2014 iscmem annual meeting group 4 - distributed watershed water quality model development billy...

17
2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort Collins) – Co- Group Leader February 25-26, 2014

Upload: shawn-daniel

Post on 29-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

2014 ISCMEM Annual Meeting

Group 4 - Distributed Watershed Water Quality Model Development

Billy Johnson (USACE) – Co-Group Leader

Laj Ahuja (ARS-Fort Collins) – Co-Group Leader

February 25-26, 2014

Page 2: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Working Group 4 Objectives

The objectives of this working group are to foster technology transfer in the form of sharing basic knowledge and, where applicable, sharing modules/tools for the betterment of the modeling community.

The hope is that through this technology transfer, collaborations between individual agencies and individual researchers can be achieved such that joint projects and research development efforts can be initiated.

Page 3: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Environmental Security Technology Certification Program (ESTCP)

Field Demonstration and Validation of TREECS and EFS for the Risk Assessment of Contaminants on

DoD Ranges

14 E-ER1-002

Billy Johnson, ERDC-EL and Eric Weber, EPA-ERD

Page 4: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Project Team

4

Team Member Organization Responsibilities

Billy Johnson ERDC-EL Project management and team lead

Billy JohnsonJeffrey GeraldEric WeberGene WhelanCaroline StevensKurt WolfeMitch Pelton

ERDC-ELERDC-ELEPA-ERDEPA-ERDEPA-ERDEPA-ERDDOE-PNNL

Development of the demonstration plan, data gather and review, model development, cost-benefit analysis, technology transfer, workshop, documentation

TBD Military Site Managers

Data gather and review, review of demonstration plan, review of final demonstration report

Page 5: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Problem Statement

5

Concern over the release of munitions constituents (MC) on active firing ranges and other than operational training lands that have the potential for the MC to migrate to off-range areas is increasing and endangers the long-term sustainability of ranges.

Energetic compounds are commonly found at open burn/open detonation explosive/ordnance demolition sites. In addition, heavy metals accumulate on firing ranges and are a concern due to their potential toxicity to animals and risk to human health.

Finally, the issue of emerging contaminants due to new MC and contaminants on other than operational lands are becoming a bigger issue for DoD installations.

Page 6: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Technical Objectives

6

The objectives of this effort are to demonstrate and validate the scientific approach of the integrated TREECS™ and EFS modeling system to show that its performance is consistent, reliable, and cost effective and that TREECS™/EFS advances the ability to reliably quantify the potential of environmental risks of MC on DoD training and testing ranges (active and other than operational).

We will achieve these objectives by:

• Identifying three DoD training ranges (Army, Air Force, Navy)• Determining the nature and extent of MC loading• Analyzing potentially complex exposure pathways• Validating TREECS™/EFS to estimate risk from exposure to MC• Developing user guidance in applying TREECS™/EFS for

environmental risk assessment• Providing full production transition and technology transfer for

environmental specialists and range managers

Page 7: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Technology/Methodology Description

• Framework for Tier 1 and 2 assessments• Constituent databases• Protective Health Benchmark database• Munitions database• MC residual mass loading module based on

munitions use• GIS module• Hydro-geo-characteristics toolkit (HGCT) for

estimating input parameters• Fate models for soil, surface water, vadose

zone, and groundwater• Simplified user input interfaces for models

(GUIs)• Viewers for results• Sensitivity and uncertainty module for Tier 2

assessments

7

TREECS ComponentsTraining Range Environmental Evaluation and Characterization System (TREECS) is a client-based system that provides forecasts of Munitions Constituents (MC) fate on and off range based on munitions use on range.

Development Approach

Formulate and couple MC fate/transport-transformation-sequestration models of reduced form in an integrated framework for fast assessments with a minimal amount of user input.

This integration of models and databases provide for an innovative approach to evaluating the fate and transport of MC from military training ranges

Certificate of Networthiness for installation on Army Computers!

Page 8: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Technology/Methodology Description

8

TREECS Tier 2 Conceptualization

Page 9: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Technology/Methodology Description

• Chemical Editor provides options for chemical entry

• Reaction Pathway Simulator generates potential transformation products based on user-specified conditions

• Physicochemical Properties Calculator for providing Molecular descriptors for the parent chemical and predicted transformation products

• Structure-based Database for the storage of calculated and measured physico-chemical properties of parent and potential transformation products

• Reaction Rate Calculator for the parameritization and Execution of QSARs and Algorithms

• Earth Systems Model for the data mining of environmental descriptors

9

EFS ComponentsThe Environmental Fate Simulator (EFS) is designed to provide the necessary molecular and environmental descriptors necessary for the parameritization of fate modes for estimating concentrations of the parent chemical and predicted transformation products.

Development Approach

Integration of cheminformatics applications for the encoding of process science with software technologies that allow for the high through put calculation of pchem properties and retrieval of measured data required for the parameritization of environmental fate models

Page 10: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Technology/Methodology Description

10

Environmental Fate Simulator Conceptualization

Chemical Editor (CE):Provides options for chemical entry

Reaction Pathway Simulator (RPS):Generates potential transformation products based on user-specified conditions Physicochemical

Properties Calculator (PPC):Molecular descriptors for the parent chemical and predicted transformation products

Structure-based Database (SBD): populated with calculated and measured physico-chemical properties of parent and potential transformation productsEarth Systems

Model: Data Mining for environmental descriptors

Reaction Rate Calculator:Parameritization and Execution of QSARs and Algorithms

Page 11: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Eco-system Management Restoration Research Program (EMRRP)

Modeling Interactions of Riverine Flow and Vegetation

Product Development Team: Billy Johnson (EL)Zhonglong Zhang (BTS Inc.)Mark Jensen (HEC)Blair Greimann (USBR)

Page 12: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Questions to be answered Vegetation in riparian zones play an important role in

controlling channel morphology, maintaining a favorable habitat for aquatic organisms

►What impact does riparian vegetation have on local flood conditions?

►How can vegetation be incorporated into restoration projects without increasing flood risks?

►What set of riverine operations can be used to encourage recruitment and survival of native vegetation (and control the spread of invasive species)?

►How will management actions impact habitat for endangered and threatened species?

Page 13: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

Aquatic Vegetation

Page 14: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

HEC-RAS (River Analysis System)

One-Dimensional (1D) hydraulics program Computes river velocities, stages, profiles, and inundated areas (with

GeoRAS) given streamflow and geometry Steady, Unsteady Flow, and Quasi-Unsteady (for Sediment analysis) HEC-RAS simulates sediment transport/movable beds resulting from

scour and deposition Graphical User Interface Data storage/management Graphics, Tabular Output & Reporting GeoRAS – GIS pre and postprocessor

Page 15: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

HEC-RAS Hydraulics

Steady flow

Water depth?

Flow

Unsteady flow

Physically based routing for flow,

sediment, nutrients, and contaminants.

Physically based routing for flow,

sediment, nutrients, and contaminants.

Page 16: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

HEC-RAS Sediment Analysis Module

Parent layer

Water

Suspended load

Bed load

Surface bed material (armor layer)

Sub-surface bed material

Wash load

Bed material load

Bed material

Suspended load – sand, silt & clayBed load – sand, gravel, cobbles & boulders

Wash load – silt & clayBed material load – sand, gravel, cobbles & boulders

Fluvial sediment schematic

Most Advanced 1-D Channel

Sedimentation Model: Accounts for bed

armoring and sediment

resuspension.

Most Advanced 1-D Channel

Sedimentation Model: Accounts for bed

armoring and sediment

resuspension.

Page 17: 2014 ISCMEM Annual Meeting Group 4 - Distributed Watershed Water Quality Model Development Billy Johnson (USACE) – Co-Group Leader Laj Ahuja (ARS-Fort

USBR Aquatic Vegetation Model

USBR vegetation model offers a highly parameterized simulation of vegetation.

Parameters identify root, stem, and canopy growth rates, lateral growth, germination seasons, germination requirements, dormant seasons, and mortality factors, including desiccation, inundation, erosion, shading, and competition.