2002 agilent technologies europhysics prize lecture on

62

Upload: ellie

Post on 18-Mar-2016

28 views

Category:

Documents


3 download

DESCRIPTION

2002 Agilent Technologies Europhysics Prize Lecture on. Quantum Dynamics of Nanomagnets. Bernard Barbara , L. Néel Lab, Grenoble, France Jonathan R. Friedman , Amherst College, Amherst, MA, USA Dante Gatteschi , University of Florence, Italy - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 2002 Agilent Technologies  Europhysics Prize Lecture  on
Page 2: 2002 Agilent Technologies  Europhysics Prize Lecture  on

2002 Agilent Technologies 2002 Agilent Technologies Europhysics Prize Lecture Europhysics Prize Lecture

on

Bernard Barbara, L. Néel Lab, Grenoble, FranceJonathan R. Friedman, Amherst College, Amherst, MA, USADante Gatteschi, University of Florence, ItalyRoberta Sessoli, University of Florence, ItalyWolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002

Quantum Dynamics of Nanomagnets

Page 3: 2002 Agilent Technologies  Europhysics Prize Lecture  on

the miniaturization process

Single Domain Particlescoherent rotation of all the spins

Page 4: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Ene

rgy

E

Page 5: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Quantum effects in the dynamics of the magnetization

First evidences of Quantum Tunneling in nanosized magnetic particles(difficulties due to size distribution)

0 3 nmQuantum Coherence in ferrihydrite confined in the ferritin mammalian protein(inconclusive due to distribution of iron load)

Page 6: 2002 Agilent Technologies  Europhysics Prize Lecture  on

= metal ions = oxygen = carbon

Page 7: 2002 Agilent Technologies  Europhysics Prize Lecture  on
Page 8: 2002 Agilent Technologies  Europhysics Prize Lecture  on

The molecules are regularly arranged in the crystal

Page 9: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Mn(IV)S=3/2

Mn(III)S=2

Total Spin =10

Mn12acetateMn12acetate

T. Lis Acta Cryst. 1980, B36, 2042.

Page 10: 2002 Agilent Technologies  Europhysics Prize Lecture  on

high spin molecules

and low spin molecules

Page 11: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Uniaxial magnetic anisotropy H=-DSz

2

Page 12: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Uniaxial magnetic anisotropy H=-DSz

2

H=0

M

M=+S

M=-S+1M=S-1

0

E

-S+S

If S is large

Page 13: 2002 Agilent Technologies  Europhysics Prize Lecture  on

H=-DSz2+gBHzSz

H0

M=-S

M=S

Page 14: 2002 Agilent Technologies  Europhysics Prize Lecture  on

return to the equilibrium thermal activated thermal activated

mechanismmechanism

H=0E=DS2

M=-SM=S

=0exp(E/kBT) 010-7 E=61 K

time=0

J. Villain et al. Europhys. Lett.1994, 27, 159

Page 15: 2002 Agilent Technologies  Europhysics Prize Lecture  on

return to the equilibrium thermal activated thermal activated

mechanismmechanism

H=0E=DS2

M=-SM=S

=0exp(E/kBT) 010-7 E=61 K

time=

Page 16: 2002 Agilent Technologies  Europhysics Prize Lecture  on

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(/

0)]-1

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(/

0)]-1

Sessoli et al. Nature 1993, 365, 141

0=2x10-7 s

E/kB=61 K

Temperature dependence of the relaxation time of Mn12acetate

Page 17: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Mn12acetate: Hysteresis loopMn12acetate: Hysteresis loop

-3 -2 -1 0 1 2 3

-20

-10

0

10

20T=2.1K

M

AG

NE

TIZA

TIO

N (

B)

MAGNETIC FIELD (T)

magnetic hysteresis without cooperativity

Page 18: 2002 Agilent Technologies  Europhysics Prize Lecture  on

High Spin Clusters

Single Molecule Magnets

applications?

Page 19: 2002 Agilent Technologies  Europhysics Prize Lecture  on

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(/

0)]-1

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(/

0)]-1

0=2x10-7 s

E/kB=61 K

Temperature dependence of the relaxation time of Mn12acetate

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(/

0)]-1

deviations from the Arrhenius law

Barbara et al. J. Magn. Magn. Mat. 1995, 140-144, 1825

Page 20: 2002 Agilent Technologies  Europhysics Prize Lecture  on

return to the equilibriumtunnel mechanismtunnel mechanism

H=0

M=S M=-S

terms in Sx and Sy of the spin Hamiltonian

Page 21: 2002 Agilent Technologies  Europhysics Prize Lecture  on

return to the equilibriumtunnel mechanismtunnel mechanism

H=0

M=S M=-S

terms in Sx and Sy of the spin Hamiltonian

Page 22: 2002 Agilent Technologies  Europhysics Prize Lecture  on

What is the difference ?

Four fold axis Tetragonal (E=0)

Mn12 Fe8

HH = = BB S.g.BS.g.B - D - D SSzz22 + + E (E (SSxx

22--SSyy22)) + B + BSSzz

44 + + C (C (SS++44++SS--

44))

Stot=10

Page 23: 2002 Agilent Technologies  Europhysics Prize Lecture  on

What is the difference ?

Four fold axis Tetragonal (E=0)

Two fold axis Rhombic (E0)

Mn12 Fe8

HH = = BB S.g.BS.g.B - D - D SSzz22 + + E (E (SSxx

22--SSyy22)) + B + BSSzz

44 + + C (C (SS++44++SS--

44))

Page 24: 2002 Agilent Technologies  Europhysics Prize Lecture  on

QTM from a chemistry student point of view

Page 25: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Quantum Tunneling of the Magnetization from a chemistry student point of view

Page 26: 2002 Agilent Technologies  Europhysics Prize Lecture  on
Page 27: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Hysteresis loops for Mn12

0 5 10 15 20

2.0 K2.2 K2.4 K2.6 K2.8 K3.0 K

dM/d

H (1

0-5 e

mu/

Oe)

H (kOe)

Friedman et al., PRL, 1996; Hernandez et al, EPL, 1996; Thomas et al., Nature, 1996

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-30 -20 -10 0 10 20 30

2.0 K2.2 K2.4 K2.6 K2.8 K

M (e

mu)

H (kOe)

Page 28: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Uniform spacing between steps

0

5

10

15

20

25

30

0 1 2 3 4 5 6

Hef

f (kO

e)

step number n

Step spacing: ~4.5 kOe

Page 29: 2002 Agilent Technologies  Europhysics Prize Lecture  on

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-30 -20 -10 0 10 20 30

2.0 K2.2 K2.4 K2.6 K2.8 K

M (e

mu)

H (kOe)

Hysteresis loops for Mn12

Page 30: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Enhanced Relaxation at Step Fields

10-3

10-2

9.5 kOe9.0 kOe

(Msa

t - M

) (e

mu)

t (s)

Higher energy barrier

Yet faster relaxation!

Page 31: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Enhanced Relaxation at Step Fields

0 5 10 15 20

(s-1)

H (kOe)

Page 32: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Thermally Assisted Resonant Tunneling

m = -10

m = -9

m = 10

m = 9

Thermal activation

Fast tunneling

Tunneling occurs when levels in opposite wells align.

Page 33: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Hamiltonian for Mn12

2z BDS g S HH

The field at which (in the left well) crosses (in the right well): 

m nm

Bnmm g

DnH,

Steps occur at regular intervals of field, as observed.

Step occurs every 4.5 kOe D/g = 0.31 K

  Compare with ESR data: D = 0.56 K, g = 1.93 D/g = 0.29 K(Barra et al., PRB, 1997)

Page 34: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Hamiltonian for Mn12

2z BDS g S HH 4

zBSSpectroscopic studies revealed a 4th-order longitudinal anisotropy term B ~ 1.1 mK. (ESR: Barra et al., PRB, 1997 and Hill et al., PRL, 1998; INS: Mirebeau et al., PRL, 1999, Zhong et al., JAP, 2000 and Bao et al., cond-mat, 2000)

Different pairs of levels cross at slightly different fields.

Allows for the Examination of the Crossover from Thermally Assisted to Pure Quantum Tunneling.

Page 35: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Crossover to Ground-state Tunneling

Abrupt “first-order” transition between thermally assisted and ground state tunneling.

Theory: Chudnovsky and Garanin, PRL, 1997; Exp’t: Kent, et al., EPL, 2000, Mertes et al., JAP, 2001.

2 2, 1 ( )m m

B

Dn BH m mg D

Level crossing fields:

Page 36: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Fe8 Hamiltonian in Zero Field

2 2 2 4 4( ) ( )z x yDS E S S C S S H

Easy Axis Hard Axis

Spin wants to rotate in the y-z plane

Page 37: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Two Paths for Magnetization Reversal

Easy axis

Hard axis

Z

Y

XH

A

B

ClockwiseCounterclockwise

Page 38: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Destructive Topological InterferenceEasy axis

Hard axis

Z

Y

XH

A

B

Equivalence between paths is maintained when H is applied along the Hard Axis.

Topological (Berry’s) phase depends on solid angle enscribed by the two paths.

Complete destructive interference occurs for certain discrete values of .

Theoretical Prediction: A. Garg., 1993.

Solid Angle

Page 39: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Destructive Topological Interference

A. Garg., 1993.

Modulation of Tunnel Splitting:

where depends on the field along the Hard Axis.

When S = /2, 3/2, 5/2…, tunneling is completely suppressed!

Interval between such destructive interference points:

cos( ),S

2 2 ( )B

H E E Dg

Page 40: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Measured Tunnel Splitting

0 0.2 0.4 0.6 0.8 1 1.2

0.1

1

10

Tunn

el s

pitti

ng ²(

10-7

K)

Magnetic tranverse field (T)

= 90°50°

30°20°

10°

0 0.2 0.4 0.6 0.8 1 1.2 1.40.1

1

10

Tunn

el s

plitt

ing

²(10

-7 K

)

Magnetic transverse field (T)

M = -10 -> 10

20° 50° 90°

experimentalcalculated with

D = -0.29, E = 0.046, C = -2.9x10-5 K

W. Wernsdorfer and R. Sessoli, Science, 1999.

Page 41: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Parity Effect: Odd vs. Even Resonances

-1 -0.5 0 0.5 10.1

1

10

² tun

nel(1

0-8

K)

µ0Htrans(T)

n = 0

n = 1

n = 2 0°

W. Wernsdorfer and R. Sessoli, Science, 1999.

Page 42: 2002 Agilent Technologies  Europhysics Prize Lecture  on

What Causes Tunneling and Why the Parity Effect in Fe8

• Tunneling is produced by terms in the Hamiltonian that do not commute with Sz.

• For Fe8, these terms are

• Selection rule:• Every other tunneling resonance is forbidden!

2 2 2 2( ) ( )2x yEE S S S S

,...)3,2,1(2 ppm

Page 43: 2002 Agilent Technologies  Europhysics Prize Lecture  on

What Causes Tunneling and Why the Parity Effect in Fe8

n = 1

-9 8

9

10-10

n = 0

-10

9-9

10

2m p 2m p Tunneling Allowed Tunneling Forbidden

Page 44: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Parity Effect: Odd vs. Even Resonances

-1 -0.5 0 0.5 10.1

1

10

² tun

nel(1

0-8

K)

µ0Htrans(T)

n = 0

n = 1

n = 2 0°

W. Wernsdorfer and R. Sessoli, Science, 1999.

Page 45: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Crossover From Classical to Quantum Regime

0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,00,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

n=5

n=0n=1

n=2n=3n=4

n=6n=7

n=8n=9n=10

B n

T (K)

Activated Tunneling

Measured ( ) and Calculated ( ) Resonance Fields

Barbara et al, JMMM 140-144, 1891 (1995) and J. Phys. Jpn. 69, 383 (2000) Paulsen, et al, JMMM 140-144, 379 (1995); NATO, Appl. Sci. 301, Kluwer (1995)

Classical Thermal Activation

Tblocking

Ground-state Tunneling

Tc-o

(Mn12-ac)

Page 46: 2002 Agilent Technologies  Europhysics Prize Lecture  on

The Tunnel Window: An effect of weak Hyperfine Interactions

• Chiorescu et al, PRL, 83, 947 (1999)• Barbara et al, J. Phys. Jpn. 69, 383

(2000)• Kent et al, EPL, 49, 521 (2000)

3,75 3,80 3,85 3,90 3,95 4,00 4,05 4,10 4,150

1

2

3

4

n=8T=0.95 K

dm /

dB0

B0 (T)

8-1 8-0

Inhomogeneous broadening of Two resonances: Dipolar fields

Data points and calculated lines

Level Scheme

0,4 0,6 0,8 1,0 1,2 1,4

3,0

3,5

4,0

4,5

5,0 10-010-1

9-09-1 9-2

8-08-1 8-2

7-07-1 7-2

6-06-1 6-2

B n (T)

T(K)3,0 3,5 4,0 4,5 5,0

-30

-20

-10

0

10

20

(n-p) : -S+p S-n-p

9-2 10-1

9-1 10-0

9-0

8-2

8-1

8-0

7-2

7-1

7-0

6-0

6-1

6-2

E (K)

B0 (T)

-0.04 -0.02 0 0.02 0.04 0.06 0.0810-7

10-6

10-5

sq

rt(s

-1)

µ0H(T)

M in = -0.2 M s

-0.005 0 0.0054 10-6

6 10-68 10-6

10-5

2 10-5 t0=0s

t0=10st0=5s

t0=20st0=40s

Homogeneous broadening of nuclear spins: Tunnel window

• Wernsdorfer et al, PRL (1999)

Page 47: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Effects of Strong Hyperfine Interactions:

Tetragonal symmetry (Ho in S4)

J = L+S = 8; gJ=5/4

Dipolar interactions between Ho3+ << mT

Case of Rare-earth ions: Ho3+ in Y0.998Ho0.002LiF4

HCF-Z = -B20 O2

0 - B40 O4

0 - B44 O4

4 - B60O6

0 - B64O6

4 - gJBJH Bl

m : acurately determined by high resolution optical spectroscopy

Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (1978); N.I. Agladze et al, PRL, 66, 477 (1991)

Page 48: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Hysteresis loop of Ho3+ ions in YLiF4

Mn12-ac

Thomas et al, Nature (1996) Giraud et al, PRL, 87, 057203-1 (2001) Friedman et al, PRL (1996), Hernandez et al, EPL (1996)

Steps at Bn = 450.n (mT) Steps at Bn = 23.n (mT) Tunneling of Mn12-ac Molecules Tunneling of Ho3+ ion

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/ 0

dm/d

Hz (

1/T)

Ho3+

-1

-0,5

0

0,5

1

-3 -2 -1 0 1 2 3

1.5K1.6K1.9K2.4K

M/M

S

BL (T)

Comparison with Mn12-ac

Page 49: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Role of Strong Hyperfine Interactions H = HCF-Z + A.I.J

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/ 0

dm/d

Hz (

1/T)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5

E (K

)

0Hz (mT)

-7/2

7/2

5/2

-7/2

7/2

3/25/2

3/2

-5/2 -3/2-1/21/2

-5/2 -3/2

Induce Tunneling of Electronic Moments

-1/2 1/2

Avoided Level Crossings between |, Iz and |+, Iz’ if DI= (Iz -Iz’ )/2 integer

Co-Tunneling of Electronic and Nuclear Spins:

Electro-nuclear entanglement

Page 50: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Fast sweeping rate ... a different regime

50 mK0.3 T/s

½, Iz ½, I’z

120 160 200 240

0

4

8

-150 -75 0 75 150 225

0

20

40

60

-300 -200 -100 0 100 200 300-1,0

-0,5

0,0

0,5

1,0

-8 -6 -4 -2 0 2 4 6 8 10-180-120-60

060

120180240

n = 6n = 7

n = 8n = 9

b)

dH/dt<0

n=1

n=0

1/ 0

dm/d

H z (1/

T)

0Hz (mT)

a)

M/M

S

0Hz (mT)

integer n half integer n

linear fit 0Hn = n x 23 mT

0H n (

mT)

n

Giraud et al, PRL 87, 057203 1 (2001)

Additional steps at fields Bn = (23/2).n (mT)

Cross-spin reversal and Co-tunneling of Ho3+ pairs

Page 51: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Exchange-biased quantum tunnelling in a dimer of Mn4 molecule

W. Wernsdorfer et al, Nature 416, 406 (2002)

Page 52: 2002 Agilent Technologies  Europhysics Prize Lecture  on

V15 : The Archetype of Low spin Molecules

A Mesoscopic Spin S=1/2

Anisotropy of g-factor: ~ 0.6%Ajiro et al, J..Low. Temp.

Phys. to appear (2003)Barra et al,J. Am. Chem.

Soc. 114, 8509 (1992)

Exchange interactions: Antiferromagnetic ~

several 102K

Müller, Döring, Angew. Chem. Intl. Engl., 27, 171 (1988)

Page 53: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Barbara et al, cond-mat / 0205141 v1; submited to PRL.

0,0 0,2 0,4 0,6 0,8 1,00,0

0,2

0,4

0,6

0,8

1,0

M/M

S

B0(T)

= 130

60 mK 0.14 T/s 0.14 mT/s

V15

M(H) : Reversible and out of equilibrium

80 mK

ener

gy

magnetic field

²

| S, -m >

| S, m-n >

1 P

1 - P

| S, -m >

| S, m-n >

Adiabatic Landau-Zener Spin Rotation

« Isolated V15 » : A two-level system « without dissipation »

M(H) = dE(H)/dH

Fast sweeping rate / Weak coupling to the cryostat

Nuclear Spin-Bath :Weak Level Broadening

Page 54: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Low sweeping rate / Strong coupling to the cryostat

« Non-Isolated V15 » : A two-level system « with dissipation »

0,0

0,2

0,4

0,6

0,8

1,0

-0,6 -0,3 0,0 0,3 0,60,00

0,05

0,10

0,15

T=0.1 K

B0 (T)

TS=Tph (K)

(c)

M (µ

B)

M (µ

B) T = 100 mK

0.14 T/s 0.07T/s 4.4 mT/s

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,70,0

0,2

0,4

0,6

0,8

1,0(d)

B0 (T)

Measured

Calculated

Chiorescu et al, PRL 84, 3454 (2000)

M(H): IrreversibleLZS transition at Finite Temperature

(dissipative)

Phonon-bath bottleneck modelAbragam, Bleaney, 1970; Chiorescu et al, 1999.

Nuclear spin-bath level broadeningStamp, Prokofiev, 1998.

Page 55: 2002 Agilent Technologies  Europhysics Prize Lecture  on

V15: a Gapped Spin ½ Molecule

Dzyaloshinsky-Moriya interactions: HDM= - DijSixSj

The Multi-Spin Character of the Molecule (15 spins)

+

Time Reversal Symmetry = 0 (Kramers Theorem)

Page 56: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Magnetism: From Macroscopic to Single atoms

S = 1020 1010 108 106 105 104 103 102 10 1

clusters spinsmoleculesNano-particlesNano-wiressubmicron

0 3 nm

Ho

Page 57: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Macroscopic Quantum Tunneling of Magnetization

of Single Nanoparticles easy axis

Barium ferrite Nanoparticle (10 nm)

Wernsdorfer et al. et al, PRL, 79, 4014, (1997)

Tc=0.31 K

Stoner-Wohlfarth astroid

0.2

0.4

0.6

0.8

1

1.2

0° 15° 30° 45° 60° 75° 90°

T c(

)/T

c(45

°)

angle

Tc() 0Ha 1/4 cot 1/ 6 1 cot 2/3 1

Miguel and Chudnovsky, PRB (1995)

Page 58: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Dissipation control of LZSMolecule spins 1/2 : Gapped

V15

Ho3+ , Mn4 pairs:Cross-spin transitions, Co-tunneling

Mn4 Fe8

Quantum DysnamicsBerry Phases

Quantum Classical crossoverQuantum Dynamics, Spin Bath

Mn12-ac

Conclusion and Perspectives Quantum Tunneling at the Mesoscopic Scale(Environmental Effects on Quantum Mechanics)

Evidence for Quantum Coherence (, Rabbi oscillations, … )

Manipulations of Quantum Spins, Spins Qbits(Quantum Informations and Computers)

Tunneling of single Ho3+ ions Entangled I-J states

Ho3+

Page 59: 2002 Agilent Technologies  Europhysics Prize Lecture  on

AcknowledgementsUniv. Florence & Modena:Andrea CaneschiClaudio SangregorioLorenzo SoraceAngelo RettoriAnna FortAndrea Cornia

L. Neél Lab. CNRS GrenobleE. BonetI. ChiorescuR. Giraud F. Lionti L. Thomas C. Thirion R. Tiron

CCNY:Myriam SarachikYicheng ZhongU. Barcelona:Javier TejadaJoan Manel HernandezXixiang Zhang (now Hong Kong)Elias MolinsXeroxRon ZioloLehman College CUNYEugene ChudnovskyUniv. Rio de Janeiro M. Novak

Page 60: 2002 Agilent Technologies  Europhysics Prize Lecture  on

Italian INFMA. LascialfariF. BorsaR. CaciuffoG. AmorettiM. Affronte

CNRS GrenobleJ. VillainA. L. BarraC. PaulsenV. Villar A. BenoitA. SulpiceA.G. M. Jansen

CNRS Bagneux D. Mailly

Lehman College CUNYEugene ChudnovskyUniv. Calif. San Diego:David HendricksonSheila AubinEvan RumbergerE. Yang

Los Alamos:Rob Robinson(now ANSTO, Australia)Tim KelleyHeinz NakotteFrans Trouw (Argonne) Wei Bao

Univ. FloridaN. Aliaga, S. Bhaduri, C. Boskovic, C. Canada, C._Sanudo, M. Soler, G. Christou

Univ. P. et M. Curie, ParisV. Marvaud, M. Verdaguer,

Univ. BielefeldH. Bögge, A. Müller

U. St. PetersburgA.M. Tkachuk

Univ. Manchester R.E.P. Winpenny

Univ. Kyoto H. Ajiro, T. Goto, S. Maegawa

Univ. OkkaidoY. Furukawa

Page 61: 2002 Agilent Technologies  Europhysics Prize Lecture  on

AcknowledgementsJ. F. Fernandez

A. Garg

M. Leuenberger D. Loss

A. Mukhin

S. Miyashita

N.V. Prokof'ev

A. Zvezdin

L. J. de Jongh

J. Schweizer

P.C.E. Stamp

I. Tupitsyn

N. Nagaosa

K. Saito

Page 62: 2002 Agilent Technologies  Europhysics Prize Lecture  on