2011 set b mock paper 1 solutions

16
 2011 JC2 H2 Mathematics Set B, Mock Paper 1 Specimen Paper for Examination from 2007 Page 1 of 15 Set B, Paper 1 1. Use the method of mathematical induction to prove that the sum of the first n terms of the series ... ) 7 5 3 ( ) 6 4 2 ( ) 5 3 1 ( + × × + × × + × ×  is ) 5 )( 4 )( 1 ( 4 1 + + + n n n n . [5] - - - - - - Let P n be the statement ... ) 7 5 3 ( ) 6 4 2 ( ) 5 3 1 ( + × × + × × + × × + ) 4 )( 2 ( + + n n n = ) 5 )( 4 )( 1 ( 4 1 + + + n n n n , +  Z n . When n = 1, L.H.S. = 15 ) 5 3 1 ( = × ×  R.H.S. = 15 ) 6 )( 5 )( 2 )( 1 ( 4 1 = = L.H.S. Therefore, P 1 is true. Assume that P k is true for some +  Z k . That is, ... ) 7 5 3 ( ) 6 4 2 ( ) 5 3 1 ( + × × + × × + × × + ) 4 )( 2 ( + + k k k = ) 5 )( 4 )( 1 ( 4 1 + + + k k k k . We want to show P k +1 is true. That is, ... ) 7 5 3 ( ) 6 4 2 ( ) 5 3 1 ( + × × + × × + × × + ) 5 )( 3 )( 1 ( + + + k k k = ) 6 )( 5 )( 2 )( 1 ( 4 1 + + + + k k k k . L.H.S. = ... ) 7 5 3 ( ) 6 4 2 ( ) 5 3 1 ( + × × + × × + × × + ) 4 )( 2 ( + + k k k + ) 5 )( 3 )( 1 ( + + + k k k  = ) 5 )( 4 )( 1 ( 4 1 + + + k k k k + ) 5 )( 3 )( 1 ( + + + k k k  = ) 5 )( 1 ( 4 1 + + k k  )] 3 ( 4 ) 4 ( [ + + + k k k  = ) 5 )( 1 ( 4 1 + + k k  ] 12 8 [ 2 + + k k = ) 6 )( 2 )( 5 )( 1 ( 4 1 + + + + k k k k = R.H.S. That is, P k is true P k +1 is true. Since, P 1 is true and P k is true P k +1 is true, by mathematical induction, P n is true for all +  Z n .

Upload: jordan-tiong

Post on 07-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 1/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 1 of 15

Set B, Paper 1 

1. Use the method of mathematical induction to prove that the sum of the first n terms of the

series

...)753()642()531( +××+××+××  

is )5)(4)(1(41 +++ nnnn . [5]

- - - - - -

Let Pn be the statement

...)753()642()531( +××+××+×× + )4)(2( ++ nnn = )5)(4)(1(4

1+++ nnnn , ∀

+∈ Z n .

When n = 1,

L.H.S. = 15)531( =××  

R.H.S. = 15)6)(5)(2)(1(41 = = L.H.S.

Therefore, P1 is true.

Assume that Pk  is true for some+

∈ Z k  .

That is, ...)753()642()531( +××+××+×× + )4)(2( ++ k k k  = )5)(4)(1(4

1+++ k k k k  .

We want to show Pk +1 is true.

That is,

...)753()642()531( +××+××+×× + )5)(3)(1( +++ k k k  = )6)(5)(2)(1(4

1++++ k k k k  .

L.H.S. = ...)753()642()531( +××+××+×× + )4)(2( ++ k k k  + )5)(3)(1( +++ k k k   

= )5)(4)(1(4

1+++ k k k k  + )5)(3)(1( +++ k k k   

= )5)(1(4

1++ k k    )]3(4)4([ +++ k k k   

= )5)(1(4

1++ k k    ]128[

2++ k k  = )6)(2)(5)(1(

4

1++++ k k k k  = R.H.S.

That is, Pk is true ⇒ Pk +1 is true.

Since, P1 is true and Pk  is true ⇒ Pk +1 is true, by mathematical induction, Pn is true for all+

∈ Z n .

Page 2: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 2/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 2 of 15

2. A piece of wire of length d units is cut into two pieces. One piece is bent into the form of 

a square and the other piece is bent into the form of a circle. Prove that, when the

combined area of the two shapes is a minimum, then the radius of the circle is

approximately 0.07d units. [7]

- - - - - -

Let r = radius of circle and A = combined area of the two shapes.

Hence,

 A =

22

4

  

  −+

r d r 

π  π   = ( )22

216

1r d r  π  π   −+  

)2)(2(8

12

d

dπ  π  π   −−+= r d r 

 A= r 

d r 

2

2

1

42 π  

π  π   +− =

42

12

2 d r 

π  π  π   −

 

  

 +  

Let 0dd =

r  A .

⇒ 42

12

2 d r 

π  π  π   −

 

  

 + = 0

⇒   

  

 +÷

 

  

 = π  

2

12

4

d r   ≈ 0.07 d  

Since =r 

 A

d

d

42

12

2 d r 

π  π  π   −

 

  

 +   ⇒  =

2

2

d

d

 A 

  

 +

2

2

12 π  π   > 0.

Hence, r   ≈ 0.07 d  gives minimum A.

Circumference = 2 π   r  Perimeter = d  − 2 π   r 

Page 3: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 3/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 3 of 15

3. (i) Show that)32)(12)(12(

1616

32

1

12

2

12

3

++−

+=

+−

+−

− r r r 

r r r . [2]

(ii) Hence find ∑=

++−

+n

r r r r 

1 )32)(12)(12(

1,

giving your answer in the form k – f(n), where k is a constant. [4]

(iii) State the sum to infinity of the series in which the r th term is

)32)(12)(12(

1

++−

+

r r r 

r . [1]

- - - - -

(i)

)32)(12)(12(

)12)(12()32)(12(2)32)(12(3

32

1

12

2

12

3

++−

+−−+−−++=

+−

+−

− r r r 

r r r r r r 

r r r  

=)32)(12)(12(

)14()344(2)384(3 222

++−

−−−+−++

r r r 

r r r r r  

= )32)(12)(12(

1616

++−

+

r r r 

 

(ii) ∑=

++−

+n

r r r r 

1 )32)(12)(12(

= ∑=

++−

+n

r r r r 

1 )32)(12)(12(

1616

16

1= ∑

=

 

  

 +

−+

−−

n

r r r r 1 32

1

12

2

12

3

16

= + 

  

 −−

5

1

3

2

1

3

16

  

 −−

7

1

5

2

3

  

 −−

9

1

7

2

5

3…

  

 

−−

−−

− 12

1

32

2

52

3

nnn…

  

 

+−

−−

− 12

1

12

2

32

3

nnn…

 

 

 

 

+−

+−

− 32

1

12

2

12

3

nnn =

−−

+−

+−+−

32

1

12

2

12

1

3

3

3

2

1

3

16

1

nnn  

=  

  

 

++

+−

32

1

12

3

16

1

24

5

nn.

(iii) As ∞→n , 012

3→

+n, 0

32

1→

+n.

Hence ∑∞

=∞→ ++−

+

1 )32)(12)(12(

1lim

r n r r r 

r =

24

5.

Page 4: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 4/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 4 of 15

4. On the same Argand diagram, sketch the loci

(i) ,5i68 =−− z [2]

(ii) arg( z – 4 – 3i) = 2α  , where α =  

  

 −

4

3tan

1. [2]

The complex number w is represented by the point of intersection of the loci in parts (i) 

and (ii). Find w, in the form x + i y, giving the exact values of  x and y. [5]- - - - - -

Note that

1.  ∆ BCD is an isosceles triangle with =∠=∠  DBC  BCD and α π   2−=∠ BDC   

2.  α π   2cos)2cos( −=−  

3. 4

3tan =α    ⇒ 

5

4cos =α  and

5

3sin =α   

Applying cosine rule on ∆ BCD : 2)( BC  = )2cos()5)(5(255

22α π  −−+  

2)( BC  = 2cos5050 +  

2)( BC  = )1cos2(5050

2−+ α   

2)( BC  = 6415

425050

2

=

 

 

 

 −

 

  

 +   ⇒  BC = 8

 BC 

 AB BCA =∠sin   ⇒ 

82sin

 AB=α    ⇒ 

25

192

5

4

5

316cossin162sin8 =

 

  

  

  

 === α α α  AB .

CA =

22

25

1928

 

  

 − =

625

3136=

25

56.

Hence x = 4 +25

56=

25

156and = y  

25

1923+ =

25

267. Implies w =

25

156+

25

267i .

5

 D(8,6)• 

α  

2α  

C (4,3)

• 

•  A 

 B 

Re( z)

Im( z)

Page 5: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 5/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 5 of 15

5. A curve has parametric equations2

1

t  x = , t  y 2= , where t is a non-zero parameter.

(i) Sketch the curve. [2]

(ii) Find the equation of the tangent to the curve at the point  

  

 t 

t 2,

12

and show that

the equation of the normal to the curve at the same point can be written in the form

12 625−=− t  xt  yt  . [6]

(iii) The tangent at the point P  

  

 4,

4

1meets the y-axis at T and the normal at P meets

the y-axis at N . Prove that the area of the triangle PTN is256

65. [4]

- - - - - -

(i)

(ii) 2

1

t  x =  ⇒ 

3

2

d

d

t t 

 x −= ; t  y 2=  ⇒ 2

d

d=

 y.

Hence,3

3

22

d

d

d

d

d

dt 

 x

 y

 x

 y−=

−×=÷= .

Equation of tangent at the point  

  

 t 

t 2,

12

is

 

 

 

 −−=−

2

3 12

 xt t  y  

⇒ 033=+−  xt t  y  

 x

 y

Page 6: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 6/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 6 of 15

Equation of normal at the point  

  

 t 

t 2,

12

is

 

  

 −=−

23

112

t  x

t t  y  

⇒    

   −=−

243 12

t  xt  yt   

⇒  12265−=−  xt t  yt   

⇒  12625−=− t  xt  yt   

(iii) At the point P  

  

 4,

4

1, t = 2.

Hence equation of tangent at P is 68 +−=  x y … (1)

And equation of normal at P is . 127432 =−  x y . … (2)

Substitute x = 0 into (1) : 6= y .

Hence T is )6,0(  

Substitute x = 0 into (2) :32

127= y .

Hence N  is )32

127,0(

Area of ∆PTN =256

65

4

1

32

1276

2

1=

 

  

  

  

 − .

 x

 y

P

 N 

Page 7: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 7/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 7 of 15

6. (i) Show that ⌡

⌠ +1

dln

n

n

 x x = 1ln)1ln()1( −−++ nnnn . [4]

(ii)

The diagram shows the graph of   x y ln= between x = n and x = 1+n . The area of 

the shaded region represents the error when the value of the integral in part (i) is

approximated by using a single trapezium. Show that the area of the shaded region

is

11

1ln2

1−

 

  

 +

 

  

 +

nn . [4]

(iii) Use a series expansion to show that if n is large enough for3

1

nand higher

powers of n

1to be neglected, then the area in part (ii) is approximately equal to

2n

k ,

where k is a constant to be determined. [3]

- - - - - -

(i)   xu ln=   ⇒  xdx

du 1= ; 1=

dx

dv  ⇒   xv =  

⌠ +1

dln

n

n

 x x =  x x

 x x x

n

n

n

n

d1

))((ln

11

⌠  

  

 −

++

 

=

1

ln)1ln()1(

+

−−++

n

n

 xnnnn  

= ( )nnnnnn −+−−++ )1(ln)1ln()1(  

= 1ln)1ln()1( −−++ nnnn . 

 x

 y

n n + 1O 

 y = ln x

Page 8: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 8/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 8 of 15

(ii) Area of the shaded region = ⌡

⌠ +1

dln

n

n

 x x  −  ( ))1ln(ln)1(2

1++ nn  

=  

  

 −−++ 1ln)1ln()1( nnnn   − )1ln(

2

1ln

2

1+− nn  

= 1ln)21()1ln()

21( −+−++ nnnn  

= 11

ln)2

1( −

++

n

nn  

= 11

1ln2

1−

 

  

 +

 

  

 +

nn  

(iii) Note that  

  

 +

n

11ln = ...

1

3

11

2

1132

  

 +

 

  

 −

 

  

 nnn

= ...3

1

2

1132++−

nnn 

Hence, 111ln21 −

  

   +

  

   +

nn = 1...

31

211

21

32−

  

   ++−

  

   +

nnnn  

= 1...4

1

3

1

2

1

2

11

22−

 

  

 +−++−

nnnn 

≈ 212

1

n(for

3

1

nand higher powers of 

n

1to be neglected)

Page 9: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 9/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 9 of 15

7. (a) The first four terms 1u , 2u , 3u , 4u of an arithmetic progression are such that

1524 =− uu and 13 94 uu = .

Find the value of  1u . [3]

(b) The positive numbers n x satisfy the relation

2

1

1 )5( +=+ nn  x x , for n = 1, 2, 3, … .

As ∞→n , n x → .

(i) Find (in either order) the value of  to 3 decimal places and the exact value

of  . [3]

(ii) Prove that ( ) −=−+ nn  x x 221 . [2]

(iii) Hence show that, if  n x > , then n x > 1+n x > . [3]

- - - - - - (a) Let a be the first term and d be the common difference of the A.P.

Given 1524 =− uu   ⇒  15)()3( =+−+ d ad a   ⇒ 2

15=d   

Given 13 94 uu =   ⇒  ad a 9)2(4 =+   ⇒  d a 85 =   ⇒  1u = 122

15

5

8=

  

  =a .

(b)(i) Given : When ∞→n , n x → . Then 1+n x → .

Since 21

1 )5( +=+ nn  x x , therefore 21

)5( += .

⇒ 52

+= …. (*)

⇒ 052

=−−  

⇒ 2

211±=  

Since n x > 0, 0> . Therefore 791.22

211=

+= (to 3 d.p.)

(b)(ii) Given 21

1 )5( +=+ nn  x x  

⇒  ( ) 52

1 +=+ nn  x x  

⇒  ( ) 2221 5 −+=−+ nn  x x  

⇒  ( ) )5(5221 +−+=−+ nn  x x using (*)

⇒  ( ) −=−+ nn  x x22

1  

Page 10: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 10/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 10 of 15

(b)(iii) From (b)(ii) : ( ) −=−+ nn  x x 221  

⇒  ( )( ) −=+− ++ nnn  x x x 11 … (1)

Given n x >   ⇒ 0>− n x .

Hence (1) becomes ( )( ) 011 >+− ++ nn  x x  

⇒  −<+1n x or >+1n x …. (2)

(rejected)

From (1) : ( )( ) −=+− ++ nnn  x x x 11  

⇒  ( )( )

( )

−+

=−

+

+ nn

n  x x

 x1

1

Note that 791.21 ≈>++ n x .

Hence, ( ) 11

01

<+<+ n x .

⇒  ( ) ( ) −<−+ nn  x x 1  

⇒  nn  x x <+1 …. (3)

Combining results (2) and (3), we have n x > 1+n x > .

Page 11: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 11/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 11 of 15

8.  (a) Find ⌡⌠ 

+

+ x

 x

 xd

9

122

. [3]

(b) Using the substitution θ  tan4 += x , find ⌡⌠ 

+−

 x x x

d178

12

. [5]

(c) Find the volume of revolution when the region bounded by the part of the curve

 x y 2cos= between 0= x and π  21= x and by the x- and y-axes is rotated

completely about the x-axis. Give your answer correct to 3 significant figures. [3]

- - - - -

(a)  ⌡⌠ 

+

+ x

 x

 xd

9

122

= ⌡⌠ 

+

+⌡⌠ 

+

 x x

 x x

 xd

3

1d

9

2222

 

= ( ) C  x

 x +++−

3tan

3

19ln

12 

(b) θ  tan4 += x   ⇒  θ  

θ  

2sec=

dx. 

⌡⌠ 

+−

 x x x

d178

12

= ⌡

⌠ 

+−

 x x

d1)4(

12

 

= ⌡

⌠ 

+

θ  θ  

θ  

dsec1)(tan

1 2

= ⌡

⌠ θ  d1  

= C +θ   = C  x +−−

)4(tan1

 

(c) Volume required

= ( )  x x dcos2

0

22⌡

⌠ π  

π    

=  x x dcos2

0

4⌡

⌠ π  

π    

= 1.85 unit3.

Page 12: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 12/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 12 of 15

9. Consider the curve)6(

63

+

−=

 x x

 x y .

(i) State the coordinates of any points of intersection with the axes. [1]

(ii) State the equations of the asymptotes. [3]

(iii) Prove, using an algebraic method, that

)6(

63

+

 x x

 xcannot lie between two certain

values (to be determined). [5]

(iv) Draw a sketch of the curve

(a) )6(

63

+

−=

 x x

 x y ,

(b) )6(

63

+

−=

 x x

 x y ,

making clear the main relevant features of each curve. [4]

- - - - - -

(i)  )6(

63

+

=  x x

 x y .

When y = 0, 063 =− x   ⇒  2= x  

(2,0) is the only point of intersection with the x-axis.

(ii) The asymptotes are 0= x , 6−= x and 0= y .

(iii) )6(

63

+

−=

 x x

 x y   ⇒  636

2−=+  x yx yx  

⇒  06)36(2=+−+  x y yx … (1)

For any valid values of  y substituted into (1), there must correspond some values of  x.Hence, equation (1) has solution for x.

Hence, we consider discriminant 0≥ .

That is, 0)6(4)36( 2≥−−  y y  

⇒  096036 2≥+−  y y  

⇒  0320122

≥+−  y y  

⇒ 0)16)(32( ≥−−  y y  

⇒ 6

1≤ y or

2

3≥ y  

Hence,)6(

63

+

 x x

 x cannot lie between6

1 and2

3 .

Page 13: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 13/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 13 of 15

(iv)(a)

(iv)(b)

(6,1/6)−2 1/2

2• 

• 

 x = −6

 x

 y

(6,1/6)−2 1/2

2

• 

• 

 x = −6

 y

 x

Page 14: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 14/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 14 of 15

10. (i) Expand 31

)8(  x+ in ascending powers of  x up to and including the term in2

 x , and

state the values of  x for which this expansion is valid. [5]

(ii) The function f( x) = 31

)8(3  x+− is defined for 190 ≤≤ x . Find the inverse

function )(f  1  x− . [3]

(iii) Sketch the graphs of  y = f( x) and  y = )(f  1  x−

on the same axes, and show the

geometrical relation between the two graphs and the line y = x. [3]

(iv) Show that the x-coordinate of the point of intersection of the graphs of  y = f( x) and

 y = )(f  1  x−

is given by

31

)8(  x+ =  x−3 . [2]

(v) Use the first two terms of expansion of  31

)8(  x+ to obtain an approximation to the

 x-coordinate of the point of intersection. Give your answer as a simple fraction. [1]

- - - - - -

(i)  31

)8(  x+ =31

31

818

 

  

 +

 x=

( )( )

 

 

 

 +

 

  

 −+

 

  

 + ...

8!283

112

232

31

 x x 

=  

  

 +−+ ...

576

1

24

112

2 x x  

= ...288

1

12

12

2+−+  x x  

Expansion is valid when 18<

 x  ⇒ 8< x .

(ii) Let y = f( x) = 31

)8(3  x+−  

⇒   y x −=+ 3)8( 31

 

⇒  ( )338  y x −=+  

⇒  ( ) 833−−=  y x  

⇒  ( ) 83)(f 31−−=

−  y y  

⇒  ( ) 83)(f 31−−=

−  x x  

Hence, ( ) 83:f 31−−→

−  x x , ]1,0[∈ x  

 y = f( x)

1

19

R f = [0,1]

 x 

Page 15: 2011 Set B Mock Paper 1 Solutions

8/4/2019 2011 Set B Mock Paper 1 Solutions

http://slidepdf.com/reader/full/2011-set-b-mock-paper-1-solutions 15/15

 

2011 JC2 H2 Mathematics Set B, Mock Paper 1

Specimen Paper for Examination from 2007  Page 15 of 15

(iii)

The graphs of  y = f( x) and  y = )(f 1  x− are reflection of each other about the line

 y = x.

(iv) The point of intersection of the graphs of  y = f( x) and y = )(f  1  x−

is the same as the point

of intersection between the graphs of  y = f( x) and y = x .

Hence, x = 31

)8(3  x+−  

⇒  31

)8(  x+ =  x−3 … (1)

(v) From (i)  31

)8(  x+ = ...288

1

12

12

2+−+  x x . … (2)

Substitute the first two terms of (2) into (1) :

 x x −≈+ 312

12

⇒ 13

12≈ x  

 x 

 y 

 y = x 

 y = f( x)

 y = f 

−1

( x)

1

1

19

19