2014 re symp dushanbe tajikistan

54
ТАДЖИКСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Посвящается 10-летию образования научно-исследовательского Института ТНУ МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ «ХИМИЯ РЕНИЯ» (28-29 ноября 2014 г) Д У Ш А Н Б Е – 2014

Upload: konstantin-german

Post on 13-Jul-2015

222 views

Category:

Education


1 download

TRANSCRIPT

  • -

    10- -

    (28-29 2014 )

    2014

  • 2

    (V)

    * .., .. *

    - . . , - . , [R-S-S-R]/[RS]2, RS-3--1,2,4--5 2/, 4 /, 6 / HCl 298, 250,14; 226,98 211,5. , 0, . , 273 338 0 6/ HCl 183,5 273,2. , HCl - E0. , 6/ HCl 273-338 E0 89,7, 4/ 2 / HCl 84,3 75,5 . , HCl E0. E0 1,2,4-. E0 :

    2-ThioPir < 2-M < I-Met-2M < Pthiol < 3-Met-1,2,4-Tthiol <

    129,9 165,3 179,0 184,8 209,5

    < 3-t-1,2,4-Tthiol < 1,2,4-Tthiol < 3,4-DiMet 1,2,4- Tthiol <

    211.5 266,0 290,3

  • 3

    < 4- Met-1,2,4-Tthiol

  • 4

    (-) - , , 3, , . . , , , , , , , . . - [3].

    1. .., .., .. . .

    : , 2007. 298 . 2. .. //

    . IV . . -2010, 28-29 2010 ., , 2010. - 54 . . 37.

    3. 2523892. . .., .., .., .. . 27.07.2014. . 21.

    CHCl3

    .., * .., ..

    , . , , * , . ,

    () () (I-, NO3

    -. SCN

    -, CCl3COO

    -, ClO4

    -) .

    - , - [Sc()3]I3, [Sc()3](NO3)3, [Sc()2(SCN)2]SCN,

  • 5

    [Sc()2(CCl3COO)2]CCl3COO [Sc()3](ClO4)3. CHCl3 . [Sc()3](ClO4)3, CHCl3.

    . , , (k:103-,-1) :

    SCN- (5,99) > I

    - (3,56) > NO3

    - (2,25).

    , (): I

    - -

    3,4510-13; NO3- - 1,0310-13; SCN- - 5,0410-13; ClO4

    - - 2,210-15; CCl3COO

    - -

    4,1110-14. .

    , , - . , 6 / HCl + 1 / NaClO4 Sc(III) 0,05 / CHCl3 , , Cu(II), Co(II), Ni(II), Zn(II), Cd(II), Mn(II), Al(III), Cr(III), Zr(IV), Th(IV), V(V).

    (V) 1--2- 7/ HCl 273

    * .., .., .., ..

    * ,

    *

    (V) , . (+5) . (V) . , .

  • 6

    . (V) , 1--2- 7/ HCl 298. (V) 1--2- 7/ HCl 273 (.1).

    .1. (V) c 1--2-

    7/ HCl 273

    , 2[ReOCl5]- 1--2--7/ HCl 273 pKi: pK1=5,98; (2=9,5510

    5) 2=4,86; (2=7,2410

    4) 3=3,96; (3=9,12103) 4=3,29; (4=1,9510

    3) 5-=2,89; (5=7,7610

    2 ). ( 1).

    , .

    - ; [L]- 1--2-. Excel Borland Delphi, Windows 7. 5=0 . 1--2- 0,1 5,0 0,1. (V) 1--2- 7/ HCl 273 ( 2).

  • 7

    .2. (V) c 1--2-

    7/ HCl 273,

    . 2 pKi

    :n*

    1 =6,06 (1*=1,15106);

    *

    2 =4,90 (2*=7,941,15104);

    *

    3 =4,02; (3=1,05104);

    *

    4 =3,35; (4*=2,24103);

    *

    5 =2,65; (5*=4,47102).

    , pKi -1--2- (V) . pK5.

    *

    i

    2[ReOCl5]- 1--2--7/ HCl 273 (.3).

    . 3. (V) 1--2-

    7 / HCl 273

    i) 1--2- (V) 273 7/ HCl .

  • 8

    1--2-

    (V) 7/ HCl 273

    maxi

    [ReOLCl4]-

    5,6

    [ReOL2Cl3] 4,6

    [ReOL3Cl2]+ 3,8

    [ReOL4Cl3]2+

    3,2

    [ReOL5]3+

    2,6

    ,

    max

    i 1--2-.

    (V)

    * ..., ..

    * ,

    . , , . (V) . (V) . , , (V). (V) 2 1--2-.

    [ReO(2-M)4]222 900 (

    ) 120 0 ( ) -, . . 380 0 - . . [ReO(2M)23]22

  • 9

    90-100 0. , 260 0. : [ReO(2M)4r2]r222 400

    0 43,7, 70,0. , 2- , . 1--2- (V).

    [ReO(2-M)2r3] 22 c (V) 1-Met-2-M , 2- . , -2- 2600, 1--2- 3600. , 2- 1--2- , . , -, 1--2- .

    (III) , ,

    ( ) ,

    .., * .., .., .., ..

    , . , , * ,

    . ,

    (III) . , 350 , (), () (, Br, ), HCl, . 1,8-2,2 . HCl, . , Fe (III). HCl

  • 10

    0,25 4,0 / (99 %) 3 4 / HCl. Br 2,0-4,0 / HCl.

    () Fe (III) , . HCl H2SO4, (H2SO4) 0,25 /. , , HCl, 1 / (, ), 0,5 / (Br) NaCl KCl 1 / Fe (III) 92 94 %. [FeCl4]

    1- ( . H)Cl.

    (III) Br , : 99,32 Fe (III) 19,2 0,1 ; Br 98,76 Fe (III) 19,2 0,1 / 17,8 17,7 0,1 / FeCl3 .

    R : H+ : Fe3+ : Cl- : = 2 : 2 : 2 : 7 : 0,9, (RH)[Fe2Cl7]

    . RH(Br), R .

    (Br) HCl H2O (III), .

    -

    .., .., .., ..*

    , . , , * , . ,

    () () Ca(II), Mg(II), Sr(II), Ba(II), Co(II), Ni(II) Cu(II) . Ca(II) Cu(II) CHCl3

  • 11

    (0.05 /) NH3

    0,1-0,8 / (.). Sr(II), Ba(II) Co(II) NH3 (NH3)=0,25-0,80 /. Ni(II) (NH3)=0,1 /. 9:1. pH50 Ca (7,3) < Sr (8,1) < Ba (8,5), lgD Ca Ba. 10% pH50 Ca(II) 6,0, Mg(II) 6,2. pH50 : Co (4,3) < Ni (4,10) < Cu (1,3).

    CHCl3 , Mg(II) Ca(II) NH3 0,1-0,5 /.

    Ca Mg 0,1 / CHCl3. D(Ca) 5,2, D(Mg) 2,6. . , , (NH4)2CO3 Cu(II) Ni(II), Co(II) 93% ((NH4)2CO3)>0,5 /. (II).

    lgD(Me)-lgC(R) R:Me=2:1. Cu, Co CHCl3: 2HR() + [Me(NH3)4](NO3)2() [MeR2](o) + 2NH4NO3() + 2NH3(), Me Cu,

    Co, Ca

    2HR() + [Ni(NH3)4](NO3)2() [Ni(NH3)2R2](o) + 2NH4NO3() [Me(H2O)R2](o).

    (II) CHCl3 , , .

  • 12

    Potentiometric and thermodynamic investigation of rhenium(V) complexes

    with 4,5-dihydro-1H-imidazole-2-thiol

    Gouda G.A., *Aminjanov A.A.

    Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt

    *Tajik National University

    Corresponding author. E-mail: [email protected]

    Stability constants of 4,5-dihydro-1H-imidazole-2-thiol with rhenium(V)

    were determined potentiometrically in acidic medium (4 M HCl) at different

    temperatures. The dissociation constants pK of 4,5-dihydro-1H-imidazole-2-thiol

    as well as the stability constants (lg K) of their complexes were determined at

    varieties temperatures. The corresponding thermodynamic parameters (Go, Ho and So) were determined and discussed. The formation of the metal complexes has been found to be exothermic.

    Key words: Potentiometric, rhenium(V), formation constants, thermodynamics.

    Characteristic stability constants may be important for predicting various

    chemical processes, such as isolation, extraction and concentration methods,[1,2]

    since many elements are present in trace amounts, and can be separated by

    complexion reagents. Bejerrums[3] dissertation being initiative in developing this field. Metal complexation not only brings the reacting molecules together to give

    activated complex [4]

    but also polarized electrons from the ligands towards the

    metal. The relation between stability and basicity of the ligands is indicated by the

    formation constant and free energy change values. The stability constant dependent

    on several factors such as: electronegativity, hardness or softness of the donor

    atoms on the ligand, the metal ion, nature of the ligand, the ionic radius and charge

    of the oxidation state on the metal core respectively. One available method is the

    potentiometric titration using ligand redox electrodes based on sulfur compounds

    and their oxidized forms. Many workers [5-18]

    have reported their results on metal-

    ligand stability constants and their oxidized forms.

    Experimental

    To determine the formation constants of rhenium(V)- 4,5-dihydro-1H-

    imidazole-2-thiol in 4 M HCl at different temperatures a potentiometric method of

    employed. Equilibrium concentrations of 4,5-dihydro-1H-imidazole-2-thiol are

    calculated by the following equation:

    all

    initialinitial

    Liinitial

    V

    VC

    T

    EEL lg

    2

    1lg

    109837.1]lg[

    4

    where Einitial - initial equilibrium potential of the oxidation-reduction system

    in the absence of rhenium(V); Ei - equilibrium potential at end point of titration. initial

    LC - initial analytical concentration of 4,5-dihydro-1H-imidazole-2-thiol;

    Vinitial/Vall - the ratio of the initial volume to the total volume of the system: T - the

  • 13

    temperature of the experiment in Kelvin degree. Determined at each point of the

    titration equilibrium concentration of the ligand. The function n was calculated at each titration by the formula:

    )Re(

    ][

    V

    L

    C

    LCn

    where n is the average degree of formation derived from the titration curves of a ligand with metals; CL is the concentration of 4,5-dihydro-1H-imidazole-2-

    thiol; [L]- equilibrium concentration of 4,5-dihydro-1H-imidazole-2-thiol; CRe(V)-

    the concentration of rhenium(V). All the calculations are employed using a

    computer Intel Core i7. Results and discussion

    Among the ligand redox electrodes used for the study of complexes represent an

    important type on the basis of sulfur-containing organic compounds and their

    oxidized forms. The preparation of such electrodes is based on the reversible

    oxidation of thione or thiol-containing compounds to the corresponding disulfides.

    The synthetic method[19]

    involved the synthesis of 4,5-dihydro-1H-imidazol-2-thiol

    by refluxing 1,2-diaminoethane and carbon disulphide. The synthesis route of

    compounds is outlined in the following:

    The complexation process of rhenium(V) with 4,5-dihydro-1H-imidazole-2-thiol

    proceeds stepwise and reversible. It is natural that the stability of these complexes

    depends on the nature of the substituent in the 4,5-dihydro-1H-imidazole-2-thiol.

    The addition of H2[ReOCl5] to a solution (0.0759 M) containing 4,5-dihydro-

    1H-imidazole-2-thiol (0.0259 M) and its oxidized form in the acid medium (4 M

    HCl) causes a change in color of solution to deep green, with increasing

    concentration of H2[ReOCl5] the solution is changed to purple, blue and finally to

    green. The adding, to the green solution 4,5-dihydro-1H-imidazole-2-thiol color

    change of the solution is reversed. This fact indicates the gradation and

    reversibility of the complexation of rhenium(V) with 4,5-dihydro-1H-imidazole-2-

    thiol. In the titration of rhenium(V)- 4,5-dihydro-1H-imidazole-2-thiol system and

    its oxidized form, an increase in the magnitude of the equilibrium potential,

    indicating a other participation in complexation of rhenium(V) with 4,5-dihydro-

    1H-imidazole-2-thiol than its oxidized form. At each point, equilibrium is

    established within 5-10 minutes. By potentiometric titration each values of the

    equilibrium concentration of 4,5-dihydro-1H-imidazole-2-thiol and E are

    determined. Using values of [L] and taking together with both the analytical

    concentrations of H2[ReOCl5] and 4,5-dihydro-1H-imidazole-2-thiol formation

    constants can be calculated. Some data determined by potentiometric titration of

  • 14

    rhenium(V) with 4,5-dihydro-1H-imidazole-2-thiol in 4 M HCl at 273 oK, are

    presented in Table 1.

    Table 1. Data obtained by potentiometric titration of rhenium(V) with 4,5-dihydro-

    1H-imidazole-2-thiol in 4 M HCl at 273 oK

    Re(V).103 L.10

    2 , mV -lg [L] n

    Mole/l

    4.536 2.323 61.54 2.745 4.73

    4.773 2.309 74.54 2.986 4.62

    5.240 2.281 108.98 3.624 4.31

    5.808 2.247 155.54 4.487 3.86

    6.358 2.214 178.98 4.923 3.48

    6.892 2.182 185.21 5.041 3.17

    7.413 2.151 188.32 5.101 2.90

    7.917 2.121 193.21 5.195 2.68

    8.409 2.092 196.47 5.258 2.49

    8.886 2.063 199.14 5.310 2.32

    9.351 2.035 201.44 5.355 2.18

    10.245 1.982 203.35 5.396 1.93

    11.092 1.931 207.24 5.474 1.74

    12.664 1.837 215.57 5.638 1.45

    14.089 1.752 220.54 5.740 1.24

    14.754 1.712 225.32 5.834 1.16

    15.996 1.638 228.62 5.904 1.02

    17.135 1.570 230.87 5.955 0.92

    18.184 1.508 233.36 6.010 0.83

    19.608 1.422 236.56 6.081 0.73

    20.881 1.346 238.47 6.128 0.64

    22.024 1.278 240.21 6.172 0.58

    23.692 1.178 244.55 6.270 0.50

    25.118 1.093 246.08 6.314 0.44

    Figure (1) showed potentiometric titration formation curves of rhenium(V)-

    4,5-dihydro-1H-imidazole-2-thiol complexes at different temperature in 4 M HCl.

  • 15

    Fig. 1. Plots of n against (-lg K) for rhenium(V) with 4,5-dihydro-1H-imidazole-2-thiol complexes in 4 M HCl at different temperatures.

    Potentiometric titration curves showed that rhenium(V)-4,5-dihydro-1H-

    imidazole-2-thiol system in presence of 4 M HCl at different temperatures

    consistently produced four types of complexes. The log Ki values of rhenium(V)

    with 4,5-dihydro-1H-imidazole-2-thiol from the titration curves by Bjerrum

    method at half-integer values [20-21]

    of the degree of formation ( n ) is presented in Table 2.

    Table 2. Formation constant values of rhenium(V)-4,5-dihydro-1H-imidazole-2-

    thiol in 4 M HCl at different temperatures

    T, oK

    [ReOLCl4] [ReOL2Cl3] [ReOL3Cl2]

    + [ReOL4Cl]

    2+

    lg K1 lg K2 lg K3 lg K4

    273 6.27 5.61 5.26 4.92

    288 6.10 5.43 5.10 4.71

    298 5.81 5.17 4.86 4.53

    308 5.55 5.03 4.64 4.31

    318 5.31 4.78 4.48 4.10

    328 5.13 4.65 4.39 3.45

    338 5.02 4.57 4.32 3.11

    These data show that with increasing amount coordinated molecules 4,5-

    dihydro-1H-imidazole-2-thiol lg Ki decreases. Stepwise formation constant ratios

    were as follows: K1/K2 = 4.57; K2/K3 = 2.24; K3/K4 = 2.19 at 273 oK. These data

    indicate that the ratio stepwise formation constants are not so large enough, so it

    was necessary to clarify the estimated constants either successive approximation

    method or by the "pH-meter program [22]. However, attempts to refine the estimated formation constants were not sufficient.

    The equilibrium constant (K) varies with temperature according to the Van't

    Hoff [23-24]

    equation:

    R is the universal gas constant, T is the absolute temperature (in oK) and Ho is the

    enthalpy change. To obtain the integrated equation, it is convenient to first rewrite

    the Van't Hoff equation as

    Thus, for exothermic reactions, the Ho is negative and K decreases with temperature, but for endothermic reactions Ho is positive and K increases with temperature. In accordance with the data

    [25] values of stability constants after

    verifying these methods vary slightly. In this regard, the stability constant of

    rhenium(V)-4,5-dihydro-1H-imidazole-2-thiol complexes, some of the

    potentiometric titration curves, were used to estimate the thermodynamic

  • 16

    properties of the complexation by the temperature coefficient. The Ho values were determined from the slope of the straight line obtained by plotting log Ki

    against 1/T (Fig. 2). The change in entropy is determined by the interval intercepts on the y-axis, these lines (So = R * interception)

    [26,27]. Gibbs energy

    [28] was

    calculated from the equation Go = Ho-TSo (Table 3). Calculated

    thermodynamic function showed that the isobaric-isothermal capacity becomes

    less negative with increasing number of coordinated molecules of 4,5-dihydro-1H-

    imidazole-2-thiol. This experimental finding may be due to an increase in the steric

    hindrance that prevent in entering molecules of 4,5-dihydro-1H-imidazole-2-thiol

    to center the inner sphere complexes [29]

    .

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    6.5

    7

    2.9 3.1 3.3 3.5 3.7 3.9

    log i

    1/*10-3 (oK-1)

    1

    2

    3

    4

    Fig. 2. Plots of log Ki against 1/T for rhenium(V)- 4,5-dihydro-1H-imidazole-2-

    thiol complexes in 4 M HCl at different temperatures.

    Table 3. The thermodynamic parameters of the formation rhenium(V)- 4,5-

    dihydro-1H-imidazole-2-thiol complexes in 4 M HCl at different temperatures

    Species -Ho, kJ/mole -Go, kJ/mole -So, J/mole

    [ReOLCl4]

    36.97 32.88 13.70

    [ReOL2Cl3] 22.36 28.97 3.05

    [ReOL3Cl2]+ 27.84 27.65 0.65

    [ReOL4Cl]2+

    48.78 24.99 79.86

    The values of the entropy changes for the mono-substituted complex compared

    to the disubstituted complex have a much greater significance [30]

    . Thus, as the

    higher value of So can be interpreted in favor substitution of chloride ion in the trans-position to the oxygen oxorhenium groups is apparently due to the fact that

    Re-Cl distance being in trans-position to the oxygen of the oxorhenium group in

    the equatorial plane [31]

    . Significant decrease of So is probably due to the fact that

  • 17

    the introduction of a second molecule of 4,5-dihydro-1H-imidazole-2-thiol in the

    inner coordination sphere becomes more difficult and that such molecule may

    replace one of the four chloride ions that are in the equatorial plane [32]

    .

    Mole fractions are commonly used to calculate the concentrations of the

    individual complexes on the basis of the formation constants. Mole fractions of a

    particular form of the complex compressed as ratio of the concentration of the

    complex to the total concentration of the metal ion ([MLi]/[Metal ion] = Xi). To

    determine the field dominance of a complex in the form of rhenium(V)-4,5-

    dihydro-1H-imidazole-2-thiol in 4 M HCl was calculated from the distribution

    curves at different temperatures. Figure 3 shows the distribution curves of complex

    models at 328 oK.

    0

    0.2

    0.4

    0.6

    0.8

    1

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2 3 4 5 6 7

    Xi

    -lg[L]

    X0

    X1

    X3

    X2

    X4

    Fig. 3. Distribution curves of rhenium(V)- 4,5-dihydro-1H-imidazole-2-thiol

    complexes at 328 oK; where X0 = [ReOCl5]

    2-, X1 = [ReOLCl4]

    -, X2 = [ReOL2Cl3],

    X3 = [ReOL3Cl2]+, X4 = [ReOL4Cl2]

    2+.

    Analysis of the distribution curves show that increasing temperature has

    little effect on the proportions of the maximum output value for all complexes.

    Increasing temperature causes Ximax

    being shifted towards higher values of

    equilibrium concentration of 4,5-dihydro-1H-imidazole-2-thiol (Table 4).

  • 18

    Table 4. The Ximax

    output equilibrium values for rhenium(V)-4,5-dihydro-1H-

    imidazole-2-thiol complexes in 4 M HCl at different temperatures

    Species Values -lg [L] at Xi

    max

    273 oK 288

    oK 298

    oK 308

    oK 318

    oK 328

    oK 338

    oK

    [ReOLCl4]

    6.0 5.8 5.6 5.4 5.2 5.0 4.8

    [ReOL2Cl3] 5.4 5.2 5.0 4.8 4.6 4.4 4.4

    [ReOL3Cl2]+ 5.0 4.8 4.6 4.4 4.2 3.8 3.6

    Based on these data it is possible to choose the optimum conditions for the isolation of

    certain complex, establishing their composition and structure.

    REFERENCES

    1. Andres Garcia E. and Blanco Gomis D., Microchem. Acta, 1996, 4, 124. 2. Cao S. and Zhang M., J. Trace Microprobe Tech., 1999, 17, 157. 3. Bjerrum J., Metal amine formation in aqueous solutions: theory of the reversible step

    reactions, Haase P. and Sons (Copenhagen, Denmark), 1941, 296.

    4. Florence A.T. and Attwood D., Physical principles of pharmacy, Macmillan (London), 1981.

    5. Poddar S.N., Dey K. and Poddar N.G., Indian J. Chem., 1970, 8, 364. 6. Schwarzenbach G. and Ackerman H., Helv. Chim. Acta, 1948, 31, 1029. 7. Pund D.A., Bhagwatkar R.A., Tayade D.T. and Rathod D.B., Rasayan J. Chem., 2010,

    3(2), 246.

    8. Tihile M.S., Journal of Chemical and Pharmaceutical Research, 2012, 4(4), 2223. 9. Dipak T.T., International Journal of Chemistry, 2011, 3(1), 36. 10. Gudadhe S., Narwade M.L. and Jamode V.S., Acta Ciencia Indica (Chem.), 1985, 11, 234. 11. Saha N., Dalia M. and Sinha S., Indian J. Chem., 1986, 25A, 629. 12. Rana A.K. and Shah J.R., J. Indian Chem. Soc., 1986, 63, 281. 13. Fukuda V., Morishita R. and Sone K., Bull. Chem. Sep. Jpn., 1985, 49, 1017. 14. Jolly V.S., Arora G.D. and Taiwar P., J. Indian Chem. Soc., 1990, 61, 1001. 15. Natrajan C. and Thormaraj P., Indian J. Chem., 1991, 30A, 722. 16. Narwade M.L., Chincholkar M.M. and Sathe S.W., J. Indian Chem. Soc., 1985, 62, 194. 17. Sawalakhe P.D. and Narwade M.L., J. Indian Chem. Soc., 1995, 70, 25. 18. Kadu M.V. and Jamode V.S., Asian J. Chem., 1999, 11, 420. 19. Hamid R.J. and Hadi n.Z., E-Journal of Chemistry, 2012, 9(3), p. 1518-1525. 20. Bjerrum J. and Bang E., Acta Chem. Scand. Ser., 1979, A33, 297. 21. Irving H.M. and Rossotti H.S., J. Chem. Soc., 1953, 3397; J. Chem. Soc., 1954, 2904.

    22. Valeria M. Nurchi, Guido Crisponi, Tiziana Pivetta, Martina Donatoni and Maurizio Remelli, J. of Inorg. Biochem., 2008, 102(4), 684.

    23. Atkins, Peter; De Paula, Julio (10 March 2006). Physical Chemistry (8th ed.). Freeman W.H. and Company, p. 212.

    24. Ives D.J.G., Chemical Thermodynamics, University Chemistry, Macdonald Technical and Scientific, 1971.

    25. Rigano C., Rizzarelli E. and Sammartano S., Thermochim. Acta, 1979, 33, 211. 26. Abd Erbary H.M., Shehata H.A., El Arab M.A.F., Mohamed A.A. and Emara M.M., J. Ind.

    Chem. Soc., 1996, 73, 25.

    27. Nair U.S.A. and Nancollas G.H., J. Chem. Soc., 1961, 255, 4367.

  • 19

    28. Dickerson R.E., Geis I. and Benjamin I.W.A., Chemistry, Matter and the Universe, (USA), 1976.

    29. Amindzhanov A.A. and Kurbanov N.M., Journal of Inorganic Chemistry (Russian Federation), 1990, 35(3), p. 672-678.

    30. Promila D.T. and Lonibala R., J. Chem. Eng. Data, 2010, 55, 1166. 31. Amindzhanov A.A. and Gagieva S.Ch., Journal of Inorganic Chemistry (Russian

    Federation ), 1996, 35(3), p. 1867-1871. 32. Amindzhanov A.A., Akhmedov K.U. and Kotegov K.V., Journal of Inorganic Chemistry

    (Russian Federation ), 1988, 33(2), p. 379-384.

    (CnH2n+1)4NReO4 (1

  • 20

    Tc (C5H11)4NTcO4 ( NaNO3) (1 1,2) HNO3 , (1,5 8,5) 10

    -2 /

    4 HNO3, 7,510-8

    / 239PuO2(NO3)2 4,3 / 106

    Ru(NO)(NO3)3, 239Pu 106Ru (1,2

    2,5)102 (6,8 8,5)102 . (C6H13)4NMeO4 ( ), - Tc.

    ( ) (C3H7)4NTcO4 (C5H11)4NTcO4 , a = 3,98 TcC1-x 0,61 < x < 0,85 . , 94 % 6 % , (C3H7)4NTcO4, (C5H11)4NTcO4 (C5H11)4NReO4 .

    , . , , (. NbCl6) CH2 , (=20 3).

    (CnH2n+1)4NMO4 (=Tc, Re ; n=3, 5, 6) .

    - - - - . 20 /.

    - , , , .

    (1-2 . %) , .

  • 21

    (V) 1--2- 4,5 / HCL 298

    .., .., ..

    - 1--2- H2[ReOCl5]1--2- 4,5/ Hl 298. , , : 1=2,310

    5; 2=1,3104; 3=1,010

    4; 4=4,1102.

    (V) 1--2- . i 1--2- (V) 4,5 / 5,5 / HCl 298 , . , 298 1 4,5 / HCl 2,3105, 5,5 / HCl 8,1105. 2 HCl 4,5 5,5 / 1,3104 7,0104.

    H2[ReOCl5]1--2- 4,5 / HCl 298 .

    . -1--2- (V) 4,5/ HCl 298 , 0-[ReOl5]

    2, 1-[ReOLl4]

    , 2-[ReOL2l3], 3-[ReOL3l2]+, 4-[ReOL4l]

    2+

  • 22

    . *., . *., . .** , *,

    **,

    , , , , . . . - . , . , . , , . -. , , , -, , , . . -, : . , 10 % . . . [Zn(NH3)4]SO4, - [Zn(NH3)4](ReO4)2. :

    ZnSO4 + 4NH4OH = [Zn(NH3)4]SO4 + 4H2O,

  • 23

    [Zn(NH3)4]SO4 + 2NH4ReO4 = [Zn(NH3)4](ReO4)2 + (NH4)2SO4.

    :

    [Zn(NH3)4](ReO4)2 + 4H2O = Zn(OH)2 + 2NH4ReO4 + 2NH4OH,

    [Zn(NH3)4](ReO4)2 + 2H2SO4 = ZnSO4 + 2NH4ReO4 + (NH4)2SO4.

    . , %: 86 , 99 , 96 . .

    ,

    .., .., .., .. , ,

    , .

    - . - . Re. , - .

    Re- ( ) , . - Re- , Re ( 924 -1, ReO4

    -).

    - (20-100 /3) ReO4

    -, .

  • 24

    Re . Re- (3-20 / NaF)

    3(F4) ReO4- 924 -1

    (900, 915, 930 -1), .

    Re . Re , .

    Re, , . Re 4, .. 1:4. , ReO4

    -

    4. , 1:1 1:4, ()

    (G) : 1:1, 1:2, 1:3. :

    :

    Re Re

    G, / G, /

    1:1 3,8010-3 13,79 7,2010-3 12,22

    1:2 6,2210-7 35,39 1,3310-4 22,11

    1:3 2,0010-8 43,90 6,2210-7 35,38

    Re , , Re .

    [ReO(H2Cit)4(OH)2]

    -, - [ReO2F4]

    -.

  • 25

    .., .., .., .. , . , . , 101, -mail:

    [email protected]

    , , , . , Re2O7 3. .1 50 60% Re 90% . .2

    , , .

    - , , , , . , , . - (. , ).

    : 1.

    , SO2 - .3

    2. .

    3. Purolite -172, .4,5

  • 26

    1. .., .., .., ..

    // - . 2011. 12. . 170-175.

    2. .., .., .., .. // . 2011. 4. . 221-229

    3. .., .., .., .. 2393253, . 18, 27.06.2010

    4. .., .., .., .., .. , // XI - . : - , 2012. . 4-8

    5. .., .., .., .., .. , // IX - . .: , 2012. . 455-457

    (V)

    (V)

    1 .., 1 .., 2 ..

    1 .., 1 .. 1 ,

    2

    , .. . . (Pb4Re3Mo3)S16 , , . .

  • 27

    , , , . . VI VII . Mo (IV) Re (IV) 0,68 0 0,67 0. . . , + 4 - S2, ReS2 . , .

    - -, -, - - . (V) Re (V) (S),1--2- (1-Met-2-Mi),1,2,4-(1,2,4-Triaz), 1,3,4-(Thiad) .

    , - (V) Re (V) , . , Mo(V) Re (V) . , (HCl, H2SO4, HNO3) (HCOOH, CH3COOH) (V) Re(V) :[OL(SCN)2(2)] , [ReOL(SCN)2(2)] [OL23]2H2O, [ReOL23]22, [OL4]22, [ReOL4]32 ,L-SC, 1-Met-2-Mi, 1,2,4-Triaz 1,3,4-Thiad.

    , =____=, (-, Re) . . [Mo2O3L2(H2O)2Cl4]2H2O, [R2O3L2(OH)2Cl2]2H2O,

    *[Mo2O3L4Cl4]2H2O

    [R2O3L2(OH)2Cl2]2H2O*,

    [Mo2O3L4Br4]2H2O, [Re2O3L4(NH3)4]4 22 , ,

  • 28

    . - .

    , (V) Re(V) .

    , (V) Re(V) - - , , (V) (V), .

    , , , . , (V) Re (V) . (V) - 1-Met-2-Mi,1.2.4- -Triaz, 1.3.4-Thiad :(N2H5)2[Mo2O4L(OH)4(H2O)],(N2H5)2[Mo2O4L2(OH)4], (N2H5)2[Mo2O4L2(24)2], (N2H5)2[Mo2O4L2(SN)2(OH)2],(N2H5)2[Mo2O4L2l4] , 24., (V) - . , (V). SC, 1- Met-2-Mi, (V) Re (V) , (). (V) (V). - (V) (V) , .

    (II) 3--1,2,4--5

    6 / l 273

    .., ..

    [1.2] (II) 1,2,4--5 1-6 / HCl 273-338 .

  • 29

    [3] (II) 1,2,4--5 (NaNO3) . , - (II) 3--1,2,4--5.

    (II) 3--1,2,4--5 6 / HCl 273 . - 3--1,2,4--5 273 (II) 6 / HCl. , CuCI2 3--1,2,4--5 6 / HCl . (II) 3--1,2,4--5 (.).

    (II)

    3--1,2,4--5 6 / HCl(273).

    T, 1 2 3 4

    273 4,98 3,82 3,30 2,93

    (II) (.), 3--1,2,4--5 6 / HCl 273, .

    . (II) 3--1,2,4--5 6 / HCl 273 ,0-CuCl2;

    1-[CuL(H2O)2Cl]+; 2-[CuL2(H2O)2]

    2+; 3-[CuL3(H2O)]

    2+; 4-[CuL4]

    2+.

  • 30

    , 4- 3--1,2,4- (II) 6 / HCI.

    1. .., , ..

    (II) 1,2,4--5 6 / HCI 298 // . 2011. -.54, 9. .759-764

    2. .., , .. (II) 1,2,4--5 6 / HCI 288 // , 2011.-.71. 7. .19-22.

    3. .., .. (II) 1,2,4--5 0.01 / // . 2012 .55, 6 -. 471-477.

    --

    .., .., .. - ,

    360032, . 446, .33. [email protected]

    - .

    . . , Vll 6- d-. Re . Re (Vll) Re (lV, V) SnCl. Re n10-4 % Re.

    , . , Re .

  • 31

    . .

    Re (Vll) - (-) , - =520, Re (Vll) - =560. =7,6 2 , Re: -=2:3, Re (Vll) n10-10 / . Re, .. . n10-18- n10-21 / .

    (V) (II) C 1--2,3--5- 6 /

    I 318

    .,. .., .., .. ,

    . , , . (V) (II) 1--2,3--5- 6 / I 318 . , (V) 1--2,3--5- 5-- , : 1=3,2310

    4; 2=9,33103; 3=4,6710

    3; 4=2,18103;

    5=1,51102 ( ).

    [1] : *

    1 =5,24104; *

    2 =1,15104; *

    3 =4,36103; *

    4 =1,38103 *

    5 =1,26102

    . (II) 1--2,3--5- 4- : 1=5,63 (1=4,2610

    5); 2=4,45 (2=2,8110

    4); 3=2,57 (3=3,71102); 4=2,45 (4=2,8110

    2). *

    ip (* ):

    *

    1p =5,70 (*

    1 =5,01105); *

    2p =4,40 (*

    2 =2.51104); *

    3p =2,87 (*

    3 =7,41102);

    *

    4p =2.12 (*

    4 =1,31102).

    -1--2,3--5- (II) 1--2,3---5- (V) ,

  • 32

    . , *

    1 *

    1

    9,56 , *2 2,18 .

    *

    3 *

    4 *

    3 *

    4

    5,88 10,53 . 4 1,221015, 3,011015. 2.47 (II) 1--2,3--5-.

    1. .., .. . . . , 1983, .28, 12, . 3090-3094

    (N --)

    .. ,

    . , , , . , , N-- , , , .

    N-- , , . . .

  • 33

    . , , - . 4 : 1) - ( )

    . - , - , - .

    2) ij : Sji = jid = 0 (ij )

    3) , : 1 = 2 = 3 = .= i = j id =

    4) ji ji =j id .

    , , . . , . N--- () , .

    (+4)

    ..,1 .., 1 .., 2 ..2 1 "-

    ", , , [email protected]

    2 .., ,

    - , . [1] (3+), -- , ( EtAlCl2 ) [2]. , ,

  • 34

    . , - - () -(). , , .

    , 1,1- . , , - 1- .

    ca b

    a) COCl2, Et3N, Et2O b) R-2-OH-C6H3-CHO; CoCl2*6H2O; c) Et3N, TiCl4

    Ti:Al:Mg 1:500:200.

    1. S. Padmanabhan, S. Katao, K. Nomura, Organometallics, 2007, 26, 1616.

    2. Abbo H. S., Mapolie S. F., Darkwa J., Titinchi S. J. J. J., Organomet. Chem.,

    2007, 692, 5327.

    14-43-01014

  • 35

    L+2.18%FE, 0,03%

    NACL

    .., .., .., .., ..

    .. ., . ,

    , . , , . l+2.18%Fe. 0.005 0.5 .%. - (2.18%) (5%). , . 8 140 . ( 50% 50% ). . , , , 0,03%- NaCl ( 4233-77). -200 ML-8. . -50-1 2 /, NaCl. , . , 0,005-0,5% . NaCl , , ( 1).

  • 36

    1 - Al+2.18%Fe, , 0,03% - NaCl NaCl.

    , .%

    - .. -. -.. -.

    /2 /2.

    -

    0,005

    0,01

    0,05

    0,1

    0,5

    0.680

    0.620

    0.600

    0.530

    0.500

    0,484

    0.965

    0.950

    0.925

    0.900

    0.880

    0,860

    0.500

    0.480

    0.460

    0.450

    0.420

    0,400

    0.650

    0.640

    0.620

    0.600

    0.600

    0,584

    0.92

    0.74

    0.68

    0.60

    0.52

    0,50

    3,1

    2,48

    2,28

    2,01

    1,74

    1,67

    , 0.005-0.5% , Al+2,18%Fe.

    4- 1,2,4- (II) 6 / HCl

    .., .., ..

    (II) 4--1,2,4--5 6 / HCl 273-338. . i 4--1,2,4- Cu (II) 6 / HCl 273 : : 1=3.93(1=8.5110

    3); 2=3.46(2=2.88103);

    3=3.23(3=1.70103); 4=3.08 (4=1.2010

    3); : *i (

    *

    i ):*

    1 =4.19(*

    1 =1.55104);

    *

    2 =3.58(*

    2 =3.80103); *3 =3.22(

    *

    3 =1.66103); *4 =2.73(

    *

    4 =5.37102);

    *i (*

    i ) 4--1,2,4-

    (II) 6 / HCl 273, *i (*

    i ):

    (V) 4--1,2,4- -5, 6 / HCl 273 , i , : 1 = 3.69; 2 =2.85; 3 = 2.11; 4=1.41 1=4,9010

    3;

    2=7,08102; 3=1,2910

    2; 4=2,6101).

    ( .).

  • 37

    1 4-

    -1,2,4 (II) 6 / HCl

    -,/ -G,/ S,/

    [CuL(H2O)5]Cl2 14,06 22,62 28,71

    [CuL2(H2O)4]Cl2 12,30 19,49 24,11

    [CuL3(H2O)3]Cl2

    11,05 17,60 21,98

    [CuL4(H2O)]2Cl2

    9,70 14,94 17,58

    , . 1 , 4--1,2,4- -5 G . .

    Al+2.18%Fe,

    3%- NACl

    .., .., .., .., . . ..

    , , . , , . l+2,18%Fe. 0,005 0,5 .%. - , . 8 140. ( 50% 50% ). . , , , 3%- NaCl ( 4233-77). 200 ML-8. .

  • 38

    -50-1 2 /, 3%- NaCl. , - . , 0,005-0,5% . , , .(.1).

    1 - Al+2,18%Fe,

    3%- NaCl

    - , .

    %

    -.. -. -.. -. i10 10

    /2 /2

    - 0.860 0.994 0.600 0.620 0.170 5.70

    0.005 0.860 0.998 0.550 0.580 0.162 5.42

    0.01 0.848 0.970 0.534 0.580 0.150 5.03

    0.05 0.832 0.960 0.518 0.562 0.146 4.89

    0.1 0.818 0.954 0.500 0.540 0.134 4.48

    0.5 0.800 0.925 0.480 0.522 0.130 4.35

    , 0.005-0.5% 50% , Al+2,18%Fe.

    (III) (V) C 1--2,3--5- 6 /

    I 308 .., .., ..,

    .. -

    (V) 1--2,3--5- 6 / I 308 . (III) 1--2,3--5- (V) (III). (III) 1--2,3--5- 5 , : 1=5.41(1=2.5710

    5);

    2=3.61(2=4.07103); 3=3.32(3=2.0910

    3); 4=3.05(4=1.12103);

    5=2.79(5=6.16102).

  • 39

    *

    i (*

    i ):*

    1 =5.42(*

    1 =2.63105); *2 =3.88(

    *

    2 =7.58103);

    *

    3 =3.36(*

    3 =2.29103); *4 =3.00(

    *

    4 =1.10103); *5 =2.47(

    *

    5 =2.95102).

    (V) 1--2,3--5- , pKi (Ki)

    n : 1=4.85(1=7.0710

    4); 2=4.23(2=1.70104); 3=3.87(3=7.4110

    3); 4= 3.47(4=2.9510

    3); 5=2.30(5=1.99102).

    *i (*

    i ):*

    1 =5.03(*

    1 =1.07105);

    *

    2 =4.31(*

    2 =2.04104); *3 =3.79(

    *

    3 =6.16103); *4 =3.12(

    *

    4 =1.31103);

    *

    5 =1.86(*

    5 =7.2101).

    *i -1--2,3--5-

    (III) 1--2,3--5- (V) , *

    1 *

    5 -1--

    2,3--5- (III) 2.46 4.1 , . , 1--2,3--5- (V) (III) 2.69, 2.68, 1.31 . (III) ( *5 = 1.3410

    18)

    1.05 ( *5 = 1.2810

    18).

    VO3+ - VO2+/VO3+

    .., ..

    - . - v2+/vo3+ vo

    3+ 2,4 /,

    .

    v4+/v5+ . v2+/vo2+

    0,8 1,03. v2+/vo3+ .

  • 40

    - v2+ vo3+ VOSO4 NH4VO(SO4)2. v2+ vo3+ , - . v2+/vo3+ v2+ . . 1 lg[v3+]/[vo2+] 298.

    .1. lg[v3+]/[vo2+]

    , = f(lg[v3+]/[vo2+]) 0,058, . v2+/vo3+, lg[v3+]/[vo2+] 298, 0,596.

    , v2+/vo3+, 298 2,4 / 397 195B. E=f(lgCThio) , vo3+, . vo3+ , . , Fi [Thio] . Fi [Thio] , 1=1,6*10

    5, 2=4*107

    .

    (V) [ReOL4Br]Br22H2O

  • 41

    .., .., .. ..

    -

    , . , , , , /1/. , , . , , , /2/.

    /3-4/.

    (V) , , .

    . (V) . 0,000001 0,01%. . . 18-24 , 251 /5/. .

    1

    (V) c .

    1

  • 42

    (V)

    , %

    -

    1 2 3 4 (2)

    45 39 42 43 42,2 -

    85 79 89 74 81,7 -

    , 0,0001%

    48 67 71 66 63,0 20,8

    90 88 95 90 90,7 9,0

    (V), 0,0001%

    60 63 59 67 62,2 20,0

    95 96 96 94 95,2 13,5

    (V), 0,00001%

    49 50 61 74 58,5 16,3

    96 93 97 96 95,5 13,8

    (V), 0,000001%

    51 49 54 67 55,2 13,0

    95 93 98 94 95,0 13,3

    (V), 0,0000001%

    49 51 46 42 47,0 4,8

    80 74 64 72 72,5 -9,2

    [ReOL4Br]Br22H2O . 2, , (V) 0,001-0,0001%. 0,0001-0,00001%.

  • 43

    2 (V)

    ,

    ,

    ,

    (2) 16,6 13,5 - - ,

    0,01% 17,8 16,3 1,2 2,8

    (V), 0,001%

    18,4 9,7 1,8 -3,8

    (V), 0,0001%

    18,5 15,2 1,9 1,7

    (V), 0,00001%

    17,5 18,5 0,9 5,0

    (V), 0,000001%

    16,8

    13,6 0,2 0,1

    (V) (. 3).

    3 (V)

    ,

    ,

    ,

    ,

    1 2 3 1 2 3 (2) 0,43 0,68 0,40 0,50 4,32 5,38 4,28 4,66

    , 0,005% 0,71 0,66 0,56 0,64 4,10 4,91 5,42 4,81

    (V), 0,001%

    0,45 0,53 0,47 0,48 4,43 4,25 4,1 4,26

    (V), 0,0001%

    0,80 0,77 0,81 0,79 5,25 5,54 5,13 5,3

    (V), 0,00001%

    0,84 0,81 0,92 0,85 5,82 6,21 5,96 5,99

    (V), 0,000001%

    0,54 0,49 0,45 0,49 4,22 4,44 4,75 4,47

    (.3), (V) .

  • 44

    0,0001-0,00001%.

    4 .

    4

    ,

    3 5 7 9

    (2) 34 66 125 162 -

    0,005% 33 68 132 174 12

    0,00001% 35 68 136 178 16

    0,000001%

    33 65 128 159 3

    1. .. . .: , 1974, .315

    2. .., ..

    ,

    //. . . .-

    , 1990.-. 55-62.

    3. .. . .: , 1976.-.583

    4. .. //

    . .- .: .- .6.- 1983.- .152-163.

    5. 21620-0-76, 21820, 4-76. , , ., 1976. .3-20.

    (II) 1/ HNO3 288

    .., .., ..

    -

    Hg(NO3)2--1/ HNO3 288 .

  • 45

    -

    (II) 1 / NO3 288.

    - (II) 1 / NO3 288

    CHg2+. 10

    3 CL

    .10

    3

    E. -lg[L] /

    1,98 83,47 80,0 3,29 3,95

    2,18 81,84 92,0 3,50 3,61

    2,36 80,28 102,0 3,68 3,30

    2,604 78,29 113,0 3,88 2,95

    2,77 76,86 123,0 4,06 2,73

    2,94 75,48 135,0 4,27 2,54

    3,10 74,11 145,0 4,45 2,37

    3,25 72,87 155,0 4,63 2,23

    3,40 71,63 165,0 4,81 2,09

    3,54 70,43 177,0 5,02 1,98

    3,68 69,27 188,0 5,22 1,87

    3,90 67,42 197,0 5,38 1,72

    4,11 65,66 206,0 5,55 1,59

    4,31 64,00 217,0 5,75 1,48

    4,50 62,42 229,0 5,96 1,38

    4,68 60,91 239,0 6,14 1,29

    4,86 59,48 250,0 6,34 1,22

    5,02 58,11 270,0 6,69 1,15

    5,18 56,80 277,0 6,82 1,09

    5,33 55,55 285,0 6,97 1,04

    5,47 54,35 295,0 7,15 0,99

    5,61 53,21 306,0 7,34 0,94

    5,74 52,11 317,0 7,54 0,90

    5,87 51,06 326,0 7,70 0,86

    5,99 50,04 337,0 7,90 0,83

    6,22 48,14 345,0 8,05 0,77

    6,43 46,37 357,0 8,27 0,72

    6,63 44,72 365,0 8,41 0,67

    6,81 43,19 375,0 8,60 0,63

    6,98 41,77 387,0 8,81 0,59

    7,22 39,79 390,0 8,88 0,55

  • 46

    7,44 37,99 394,0 8,96 0,51

    7,69 35,84 396,0 9,00 0,46

    , n =f(-lg[L]),

    1.

    . 1. (II) 1 / NO3 288

    ,

    .

    pKi (Ki)

    : 1=8,97 (K1=9,3108); 2 = 5,72 (K2= 5,210

    5); 3 = 4,33 (K3=

    2,1104); 4 = 3,58. (K4= 3,8103)

    (II)

    0,1 / HNO3

    .., .., .. -

    (II) c 0,1 / HNO3.

    lgKi=f(1/) (.)

    S ,

    . G=H-TS.

  • 47

    . i (II) 0,1 /HNO3 273-338: 1-1; 2-

    2; 3-3; 4-4

    (II) 0,1 / HNO3.

    (II) 0,1 /HNO3

    -,

    /

    -G,

    /

    S,

    /()

    [HgL(H2O)3]2+

    27,72 38,02 34,56

    [HgL2(H2O)2]2+

    16,48 25,49 30,21

    [HgL3(H2O)]2+

    17,50 19,82 7,73

    [HgL4]2+

    20,51 15,15 -18,03

    (II) (V) 4- -1,2,4 -5 6 / HCL 288

    .., .., ..

    , - Cu (II) - 4--1,2,4-- 5 6 / HCl 288, , , *i (

    *

    i ): 1 = 3.75 (1=5,62103); 2 = 3.43

  • 48

    (2=2,69103); 3 = 3.20 (3=1,5810

    3); 4 =3,07(4=1,1710

    3).

    4--1,2,4- (II) 6 / HCl 288, (V) 4--1,2,4- -5, 6 / HCl 288 1 = 3.35; 2 = 2.79; 3 = 1.81; 4 =1,62. (1=2,2410

    3; 2=6,16102; 3=6,410

    1; 4=4,2101) ,

    i , . , Cu (II) - 4--1,2,4- -5 6 / HCl - 288, 288 (.)

    . (II) 4- -1,2,4--5 6 / Cl 288 . 0[u(H2O)6]Cl2;1[uL(H2O)5]Cl2; 2[uL2(H2O)4]Cl2;3

    [uL3(H2O)3]Cl2; 4uL4(H2O)2]Cl2

    (V) 1--4-

    .., ..

    , [ReOL2 (OH)2Cl2]2H2O 40

    o 80o. 60o. , 1,68% ,

  • 49

    . , 95 . 2,0% . , [ReOL2(OH)2Cl2]2H2O . 80-156o. 8,40% . 156-292o. 220. 14,28% . , 1--4-. 292-490o . 292-387o , 342o. 18,91% . 387-490 436. 24,79% 24,79 .

    [ReOL(SCN)2Cl]2H2O . ( ) .

    - (..), :

    E

    AR

    RT

    E

    Tn

    n

    ln)1(

    )1(1ln

    2

    1

    n 1,

    E

    AR

    RT

    E

    Tln

    )1ln(ln

    2

    n = 1,

    : T (K); R ; (/); .

    -a (..):

    2

    21

    ln1

    )1(1ln

    ss

    s

    n

    RT

    E

    RT

    E

    E

    ART

    n

    n 1,

    2)1ln(ln

    sRT

    E n = 1,

    : = - Ts; Ts - .

  • 50

    (V) 1--4- [ReOL2 (OH)2Cl2]2H2O

    , /

    , /

    G, /

    S, /

    A, -1

    I .. ..

    69,66

    75,44

    66,90

    72,68

    91,57

    91,54

    -74,08

    -56,64

    9,34108

    7,76109

    II .. ..

    73,19

    79,38

    69,93

    76,12

    114,21

    114,23

    -112,68

    -96,97

    1,05107 7,08107

    III

    .. ..

    84,93

    91,92

    -80,84

    -87,83

    -20,95

    -34,62

    -121,50

    -107,94

    4,60106 2,34107

    IV .. ..

    127,87

    137,11

    122,77

    132,01

    178,63

    179,10

    -90,83

    -76,57

    2,29108

    1,35109

    V .. ..

    221,20

    238,39

    -215,32

    -232,51

    -230,87

    -264,68

    21,94

    45,37

    2,061014

    3,631015

    (V) 7 / Br 298

    .., .., ..

    (V) 12,35 7/ HBr 298 1 -12,35 (V) 7 / HBr 298 .

    1

    -12,35 (V) 7 / HBr

    298

    Re(V) 104 L 10

    2

    E, [L]104 n /

    24,7 0,856 24,10 20,38 4,63

    30,6 0,849 32,20 15,75 4,19

    36,5 0,843 38,60 13,31 3,97

  • 51

    42,2 0,836 44,40 11,24 3,76

    47,9 0,830 49,90 9,57 3,51

    53,5 0,824 55,20 8,55 3,32

    59,0 0,818 60,00 7,37 3,22

    64,5 0,812 64,70 6,23 2,98

    69,8 0,806 68,90 5,70 2,60

    75,1 0,801 72,30 5,05 2,29

    80,3 0,795 75,90 5,00 2,05

    90,5 0,784 79,40 4,58 1,76

    100,4 0,773 83,00 3,73 1,55

    110,0 0,763 86,20 3,46 1,24

    121,7 0,750 88,80 3,18 1,03

    133,0 0,738 91,00 3,07 0,88

    154,6 0,714 92,70 2,85 0,62

    174,8 0,692 93,90 2,67 0,47

    211,7 0,652 94,80 2,55 0,36

    -12,35 (V) 7 / HBr 298 . -12,35 (V) : 1= 3,95;

    2 = 3,51; 3 = 3,12; 4 = 2,71; 5=2,15. , .

  • 52

    1. .., ..

    (V)

    .2

    2. .., .., .., ..,

    .. -

    3

    3. .., .., ..

    CHCl3

    ..4

    4. .., .., .., ..

    (V) 1--2-

    7/ HCl 2735

    5. .., ..

    (V) 8

    6. .., .., .., ..,

    .. (III)

    , ,

    ( ) ,

    9

    7. .., .., .., ..

    -

    10

    8. Gouda G.A., Aminjanov A.A. Potentiometric and thermodynamic

    investigation of rhenium(V) complexes with 4,5-dihydro-1H-imidazole-2-

    thiol...12

    9. .., ..

    (CnH2n+1)4NReO4 (1

  • 53

    10. .., .., ..

    (V) 1--2-

    4,5 / HCl 298 21

    11. . ., .., ..

    ...22

    12. .., .., .., ..

    ,

    23

    13. .., .., .., ..

    .25

    14. .., .., .., ..,

    ..

    (V) (V)

    ...26

    15. .., ..

    (II) 3--1,2,4--5

    6 / l 273.28

    16. .., .., ..

    -30

    17. .,. .., .., .

    (V) (II) c 1--2,3-

    -5- 6 / l 318 ...31

    18. ..

    (N--

    )32

    19. .., .., .., ...

    (+4)

    33

  • 54

    20. .., .., .., ..,

    .. L+2.18%Fe,

    0,03% NaCl35

    21. .., .., ..

    4-

    1,2,4- (II) 6 / HCl....36

    22. .., .., .., ..,

    .. Al+2.18%Fe,

    3%- NaCl37

    23. .., .., ..,

    .. (III) (V) c 1--2,3-

    -5- 6 / I 30838

    24. .., .. VO3+

    -

    VO2+

    /VO3+

    39

    25. .., .., .. ..

    (V) [ReOL4Br]Br22H2O

    41

    26. .., .., ..

    (II)

    1 / NO3 288.44

    27. .., .., ..

    (II) 1 / HNO3..46

    28. .., .., ..

    (II) (V) 4- -1,2,4

    -5 6 / HCl 288 .....................................47

    29. .., ..

    (V) 1--4-

    ..48

    30. .., .., ..

    (V) 7 / Br

    298 50