2010 10 25 - dr mario schenk - ieee toronto - handout1

36
Copyright © Siemens AG 2006. All rights reserved. © Siemens AG 2010 Energy Sector Siemens Transformers Power Transformers Nuremberg HVDC Transformer Technology for Voltages 800 kV Recent Projects and Future Trends Dr. Mario Schenk Frank Trautmann Transformer Factory Nuremberg, Germany

Upload: others

Post on 04-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Copyright © Siemens AG 2006. All rights reserved.© Siemens AG 2010Energy Sector

Siemens Transformers Power Transformers Nuremberg

HVDC Transformer Technology for Voltages ≥ 800 kVRecent Projects and Future Trends

Dr. Mario SchenkFrank Trautmann

Transformer Factory Nuremberg, Germany

Page 2: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 2 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Agenda

Introduction

System and Transformer Design – 800 kV HVDC

Projects, Developments and Trends

Dielectric Stress and Insulation Design

Page 3: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 3 25.10.2010 Dr. Mario Schenk, Frank Trautmann

IntroductionChina Project Overview

13. Humeng – Tianjiang800 kV, 6400 MW, 2016

14. Hulunbeir – Shenyang3000 MW, 2009

15. BtB NE-North (Gaoling)1500 MW, 2007

16. Humeng – Jinan (Shandong)800 kV, 6300 MW, 2015

17. North Shaanxi – Shandong3000 MW, 2011

18. BtB Shandong – East1200 MW, 2011

19. BtB North – Central1000 MW, 2012

20. Goupitan – Guangdong3000 MW, 2016

21. Ningxia – Tianjing3000 MW, 2010

22. NW – Sichuan3000 MW, 2010

23. Irkutsk (Russia) – Beijing800 kV, 6400 MW, 2015

Xinjiang

Qinghai

Xizang

GansuInrfar Mongolia

Heilongjiang

Jilin

Liaoning

Hebei

Shanxi

Shaanxi

Ningxia

Sichuan &Chongqing

Yunnan

Hainan

Guangxi

Guizhou

Hunan

Hubai

Henan

Guangdong

Fujian

JiangxiZheijang

Shandong

Beijing

Tianjin

JiangsuAnhuj

Bangkok

Taiwan

1. Hami – C. China800 kV, 6400 MW, 2018

2. Xijaba – Shanghai800 kV, 6400 MW, 2011

3. Xiluodu – Hanzhou800 kV, 6400 MW, 2015

4. Xiluodu – Hunan800 kV, 6300 MW, 2013

5. Jinsha River II – East China800 kV, 6400 MW, 2016

6. Jingping – East China800 kV, 7200 MW, 2012

7. Jinsha River II – East China800 kV, 6400 MW, 2019

8. Jinsha River II – Fujian800 kV, 6400 MW, 2018

9. Nuozhadu – Guangdong800 kV, 5000 MW, 2015

10. Jinghong – Thailand3000 MW, 2013

11. Yunnan – Guangdong800 kV, 5000 MW, 2009

12. Humeng – Liaoning800 kV, 6400 MW, 2018

1

2

34 5

67

82011

9

10

22

21

23 12

13 14

1615

1617

19 18

Shanghai

Page 4: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 4 25.10.2010 Dr. Mario Schenk, Frank Trautmann

HVDC is efficient for:- Overhead lines

(>1000MW, >600km)- Cable Links (about 50km,

for >80km or different frequenciesthe only technical solution)

Advantages of HVDC:- Low Line Cost, but Converter Cost- No capacitive charging currents -

less losses and CO2 emissions- Firewall function for grids- Load flow regulation (HVDC Plus)- Connection for different frequencies- High Transmission Power density

(usage of less land or space)- Offshore connections for

wind parksor oil rigs (substitution of CO2emissions from diesel generators)

AC DC

[$]

[miles]

HVDC line cost

AC line cost

cost benefit DC transmission

cost benefit AC transmission

IntroductionHVDC (High Voltage Direct Current) Transmission is more efficient for Long Distances (>600km) or Cable Links (>50km) than HVAC (HV Alternating Current)

Page 5: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 5 25.10.2010 Dr. Mario Schenk, Frank Trautmann

= HVDC ±800 kV

Very high power capacity (5,000 MW and higher) of a single system25% lower transmission cost compared to 500 kV HVDCSmaller footprint and lower overhead transmission line costs as only one bipole is needed

IntroductionHVDC at 800 kV for economical, long-distance electricity transfer

Page 6: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 6 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Introduction800 kV DC Overhead Line Towers

Page 7: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 7 25.10.2010 Dr. Mario Schenk, Frank Trautmann

DC±800 kV

DC±500 kV

AC765 kV

100 %

83 %64 %

Total transmission cost (5,000 MW over 1,400 km; 30 year lifetime)

Losses

Station costs

Line costs

IntroductionClear economical advantage of an ±800 kV HVDC solution

Page 8: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 8 25.10.2010 Dr. Mario Schenk, Frank Trautmann

System Design Comparison of schematics of 500 kV and 800 kV HVDC systems

500kV HVDC 800kV HVDC

-250 kV

-250 kV

+250 kV

+250 kV+500 kV

+200 kV

+200 kV

+200 kV

+200 kV

+800 kV

-200 kV

-200 kV

800 kVsingle phase

2 windingtransformer

-500 kV

single phase3 winding

transformers

single phase2 winding

transformersor

Page 9: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 9 25.10.2010 Dr. Mario Schenk, Frank Trautmann

BIL / SIL: 1900 kV / 1600 kVBIL / SIL: 1800 kV / 1600 kV

BIL / SIL: 450 kV / 325 kV

BIL / SIL: 1175 kV / 950 kV

BIL / SIL: 1300 kV / 1050 kV

BIL / SIL: 950 kV / 750 kV

BIL / SIL: 1550 kV / 1300 kV

System Design Insulation Coordination - Insulation Levels

Page 10: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 10 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Receiving StationYunnan - Guangdong

- 800 kV DC- 800 kV DC

+ 800 kV DC+ 800 kV DC

+ 400 kV DC+ 400 kV DC

- 400 kV DC- 400 kV DC

Page 11: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 11 25.10.2010 Dr. Mario Schenk, Frank Trautmann

2.1

2.2

1.1

1.3

Val

veW

indi

ng

HV

Win

ding

Tap

Ret

urn

limb

/ win

dow

Upper Yoke

Lower Yoke

Cor

e

2.1

2.2

1.1

1.3

Tap

HV

Win

ding

Val

veW

indi

ng

Ret

urn

limb

/ win

dow

Upper Yoke

Lower Yoke

Cor

e

Valve Winding inside Valve Winding outside

Insulating system is to design only

for AC

Insulating system is to design both for AC and DC

Insulating system is to design both for AC and DC

Insulating system is to design only

for AC

Transformer Design Typical Winding Arrangements

Page 12: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 12 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Dielectric Stress and Insulation Design Dielectric Tests (Test Voltages) for AC Transformers

AC Voltage Switching Impulse

0 10 20 30 ms 50-1.0

-0.5

0

0.5

1.0

Zeit t

Spa

nnun

g U(t)/Û0

0 1 2 3 4 5 6 µs 80

0.2

0.4

0.6

0.8

1.0

Zeit t

Spa

nnun

g U(t)/Û0

0 10 20 30 40 50 60 µs 800

0.2

0.4

0.6

0.8

1.0

Zeit t

Spa

nnun

g U(t)/Û0

0 0.5 1.0 1.5 2.0 2.5 3.0 ms 4.00

0.2

0.4

0.6

0.8

1.0

Zeit t

Spa

nnun

g U(t)/Û0

Lightning Impulse (Full Wave) Lightning Impulse (Chopped Wave)

volta

ge

time

volta

ge

time

volta

ge

time

volta

ge

time

Page 13: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 13 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Long Time AC / DC Voltage Test

Applied DC voltage duration 2 h,positive polarity,PD-measurement

Applied AC voltage duration 1 h, PD-measurement

Polarity Reversal (PR) Test according to the IEC standard

Usual cycle: 90min(-) PR 90min(+) PR 45 min(-) Applied DC voltage duration 90 min,

negative polarity First PR within 1min…2min

90 min positive polarity Second PR within 1min..2min

45 min negative polarity

PD-measurement

Dielectric Stress and Insulation Design Special Dielectric Tests for Valve Windings

0 40 90 135 min 225-1.0

-0.5

0

0.5

1.0

time t

volta

ge U(t)/Û0

0 30 60 min 1200

0.2

0.4

0.6

0.8

1.0

time t

volta

ge U(t)/Û0

Page 14: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 14 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Equipotential Lines for an AC Field

Dominant for the field distribution: Electrostatic displacement field

ED r 0

Equipotential Lines for a DC Field

Dominant for the field distribution: Stationary Flow Field

EJ

Dielectric Stress and Insulation Design Equipotential Lines for AC and DC electric field

Permittivitypressboard / oil r ratio = 2

Conductivitypressboard / oil ratio > 50

Page 15: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 15 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Dielectric Stress and Insulation Design Parameter which influence the Oil Conductivity

1 0 -11

1 0 -14

1 0 -13

1 0 -15

1 0 -12

1 10 0 1 0 100 0

P re s sb o a rd , H

P re s s bo a rd , T

Ö l

F elds tä rke [k V/m m ]

Leitf

ähig

keit

[S

m-1

]

20 40 120 60 80 100

10-12

10-15

10-18

10-9

Porzellan

Öl

Pressboard

RIP

Temperatur [°C] Le

itfäh

igke

it [

S m

-1]

Quelle: „DC Flashover voltage characeteristics...“,A. Kurita et.al, IEEE Transactions on Power Delivery,Vol. PWRD-1,No.3, July

10 -1 1

10 -1 4

10 -1 3

10 -1 5

10 -1 2

1 10010 1000

Pres sboard , H

P ressboard , T

O il

Field S tre ngth [k V /m m ]

Con

duct

ivity

[S

m-1

]

20 40 120 60 80 100

10-10

10-13

10-16

10-7

Porcelain

Oil

Pressboard

RIP

Temperature [°C] C

ondu

ctiv

ity

[S m

-1]

Page 16: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 16 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Equipotential Lines Electrical Field Distribution

Applied Voltage

Dielectric Stress and Insulation DesignPolarity Reversal (PR) Change of the Field Strength during and after PR

max 1.00

Emag in kV/mm

Page 17: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 17 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsLong time DC or DC polarity reversal test with PD measurement – Test setup800kV HVDC Transformer

Page 18: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 18 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsActive Part and Leads Assembly – 800kV HVDC Transformer

Page 19: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 19 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsBarrier System for the 800 kV Bushing of the Valve-Winding

Page 20: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 20 25.10.2010 Dr. Mario Schenk, Frank Trautmann

5,000 MW1,418 km

+/- 800 kV DC

Commercial Operation: 2009 – Pole 1 2010 – Pole 2

Yunnan-Guangdong

Projects, Developments and TrendsThe World’s first 800 kV UHV DC in China Southern Power Grid

Quelle: Prof, Retzmann

Page 21: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 21 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsSending Station Chuxiong

Page 22: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 22 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsConverter Transformer at Suidong

Page 23: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 23 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsUHV DC Transformers arriving

Page 24: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 24 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsUHV DC Transformers arriving

Page 25: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 25 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsUHV DC logistics – a crucial task

Page 26: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 26 25.10.2010 Dr. Mario Schenk, Frank Trautmann

800 kV DC800 kV DC800 kV DC800 kV DC

2 x 400 kV DC2 x 400 kV DC

Projects, Developments and TrendsYunnan-Guangdong – UHV DC Valve Halls

Page 27: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 27 25.10.2010 Dr. Mario Schenk, Frank Trautmann

800 kV DC

Projects, Developments and TrendsYunnan-Guangdong – UHV DC Valve Hall

Page 28: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 28 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Yunnan-Guangdong – UHV DC Converter

400 kV DC

Page 29: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 29 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Yunnan-Guangdong – UHV DC Converter

29 02-2010 Power Transmission DivisionE T PS SL/Re800 kV DC

Inauguration first pole on 28.12.2009

Page 30: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 30 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Yunnan-Guangdong –UHV DC Converter

800 kV DC

Page 31: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 31 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Xiluodu-Zhexi 1728km

Zhexi

Xiluodu rightXiluodu right

Nanhui

XiangjiabaXiangjiaba

Sichuan Power Grid

Xiluodu-Zhuzhou 970kmZhuzhou

Xiluodu leftXiluoduleft

Wuhan

Guangdong

LeshanChongqing

Changsha

Shanghai

6,400 MW+/- 800 kV DC

2,071 Km

Xiangjiaba-Shanghai

Projects, Developments and TrendsWorld’s biggest and longest 800 kV UHV DC Transmission ProjectState Grid Corporation of China

Quelle: Prof, Retzmann, Siemens

Page 32: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 32 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsHVDC Transformers

3000 MW, 500KV 5000 MW, 800kV 6400 MW, 800kV 7200 MW, 800kVXiangjiaba-Shanghai

321,1 MVA2009

Yunnan-Guangdong250 MVA

2008

Study360 MVA

2010

TSQ-GBJ

2000

in operation in operation in operation Study

Page 33: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 33 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Sunan

To Sichuan Power GridJinping Plant I

GuandiLinping

Jinping Plant I I

Xichang

Wuhan

Guangdong

LeshanChongqing

Changsha

Shanghai

Source: “Brazil-India-China Summit Meeting on HVDC & Hybrid Systems –Planning and Engineering Issues”, July 2006, Rio de Janeiro, Brazil

* 7,200 MW+/- 800 kV DC

Planned for 2013

* 6.4 GW initially

2,237 km

+/- 800 kV DC

For Comparison: Germany 840 km

Projects, Developments and TrendsJinping ± 800 kV UHV DC Transmission Project

Page 34: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 34 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Projects, Developments and TrendsHVDC Transformers – Technical Data

1. 800 kV Yunnan

Guangdong

2. 800 kV Xiangjiaba Shanghai

3. 800 kV Study

1. 1100 kV Study

Rated Power System 5000 MW 6400 MW 7200 MW

Transformer 250 MVA 321 MVA 360 MVA Vectorgroup li0 li0 li0 Ratio 525 kV/√3

168.85 kV/√3 530 kV/√3

170.3 kV/√3 530 kV/√3 170.3 kV/√3 ?

Weights Total 512 t 551.8 t -

Oil 142 t 148.8 t - Insulationlevel 909 kV 912 kV 912 kV Line (HV) LI 1550 kV SI 1175 kV AC 680 kV Valve (LV)

AC (60min) 912 912 912 LI 1800 kV

SI Potential 1600 kV DC (2h) 1254 kV 1258 kV 1258 kV PR -/+/-

(90/90/45)min 969 kV 970 kV 970 kV

Page 35: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 35 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Transforming know-how into solutions.Siemens Transformers.

Thank you foryour attention !

Page 36: 2010 10 25 - Dr Mario Schenk - IEEE Toronto - Handout1

Page 36 25.10.2010 Dr. Mario Schenk, Frank Trautmann

Information about the Presenter

Mario SchenkDirector Engineering and R&D, Power Transformers Nuremberg

1991 Electriciantill 1997 Electrical Engineering (HV and High Current)

(Dipl.-Ing. TU Dresden and Virginia Tech)1997-2002 Doctorate, Scientific Assistant (Dr.-Ing. TU Dresden)

Thermal Design of High Voltage Equipment

2002 ABB Switzerland AGR&D, Design of Generator Circuit Breakers

11/2002-10/2007 SGB Regensburg (SGB/SMIT Group)Director R&D, Director Engineering

2004-2006 Executive MBA(Northwestern University Chicago, WHU Koblenz)

since 11/2007 Siemens AG, Power Transformers NurembergDirector Engineering and R&Dresponsible for R&D, Electrical DesignMechanical Design and Production Technology