreceived If a fault is found initially or occurs later the RUNFLTindicator turns red

The bottom indicator is the calibratecommunication indicator Thisindicator will flash green when doing block transfers It will flash redduring calibration

Possible module fault causes and corrective action are discussed inChapter 7 ldquoTroubleshootingrdquo

In this chapter you learned how to install your module in an existingprogrammable controller system and how to wire to the remotetermination panel

13-lt

5

2ndash14 Installing the Module

13

13

13

In this chapter we describe

bull block transfer programming

bull quick-startup sample programs for the PLC-3 and PLC-5processors

bull module scan time issues

Your module communicates with the processor through bidirectionalblock transfers This is the sequential operation of both read andwrite block transfer instructions

For the 1771-N series modules block transfer writes (BTWs) canperform two different functions

13 + 13gt 13 13 gt

$3 $( ( ( ( 9

D1313-rdquo

$ $ $

3 3- 3- $ $ $9

D13 E

A configuration BTW is initiated when the analog module is firstpowered up and subsequently only when the programmer wants toenable or disable features of the module

An output update BTW is initiated when the programmer wants theoutput channels on the module to change value This shortenedversion of the BTW allows faster response time from the outputchannels

The following example programs are minimum programs all rungsand conditioning must be included in your application program Youcan disable BTRs or add interlocks to prevent writes if desired Donot eliminate any storage bits or interlocks included in the sampleprograms If interlocks are removed the program may not workproperly

=

13$

13

3ndash2 Communicating With Your Analog Module

13

Your analog module works with a default configuration uponpowerup as long as a block transfer write (BTW) has not beeninitiated See the configuration default section in chapter 4 tounderstand what this configuration looks like Refer to the sampleprograms in this chapter to get started

Your program should monitor status bits (such as overrangeunderrange alarms etc) and block transfer read activity

The following example programs illustrate the minimumprogramming required for the 1771-N series module to powerup andoperate

Due to the number of digits required for high resolution readings the1771-N series modules normally read input values in 2rsquos complementbinary Binary coded decimal (BCD) can be used but with lowerresolution As a result the 1771-N series modules are notrecommended for use with PLC-2 family programmable controllers

Block transfer instructions with the PLC-3 processor use three datatable files A binary file is used for module location and other relateddata This is the block transfer control file Two separate blocktransfer data files store data that you want transferred to the module(when programming a block transfer write) or from the module(when programming a block transfer read) The address of the blocktransfer data files are stored in the block transfer control file

The industrial terminal prompts you to create a control file when ablock transfer instruction is being programmed The same blocktransfer control file is used for both the read and writeinstructions for your module A different block transfer control fileis required for every module

An example program segment with block transfer instructions isshown in Figure 31 and described below

lt)( 13

lt) 13 4

3ndash3Communicating With Your Analog Module

13

8 amp

lt) 8 5 13 5

3

gt=)I)=JJgtJ3J

IIII

I)A)IIIIIIIIJIIII

gt3J3gtJ

IIIIJIIII

3-

gt=)I)-3

=J

J

gtJ

3J

III

I

I)A)IIII

IIIIJIIII

gt3J

3gtJ

IIIIJIIII

+ 3$

1

1

+ 3-

amp

(

13 13

( + $9 3 + $9

3( 13 $ $ + 9

This program is very similar to the PLC-3 program with thefollowing exceptions

bull Block transfer enable bits are used instead of done bits as theconditions on each rung

bull Separate block transfer control files are used for the blocktransfer instructions

8 (

lt)1 8 5 13 5

3gt=)I)=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3)

amp

3-gt=)I)-3=JJgtJ3gtJ

III

IIIJII

3)gtJgt3J3ampJ

IIIJII

3

(

3-

3-)

13 13

( + $9 3 + $9

3( 13 $ $ + 9

lt)1 lt)1(16

13-4

3ndash4 Communicating With Your Analog Module

13

Scan time is defined as the amount of time it takes for the module toread the input channels and place new data into the data bufferandor read the data buffer and write new data to the output channelsScan time for your module is shown in Figure 33

8

13$

+3-3

$ +3 -

3

amp $ amp $ amp

$ +

0 1 2

113 F 1

The following description references the sequence numbers inFigure 33

Following a block transfer write (1) the module inhibitscommunication until after it has configured the data and loadedcalibration constants (2) scanned the inputs andor outputs (3) andfilled the data buffer (4) Configuration block transfers thereforeshould only be performed when the module is being configured orcalibrated

Any time after the buffer is filled (4) a block transfer read (BTR)request can be acknowledged

When operated in the default mode new data will be available for aBTR every 25 milliseconds When operated in real time samplemode (RTS = T) BTRs will be ignored by the module for ldquoTrdquomilliseconds at which time a single BTR will be allowed

The following are sample programs for using your modules moreefficiently when operating with the PLC-3 or PLC-5 familyprocessors

These programs show you how to configure the module and readdata from the module and efficiently update the output channels onthose modules with outputs

Refer to the proper PLC-3 or PLC-5 documentation for additionalinformation on processor programming and data entry

13 5

13 5

3ndash5Communicating With Your Analog Module

13

The differences between the types of 1771-N series modules isrelated to the number of output channels each module has A modulewith only inputs (no outputs) requires one BTW after powerupThereafter it sends back input data and module status by way ofBTRs

A module with outputs requires BTWs to configure it and update itsoutput data BTRs are required to send back input data and modulestatus

5 lt ) lt) 8 1313

The following PLC-3 program can be used for all 1771-N seriesmodules The program can be altered to effectively address moduleswith or without output channels

8 0

lt) 8 4 13 5

3

gt=)I)=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

J

1

+ 3$

1

1

+ 3-

J

1

EampJ

amp33J

J

J1

)

J

E

ampJ

amp33J

J

J1

J

+ 3-

+ 3-

+ 3$

J

0

3-

gt=)I)-3=JJgtJ

3)gt

LJgt3J

3gtJ

LJ

+ 3-

J

J

J

J)

J

3 + 1 $ $( $ 9

3ndash6 Communicating With Your Analog Module

13

Modules without output channels do not require rungs 2 and 3Instead move the input condition instructions from rung 2 to thefront of rung 4 and specify the BTW length equal to 59

5 lt ) lt)1 8 1313

The following PLC-5 program is very similar to the precedingPLC-3 program with the following exceptions

bull You use enable bits instead of done bits as the conditions on eachrung

bull A separate control file must be selected for each of the blocktransfer instructions

8 1

lt)1 8 4 13 5

3gt=)I)=JJgtJ3gtJ

J

3)gtJgt3J3ampJ

J

3)

1

3-gt=)I)-3=JJgtJ3gtJ

J1

3)gtJgt3J3ampJ

J8

1 1

3-

3-)

1

33amp3Iampamp

J21 1

3-

1

)

M gt A G F H $9 72 $( $ 9

M

0

3J J1

J

J J1

J J1

33amp3Iampamp

J2 1

3-

J J1

4( $ $ + $$ ( $ ( $ $ $ $ $ + $$ ( $ ( 29 3 + $ $ 4 9

$ $ $ 9 $( $ G $ H 0( $ 3- 19

1

)J

3ndash7Communicating With Your Analog Module

13

If you use a 1771-NBTC module with the parameters listed belowthe PLC-5 data table file screen on an industrial terminal screenwould look similar to Figure 36

13 813 13

J

E $J $

3 ampJ

amp J 6 $

$ lt 3 J $

3 amp J $

5

lt13+

B13C

lt13+

B13C

4

BC

5

BC

07 7 92 5 7

137 137 89 5

5

lt13+

B13C

lt13+

B13C

B138C

B138C

8

BC

amp6

7 172 5 9 91 7 7

0 7 71 9 5 9 9 7 7

1 7 71 9 5 9 91 7 7 lt

2 7 71 9 5 9 9 7 7 =

7 7 7 5 9 91 7 7

8 7 7 7 5 9 9 7 7 amp

The above configuration for the 2 output6 input module (cat no1771-NBTC) would be set up using the following PLC-5 data tablefile (Figure 36)

5

-8

3ndash8 Communicating With Your Analog Module

13

8 2

5 lt)1 8 B4 C 13

( 2 13

$$

J

J

J

0

1

200

88

2

8

001

8

8

8

1

20

002

0

8

8

8

280

88

8

J

J0

J1

J2

J

J8

J

J

J

1

1

1

1

1

1

2

2

8

8

0

88

0

8

20

20

0

8

28

20

80

10

8

18

8

8

21

J

J

020

8

8

0

8

18

2

8

0

1

8

0

1

8

3 + $ $ $ J J9

3 + $ $ J8 J89

+ 9

$4

amp$$1

4

8

J1 A

J J 47 $$J 171 $$ gtN3

In this chapter you learned how to program your programmablecontroller You were given sample programs for your PLC-3 andPLC-5 family processors and shown what the data file for a modulelooks like

You also read about module scan time

5

13

13

In this chapter you will read how to

bull configure your modulersquos features

bull condition your inputs and outputs and

bull enter your data

Because of the many analog devices available and the wide varietyof possible configurations you must configure your module toconform to the analog device and specific application that you havechosen Data is conditioned through a group of data table words thatare transferred to the module using a block transfer write instruction

Configure your module for its intended operation by means of yourprogramming terminal and write block transfers

Note Programmable controllers that use 6200 software (release 42or higher) programming tools can take advantage of the IOCONFIGAddendum utility to configure this module IOCONFIG Addendumuses menu-based screens for configuration without having to setindividual bits in particular locations You must have blocktransfer read and block transfer write rungs in your programbefore using IOCONFIG software Refer to your 6200 softwareliterature for details

13gt It is strongly recommended that you use IOCONFIG toconfigure this module The IOCONFIG utility greatlysimplifies configuration If the IOCONFIG is notavailable you must enter data directly into the datatable Use this chapter as a reference when performingthis task

Note Programmable controllers that use process configuration andoperation software (cat no 6190-PCO) can take advantage of thosedevelopment and runtime tools used for the application ofprogrammable controllers in process control The PCO worksheetsand the menu-driven configuration screens and faceplates let youconfigure testdebug and operate the IO module Refer to your6190-PCO software literature for details

During normal operation the processor transfers from 1 to 59 wordsto the module when you program a BTW instruction to the modulersquosaddress The BTW file contains configuration words high and lowchannel alarm settings and calibration values that you enter for eachchannel

=

13

1313 13

13 13

4ndash2 Configuring the Module

13

When making entries in the configuration block use binary orhexadecimal only

The modules can be operated in a default mode by using zeroes in allbut the first word of the BTW data file The first word must identifythe number of outputs on the module For example the first wordfor the 8 output module (cat no 1771-NOC) would be 8880hexadecimal the first word for the 2 out6 input module (cat no1771-NBVC -NBTC -NBRC) would be 8820 hexadecimal and thefirst word for the 8 input module (cat no 1771-NIV -NT1 -NR)would be 8800 hexadecimal

8 13 13

888 4$ 8

88 4$

882 4$ 2

881 4$ 1

880 4$ 0

88 4$

88 4$

88 4$

88 4$

The default scaling values that apply to the inputs and outputs arelisted in the specifications in appendix A In default mode allprogrammable features (alarming filtering real time sampling etc)are disabled

1313

4ndash3Configuring the Module

13

Module level programming features include

bull module ldquoconfigurationrdquo verification

bull temperature scale

bull data format

bull real time sample

13 D1313E 13

The verify bit 00 in the block transfer write word 3 allows you tocompare the configuration information the module is using to theconfiguration information contained in a block transfer write (BTW)You set the verify bit in the BTW you wish to check and downloadthe BTW to the module After the BTW is completed request a BTRfrom the module The program verify field in the BTR (bits 09-10decimal bits bits 11-12 octal word 1) will contain either of twovalues 10 (binary) indicates the verify failed 11 (binary) indicatesthe verify succeeded

If the verify bit is set configuration information in the BTW data filewill not be used by the module regardless of the success or failure ofthe verify

5

You select the temperature scale that the module will use whenreturning temperature to the processor using bit 01 word 3 of theblock transfer write data file If the bit is set to 0 the temperature isin degrees C if the bit is set to 1 the temperature is in degrees F

813

Use bit 02 word 3 of the block transfer write data file to select a dataformat If this bit is 0 all data fields will be in tworsquos complementbinary format If the bit is 1 all fields will be in BCD format InBCD the most significant bit is the sign bit for all signed fields Thissign bit applies to both BTW and BTR words

NOTE Available resolution is poor when using BCD format

The 4-digit BCD format uses an arrangement of 16 binary digits torepresent a 4-digit decimal number from 0000 to 9999 (Figure 41)The BCD format is used when the input values are to be displayedfor operator viewing Each group of four binary digits is used torepresent a number from 0 to 9 The place values for each group ofdigits are 20 21 22 and 23 (Table 4A) The decimal equivalent for agroup of four binary digits is determined by multiplying the binarydigit by its corresponding place value and adding these numbers

13 lt

13 8

4ndash4 Configuring the Module

13

The 1771-N series modules use 15-bit signed magnitude BCD Themaximum range value available then becomes +7999

8 0amp

0) 13

I A 0

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

I A 8

I A

I A

I A

1113amp

A F A 13

amp 13

0

13

( B7C (( B0C (amp B(C (6 BampC

0

1

2

8

4ndash5Configuring the Module

13

+13G 13

Tworsquos complement binary is used with PLC-3 processors whenperforming mathematical calculations internal to the processor Tocomplement a number means to change it to a negative number Forexample the following binary number is equal to decimal 22

101102 = 2210

First the tworsquos complement method places an extra bit (sign bit) inthe left-most position and lets this bit determine whether the numberis positive or negative The number is positive if the sign bit is 0 andnegative if the sign bit is 1 Using the complement method

0 10110 = 22

To get the negative using the tworsquos complement method you mustinvert each bit from right to left after the first ldquo1rdquo is detected

In the above example

0 10110 = +22

Its tworsquos complement would be

1 01010 = -22

Note that in the above representation for +22 starting from the rightthe first digit is a 0 so it is not inverted the second digit is a 1 so it isnot inverted All digits after this one are inverted

If a negative number is given in tworsquos complement its complement(a positive number) is found in the same way

1 10010 = -140 01110 = +14

All bits from right to left are inverted after the first ldquo1rdquo is detected

The tworsquos complement of 0 is not found since no first ldquo1rdquo is everencountered in the number The tworsquos complement of 0 then is still 0

5

Real time sampling is set using word 4 of the block transfer writedata file The real time sampling (RTS) mode of operation providesdata from the module at a fixed time period for use by the processorRTS is invaluable for time based functions (such as PID andtotalization) in the processor It allows accurate time basedcalculations in local or remote IO racks

4ndash6 Configuring the Module

13

In the RTS mode the module scans and updates its inputs at a userdefined time interval (∆T) instead of the default interval Themodule ignores block transfer read (BTR) requests for data until thesample time period elapses The BTR of a particular data setoccurs only once at the end of the sample period and subsequentrequests for transferred data are ignored by the module until a newdata set is available If a BTR does not occur before the end of thenext RTS period a time-out bit is set in the BTR status area (word1) When set this bit indicates that at least one data set was nottransferred to the processor (The actual number of data sets missedis unknown) The time-out bit is reset at the completion of the BTR

Legal RTS values are in intervals of 1ms from 0100 to 10000seconds in binary format or 0100 to 9999 seconds in BCD formatAn RTS value of 0 disables the real time sampling feature

Output channel programming features include

bull low and high scaling

bull low and high clamping

bull ramping

bull alarm enable

bull reset state

bull reset value

5

Scaling is the conversion of unscaled data to engineering units Youuse scaling so that the data for each channel is represented in actualengineering units

Each channel has two scaling points low and high The signal valueat these points is fixed For example the high scaling point of a+10V output channel always corresponds to an output signal equal to+10000V

13 8

4ndash7Configuring the Module

13

513 lt13+ 5 13 5 13

E 139E F9E

1 0

1 1

1E 9E 19E

E 139E F9E

013 0

1317F11E 131E F11E

1317F11E 3 1371318 87

E 13E FE

E 3 1371318 87

21 9 21

21 3 137138 721

To implement the scaling feature you insert the minimum andmaximum scaled values in the appropriate configuration words

Scaling values can be entered in either BCD or binary format Therange of binary format scaling values is +32767 BCD format is+7999 Remember to check the data format bit for proper control

For example assume that at 0mA the device connected to this inputchannel is producing 0 psi and at 20mA it produces 150 psiExtrapolation indicates that at 4mA the device is producing 30 psiBy setting the low scale value of the input to 30 and the high scalevalue to 150 this input channel will report data in psi

For better resolution you can multiply both of the scaling values bythe same multipler as long as both scale values are in the range of+32767 binary or +7999 BCD By setting the low scale to 3000 andthe high scale value to 15000 you would report data in units of 001psi per count

Maximum resolution can be obtained by setting the low scale valueto -32767 (-7999 in BCD) and the high scale value to +32767 (+7999in BCD)

4ndash8 Configuring the Module

13

If both the low scale and high scale values are set to 0 the modulereports data in the default resolution as shown below

813 5 1313

E 7 9E7

E 7 E7

1 7 9

1 7

1 7 9

1 7

1E 7 9E

1E 7 E

E 7 9E

E 7 E

0 7 9

013 7

E $ 9E7

E $ E7

17F11E $ 97

1317F11E $ 7

$ 97

$ 7

E $ 9E7

E $ E7

E $ 97

E $ 7

$ 97

$ 7

$ 9 7

$ 7

21 $ 97

21 $ 7

$ 97

$ 7

4ndash9Configuring the Module

13

Output channels can be configured to limit or clamp the outputsignal at a specified value regardless of the output data value writtento the module Low and high clamping values are written to themodule in scaled units and must be within the absolute signal limitsshown below

lt13+ 13 lt 13 lt

F E 1390E 90E

1 2

1 1

If either value is outside of these limits or if the low clamp is higherthan the high clamp the bad programming status bit (bit 07 in BTRword 1) will be set

When the clamp feature is activated (output from the programmablecontroller is greater than the high clamp or lower than the lowclamp) a corresponding high or low clamp status bit is set in thechannel status word returned in the BTR

8 0(

gt

gt gt

3

gt

gt $ ( $ $ $$ 9

4$ $$ G $ H9

$

4ndash10 Configuring the Module

13

Output ramping is used to limit the rate of change of an outputchannel You enter the rate as a percentage (between 0 and 200) offull scale per second where 0 disables the ramping feature and fullscale is the difference between the low and high scaling points 43shows the effect of ramping on the output signal

8 0 13 5

3

$

E

3

E

Clamping and ramping are only active when the alarm enable bit(decimal bit 17 octal bit 15) has been set to 1

5

This field determines the action taken by the channel if the IO resetbackplane pin is asserted

5

amp0

B amp2C

amp

B amp1C

gt amp

4

amp

The minimum and maximum values are defined as the low and highabsolute limits respectively

4ndash11Configuring the Module

13

If the channel is programmed to go to a user-selectable reset valueupon IO reset the value is entered (in scaled units) into thatchannelrsquos proper configuration word The value entered must bebetween the high and low absolute limits If user-selectable resettingis not chosen this field should be set to 0

Input channel programming includes

bull low and high scaling

bull low and high alarming

bull alarm deadband

bull rate alarming

bull alarm enable

bull digital filtering

bull thermocouple type

bull RTD type

bull 10 Ohm offset

5

Scaling input channels is identical to scaling output channels Referto ldquoOutput Channel Programming Featuresrdquo on page 4ndash6

Each input channel has five alarm functions that provide statusindication through five associated status bits in the block transferread data returned by the module

Input alarms let the user specify a range of ldquogoodrdquo input values Ifthe input value goes outside of this range and the alarm enable bit isset the module will set the low or high alarm bit for that channelThe alarm values are written to the module in the same units as thescaling values and must be within the absolute signal limitsspecified in appendix A

bull Underrange - This bit is set if the input falls below theminimum range for that specific input type This alarm ispredefined and cannot be changed by the user In current loopinputs this bit also indicates an open loop

13 8

4ndash12 Configuring the Module

13

bull Overrange - This bit is set if the input rises above themaximum range for that specific input type This alarm ispredefined and cannot be changed by the user For all voltageRTD and thermocouple inputs this bit indicates an openchannel

Alarm deadband allows the user to program a hysteresis effect on thealarming for a given channel The deadband cannot be larger than255 binary or 99 BCD or 12 of the difference between the lowalarm and high alarm values

bull Low Alarm With Deadband - The low alarm bit is set whenthe input falls below the user-defined low alarm value If adeadband is programmed the low alarm bit will reset whenthe input rises above the level equal to the low alarm valueplus the deadband

bull High Alarm With Deadband - The high alarm bit is set whenthe input rises above the user-defined high alarm value If adeadband is programmed the high alarm bit will reset whenthe input falls below the level equal to the high alarm valueand deadband

8 00

4

$ gt

gt

gt gt

3

gt

3

3 $$$ $$ $ $

$$$ $$$

$$$

$$$

4ndash13Configuring the Module

13

This bit is set when the input changes at a rate faster than theuser-defined value Rate of change values can range from 005 to50 of the inputrsquos full scale range per second Full scale range isdefined as the difference between the high scale value and the lowscale value The rate is specified in scaled units per second

8 01

13

gt

gt gt

3

amp $ 9

8

This value specifies the time constant for a digital first order lagfilter on the input It is specified in units of 01 seconds Values rangefrom 01-99 seconds in BCD and 01-100 seconds in binary Avalue of 0 disables the filter

The digital filter equation is a classic first order lag equation(Figure 46) Using a step input change to illustrate the filterresponse (Figure 47) you can see that when the digital filterconstant time elapses 632 of the total response is reached Eachadditional time constant achieves 632 of the remaining response

8 02

8 13

Yn = Yn-1 + t

t + TA(Xn ndash Yn-1)

gt-- 5)))A)))()$)+) )GEH

5)))A)))()$)E

))A))$))$))G$H

)I ))A)))()$)E

3 A $ G$H

4ndash14 Configuring the Module

13

8 03

8 lt 13 13

O

2O

9 91 9 3 amp$ 2

3 A 9

3 A 91

3 A 9

$

$

1313

This field lets you select the type of sensor connected to athermocouple input channel This field must be 0 for all otherchannel types

513

amp1 amp0 amp amp(

amp3 amp2 amp1 amp0

lt

=

amp

3

133 9

4ndash15Configuring the Module

13

This field lets you select the type of sensor connected to a 650 ohminput channel This field must be 0 for all other channel types

513

amp6 6H 67

amp( ampamp amp6

9 amp$9

9 9amp9 amp$9

+

amp6

This field lets you compensate for a small offset error in a 10 ohmcopper RTD Values can range from -099 to +099 ohms in units of001 ohms

For example if the resistance of a copper RTD used with thischannel was 974 ohms at 25oC you would enter -026 in this field

The configuration block for a block transfer write consists of

bull module configuration header

bull output channel data (if applicable)

bull output channel programming (if applicable)

bull input channel programming (if applicable)

13$ 1313

The configuration data header consists of information required forthe processor to properly identify the type of information it will bereceiving

13 1313

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

1313 13$ 13

13$

4ndash16 Configuring the Module

13

13 13 13 13 6

13 13

-$ 13 A

013 A

131 A

213 + A

The next group of words sets the outputs of the module if themodule has outputs For example if this is a 2 output6 inputmodule words 1 and 2 would contain the data for the two outputchannels If the module has four outputs words 1 thru 4 wouldcontain output channel data

1313 13 amp (

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

13 13 13 1313 13 amp (

13

B C13

-$ 131 G13H $

-$ 131 G13H amp$ $

Additional module configuration data is contained in the next twowords This includes verify temperature scale BCD select coldjunction alarm enable and real time sample time These are explainedin the bitword description

1313 13 0

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

lt

$ A

3

E

0 3amp amp 3J $

4ndash17Configuring the Module

13

13 13 13 1313 13 0

13

B C13

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

130G132H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 131G13H

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

13

The next group of six words contain channel-specific parametersThis includes low and high scale values low and high clamp valuesramp rate reset state alarm enable and reset value

1313 13 1 13 amp6

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

4ndash18 Configuring the Module

13

13 13 13 1313 13 1 13 amp6

13

B C13

-$ 1 131G13H

gt 9 amp $ F2 K F 9

-$ 2 131G13H

9 amp $ F2 K F 9

-$ 131G13H

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 131G13H

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$

13G13H

4 9 $ ( $ 4 $9 gt O9

G0H A

-$ $

130G1132H

9 3 $ 7 $J A K A K G4J P 13E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 131G13H

9 7 ( $ $9 ( 9

The above six words of output channel-specific information wouldbe repeated for the next output channel (2) as shown below Thebitword descriptions would be the same as above

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

4ndash19Configuring the Module

13

The following six words configure the first input channel of themodule These words are repeated as necessary for each input in themodule For example if this is a 2 output6 input module words 1through 4 would configure the module words 5 through 16 wouldconfigure the 2 output channels (six words each) Then six groups ofseven words each (one group for each input channel) wouldconfigure the modulersquos six input channels

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

gt amp E

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

13 13 13 1313 13 amp3 13-(

13

B C13

-$ 131G13H

gt 9

-$ 8 131G13H

9

-$ 131G13H

gt 9

-$ 131G13H

9

-$ 130G132H

9 6 $ ( $ $9gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( )$9

-$ 13

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

4ndash20 Configuring the Module

13

13

B C13

8131G13H

9 amp $ ( $ 9 $ 9 gt 9 9 $GH 9 9 GH9 $ 9

13 9 39 F9 ( 9 9 3 $ 39

813G13H

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 133 9

-$

GH A

-$

131G013H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 3KA G133 H(A G133 H9

3 $ 13 9

The above group of words would be repeated for each of theremaining five input channels The bitword descriptions would beidentical for each of those channels

Refer to the Appendix specific to your module for block transferwrite configurations to be used with your module

In this chapter you learned how to configure your modulersquoshardware condition your inputs and enter your data

5

13

In this chapter you will read about

bull reading data from your module

bull block transfer read data format

Block transfer read (BTR) programming moves status and data fromthe module to the processorrsquos data table in one IO scan Theprocessor user program initiates the request to transfer data from themodule to the processor

The transferred words contain module status channel status andinput data from the module The maximum BTR data file lengthrequired is 28 words

Block transfer reads are defined for each type of module platformrather than type of outputsinputs The types of modules are

13 1313 4

8 7

7 =

2 7

1 7 lt

0 70

71

72

7

78

7

For example the BTR from the 1771-NB4T (two 0-25mA outtwothermocouple in) is identical to the BTR for the 1771-NB4S (two0-25mA outtwo 4-20mA in) since both are 2 input2 outputmodules

When you perform a BTR for a specific module the bits for fieldsthat do not pertain to your specific module are set to zero

Complete block transfer read data formats and bitword descriptionsfor your particular module are shown in the Appendices

=

13

13

5ndash2 Module Status and Input Data

13

The block transfer read data format consists of an initial blockheader which identifies the type of module (input output oroutputinput) and groups of words that contain information on eitheran input channel or an output channel

Output channel words are configured immediately after the blockheader If the module contains both output and input channels theoutput channel words come first in the block transfer read dataformat

D E 13$

This header is used for modules with outputs only (such as cat no1771-NOC and 1771-NOV)

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

The bitword descriptions for the ldquooutputs onlyrdquo header block areshown below

13

B C13

-$ 131G13H

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$ 8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13$

-813

5ndash3Module Status and Input Data

13

13

B C13

-$ $

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

D E DE 13$

-

This following three-word header is used if the module only hasinput channels or if it contains both input and output channels

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

The bitword descriptions for the ldquoinputs onlyrdquo and ldquooutputinputrdquoheader block are shown below

13

B C13

-$ 131G13H

A 88 4$

131 $

-$ 2

$ 9 3 3-$9

$ 9 3 $ $ 9

5ndash4 Module Status and Input Data

13

13

B C13

8 GH$ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$ $ G0H

3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

130G132H

$9

1 GH A

-$ 131G13H

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

5

Each input channel has two words associated with it One wordprovides underrange overrange low and high alarms rate alarmbad program and bad calibration information to the processor Thesecond word contains channel input data These words wouldimmediately follow the header on modules containing only inputs orafter the output channel words on modules containing both outputsand inputs

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

5ndash5Module Status and Input Data

13

The above two words would be repeated for each input channel Forexample if this module had two input channels the following wordswould be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

Bitword descriptions for the input status data words are shownbelow

13 13 13 5 13

13

B C13

$ 9 3 9

9 3 4 9

$9

-$ 0 0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

130G132H

$9

1 GH $9 A

-$ 1 131G13H

$9

5ndash6 Module Status and Input Data

13

5

Each output channel also has two words associated with it The firstword contains low and high clamp rate alarm bad data bad programand bad calibration information for the processor This is followedby raw count data for that channel If the module contains both inputand output channels the output channel words would immediatelyfollow the header words

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

The above two words would be repeated for each output channel Forexample if this module had two output channels the followingwords would be used

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

5ndash7Module Status and Input Data

13

13 13 13 5 13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $)9

131G13H

$9 A

-$ 1 131G13H

$ 9

Refer to the Appendix specific to your module for block transferread configurations

In this chapter you learned the meaning of the status information thatthe modules send to the processor

5

5ndash8 Module Status and Input Data

13

13

13

In this chapter we tell you how to calibrate your module Yourmodule is shipped from the factory already calibrated Thischapter tells you how to recalibrate or change calibration

In order to calibrate your analog module you will need the followingtools and equipment

1313 13 13

E amp E( microE

J20 ( 9O( 17 ( 9O( 17

gt J $ $( $9 $$ $ 4$ 9 29 $ 29 9

J $$K$ $$( ( 91 G91O H$ $$( ( 91 G91O H$ $$( ( 9O

$ 4

$6 $ 4$ $9 3 $$ 4 $ $ $9 ( 13$ $ $$ 4 4$ 9

amp $$( amp 0

3 gt-( 5ampI amp

lt gt 5+( 5 amp

1( micro E( microE

$ 3 $

If calibration to rated accuracy is not required lower precisionresistors can be used Add the percentage of tolerance and thetemperature coefficient error for expected accuracy

Resistor AccuracyResistors change value over time Both load life and temperaturereduce the accuracy The best way to determine the resistance of aresistor is to measure its value to the accuracy needed under theconditions in which it is used

=

1313

6ndash2 Module Calibration

13

2

13 13 4 13

13 13 4 13

9O 9O

91O 91O

9O 9O

13gt 20 Q F8 G98OH( 9

2

13 13

13 13

13

B13

13 13 (113C

4 13

1 98 G9OH

17 92 G91OH

91 G91OH

1 92 G91OH

17 91 G91OH

920 G9OH

1 920 G9OH

7 98 G9OH

912 G90OH

Example Using a 649 ohm resistor rated for 1 accuracy with atemperature coefficient of 50ppmoC provides an expected accuracyof 105 (10 plus 005) when calibration is done at 35oC (Tof 10oC)

The analog module is shipped already calibrated If it becomesnecessary to recalibrate the module you must calibrate the module inan IO chassis The module must communicate with the processorand an industrial terminal

Calibration service is available from AllenndashBradley Contact yourlocal sales office or field support center for information on how tosend your module in for calibration Modules under warranty will becalibrated at no charge Modules out of warranty sent in forcalibration only will be calibrated for less than the standard repaircharge

Before calibrating the module you must enter ladder logic into theprocessor memory so that you can send block transfer data to themodule and the processor can read block transfer data from themodule

Calibration can be accomplished using any of three methods

13 13

6ndash3Module Calibration

13

bull manual calibration ndash refer to the procedure below

bull 6200 IO CONFIG software ndash refer to your 6200 softwarepublications (release 42 or later) for procedures for calibrating

bull PCO operator interface software ndash refer to your 6190-PCOsoftware publications for procedures for calibrating

13 13 13

During calibration the RUNFLT indicator will turn to green TheCALCOM indicator will turn to flashing red The indicators willremain with these indications throughout the calibration procedure

You can calibrate any number of channels in any order Thefollowing procedures define how to calibrate input and outputchannels

IMPORTANTIn order to allow the module to stabilizeenergize the module for at least 30 minutesbefore calibrating

Set up a block transfer write data file as shown in table 6C

13

1 Set the appropriate bit in the BTW input calibration mask (word2) channel 1 is bit 00 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating all channels (allinputs) set bits (00 through 07) Refer to Table 6C

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $ A 4$

$ A +

7gt

$ A +

$ A +

0 gt E

1 E

2 $ gt E

$ E

8 $ gt E

13

6ndash4 Module Calibration

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

$ E

0 gt E

0 E

1 gt E

1 E

0 2 gt E

1 2 E

2 gt E

E

8 8 gt E

8 E

2 Apply the appropriate low reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

2

13 5

lt13+

1 E 9E 19E

E 9E 9E

0 9 9

1 11E73 9E 119E

E73 9E 9E

21 3 9 209

E 9E 9E

1 91 9

1 9 19

6ndash5Module Calibration

13

8-2amp

13 13 13 134 13 13

13

1

$ 9

20 9 9

$$ 4(

$ 13 4

3 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0

4 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 0

6ndash6 Module Calibration

13

2

13 13$

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3 $ A

$ A $3-

0 $

1 $

2 $

$

8 $

$ 0

$ 1

$ 2

$

$ 8

5 Apply the appropriate high reference signal (Table 6D) to allinput channels being calibrated (for channel 1 I1 on RTP)

6 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

7 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

8 Request a block transfer read (BTR) from the module If theINPUT BAD CAL bit (block transfer read word 4 bit 00 forchannel 1 for example) is reset and the INPUT CAL DONE bit(BTR word 2 bit 00 for channel 1 for example) is set theprocedure is complete

If the bad BTW bit (word 1 bit 00) is set any time during thecalibration procedure an error occurred during the calibrationprocedure Repeat the calibration

If the EEPROM bit (word 1 bit 01) is set the module has ahardware fault The module cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

6ndash7Module Calibration

13

13

1 Set the appropriate bit in the BTW output calibration mask (word3) channel 1 is bit 0 channel 2 is bit 01 etc If calibrating onlyone channel set the appropriate bit If calibrating the entiremodule (all outputs) set all bits (00 through 07)

2 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 0 and all output calvalues = 0

3 Send a block transfer write to the module with CAL CLK bit (01) = 0 and HILO bit (00) = 0 and all output cal values = 0

4 Measure the signal on the channel you are calibrating Use theappropriate equation below to calculate the output cal low valuefor this channel Record this value for later use Do not enter itinto the BTW file at this time

amp6

(1

5 A GI 4 2H

-J I A $ 5 A 7

-J I A $ 5 A 7

5 A 4 2 GI 91H

91

16

-J I A $ 5 A 7

5 A 4 2 GI 9H

09[

]

]

[

5 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1 and all output calvalues = 0

6 Send a block transfer write to the module with CAL CLK bit (01)= 0 and HILO bit (00) = 0 and all output cal values = 0

7 Measure the signal on the channel you are calibrating Use theappropriate equation above (step 4) to convert the value to theoutput cal high value for this channel Record this value forlater use Do not enter it into the BTW file at this time

6ndash8 Module Calibration

13

8 Enter the first set of calculated low and high values into the firstchannel output cal values of the block transfer write calibrationdata file If you are calibrating more than one output channelsimultaneously enter the output cal values from the lowestnumbered output channel in the first output cal value slots Thenext lowest channel in the output mask goes in the second slot ofoutput cal values and so on

9 Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 1 and HILO bit (00) = 1

10Send a block transfer write to the module with word 1 containingCAL CLK bit (01) = 0 and HILO bit (00) = 1

11Request a block transfer read (BTR) from the module

If the OUTPUT BAD CAL bit (word 5 bit 00 for channel 1 forexample) is reset and the OUTPUT CAL DONE bit (word 3 bit00 for channel 1 for example) is set the procedure is complete

If the bad BTW bit is set any time during the calibrationprocedure an error in the calibration procedure Repeat thecalibration

If the EEPROM bit is set the module has a hardware fault Themodule cannot be calibrated

If the RANGE bit (word 1 bit 02) is set the channel(s) did notcalibrate because one of the reference signals was out of rangeRepeat the procedure If the RANGE bit is set a second timeeither the channel is bad or there is a problem with thecalibration equipment

In this chapter you learned how to calibrate your modulersquos channels 5

7gt3

gt7

13

13

We describe how to troubleshoot your module by observingindicators and by monitoring status bits reported to the processor

At power-up the module turns the RUNFLT indicator to red thenchecks for

bull correct RAM operation

bull EPROM operation

bull EEPROM operation

After passing initial diagnostics the module turns the RUNFLTindicator to flashing green The indicator will continue to flash greenuntil it receives a valid BTW After the BTW it will stay solid greenduring operation It will turn red if it detects a fault condition If theRUNFLT indicator is red block transfers will be inhibited

The lower CALCOM indicator flashes green when the module iscommunicating with the processor The speed of the flashing isdependent upon system speed If the module is accessed in less than100ms intervals the CALCOM indicator will be solid red

The module also reports status and specific faults (if they occur) inevery transfer of data to the processor Monitor the greenredindicators and status bits in the appropriate word of the BTR filewhen troubleshooting your module

8 3amp

13

13 9

7gt3 $ 13$ $ + $

$ $

gt7 + gt $ 13 $9

$

=

13 13

-13

7ndash2 Troubleshooting

13

Table 7A shows indications probable causes and recommendedactions to correct common faults which may occur

3

131313

13 13 13 13

$

$+ 7 9 9

$ $gt $

(

7gt3 $ $

$ ( $ 9

$9

7gt3 $ $ $ ( $ + 9

$

7gt3 $

$ $9 9

7gt3 $ $ + $

gt7 $ G$ H

$

gt7 $ $7gt3 $ $ $ G4( ( $ H

$ $

Design your program to monitor module and channel status bits andto take appropriate action depending on your applicationrequirements You may also want to monitor these bits whiletroubleshooting with your industrial terminal The module sets a bit(1) to indicate it has detected one or more of the following moduleconditions as shown in Table 7B

The module sets a bit (1) to indicate it has detected one or more ofthe following input channel conditions (Table 7D) or output channelconditions (Table 7C)

131313 +

-13

5 13

-13

7ndash3Troubleshooting

13

3

13 5 13 13 amp

B C

413

-$ 131 $

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH $ 9 3 $ $ 3- ( $ 9

13G13H

9 $ 9 A $K A $K A $$

GH 7 9 3 7 + $9

G0H 3amp 9 3 3 $ $ 3amp 9

G1H $ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H $ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ lt $ 9 3 lt 9

lt 9 3 lt 4 9

7ndash4 Troubleshooting

13

3

5 13 Bamp 13 C

B C

13

0 gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ $ 9

8 GH $ 9 3 $ 9

GH $ 9 3 $ $9

3

5 13 Bamp C

B C

13

$ 9 3 9

9 3 4 9

0 gt 9 3 $ $ 9

1 9 3 $ $ 9

2 9 3 $ $ $ 9

8 GH $ 9 3 $ $ 9

GH $ 9 3 $ $9

In this chapter you learned how to interpret the status indicatorsstatus words and troubleshoot your analog module

5

13

9 513

G$$ $H

8 $$ $( 0 $$ $

7 gt 7 $

7 2 1

7 0

2 ( $

E

$ $ E $ $ $ $ + 9$ O $ E $ $ $ + 9

4 + $ R 1E

13 98 891-130amp 92 9-1303 91 19-13amp 9 9-133 92 91-13E 98 89-13E 98 891-13amp 9 9-13E 91 29-13E 91 29-13E 91 29-13E3 91 191-13 9 09- GH

9 29- G1H13E 9 9-13 91 29-133 91 19-133 91 19-

$

3 228 G3 $( $H 228 G3 $( H 2280 G3 ( 3 amp+H 0deg G 2degH Q 91 $ $ $ $ 9

amp 3 228 G3 ( + $( $H 228 G3 ( + $( H 2280 G3 ( + $( 3amp+H0 81deg G0 81degH

$ 228 G3 ( + $( H1 1O $

amp+

228 G3 ( + $ amp+H 1

SpecificationsAndash2

13

E 2282 G3 ( H R 1

amp 200+E $

$$ 20E7 + 8O E7 1O O

37 200F+E R 1+

amp 3 201F+E GH $$

$$ 202E + 8O 1+

amp ( G H

3 G

GH132 A 98 G2H131 A 092 G1H

$ - - amp

0- G9191H $ $$ $ 2 720 G9H 4

= 2 $ 8 $ 0

G $ +$H

gt gt gt$ $

amp amp $

8727 ( J 220( $ 18( $ 22( $ 22( 977gt9( $

3+ $ ( amp7Samp 20( $

$ $ 9 1309( C$ - $$ $9D

amp $ + wwwabcom ( ( $ $9

Specifications Andash3

13

513

plusmnamp66 1313 1 13 I11 1313 amp)216Ω

GH

plusmn1E 191 129 0 21ΩGH

3 J 8 G1 H3 J G010 8H3 ltJ G02 H3 =J G010 1H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G010 1H

3 J 8 G1 H3 J 1 G 0H3 J 1 G0 11H3 ltJ 22 G0 H3 =J G1 1H3 J G01 H3 J 1 28 G18 0H3 ampJ 1 28 G18 0H3 3J 0 G 1H

Ω A981 $$J F8 G8 F18H

Ω A92 9amp9 $$J F2 G8 F22H

Ω J F2 G8 F1H

Ω +J8 F G9 F28H

4 9microE7 R 1 3 ( lt( =( 3 9deg G9degH3 ( ( ampJ 9 G92H

91microE7 R 2 3 ( lt( =( 3( J 9deg G92degH3 ( ( ampJ 9 G9H

3 J 9 G9H

Ω7 R 2 Ω T Ω 9)deg G92degHΩ 9deg G91degH

9E 7 9deg G9degH 9E 7 9deg G9degH 9 7 9deg G9degH

3 amp G $H deg GdegH deg GdegH deg GdegH

$ Q Ω Q Ω

3 gt 3amp1328 $$( amp 131 3amp1328 $$( amp 131

$ lt deg plusmn91deg deg plusmn91deg

3 gt+ P G4H P G4H

3 G4H 1 G4H 1 G4H

3 4 GH

0E 0E 0E

$ B G172H 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

G4H plusmn91microE7deg plusmn91microE7deg plusmn1 Ω7deg

G4H plusmn17deg plusmn17deg plusmn17deg

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp

1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( (H

9O R 1deg GH91O R 1deg G4H

9O R 1deg GH91O R 1deg G4H

91O R 1deg GH91O R 1deg G49H

E 9 7 9E 9 7 119E 9 7 209Ω

$ 3$ 9E 191E 9Ω

3$ F9E F129E 21Ω

E G90O ampH4 G1O ampH

98E 7 9deg G92degH $E 7 1deg G8degH $

0E 7 9deg G92degH $E 7 1deg G8degH $

92Ω 7 900deg G98degH $1Ω 7 11deg GdegH $

amp rarr amp E

7FE rarr 7F78deg rarr 78187deg rarr 187

17F11E rarr 17F1178deg rarr 78187deg rarr 1873 J71deg rarr 7118701deg rarr18701

F721Ω rarr F7217deg rarr 78721deg rarr 8721

4 $ $ 9 3 $ 9 amp 9 E 6 $ 9

SpecificationsAndash4

13

1313 13 1313

)G))7H

9

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 89

91

9

91

9

91

9

91

90

901

91

911

92

0 2 8 0 2 8

3 GdegC

9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11 9

9

9

9

90

91

92

9

98

8 1 0 8 11

3 GdegH

Iamp661313

)G))7H

deg

deg

lt amp 3=

3

Specifications Andash5

13

9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80 9

91

9

91

9

91

0 0 28 0 0 2 08 80

9

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 19

91

9

91

9

1 1 1 1

3 GdegH

3 GdegH

1I111313

9 deg gt

92 deg gt

)G))7H

deg)G))7H

deg

lt amp 3=

3

SpecificationsAndash6

13

plusmn1 plusmnamp6 0)(6 513

F191E Gplusmn H F91E Gplusmn0 H 9139

28microE7 G9micro7H 1 microE7 1 7 2

$ Q Ω Q Ω Ω G4H

gt E amp E $ G H $ P

0E 0E 0E $

$

3 1 G4H G4H 1 G4H

gt+ P 9micro G4H P 9micro G4H

$ B 172 1$ 7 2$ GH 1$ 7 2$ GH 1$ 7 2$ GH

$ B G2H 1$ GH 1$ GH 1$ GH

plusmnmicroE7 Gplusmn817deg H plusmn microE7 plusmn7deg

plusmn1 7 Gplusmn117deg H plusmn1 7 plusmn1 7

$$

$ 3 G $H 1 G4H 1 G4H 1 G4H

amp 3 9O amp 1 G4H 1 G4H 1 G4H

13 9O G4H 9O G4H 9O G4H

G$ 13( ($ H

9O R 191O R 1

9O R 191O R 1

91O R 191O R 1

E 9E 7 19E 9E 7 9E 9 7 9

$ 3$ 98E $ G9H 90E $ 9

3$ 19E $ G98H F90E $ 9

E G90O ampH4 G1O ampH

92E G290microH $9E G89H $

8E $E $

290micro $8 $

amp rarr amp E 9719E rarr 71 7 FE rarr 7F 0979 rarr 07

Iamp6 0(6 B6(1C 616

F90E 1319 1319

9E7 9micro7 290micro7

$ 9Ω 4 Q Ω Q Ω

=Ω G 4H9 4 13+Ω19 4 13Ω

9 4 13+Ω19 4 13Ω19 4 13Ω2

0E 0E 0E

plusmn0 microE7deg plusmn9micro7 plusmn9micro7

plusmn1 7 plusmn1 7 plusmn1 7

$ 3 G $H 1 4 1 4 1 4

7 U amp 3 O amp gt$

1 1micro 1micro

G$ 13( ( $ H

9O R 198O R 1

9O R 198O R 1

9O R 198O R 1

E 979E $ 91 7 9 9 7 19

E GO ampH4 GO ampH

9E $09E $

92 $9 $

90 $89 $

amp rarr amp E 7 FE rarr (7F( 09 7 9 rarr 0(7( 9 7 19 rarr (71(

E 6 $ 9 amp $ ( $ $ $9

Specifications Andash7

13

8-(

13 16 13 amp33amp) 5 13

0 1 2

0

1

B13C

13 13 lt13

BC

Important If you require 60oC operation with 50mA outputs install aresistance in series with the load impedance so that the total loadimpedance is equal to 300 ohms

SpecificationsAndash8

13

13

$ $ amp ( ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith no outputs and eight inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

gt amp E

0 amp E

1 gt E

2 E

J amp$ $

8 3 J 9 $ $$

3 3 3 3 K 9

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 K 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 K 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 K 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 7 13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash4

13

13

B C13

0G2H

$9

-$ $

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 0 1GH

9 amp $ F2 K F 9

-$ 1 1GH

gt 9 $ F2 K F 9

-$ 2 1GH

9 $ F2 K F 9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 8

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

-$ 8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

GH A

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash5

13

13

B C13

-$ $ 1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 3K A G133 HK A G133 H9

3 $ 9

-$ 2 amp $ 9

-$ amp $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series Modules Bndash7

13

13$ 13 13 13 7 13

13

B C13

-$ 1GH

A 88 4$

1 $

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

-$ 0

$ 9 3 9

-$ 0

9 3 4 9

$9

Block Transfer Write and Block Transfer Read Configurations for 0 Output8 Input 1771-N Series ModulesBndash8

13

13

B C13

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

2 9 3 $ 9

-$ 0 $ $9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9

1 GH $9 A

-$ 1 1GH

$9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1

-$ $ amp $ 0 $ 1 0

-$ $ amp $ 0 $ 1 1

-$ 0 $ 1 amp $ 0 $ 1 2

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

13

$ $ ( amp ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith eight outputs and no inputs

13$ 1313 13$ 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 8

$ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

8 amp E

gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

0

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

1

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

0 E

2

0 gt amp E

0 amp E

0 gt E

00 E

01

amp 4 ( O amp $

02 E

0 gt amp E

08 amp E

0 gt E

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

10 amp E

11 gt E

12 E

1

amp 4 ( O amp $

18 E

13$ 13 13 13 7 13

13 13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

-$ 8 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash4

13

1313

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

9 A 9 $ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 0 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 1 G0H A

-$ 1

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

-$ 1 $ 1 GH 9 ( $ ( $ 9 ( $9

-$ 2 1GH

9 7 ( $ $9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 amp $ 2 09

-$ 1 0 amp $ 2 19

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash5

13

1313

-$ 0 02 amp $ 2 29

-$ 0 1 amp $ 2 9

-$ 1 18 amp $ 2 89

13$ 13 13 7 13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

A 8 4$

$ A

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

$

gt

$ A

8 amp

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash6

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 $ A $

$

$

gt

$ A

8

13$ 13 13 13 7 13

13

B C

13

-$ 1GH

88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

-$ $ 0 G2H

$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

-$ 8 4$9

-$ $9

-$ 0 $9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series Modules Cndash7

13

13

B C

13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

-$ 0 $ 1 amp $ 0 $ 1 29

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 89

-$

Block Transfer Write and Block Transfer Read Configurations for 8 Output0 Input 1771-N Series ModulesCndash8

13

13

$ $ - - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and two inputs

13$ 1313 13$ 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

18

13$ 13 13 13 ( (

13

13

B C13

A

0 A

-$ 8G1H

A

2 + A

-$ 1GH

$

-$ 1GH

amp$ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash3

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash4

13

13

B C13

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ 18

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash5

13

13$ 13 13 ( (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash6

13

13$ 13 13 13 ( (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$

GH

9 $ 9 A $K A $K A $$

-$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series Modules Dndash7

13

1313

B C

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 $ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 8 2

9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0GH2

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output2 Input 1771-N Series ModulesDndash8

13

1313

B C

-$ $ amp $ 8 $ 09

-$

-$

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith two outputs and six inputs

13$ 1313 13$ 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

0 3amp amp 3J $

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

gt amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 amp E

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 ( 2

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

-$ $ 0G2H

$9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash4

13

13

B C13

1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

-$ 0 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 1 1GH

gt 9 amp $ F2 K F 9

-$ 2 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 8 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ 1GH

gt 9

-$ 8 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0G2H

9 6 $ ( $ $9 gt 91 1O $9

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash5

13

13

B C13

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 0 amp $ 09

-$ amp $ 19

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash6

13

13$ 13 13 ( 2

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash7

13

13$ 13 13 13 ( 2

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

-$ GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

-$ 0 $ 0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

-$ 8

1 9 3 $ $ 9

-$ 8

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1GH

$9

-$ $ amp $ 8 $ 09

-$ $ amp $ 8 $ 19

-$ 0 $ 1 amp $ 8 $ 29

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series Modules Endash9

13

13

B C13

-$ 2 $ amp $ 8 $ 9

-$ 8 $ amp $ 8 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 2 Output6 Input 1771-N Series ModulesEndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith one output and seven inputs

13$ 1313 13$ 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

lt

$ A

3

E

3amp amp 3J $

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

gt amp E

amp E

gt E

E

0

J amp$ $

1 3 J 9 $ $$

2 3 3 3 3 J 9

gt amp E

8 amp E

4

13

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt E

E

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 amp 3

13

13

B C13

A

0 A

-$ G1H

A

01G2H

+ A

-$ 1GH

$

-$

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

9 A 9

A 6

0G2H

$9

-$ $ 1 GHlt 9 $ $ $ $ B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash4

13

13

B C13

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $ 9

-$ 0 1GH

gt 9 amp $ F2 K F 9

-$ 1 1GH

9 amp $ F2 K F 9

-$ 2 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O9

G0H A

-$ 8

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7 ( $ $9 ( 9

-$ 1GH

gt 9

-$ 1GH

9

-$ 1GH

gt 9

-$ 1GH

9

-$ 0 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash5

13

13

B C13

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J A ( $$K

A 9 amp $$K A K A +9

3 $ 3 9

-$ 2 GH A

1G0H

3 9 amp 3 39 A K

A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 2 9

-$ 0 amp $ 2 09

-$ amp $ 2 19

-$ 8 00 amp $ 2 29

-$ 01 1 amp $ 2 9

-$ 1 18 amp $ 2 89

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash6

13

13$ 13 13 amp 3

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

gt

$ A

$

amp

8 $ A $

$

gt

$ A

$

0 amp

$ A $

$

gt

$ A

$

1 amp

$ A $

$

gt

$ A

$

2 amp

0 $ A $

$

gt

$ A

$

1

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash7

13

13$ 13 13 13 amp 3

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

-$ 1 1GH

$ 9

$ 9 3 9

9 3 4 9

$

0gt 9 3 $ $ 9

1 9 3 $ $ 9

-$ 2

2 9 3 $ $ $ 9

$ A

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH7 9 A (

A 93 9

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series Modules Fndash9

13

13

B C13

-$ 1G

$9

-$ 8 $ amp $ 2 $ 9

-$ $ amp $ 2 $ 09

-$ $ amp $ 2 $ 19

-$ 0 $ 1 amp $ 2 $ 29

-$ 2 $ amp $ 2 $ 9

-$ 8 $ amp $ 2 $ 89

-$

Block Transfer Write and Block Transfer Read Configurations for 1 Output7 Input 1771-N Series ModulesFndash10

13

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith three outputs and five inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0lt

$ A

3

E

1 3amp amp 3J $

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0

0 gt amp E

1 amp E

2 gt E

E

8

J amp$ $

3 J 9 $ $$

3 3 3 3 J 9

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 1

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 0

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash4

13

13

B C13

-$ 1 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 2 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 8 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ amp $ 2 9

-$ 8 amp $ 2 9

-$ 0 1GH

gt 09

-$ 1 1GH

09

-$ 2 1GH

gt 09

-$ 1GH

09

-$ 8 0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash5

13

13

B C13

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ amp $ 0 19

-$ 8 00 amp $ 0 29

-$ 01 1 amp $ 0 9

-$ 1 18 amp $ 0 89

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

gt

$ A

$

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

1 $9

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

-$

G0H3amp 9 3 3 $ $ 3amp 9

-$

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

0 $9

-$ $ amp $ $ 19

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series Modules Gndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 3 Output5 Input 1771-N Series ModulesGndash10

13

13

$ $ 1 1 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith four outputs and four inputs

13$ 1313 13$ 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1lt

$ A

3

E

2 3amp amp 3J $

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

0

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

1

gt amp E

amp E

gt E

0 E

1

J amp$ $

2 3 J 9 $ $$

3 3 3 3 J 9

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 J 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 0 0

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 1

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 2 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 1GH

gt 9 amp $ F2 KF 9

-$ 8 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 8 amp $ 9

-$ 0 amp $ 9

-$ 1 amp $ 09

-$ 1GH

gt 19

-$ 1GH

19

-$ 1GH

gt 19

-$ 0 1GH

19

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash5

13

13

B C13

-$ 1

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 1

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 2

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ GH A

-$

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 8 00 amp $ 29

-$ 01 1 amp $ 9

-$ 1 18 amp $ 89

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash6

13

13$ 13 13 0 0

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

gt

$ A

$

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash7

13

13$ 13 13 13 0 0

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2 $ 9 3 3- $9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH

7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9 $ 9G9 $ 9 $ 9H

$9 9

-$ 0 0

gt 9 3 $ $ $ 9

1 9 3 $ $ $

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash8

13

13

B C13

2 9 3 $ $ $ $ $ 9

-$ 0 $

$ $9 3 $ $ 9

-$ 0 $

8 GH$ 9 3 3- $ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

$ 9 3 9

9 3 4 9

$9 9

-$

0gt 9 3 $ $ 9

-$

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

8 GH$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

1 $9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series Modules Hndash9

13

13

B C13

-$ 0 $ 1 amp $ $ 29

-$ 2 $ amp $ $ 9

-$ 8 amp $ $ 89

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 4 Output4 Input 1771-N Series ModulesHndash10

13

13

$ $ - ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith six outputs and two inputs

13$ 1313 13$ 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

$ A

3

E

8 3amp amp 3J $

gt amp E

amp E

gt E

E

amp 4 ( O amp $

0 E

4

13

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

1 gt amp E

2 amp E

gt E

8 E

amp 4 ( O amp $

E

gt amp E

amp E

gt E

0 E

1

amp 4 ( O amp $

2 E

0

gt amp E

8 amp E

gt E

E

amp 4 ( O amp $

E

1

gt amp E

0 amp E

1 gt E

2 E

amp 4 ( O amp $

8 E

2

gt amp E

0 amp E

0 gt E

0 E

0

amp 4 ( O amp $

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

00 E

01 gt amp E

02 amp E

0 gt E

08 E

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 J 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 2 (

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash4

13

13

B C13

-$ 1 1GH

$

-$ 2 1GH

amp4 $

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 3 9 A ( A

-$

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 8 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ G0H A

-$

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 0 1GH

9 7 ( $ $9 ( 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash5

13

13

B C13

-$ 1 amp $ 0 9

-$ 2 amp $ 0 9

-$ amp $ 0 09

-$ 8 amp $ 0 19

-$ 00 amp $ 0 29

-$ 01 1GH

gt 9

-$ 02 1GH

9

-$ 0 1GH

gt 9

-$ 08 1GH

9

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash6

13

13

B C13

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 1 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 1 18 amp $ 01 1 89

13$ 13 13 2 (

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash7

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash8

13

13$ 13 13 13 2 (

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

-$ GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series Modules Indash9

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

$ 9 3 9

-$ 2

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 6 Output2 Input 1771-N Series ModulesIndash10

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 2 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 8 $ amp $ 2 $ 89

-$ 9

13

$ $ 0 ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith five outputs and three inputs

13$ 1313 13$ 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2lt

$ A

3

E

3amp amp 3J $

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

4

13

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

E

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

0

2 gt amp E

amp E

8 gt E

E

amp 4 ( O amp $

E

1

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

2

8 gt amp E

amp E

0 gt E

0 E

0

J amp$ $

0 3 J 9 $ $$

00 3 3 3 3 K 9

01 gt amp E

02 amp E

0 gt E

08 E

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0

J amp$ $

1 3 J 9 $ $$

1 3 3 3 3 K 9

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 K 9

13$ 13 13 13 1

13

13

B C

13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

3 9 A ( A

-$ 2

9 A 9 A 6

0G2H

$9

1 GHlt 9 $ $ $ $B 9 $ $ $ B ( 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9$ 9

-$ 8 1GH

gt 9 amp $ F2 KF 9

-$ 1GH

9 amp $ F2 KF 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

G0H A

-$ 0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1GH

9 7( $ $ 9 ( 9

-$ 0

amp $ 8 9

-$ 1

amp $ 8 9

-$ 2

amp $ 8 09

-$

amp $ 8 19

-$ 8 1GH

gt 29

-$ 1GH

29

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash5

13

13

B C13

-$ 0 1GH

gt 29

-$ 0 1GH

29

-$ 0

0G2H

9 6 $ ( $ $9 gt 91 1O $9

-$ 0

1 GH 9 ( $ ( ($ ( ( $ $9 ( $9

-$ 0

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 9 3 $ 39

8GH

3 9 amp 3 3 J A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 00 GH A

-$ 00

1G0H

3 9 amp 3 3 9 A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

-$ 01 1

amp $ 8 00 9

-$ 1 18

amp $ 8 00 89

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash6

13

13$ 13 13 1

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

gt

$ A

$

1 2

amp

2 $ A $

$

gt

$ A

$

8 amp

8 $ A $

$

gt

$ A

$

8

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash7

13

13$ 13 13 13 1

13

13

B C13

-$ 1GH

A 88 4$

-$ 1 $

-$ 2 $ 9 3 3- $9

$ 9 3 $ $ 9

-$

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

G1H$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $ $ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9

1 GH A

-$ 1GH

$ B 9 9 $ 9 $ 9 G9$ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash8

13

13

B C13

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

8 GH$ 9 3 3- $ $

GH $ 9 3 $ $ 9

1GH

$9 A

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1 9

-$ 8 $ amp $ 0 $ 1 9

-$ $ amp $ 0 $ 1 09

-$ $ amp $ 0 $ 1 19

$ 9 3 9

9 3 4 9

$9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $ 9

-$ 0 2

9 3 $ 9

$9

8 GH$ 9 3 $ 9

GH $ 9 3 $ $ 9

0G2H

$9

1 GH $9 A

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series Modules Jndash9

13

13

B C13

-$ 1 1GH

2 $9

-$ 2 $ amp $ 0 $ 1

-$ 8 $ amp $ 0 $ 1 8

-$

Block Transfer Write and Block Transfer Read Configurations for 5 Output3 Input 1771-N Series ModulesJndash10

13

13

$ $ ) ))+

This appendix contains block transfer write and block transfer readconfigurations and bitword descriptions for 1771-N series moduleswith seven outputs and one input

13$ 1313 13$ 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

3- $

0 0

1 1

2 2

8 $ A

3

E

3amp amp 3J $

gt amp E

amp E

gt E

E

0

amp 4 ( O amp $

1 E

2 gt amp E

amp E

8 gt E

E

4

13

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash2

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

amp 4 ( O amp $

E

gt amp E

amp E

0 gt E

1 E

2

amp 4 ( O amp $

E

0

8 gt amp E

amp E

gt E

E

amp 4 ( O amp $

E

1

0 gt amp E

1 amp E

2 gt E

E

8

amp 4 ( O amp $

E

2

0 gt amp E

0 amp E

0 gt E

0 E

00

amp 4 ( O amp $

01 E

02 gt amp E

0 amp E

08 gt E

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash3

13

666amp6(660616263676Hamp6ampampamp(ampamp0amp113

666amp6(660616263amp6ampampamp(ampamp0amp1amp2amp313

0 E

1

amp 4 ( O amp $

1 E

8

1 gt amp E

1 amp E

10 gt E

11 E

12

J amp$ $

1 3 J 9 $ $$

18 3 3 3 3 J 9

13$ 13 13 13 3 amp

13

13

B C13

A

0 A

-$ 8G1H

A

01G2H

+ A

-$ 1GH

$

-$ 1GH

amp$ $

-$ 1GH

3$ $

-$ 0 1GH

$

-$ 1 1GH

$

-$ 2 1GH

amp4 $

-$ 1GH

amp $

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash4

13

13

B C13

E9 ( $ $$$ 3-9 ( $K $( $ $9 $ 3- $ $9

-$ 8 3 9 A ( A

-$ 8

9 A 9 A 6

$ $ 9 $ $ $( $ 9

1GH

$9 9

-$ 1GH

9 amp $9 A 93amp G A H9 4 $ K 9 $

-$ 1GH

gt 9 amp $ F2 K F 9

-$ 1GH

9 amp $ F2 K F 9

-$ 1GH

gt 9 3 $ G $ H $ $ $9 $ F2 K F 9

-$ 1GH

9 3 $ G $ H $ $ $9 $ F2 K F 9

GH

4 9 $ ( $ 4 $ $9 gt O 7$9

-$ 0 G0H A

-$ 0

0G12H

9 3 $ 7 $J A K A K G4J P E( P 0H A 4 K G4J Q E( Q H A 9

1 GH 9 ( $ ( $ 9 ( $9

-$ 1 1GH

9 7 ( $ $9 ( 9

-$ 2 amp $ 1 9

-$ amp $ 1 9

-$ 8 amp $ 1 09

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash5

13

13

B C13

-$ 0 amp $ 1 19

-$ 0 01 amp $ 1 29

-$ 02 1 amp $ 1 9

-$ 1 1GH

gt 89

-$ 1 1GH

89

-$ 10 1GH

gt 89

-$ 11 1GH

89

-$ 12

0G2H

9 6 $ ( $ $9 gt 91 1O $9

1 GH 9 ( $ ( ( $ ( ( $ $9 ( $9

-$ 1

$$$9 3 $ $ 9 $ $( $ $$$9 $$$ $ $ 9

81GH

9 amp $ ( $ 9 $ 9 gt 9 9 $9 $ 9

9 39 F9 ( 9 93 $ 39

8GH

3 9 amp 3 3J

A ( $$K A 9 amp $$K A K A +9

3 $ 3 9

-$ 18 GH A

1G0H

3 9 amp 3 39

A K A K A K A ltK A =K A K A ampK A 39

3 $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash6

13

13$ 13 13 3 amp

13

13 amp1 amp0 amp amp( ampamp amp6 6H 67 63 62 61 60 6 6( 6amp 66

13 amp3 amp2 amp1 amp0 amp amp( ampamp amp6 63 62 61 60 6 6( 6amp 66

A 88 4$

$9

$

3amp3

7

E

$

$

$amp

$ A

$ A lt

lt$

$ lt 3K 9 $ 9 $

amp

0 $ A $

$

$

gt

$ A

1

amp

2 $ A $

$

$

gt

$ A

amp

8 $ A $

$

$

gt

$ A

0 amp

$ A $

$

$

gt

$ A

0

1 amp

$ A $

$

$

gt

$ A

1

2 amp

0 $ A $

$

$

gt

$ A

1 2

amp

0 $ A $

$

$

gt

$ A

1 2

8 amp

8 $ A $

$

gt

$ A

$

8

9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash7

13

13$ 13 13 13 3 amp

13

13

B C13

-$ 1GH

A 88 4$

1 $9

2$ 9 3 3-$9

-$

$ 9 3 $ $ 9

8 GH$ 9 3 $ $ 3- ( $ 9

GH

9 $ 9 A $K A $K A $$

GH7 9 3 7 + $9

G0H3amp 9 3 3 $ $ 3amp 9

13 amp 13 G1H

$ 9 3 9 3 ( $ 9 3 $ ( $ 9

0 G2H$ $9 3 $ $$ $ 3- 9

1 GH 9 3 3- $ $ $9

$ B GltH $ 9 3 lt 9

-$

$ B GltH 9 3 lt 9

0G2H

$9 9

1 GH 9

-$ 1GH

$ B 9 9 $ 9$ 9 G9 $ 9 $ 9H

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash8

13

13

B C13

$9 9

0gt 9 3 $ $ $ 9

1 9 3 $ $ $

2 9 3 $ $ $ $ $ 9

-$ 0

$ $9 3 $ $ 9

-$ 0

8 GH$ 9 3 3-$ $

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1 1GH

$ 9

-$ 2 $ amp $ 0 $ 1(

-$ 8 $ amp $ 0 $ 1(

-$ $ amp $ 0 $ 1( 0

-$ $ amp $ 0 $ 1( 1

-$ 0 $ 1 amp $ 0 $ 1( 2

-$ 2 $ amp $ 0 $ 1(

$ 9 3 9

-$ 8

9 3 4 9

$9 9

0gt 9 3 $ $ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series Modules Kndash9

13

13

B C13

1 9 3 $ $ 9

2 9 3 $ $ $ 9

$9 9

-$ 8 $ 8 GH

$ 9 3 $ 9

GH$ 9 3 $ $9

0G2H

$9 9

1 GH

7 9 A ( A 9

3 9

-$ 1GH

$9

-$ 9

Block Transfer Write and Block Transfer Read Configurations for 7 Output1 Input 1771-N Series ModulesKndash10

13

13

2 3

5 13 lt1313 13 1313 G13 4

5

ampreg $ $ 9 5 13 13 ( $ $9

gt ampreg $ $6 VV 4 6 $ $ $ 49 lt 13 5

J GJ 13 $ $ $ W 6 $ 9

4 13 5 13 13

4 $6V $ $6 $ amp

3 amp $ ( $ amp13$ 13$$ $9

bull 3 ( ( ( ( ( ( 13$ 9

bull 3 $ amp + G ( ( ( ( ( H( $ G ( H $$ amp B$9

W $ amp $ $ $ $ 4( V $ $ $ $$ $ X 13$ V amp9

bull V W 6 $ $ $ ( ( ( ( ( ( 6W 6 $ $$ $ 49

bull gt $ V $ amp G6 W $( ( ( ( ( ( H V W 6 $6V Y $ G H $VV amp $6 V9

13gt $ gtreg ( $ $ $ gt ( 9 3 $ +$ $ 9

13gt $ $ $ Z $ X gtreg( $ 4 VV $ V $V 4 $6$ $ $ V $ Z $ X $6 gt $ $ ( 9 gt 4 $ $ $ V $V 6V$ $9

13

lt1313$ 13 13

lt 4 13

J J

34 $ $ $ V

3 $ amp $ 9

gt 6 4 $ amp $ $ $ 49

gt 4 $ U

bull amp ( 9

bull $ + 13$9

bull $ $ + 13$9

bull $ $ + 13$9 amp 13$ 4 13$ $ ( $ ( $$( $ 1 G90 9H $ 9

55gt $64 U

bull gt $ $ V $ ( 9

bull 6 6 $V V $ 4 $ 9

bull $ $V 6V( 6 6 $V V $ 49

bull $ $V ( 6 6 $ 49 6 V 4 4 $6 13$ W 6$ $ ( ( V 4 4 $ V W $V $ 1 G(0 9 13 (1 + H V $ 9

gt amp $VV $ 6 $ amp$$ $9

gt $VV $ 13$ ( 9

amp $ $+ $ amp$$

gt $ $+ 13$ ( 9

13

( 1

( 0$$$( 0 ( 0$ ( 0

7$ $ 7 $( 72 $( ( 0 70 $( ( 1 7 $( lt8 $(

+ +( 8 $(

+ 78 ( 7 ( 7 ( 72 ( 71 ( 0 70 ( 1 7 ( lt2 7 ( 7 ( =8 7 (

+ (

+ $( 17$ $( 7

$( 27$ $( 72

$( ( 7$ $( 0 70

$( 2( ( 2( 7$ $( 1 7

$( lt2( lt7$ $( 2 7

$( 2( 8( =2( =7$ $( 8 $(

7$ $( 8 $(

23 $ ( 7

$( 13 $ ( 72

$( 2( 23 $ ( 8 $(

13 $ ( 8

$( 1

+ (

3 $C D $ C7D( 1C D( 17$ $( C D( 1

3 $ $ $( CD $ C7D( 1

( 2

+ $( 22+ ( 2 ( 2$( 2 ( 2( 2

( $$(

$(

(

$( $(

( ( 0

( $ $(0

( ( 02

3-( ( 2 $( ( 7 $( 0 ( 0 $( ( 1 7 $( lt2 ( $( ( ( =(

=8 $( 7$ $ 8 $(

$ $( + ( 01

( 0

( (

( 2

$ ( 0

$ 6 ( 010$ ( 0

Index

IndexIndash2

13

$ ( ( 0

$ $( 0

$ ( $(

$ ( 0

$ (

(

8

( 1E ( ( 3 ( (

( ( 0

9

$ (

$gt7( $ ( 27gt3(

( $(

$ ( 0

$ $(

$ (

$ (

$ 3-(

(

$(

( 0( 0

4gt( gt1(

( ( 0

( 0

( 01

( ( 20

( ( 8

( 2

( 0

( 0

3( ( 01

5

( 0$ ( gt( 1gt1( 2

( 02

( 0

( 0(

( 0

( ( 00

$( 0 $( 0 $ $( $(

( (

Rockwell Otomasyon Ticaret AŞ Kar Plaza İş Merkezi E Blok Kat6 34752 İccedilerenkoumly İstanbul Tel +90 (216) 5698400

Publication 1771-UM127B-EN-P - December 2002 16 PN-955132-05BSupersedes Publication 1771-65127 - June 1999 Copyright copy 2002 Rockwell Automation Inc All rights reserved Printed in the USA

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products At httpwwwrockwellautomationcomsupport you can find technical manuals a knowledge base of FAQs technical and application notes sample code and links to software service packs and a MySupport feature that you can customize to make thebest use of these tools

For an additional level of technical phone support for installation configuration and troubleshooting we offer TechConnect support programs For more information contact your local distributor or Rockwell Automation representative or visit httpwwwrockwellautomationcomsupport

Installation Assistance

If you experience a problem within the first 24 hours of installation review the information that is contained in this manualYou can contact Customer Support for initial help in getting your product up and running

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility However if your product is not functioning and needs to be returned follow these procedures

Documentation Feedback

Your comments will help us serve your documentation needs better If you have any suggestions on how to improve this document complete this form publication RA-DU002 available at httpwwwrockwellautomationcomliterature

United States or Canada 14406463434

Outside United States or Canada

Use the Worldwide Locator at httpwwwrockwellautomationcomsupportamericasphone_enhtml or contact your local Rockwell Automation representative

United States Contact your distributor You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process

Outside United States Please contact your local Rockwell Automation representative for the return procedure

Introduction_Catagory Types

Print Spec Sheet

MBD000CCD74bin

MBD000D141Fbin

MBD000E357Abin

MBD000D05AEbin

MBD000B37AAbin

MBD000C2CF0bin

MBD000CBFEFbin

MBD000B71E5bin

MBD000AB9B4bin

MBD000AF7AAbin

JIT Printing Specifications RA-QR005G-EN-P - 3292010
Printing Specification YOUR DATA HERE Instructions NO
(required) Category D6 Select Print Category ABC or D from category list on Introduction_Catagory Types tab 11rdquo x 17rdquo LOOSE -Loose Leaf YES Pre-sale Marketing TOP
(required) Finished Trim Size Width 85rdquo x 11rdquo 85rdquo x 11rdquo PERFECT - Perfect Bound A1 LEFT
(required) Publication Number 1771-UM127B-EN-P Sample 2030-SP001B-EN-P 3rdquo x 5rdquo SADDLE - Saddle Stitch A2 RIGHT CORNER
Use Legacy Number NO YES or NO 18rdquo x 24rdquo Poster PLASTCOIL - Plastic Coil (Coil Bound) A4 BOTTOM SIDE
Legacy Number if applicable Sample Legacy Number 0160-533 24rdquo x 36rdquo Poster STAPLED1 -1 position A3
Publication Title High Resolution Analog Module User Manual Sample ElectroGuard Selling Brief80 character limit - must match DocMan Title 36rdquo x 24rdquo Poster STAPLED1B - bottom 1 position A5
(required) Business Group Marketing Commercial As entered in DocMan 4rdquo x 6rdquo STAPLED2 - 2 positions A6
(required) Cost Center CMKMKE CM Integrated Arch - 19021 As entered in DocMan - enter number only no description Example - 19021 CMKMKE CM Integrated Arch - 19021CMKMKE Market Access Program - 19105 475rdquo x 7rdquo (slightly smaller half-size) THERMAL - Thermal bound (Tape bound) A7
BindingStitching PERFECT - Perfect Bound Review key on right Saddle-Stitch Items All page quantities must be divisible by 4Note Stitching is implied for Saddle-Stitch - no need to specify in Stitching Location80 pgs max on 20 (text and cover)76 pgs max on 20 (text) and 24 (cover)72 pgs max on 24 (text and cover)Perfect Bound Items940 pgs max wcover (90 index unless indicated otherwise)70 pgs min for spine without words200 pgs min for spine with words Plastcoil Bound Items530 pgs max of 20 (if adding cover deduct equivalent number of pages to equal cover thickness) (90 index unless indicated otherwise)Tape Bound Items250 pgs max on 20 no cover240 pgs max wcover (90 index unless indicated otherwise) 475rdquo x 775rdquo THERMALO - Thermal Bound (Tape bound - offline) A8
(required) Page Count of Publication 188 Total page count including cover 55rdquo x 85rdquo (half-size) A9
Paper Stock Color White is assumed For color options contact your vendor 6rdquo x 4rdquo Post Sale Technical Communication
Number of Tabs Needed 5 tab in stock at RR Donnelley 7385rdquo x 9rdquo (RSI Std) B1
Stitching Location Blank Corner or Side 825rdquo x 10875rdquo B2
Drill Hole YESNO YES All drilled publications use the 5-hole standard 516 inch-size hole and a minimum of frac14 inch from the inner page border 825rdquo x 11rdquo (RA product profile std) B3 None
Glue Location on Pad Glue location on pads 8375rdquo x 10875 B4 Half or V or Single Fold
Number of Pages per Pad Average sheets of paper 25 50 75100 Max 9rdquo x 12rdquo (Folder) B5 C or Tri-Fold
Ink Color One color assumes BLACK 4 color assume CMYK Indicate PMS number herehellip A4 (8 frac14rdquo x 11 frac34rdquo) (210 x 297 mm) Catalogs DbleParll
Used in Manufacturing YES A5 (583rdquo x 826rdquo) (148 x 210 mm) C1 Sample
Fold Review key on right Short (must specify dimensions between folds in Comments)
Comments C2 Z or Accordian Fold
Part Number 955132-05B JIT POD Microfold or French Fold - designate no of folds in Comments - intended for single sheet only to be put in box for manufacturing
D1 Double Gate
D2
FoldsHalf V Single C or TriDble ParllZ or Accordian Microfold or FrenchDouble Gate Short Fold D3
D4
D5
D6
D7
D8
D9
This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printingFind your publication type in the first section below Use the assigned Printing Category information to determine the standard print specifications for that document type The Printing Categories are defined below the Publication Type section Note there may be slightly different print specifications for the categories depending on the region (EMEA or Americas)For more information on Global Sales and Marketing Printing Standards see publication RA-CO004 in DocMan
Publication Type and Print Category
Publication Type Off Set Print Category Spec (See table below) JIT Spec (See table below) Description Order Min Order Max Life Cycle Usage Release Option
AD NA - Puttman NA Advertisement Reprint Colour NA NA Presale Internal
AP A3 D2 Application Solution or Customer Success Story 5 100 Presale External
AR NA NA ArticleEditorialByline NA NA Presale Internal
(press releases should not be checked into DocMan or printed)
AT B3 B4 D5 Application techniques 5 100 Presale External
BR A2 Primary A1 NA Brochures 5 100 Presale External
CA C2 Primary C1 NA Catalogue 1 50 Presale External
CG NA NA Catalogue Guide 1 50 Presale External
CL NA NA Collection 5 50 Presale External
CO A5 A6 A9 D5 Company Confidential Information NA NA NA Confidential
CP E-only E-only D5 Competitive Information 5 50 NA Confidential
DC E-only E-only Discount Schedules NA NA Presale Internal
DI A1 A3 NA Direct Mail 5 100 Presale Internal
DM NA NA Product Demo 5 50 Presale Internal
DS B3 D5 Dimensions Sheet 1 5 Post External
DU B3 D5 Document Update 1 5 Post External
GR B2 D6 Getting Results 1 5 Post External
IN B3 Primary B2 D5 D6 Installation instructions 1 5 Post External
LM NA NA Launch Materials 5 50 Presale Internal
PC B3 D5 Packaging Contents
PL E-only primary B3 E-only Price List 5 50 Presale Internal
PM B2 D6 Programming Manual 1 5 Post External
PP A3 D1 Profile (Single Product or Service) NOTE Application Solutions are to be assigned the AP pub type 5 100 Presale External
QR B2 primary B3 B5 D5 D6 Quick Reference 1 5 Post External
QS B2 primary B3 B5 D5 D6 Quick Start 1 5 Post External
RM B2 D5 D6 Reference Manual 1 5 Post External
RN B3 D5 Release Notes 1 5 Post External
SG B1 Primary B4 D5 D6 Selection Guide Colour 5 50 Presale External
SG B2 D5 D6 Selection Guide BW 5 50 Presale External
SP A1 A2 A3 A4 NA Sales Promotion NOTE Service profiles are to be assigned the PP pub type 5 100 Presale Internal
SR B2 B3 D5 D6 Specification Rating Sheet 5 100 Presale External
TD B2 Primary B3 B4 B5 D5 D6 Technical Data 5 50 Presale External
TG B2 B3 D6 Troubleshooting Guide 1 5 Post External
UM B2 Primary B4 D6 User Manual BW 1 5 Post External
WD B3 D5 Wiring Diagrams Dwgs 1 5 Post Internal
WP B3 Primary B5 D5 White Paper 5 50 Presale External
Minimum order quantities on all JIT items are based on the publication length
Publication length Minimum Order Quantity
77 or more pages 1 (no shrink wrap required)
33 to 76 pages 25
3 to 32 pages 50
1 or 2 pages 100
Pre-sale Marketing All paper in this category is White Brightness 90 or better Opacity 90 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
A1 4 color 170 gsm 2pp 100 gloss cover 100 gloss text
A2 4 color 170 gsm folded 4pp 100 gloss cover 80 gloss text
A3 4 color Cover 170 gsm with Body 120 gsm gt 4pp 80 gloss cover 80 gloss text
A4 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 gloss text
A5 2 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A6 1 color 170gsm Silk ndash 120gsm Silk 80 gloss cover 80 matt sheet text
A7 4 color cover2 color textSelection Guide Category being deleted 10 Point Cover C2S50 matte sheet text
A8 4 color cover Category being deleted 50 matte sheet text self cover
2 color text
Selection Guide
A9 2 color 100gsm bond 50 matte sheet text self cover
Selection Guide
Gray shading indicates Obsolete Print Catagories
Post Sale Technical Communication
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
B1 4 color cover 270gsm Gloss 100gsm bond 10 Point Cover C2S
2 color text 50 matte sheet text
B2 1 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B3 1 color 100gsm bond 50 matte sheet text self cover
B4 2 color 160gsm Colortech amp 100gsm Bond 90 Cover50 matte sheet text
B5 2 color 100gsm bond 50 matte sheet text self cover
Catalogs
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
C1 4 color cover 270gsm Gloss 90gsm silk 10 Point Cover C2S
4 color text 45 Coated Sheet
C2 4 color cover 270gsm Gloss 80gsm silk 10 Point Cover C2S
2 color text 32-33 Coated Sheet
JIT POD All paper in this category is White Brightness 82 or better Opacity 88 or better
Category Color Options AP EMEA Paper Requirements Canada LA US Paper Requirements
D1 4 color 170gsm white silk 80 gloss cover coated 2 sides
D2 4 color 120gsm white silk 80 gloss text coated 2 sides self cover
D3 4 color Cover 170gsm with Body 120gsm 80 gloss cover 80 gloss text coated 2 sides
D4 1 color 160gsm tab 90 index
D5 1 color 80gsm bond 20 bond self cover
D6 1 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D7 2 color 160gsm tab 90 index
D8 2 color 80gsm bond 20 bond self cover
D9 2 color Cover 160gsm tab with Body 80gsm bond 90 index 20 bond
D10 Combination 4 color cover with 2 color body Cover 160gsm with Body 80gsm 90 index 20 bond
Gray shading indicates Obsolete Print Catagories
Just In Time (JIT) or Off Set (OS)
Use these guidelines to determine if your publication should be JIT (just in timeprint on demand) or if it would be more economical to print OS (offseton a press) OS print jobs require an RFQ (Request For Quote) in US If your job fits into the ldquoEitherrdquo category an RFQ is recommended but not required In the US RA Strategic Sourcing will discourage or reject RFQs for jobs that fall within the JIT category Guidelines differ for black amp white and color printing so be sure to check the correct tables
Black amp White Printing
Color Printing
Color Printing
Page 12:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 13:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 14:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 15:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 16:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 17:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 18:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 19:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 20:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 21:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 22:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 23:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 24:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 25:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 26:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 27:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 28:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 29:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 30:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 31:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 32:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 33:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 34:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 35:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 36:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 37:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 38:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 39:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 40:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 41:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 42:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 43:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 44:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 45:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 46:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 47:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 48:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 49:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 50:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 51:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 52:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 53:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 54:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 55:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 56:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 57:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 58:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 59:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 60:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 61:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 62:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 63:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 64:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 65:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 66:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 67:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 68:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 69:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 70:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 71:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 72:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 73:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 74:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 75:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 76:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 77:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 78:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 79:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 80:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 81:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 82:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 83:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 84:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 85:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 86:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 87:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 88:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 89:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 90:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 91:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 92:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 93:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 94:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 95:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 96:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 97:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 98:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 99:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 100:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 101:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 102:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 103:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 104:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 105:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 106:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 107:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 108:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 109:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 110:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 111:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 112:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 113:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 114:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 115:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 116:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 117:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 118:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 119:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 120:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 121:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 122:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 123:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 124:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 125:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 126:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 127:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 128:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 129:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 130:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 131:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 132:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 133:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 134:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 135:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 136:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 137:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 138:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 139:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 140:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 141:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 142:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 143:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 144:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 145:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 146:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 147:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 148:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 149:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 150:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 151:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 152:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 153:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 154:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 155:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 156:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 157:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 158:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 159:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 160:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 161:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 162:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 163:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 164:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 165:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 166:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 167:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 168:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 169:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 170:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 171:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 172:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 173:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 174:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 175:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 176:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 177:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 178:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 179:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 180:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 181:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 182:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 183:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 184:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 185:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 186:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 187:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer
Page 188:  · 2017. 12. 6. · transfer modules that interface analog signals with Allen-Bradley PLC-3 and PLC-5 family programmable controllers that have block transfer capability. Block transfer