20160505 comsoc ni mmwave all

Upload: ashim-kumar

Post on 06-Jul-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    1/43

    mmWave

    Next-Generation WirelessPrototyping

    Sponsored by

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    2/43

    2ni.com

    mmWave: Next-Generation Wireless Prototyping

    Dr. Ahsan AzizWireless Research Lead User Team Manager

    Dr. Wes McCoyPrinciple Wireless Platform Architect

    Sarah YostProduct Marketing Manager| SDR & Wireless Research

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    3/43

    3ni.com

    ITU-R Vision for 5G

    eMBB

    uMTC, UR/LLmMTC

    >10 Gb/s Peak

    Rate

    < 1 mSLatency

    100 X MoreDevices

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    4/43

    4ni.com

    8 Capabilities

    ITU-R Vision for IMT-2020 and Beyond

    Connection

    Density

    Network

    Energy Efficiency

    Area Traffic

    Capacity

    Peak

    Data Rate

    Low

    Med

    Latency

    User Experience

    Data Rate

    Spectrum

    Efficiency

    Mobility

    High

    Source – ITU-R M.[IMT.VISION]

    eMBB

    uMTC, UR/LL

    mMTC

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    5/43

    5ni.com

    Approaching The Pivotal Moment

    We are here

    Source: www.gsmhistory.com/who_created-gsm

    Technical ideas from a huge number of sources

    Implementation by a large number of suppliers & operators

    5G

    Broad Based Adoption

    Pivotal Moment of Standardization 1987

    1982-85

    1988-91

    Birth of GSM The Pivotal Year

    GSM

    Billions of Devices

    Multiple Ideas

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    6/43

    6ni.com

    Massive MIMO / FD MIMO: Theoretical 10X Capacity Gain

    Phased ArrayPhased Array

    Phased ArrayPhased Array

    …8 Transceiver Base

    Station8 Transceiver Base

    Station

    Phase I: Hybrid Beamforming Phase 2: Digital Beamforming

    64 Transceiver Base Station64 Transceiver Base Station

    Prototyping is needed.

    3-5x est. capacity  10x est. capacity 

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    7/43

    7ni.com

    Practical Implications of Massive MIMO

    ¼ λ

    Patch

    128 Element Linear Dipole Array• 750 MHz = 12.8m wide• 3.5 GHz = 2.75m wide

    Source: Building image from Rusek, et al “Scaling up MIMO: Opportunitiesand Challenges with Very Large Arrays,” IEEE Signal Processing Magazine

    ¼ λ

    Dipole

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    8/43

    8ni.com

    100 Year History of mmWave (30 GHz – 300 GHz)

    http://theinstitute.ieee.org/technology-focus/technology-history/first-ieee-milestones-in-india

    https://www.cv.nrao.edu/~demerson/bose/bose.html

    J.C. Bose at theRoyal Institution,London, 1897

    Modern point-to-pointmmWave link

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    9/43

    9ni.com

    NYU Wireless: mmWave Channel Sounder

    • NYU Wireless group published channel sounding results for mmWave

    • 28, 38, and 72 GHz

    Prof. Ted Rappaport

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    10/43

    10ni.com

    The Question of Frequency: WRC-15 Outcome

    • The ITU released a list of globally viable frequencies for 5G mmWave technologies

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    11/43

    11ni.com

    The Question of Frequency: FCC Embraces mmWave

    FCC issued a Notice of Proposed Rule Making (NPRM) that proposesnew flexible service rules among the 28 GHz, 37 GHz, 39 GHz, and64-71 GHz bands.

    Image Source: FCC 15-138, Page 12, Oct 23, 2015https://www.fcc.gov/document/fcc-promotes-higher-frequency-spectrum-future-wireless-technology-0

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    12/43

    12ni.com

    The Question of Frequency: 28 GHz

    • 28 GHz could be the first mmWave frequency to be deployed

    • Being considered in US, Korea, and Japan

    • Field trials at 28 GHz underway

    • Not viable frequency for Europe

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    13/43

    13ni.com

    The Question of Frequency: 73 GHz

    • Real-time over the air demonstrations show73 GHz is viable

    • Over 14 Gbps throughput achieved

    • Globally viable frequency

    • More work at this frequency expected duringPhase 2

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    14/43

    14ni.com

    The Question of Frequency: 38 & 39 GHz

    • Not much published research, yet

    • Globally viable frequency

    • Part of the phase 1 sub 40 GHz research

    • Verizon also purchased spectrum at 38 GHz

    • Wider contiguous bands available than at 28 GHz

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    15/43

    15ni.com

    mmWave Research Areas

    Channel Research

    • Channel sounding measurements

    • Creating channel models

    • Validating channel models

    Communications Prototyping

    • New physical layer/new air interface

    • Adapting existing standards from 20

    MHz bandwidth to 2 GHz bandwidth• Over the air testing at new mmWave

    frequencies

    Channel

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    16/43

    ni.com

    Channel Sounding

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    17/43

    17ni.com17

    Motivation for mmWave Channel Sounding

    • Understanding mmWave channel propagation in cellular environment

    • 5G mmWave for wireless access technology is a new area for cellular

    • Lack of data and consistency in models

    • mmWave propagation channel models for various frequencies and environment are currently availablefrom different groups, but lacks consistency and use case.

    • NI’s role in Channel Sounding

    • Enable researchers to do measurements efficiently to create and validate the channel models• Use the same HW to run a data link in the same environment immediately and gather system

    performance

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    18/43

    18ni.com

    Early Channel Sounding Results

    Source: Nokia (NI 5G Summit at Notre Dame)

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    19/43

    19ni.com

    Ryan J. Pirkl* and Gregory D. Durgin, “How to Build an Optimal Broadband Channel Sounder”, Georgia Institute ofTechnology, School of ECE, 777 Atlantic Dr, Atlanta, GA 30332, http://www.propagation.gatech.edu

    Channel Sounding with sliding correlators

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    20/43

    20ni.com

    Some parameters of interest for mmWave sounding

    • Channel parameters

    • Pathloss > 170 dB

    • Time of arrival measurement > 1.33 (400 meters)

    • Maximum Excess delay ~1.33

    • MIMO channel sounding – AoA, AoD• PDP resolution within few nanoseconds

    • Doppler

    • Calibration

    • IQ skew, Gain imbalance, LO leakage

    • Power

    o Convert channel tap values to dBm

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    21/43

    ni.com

    mmWave Channel Sounder

    Wideband sounder

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    22/43

    22ni.com

    Transmitter Block Diagram

    blockgeneration

    pulseshaping

    ZC Seqparameters RRC filter

    • Zadoff-Chu Sequence block• Length = 1920 samples at 3.072 GS/s

    • Tx transmits 'x' repetitions of ZC seq. at each PPS trigger

    Transmit 'x'repetitionsTransmit 'x'repetitions

    PPS trigger

    DACDAC

    FPGA

    Host

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    23/43

    23ni.com

    Receiver Software Architecture

    FPGAHost

    MFMF EqualizerAverage

    Rx ZC Seq.Average

    Rx ZC Seq.

    Post Processing(rms delay spread,

    Doppler etc.)

    From A/D

    EqualizerLUT

    ChannelImpulse

    Response

    CFOcorrectionCFOcorrection

    Receive block diagram

    IQcorrectionIQcorrectionApply

    Power Cal.

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    24/43

    ni.com

    Sounding Signal Design

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    25/43

    25ni.com

    Sensitivity per Antenna Port• Sensitivity of the channel sounder

    o    =  + −  −  ⇒  =  −

    o   ! =  −

    " KTB @ 2GHz =  − 174dBm/Hz + 93dB = −81 dBm

    (Noise Figure) = 7 dB

    #" $%& = ERP, Transmit power, dBm = #" &' +  = () + (3*, = - */

    (Processing gain) = 10log10(Signal sample duration) = 36 dB (3840 samples)

    (Averaging gain) = 10log10(Number of averaged CIRs)

    • Current setup:

    For 50 averaged CIRs (33.3 µs duration),  0 1 *• For the current parameters  = −1 + − 32 − 1 = −127dBm

    •    = −1(*/ − (3*, = −1)4*/⇒ ! = - − −1)4*/ = 15*

    • Assume 20 SNR per CIR, 198dB-20dB, 178dB Pathloss measurement capability

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    26/43

    26ni.com

    Waveform Design

    Zadoff-ChuSequence Block

    Zadoff-ChuSequence Block

    2.56 µs (1920 samplesat 1.536 GS/s)

    …Zadoff-ChuSequence Block

    Zadoff-ChuSequence Block

    Zadoff-ChuSequence Block

    Zadoff-ChuSequence Block

    • Waveform

    • Repetition of ZC Sequences 6 7 = 89:;

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    27/43

    ni.com

    Calibration for Channel Sounding

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    28/43

    28ni.com

    RF, IF & Baseband Calibrations

    1. IQ Impairment correction both on TX and RX side

    2. Hardware frequency Response Calibration

    • Frequency Domain Equalizer

    3. Linearity Tests• Linear range of operation for RF/IF (TX & RX)

    4. Hardware delay Calibrations

    • Necessary for Measuring Flight Time accurately

    • Account for delays between PPS triggers, propagation delays over cable, etc.

    5. Power Calibration• Convert Channel Impulse Response from dB to dBm.

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    29/43

    29ni.com

    Demo

    • Playback of Channel Impulse Responses at 28.5 GHz

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    30/43

    ni.com

    5G mmWave New Radio PoC System

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    31/43

    31ni.com

    Why develop a mmWave PoC system for research?

    • Physical layer

    • New air interface design – e.g. 5G RAT

    o Scalable BW, Sub 1ms latency, MIMO support, channel coding – LDPC, Polar codes etc., beamsteering/tracking, various control channel design, cell search ….

    • Higher layers

    • New network topology

    o Low latency MAC, multiuser support, scheduling algorithms, hand off mechanisms, …..

    • Semiconductor

    • mmWave IC – performance vs. power, size, cost tradeoffs

    • Antenna subsystem

    • Enabling many new areas such as self driving cars, massive number of connected devices aspart of IoT, many more….

    Every new idea will requires building some sort of PoC system fast

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    32/43

    32ni.com

    Some key requirements for a mmWave research platform

    • Hardware Requirements:

    • High performance

    o Needs to serve as a golden reference

    • Flexible

    o Needs to be modular and scalable in terms of BW, channel count, latency, computational capabilities

    o Flexible processing architecture

    o Accommodate different HW partitioning to enable testing of different modules developed by researchers

    • Software Requirements

    • Unified software environment - provide varying degree of determinism, latency, throughput

    o FPGA, DSP, MCU etc.

    • Software development environmento Open & modifiable- not too complex yet rich functionality

    • Hardware abstraction

    o I/O, Timing, synchronization etc.

    • Rich set of very high throughput DSP IP blocks

    Make it easy for the developer so that they can focus of the research

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    33/43

    33ni.com

    Proposed platform for 5G mmWave PoC system development

    mmWavemmWavemmWavemmWave

    Receiver Receiver Receiver Receiver 

    mmWavemmWavemmWavemmWave

    Receiver Receiver Receiver Receiver IFIFIFIF Downconverter Downconverter Downconverter Downconverter IFIFIFIF Downconverter Downconverter Downconverter Downconverter 

    BasebandBasebandBasebandBaseband

    Receiver Receiver Receiver Receiver 

    BasebandBasebandBasebandBaseband

    Receiver Receiver Receiver Receiver 

    MulitMulitMulitMulit----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    MulitMulitMulitMulit----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessingData

    Analog

    Baseband

    Digital

    Baseband

    mmWavemmWavemmWavemmWave

    Transmitter Transmitter Transmitter Transmitter 

    mmWavemmWavemmWavemmWave

    Transmitter Transmitter Transmitter Transmitter 

    IFIFIFIF

    Upconverter Upconverter Upconverter Upconverter 

    IFIFIFIF

    Upconverter Upconverter Upconverter Upconverter 

    BasebandBasebandBasebandBaseband

    Transmitter Transmitter Transmitter Transmitter 

    BasebandBasebandBasebandBaseband

    Transmitter Transmitter Transmitter Transmitter 

    MultiMultiMultiMulti----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    MultiMultiMultiMulti----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    Analog

    BasebandDigital

    Baseband

    Data

    Modular radio heads to support

    multiple frequencies

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    34/43

    34ni.com

    Proposed platform for 5G mmWave PoC system development

    mmWavemmWavemmWavemmWave ICICICICmmWavemmWavemmWavemmWave ICICICIC IFIFIFIF Downconverter Downconverter Downconverter Downconverter IFIFIFIF Downconverter Downconverter Downconverter Downconverter BasebandBasebandBasebandBaseband

    Receiver Receiver Receiver Receiver 

    BasebandBasebandBasebandBaseband

    Receiver Receiver Receiver Receiver 

    MulitMulitMulitMulit----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    MulitMulitMulitMulit----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessingData

    Analog

    Baseband

    Digital

    Baseband

    mmWave ICmmWave ICmmWave ICmmWave ICmmWave ICmmWave ICmmWave ICmmWave ICIFIFIFIF

    Upconverter Upconverter Upconverter Upconverter 

    IFIFIFIF

    Upconverter Upconverter Upconverter Upconverter 

    BasebandBasebandBasebandBaseband

    Transmitter Transmitter Transmitter Transmitter 

    BasebandBasebandBasebandBaseband

    Transmitter Transmitter Transmitter Transmitter 

    MultiMultiMultiMulti----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    MultiMultiMultiMulti----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    Analog

    BasebandDigital

    Baseband

    Data

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    35/43

    35ni.com

    Proposed platform for 5G mmWave PoC system development

    mmWavemmWavemmWavemmWave ICICICICmmWavemmWavemmWavemmWave ICICICIC

    BasebandBasebandBasebandBaseband

    Receiver Receiver Receiver Receiver 

    BasebandBasebandBasebandBaseband

    Receiver Receiver Receiver Receiver 

    MulitMulitMulitMulit----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    MulitMulitMulitMulit----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessingData

    Analog

    Baseband

    Digital

    Baseband

    BasebandBasebandBasebandBaseband

    Transmitter Transmitter Transmitter Transmitter 

    BasebandBasebandBasebandBaseband

    Transmitter Transmitter Transmitter Transmitter 

    MultiMultiMultiMulti----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    MultiMultiMultiMulti----FPGAFPGAFPGAFPGA

    ProcessingProcessingProcessingProcessing

    Analog

    BasebandDigital

    Baseband

    Data

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    36/43

    36ni.com

    Air Interface for mmWave MIMO PoC system for 5G

    • Modulation:

    • Single Carrier Null CP

    • BPSK 1/5, QPSK ½, 16QAM ½, 16QAM 7/8, 64QAM ½, 64QAM 7/8

    • Some system configurations:

    • TDD [UL and DL support]• 2/3us block duration (with null CP), 150 blocks/slot; 100us/slots

    • Real time beam tracking [feedback]

    • Bandwidth: 2GHz

    • Sample rate: 3.072 Gs/S

    • 2x2 MIMO

    • RF: 73.5GHz

    • Sub 1ms system latency

    M. Cudak, T. Kovarik, T. A. Thomas, A. Ghosh, Y. Kishiyama and T. Nakamura, "Experimental mm wave 5G cellular system," 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX,2014, pp. 377-381.

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    37/43

    37ni.com

    NI mmWave Transceiver System

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    38/43

    38ni.com

    2GHz 2x2 MIMO Receiver Baseband

    Matchedfilter

    Fine Timing & CFO est

    Align counters &Applycorrection

    FFT

    Coarse Timing

    FFT

    Channel Est

    Channel Est

    MIMO EQ

    Wmmse

    Pilot

    Pilot

    MIMOEqualization

    W1

    Odd

    Even

    Matchedfilter

    Align counters &Applycorrection

    FFT

    FFT

    Channel Est

    Channel Est

    Pilot

    Pilot

    MIMOEqualizer

    W2

    Odd

    Even

    IFFT

    IFFT

    Wmmse=[W1 W2]

    Stream 1

    Stream 2

    Stream 1Decoder

    Stream 1Decoder

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    39/43

    39ni.com

    FPGA Mapping for Baseband

    7976R79023630

    Q

    Q

    I

    I

    REF IN

    REF OUT

    7976R 7976R 7976R7902

    7976R79023630

    Q

    Q

    I

    I

    REF IN

    REF OUT

    7976R 7976R 7976R

    PXIe-8880

    PCIeSwitch

    PCIeSwitch

    Channel 0Analog

    DifferentialI and Q

    Channel 1Analog

    DifferentialI and Q

    LLRTurbo Decoders

    MIMO Processor

    • Channel Est• Wmmse

    ADC InterfaceI/Q Correction

    RRC FilterFrame SyncEqualization

    3072 MS/s12-bit

    Digitizer

    Data AggregationHost Processing

    Eight-coreIntel Xeon E5-2618L

    PXIe-1085 Chassis #2PXIe-1085 Chassis #1

    7902

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    40/43

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    41/43

    41ni.com

    High Throughput DSP IP for Multi Gbps mmWave PoC: Wide Data PathFFT

    • 512 FFT (4x128) Radix-4 Decimation in Time

    SerialFFT128Serial

    FFT128

    SerialFFT128Serial

    FFT128

    SerialFFT128SerialFFT128

    SerialFFT128Serial

    FFT128

    x3,x7,x11…

    x2,x6,x10…

    x1,x5,x9…

    x0,x4,x8… xx

    TwiddlefactorsTwiddlefactors

    xx

    xx

    xx

       P  a  r  a   l   l  e   l    F   F   T   4

       P  a  r  a   l   l  e   l    F   F   T   4

    X384,X385,X386…

    X256,X257,X258…

    X128,X129,X130…

    X0,X1,X2…

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    42/43

    42ni.com

    Conclusions

    • mmWave for wireless access is a new technology

    • Will require both theoretical research and building PoC systems to validate system performance

    • Will require much data collection in different environment in order to characterize signal behavior atmmWave

    • Research in mmWave spans all the way from channel models to new RAT and semiconductordevelopment

    • mmWave technology will also enable new application space that are beyond our imaginationtoday

  • 8/17/2019 20160505 Comsoc Ni Mmwave All

    43/43

    The Role of Spectrum Sharingin Future Wireless NetworksThank you for viewing this IEEE ComSoc Live Webinar.

    Sponsored by