2: three different fourier transforms

101
2: Three Different Fourier Transforms 2: Three Different Fourier Transforms Fourier Transforms Convergence of DTFT DTFT Properties DFT Properties Symmetries Parseval’s Theorem Convolution Sampling Process Zero-Padding Phase Unwrapping Uncertainty principle Summary MATLAB routines DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 1 / 14

Upload: others

Post on 11-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2: Three Different Fourier Transforms

2: Three Different FourierTransforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 1 / 14

Page 2: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

Page 3: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)

Page 4: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)

Page 5: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)• DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k]

Page 6: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)• DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =∫∞−∞ x(t)e−jΩtdt x(t) = 1

∫∞−∞ X(jΩ)ejΩtdΩ

Page 7: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)• DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =∫∞−∞ x(t)e−jΩtdt x(t) = 1

∫∞−∞ X(jΩ)ejΩtdΩ

DTFT X(ejω) =∑∞

−∞ x[n]e−jωn x[n] = 12π

∫ π

−πX(ejω)ejωndω

Page 8: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)• DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =∫∞−∞ x(t)e−jΩtdt x(t) = 1

∫∞−∞ X(jΩ)ejΩtdΩ

DTFT X(ejω) =∑∞

−∞ x[n]e−jωn x[n] = 12π

∫ π

−πX(ejω)ejωndω

We use Ω for “real” and ω = ΩT for “normalized” angular frequency.Nyquist frequency is at ΩNyq = 2π fs

2 = πT

and ωNyq = π.

Page 9: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)• DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =∫∞−∞ x(t)e−jΩtdt x(t) = 1

∫∞−∞ X(jΩ)ejΩtdΩ

DTFT X(ejω) =∑∞

−∞ x[n]e−jωn x[n] = 12π

∫ π

−πX(ejω)ejωndω

DFT X[k] =∑N−1

0 x[n]e−j2π kn

N x[n] = 1N

∑N−10 X[k]ej2π

kn

N

We use Ω for “real” and ω = ΩT for “normalized” angular frequency.Nyquist frequency is at ΩNyq = 2π fs

2 = πT

and ωNyq = π.

Page 10: 2: Three Different Fourier Transforms

Fourier Transforms

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 2 / 14

Three different Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)• DTFT (Discrete-Time Fourier Transform): x[n] → X(ejω)• DFT a.k.a. FFT (Discrete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =∫∞−∞ x(t)e−jΩtdt x(t) = 1

∫∞−∞ X(jΩ)ejΩtdΩ

DTFT X(ejω) =∑∞

−∞ x[n]e−jωn x[n] = 12π

∫ π

−πX(ejω)ejωndω

DFT X[k] =∑N−1

0 x[n]e−j2π kn

N x[n] = 1N

∑N−10 X[k]ej2π

kn

N

We use Ω for “real” and ω = ΩT for “normalized” angular frequency.Nyquist frequency is at ΩNyq = 2π fs

2 = πT

and ωNyq = π.

For “power signals” (energy ∝ duration), CTFT & DTFT are unbounded.Fix this by normalizing:

X(jΩ) = limA→∞12A

∫ A

−Ax(t)e−jΩtdt

X(ejω) = limA→∞1

2A+1

∑A−A x[n]e−jωn

Page 11: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Page 12: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Strong Convergence:x[n] absolutely summable ⇒X(ejω) converges uniformly

Page 13: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Strong Convergence:x[n] absolutely summable ⇒X(ejω) converges uniformly∑∞

−∞ |x[n]| < ∞⇒ supω∣

∣X(ejω)−XK(ejω)∣

∣ −−−−→K→∞

0

Page 14: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Strong Convergence:x[n] absolutely summable ⇒X(ejω) converges uniformly∑∞

−∞ |x[n]| < ∞⇒ supω∣

∣X(ejω)−XK(ejω)∣

∣ −−−−→K→∞

0

Weaker convergence:x[n] finite energy ⇒X(ejω) converges in mean square

Page 15: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Strong Convergence:x[n] absolutely summable ⇒X(ejω) converges uniformly∑∞

−∞ |x[n]| < ∞⇒ supω∣

∣X(ejω)−XK(ejω)∣

∣ −−−−→K→∞

0

Weaker convergence:x[n] finite energy ⇒X(ejω) converges in mean square∑∞

−∞ |x[n]|2< ∞⇒ 1

∫ π

−π

∣X(ejω)−XK(ejω)∣

2dω −−−−→

K→∞0

Page 16: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Strong Convergence:x[n] absolutely summable ⇒X(ejω) converges uniformly∑∞

−∞ |x[n]| < ∞⇒ supω∣

∣X(ejω)−XK(ejω)∣

∣ −−−−→K→∞

0

Weaker convergence:x[n] finite energy ⇒X(ejω) converges in mean square∑∞

−∞ |x[n]|2< ∞⇒ 1

∫ π

−π

∣X(ejω)−XK(ejω)∣

2dω −−−−→

K→∞0

Example: x[n] = sin 0.5πnπn

0 0.1 0.2 0.3 0.4 0.5-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π (rad/sample)

K j ω

K=5

0 0.1 0.2 0.3 0.4 0.5-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π (rad/sample)

K j ω

K=20

0 0.1 0.2 0.3 0.4 0.5-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π (rad/sample)

K j ω

K=50

Page 17: 2: Three Different Fourier Transforms

Convergence of DTFT

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 3 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn does not converge for all x[n].

Consider the finite sum: XK(ejω) =∑K

−K x[n]e−jωn

Strong Convergence:x[n] absolutely summable ⇒X(ejω) converges uniformly∑∞

−∞ |x[n]| < ∞⇒ supω∣

∣X(ejω)−XK(ejω)∣

∣ −−−−→K→∞

0

Weaker convergence:x[n] finite energy ⇒X(ejω) converges in mean square∑∞

−∞ |x[n]|2< ∞⇒ 1

∫ π

−π

∣X(ejω)−XK(ejω)∣

2dω −−−−→

K→∞0

Example: x[n] = sin 0.5πnπn

0 0.1 0.2 0.3 0.4 0.5-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π (rad/sample)

K j ω

K=5

0 0.1 0.2 0.3 0.4 0.5-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π (rad/sample)

K j ω

K=20

0 0.1 0.2 0.3 0.4 0.5-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π (rad/sample)

K j ω

K=50

Gibbs phenomenon:Converges at each ω as K → ∞ but peak error does not get smaller.

Page 18: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Page 19: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

Page 20: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

Page 21: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

Page 22: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )

Page 23: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )Equivalent to multiplying a continuous x(t) by an impulse train.

Page 24: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )= x(t)×∑∞

−∞ δ(t− nT )Equivalent to multiplying a continuous x(t) by an impulse train.

Page 25: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )= x(t)×∑∞

−∞ δ(t− nT )Equivalent to multiplying a continuous x(t) by an impulse train.

Proof: X(ejω) =∑∞

−∞ x[n]e−jωn

Page 26: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )= x(t)×∑∞

−∞ δ(t− nT )Equivalent to multiplying a continuous x(t) by an impulse train.

Proof: X(ejω) =∑∞

−∞ x[n]e−jωn

∑∞n=−∞ x[n]

∫∞−∞ δ(t− nT )e−jω t

T dt

Page 27: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )= x(t)×∑∞

−∞ δ(t− nT )Equivalent to multiplying a continuous x(t) by an impulse train.

Proof: X(ejω) =∑∞

−∞ x[n]e−jωn

∑∞n=−∞ x[n]

∫∞−∞ δ(t− nT )e−jω t

T dt

(i)=

∫∞−∞

∑∞n=−∞ x[n]δ(t− nT )e−jω t

T dt

(i) OK if∑∞

−∞ |x[n]| < ∞.

Page 28: 2: Three Different Fourier Transforms

DTFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 4 / 14

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

• DTFT is periodic in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω :X(z) =

∑∞−∞ x[n]z−n

DTFT converges iff the ROC includes |z| = 1.

• DTFT is the same as the CTFT of a signal comprising impulses atthe sample times (Dirac δ functions) of appropriate heights:

xδ(t) =∑

x[n]δ(t− nT )= x(t)×∑∞

−∞ δ(t− nT )Equivalent to multiplying a continuous x(t) by an impulse train.

Proof: X(ejω) =∑∞

−∞ x[n]e−jωn

∑∞n=−∞ x[n]

∫∞−∞ δ(t− nT )e−jω t

T dt

(i)=

∫∞−∞

∑∞n=−∞ x[n]δ(t− nT )e−jω t

T dt

(ii)=

∫∞−∞ xδ(t)e

−jΩtdt

(i) OK if∑∞

−∞ |x[n]| < ∞. (ii) use ω = ΩT .

Page 29: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

Page 30: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

Page 31: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

Page 32: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

The ωk are uniformly spaced from ω = 0 to ω = 2πN−1N

.

Page 33: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

The ωk are uniformly spaced from ω = 0 to ω = 2πN−1N

.DFT is the z-Transform evaluated at N equally spaced pointsaround the unit circle beginning at z = 1.

Page 34: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

The ωk are uniformly spaced from ω = 0 to ω = 2πN−1N

.DFT is the z-Transform evaluated at N equally spaced pointsaround the unit circle beginning at z = 1.

Case 2: x[n] is periodic with period N

DFT equals the normalized DTFT

Page 35: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

The ωk are uniformly spaced from ω = 0 to ω = 2πN−1N

.DFT is the z-Transform evaluated at N equally spaced pointsaround the unit circle beginning at z = 1.

Case 2: x[n] is periodic with period N

DFT equals the normalized DTFT

X[k] = limK→∞N

2K+1 ×XK(ejωk)

Page 36: 2: Three Different Fourier Transforms

DFT Properties

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 5 / 14

DFT: X[k] =∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2πNk.

The ωk are uniformly spaced from ω = 0 to ω = 2πN−1N

.DFT is the z-Transform evaluated at N equally spaced pointsaround the unit circle beginning at z = 1.

Case 2: x[n] is periodic with period N

DFT equals the normalized DTFT

X[k] = limK→∞N

2K+1 ×XK(ejωk)

where XK(ejω) =∑K

−K x[n]e−jωn

Page 37: 2: Three Different Fourier Transforms

Symmetries

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 6 / 14

If x[n] has a special property then X(ejω)and X[k] will havecorresponding properties as shown in the table (and vice versa):

One domain Other domain

Discrete PeriodicSymmetric Symmetric

Antisymmetric AntisymmetricReal Conjugate Symmetric

Imaginary Conjugate AntisymmetricReal + Symmetric Real + Symmetric

Real + Antisymmetric Imaginary + Antisymmetric

Page 38: 2: Three Different Fourier Transforms

Symmetries

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 6 / 14

If x[n] has a special property then X(ejω)and X[k] will havecorresponding properties as shown in the table (and vice versa):

One domain Other domain

Discrete PeriodicSymmetric Symmetric

Antisymmetric AntisymmetricReal Conjugate Symmetric

Imaginary Conjugate AntisymmetricReal + Symmetric Real + Symmetric

Real + Antisymmetric Imaginary + Antisymmetric

Symmetric: x[n] = x[−n]

Page 39: 2: Three Different Fourier Transforms

Symmetries

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 6 / 14

If x[n] has a special property then X(ejω)and X[k] will havecorresponding properties as shown in the table (and vice versa):

One domain Other domain

Discrete PeriodicSymmetric Symmetric

Antisymmetric AntisymmetricReal Conjugate Symmetric

Imaginary Conjugate AntisymmetricReal + Symmetric Real + Symmetric

Real + Antisymmetric Imaginary + Antisymmetric

Symmetric: x[n] = x[−n]X(ejω) = X(e−jω)

Page 40: 2: Three Different Fourier Transforms

Symmetries

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 6 / 14

If x[n] has a special property then X(ejω)and X[k] will havecorresponding properties as shown in the table (and vice versa):

One domain Other domain

Discrete PeriodicSymmetric Symmetric

Antisymmetric AntisymmetricReal Conjugate Symmetric

Imaginary Conjugate AntisymmetricReal + Symmetric Real + Symmetric

Real + Antisymmetric Imaginary + Antisymmetric

Symmetric: x[n] = x[−n]X(ejω) = X(e−jω)X[k] = X[(−k)mod N ] = X[N − k] for k > 0

Page 41: 2: Three Different Fourier Transforms

Symmetries

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 6 / 14

If x[n] has a special property then X(ejω)and X[k] will havecorresponding properties as shown in the table (and vice versa):

One domain Other domain

Discrete PeriodicSymmetric Symmetric

Antisymmetric AntisymmetricReal Conjugate Symmetric

Imaginary Conjugate AntisymmetricReal + Symmetric Real + Symmetric

Real + Antisymmetric Imaginary + Antisymmetric

Symmetric: x[n] = x[−n]X(ejω) = X(e−jω)X[k] = X[(−k)mod N ] = X[N − k] for k > 0

Conjugate Symmetric: x[n] = x∗[−n]

Page 42: 2: Three Different Fourier Transforms

Symmetries

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 6 / 14

If x[n] has a special property then X(ejω)and X[k] will havecorresponding properties as shown in the table (and vice versa):

One domain Other domain

Discrete PeriodicSymmetric Symmetric

Antisymmetric AntisymmetricReal Conjugate Symmetric

Imaginary Conjugate AntisymmetricReal + Symmetric Real + Symmetric

Real + Antisymmetric Imaginary + Antisymmetric

Symmetric: x[n] = x[−n]X(ejω) = X(e−jω)X[k] = X[(−k)mod N ] = X[N − k] for k > 0

Conjugate Symmetric: x[n] = x∗[−n]Conjugate Antisymmetric: x[n] = −x∗[−n]

Page 43: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

Page 44: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

CTFT∫

|x(t)|2 dt = 12π

|X(jΩ)|2 dΩ

Page 45: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

CTFT∫

|x(t)|2 dt = 12π

|X(jΩ)|2 dΩ

DTFT∑∞

−∞ |x[n]|2 = 12π

∫ π

−π

∣X(ejω)∣

2dω

Page 46: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

CTFT∫

|x(t)|2 dt = 12π

|X(jΩ)|2 dΩ

DTFT∑∞

−∞ |x[n]|2 = 12π

∫ π

−π

∣X(ejω)∣

2dω

DFT∑N−1

0 |x[n]|2 = 1N

∑N−10 |X[k]|2

Page 47: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

CTFT∫

|x(t)|2 dt = 12π

|X(jΩ)|2 dΩ

DTFT∑∞

−∞ |x[n]|2 = 12π

∫ π

−π

∣X(ejω)∣

2dω

DFT∑N−1

0 |x[n]|2 = 1N

∑N−10 |X[k]|2

More generally, they actually preserve complex inner products:

∑N−10 x[n]y∗[n] = 1

N

∑N−10 X[k]Y ∗[k]

Page 48: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

CTFT∫

|x(t)|2 dt = 12π

|X(jΩ)|2 dΩ

DTFT∑∞

−∞ |x[n]|2 = 12π

∫ π

−π

∣X(ejω)∣

2dω

DFT∑N−1

0 |x[n]|2 = 1N

∑N−10 |X[k]|2

More generally, they actually preserve complex inner products:

∑N−10 x[n]y∗[n] = 1

N

∑N−10 X[k]Y ∗[k]

Unitary matrix viewpoint for DFT:

If we regard x and X as vectors, then X = Fx where F isa symmetric matrix defined by fk+1,n+1 = e−j2π kn

N .

Page 49: 2: Three Different Fourier Transforms

Parseval’s Theorem

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 7 / 14

Fourier transforms preserve “energy”

CTFT∫

|x(t)|2 dt = 12π

|X(jΩ)|2 dΩ

DTFT∑∞

−∞ |x[n]|2 = 12π

∫ π

−π

∣X(ejω)∣

2dω

DFT∑N−1

0 |x[n]|2 = 1N

∑N−10 |X[k]|2

More generally, they actually preserve complex inner products:

∑N−10 x[n]y∗[n] = 1

N

∑N−10 X[k]Y ∗[k]

Unitary matrix viewpoint for DFT:

If we regard x and X as vectors, then X = Fx where F isa symmetric matrix defined by fk+1,n+1 = e−j2π kn

N .

The inverse DFT matrix is F−1 = 1NF

H

equivalently, G = 1√NF is a unitary matrix with G

HG = I.

Page 50: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Product

Page 51: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

Page 52: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

Page 53: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

Page 54: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

Page 55: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

g[n] : h[n] :

Page 56: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

g[n] : h[n] : g[n] ∗ h[n] :

Page 57: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]

Page 58: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

DTFT: Product→ Circular Convolution ÷2πy[n] = g[n]h[n]

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]

Page 59: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

DTFT: Product→ Circular Convolution ÷2πy[n] = g[n]h[n]⇒ Y (ejω) = 1

2πG(ejω)⊛π H(ejω) =12π

∫ π

−πG(ejθ)H(ej(ω−θ))dθ

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]

Page 60: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

DTFT: Product→ Circular Convolution ÷2πy[n] = g[n]h[n]⇒ Y (ejω) = 1

2πG(ejω)⊛π H(ejω) =12π

∫ π

−πG(ejθ)H(ej(ω−θ))dθ

DFT: Product→ Circular Convolution ÷Ny[n] = g[n]h[n]

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]

Page 61: 2: Three Different Fourier Transforms

Convolution

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 8 / 14

DTFT: Convolution → Productx[n] = g[n] ∗ h[n]=

∑∞k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Circular convolution→ Productx[n] = g[n]⊛N h[n]=

∑N−1k=0 g[k]h[(n− k)modN ]

⇒ X[k] = G[k]H[k]

DTFT: Product→ Circular Convolution ÷2πy[n] = g[n]h[n]⇒ Y (ejω) = 1

2πG(ejω)⊛π H(ejω) =12π

∫ π

−πG(ejθ)H(ej(ω−θ))dθ

DFT: Product→ Circular Convolution ÷Ny[n] = g[n]h[n]

⇒ Y [k] = 1NG[k]⊛N H[k]

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]

Page 62: 2: Three Different Fourier Transforms

Sampling Process

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 9 / 14

Time Time Frequency

AnalogCTFT−→

Page 63: 2: Three Different Fourier Transforms

Sampling Process

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 9 / 14

Time Time Frequency

AnalogCTFT−→

Low PassFilter

* →CTFT−→

Page 64: 2: Three Different Fourier Transforms

Sampling Process

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 9 / 14

Time Time Frequency

AnalogCTFT−→

Low PassFilter

* →CTFT−→

Sample × →DTFT−→

Page 65: 2: Three Different Fourier Transforms

Sampling Process

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 9 / 14

Time Time Frequency

AnalogCTFT−→

Low PassFilter

* →CTFT−→

Sample × →DTFT−→

Window × →DTFT−→

Page 66: 2: Three Different Fourier Transforms

Sampling Process

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 9 / 14

Time Time Frequency

AnalogCTFT−→

Low PassFilter

* →CTFT−→

Sample × →DTFT−→

Window × →DTFT−→

DFTDFT−→

Page 67: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n]

WindowedSignal

Page 68: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n]

WindowedSignal

With zero-padding

Page 69: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n] Frequency |X[k]|

WindowedSignal

With zero-padding

Page 70: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n] Frequency |X[k]|

WindowedSignal

With zero-padding

Page 71: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n] Frequency |X[k]|

WindowedSignal

With zero-padding

• Zero-padding causes the DFT to evaluate the DTFT at more valuesof ωk. Denser frequency samples.

Page 72: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n] Frequency |X[k]|

WindowedSignal

With zero-padding

• Zero-padding causes the DFT to evaluate the DTFT at more valuesof ωk. Denser frequency samples.

• Width of the peaks remains constant: determined by the length andshape of the window.

Page 73: 2: Three Different Fourier Transforms

Zero-Padding

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 10 / 14

Zero padding means added extra zeros onto the end of x[n] beforeperforming the DFT.

Time x[n] Frequency |X[k]|

WindowedSignal

With zero-padding

• Zero-padding causes the DFT to evaluate the DTFT at more valuesof ωk. Denser frequency samples.

• Width of the peaks remains constant: determined by the length andshape of the window.

• Smoother graph but increased frequency resolution is an illusion.

Page 74: 2: Three Different Fourier Transforms

Phase Unwrapping

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 11 / 14

Phase of a DTFT is only defined to within an integer multiple of 2π.

x[n] |X[k]|

Page 75: 2: Three Different Fourier Transforms

Phase Unwrapping

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 11 / 14

Phase of a DTFT is only defined to within an integer multiple of 2π.

x[n] |X[k]|

∠X[k]

Page 76: 2: Three Different Fourier Transforms

Phase Unwrapping

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 11 / 14

Phase of a DTFT is only defined to within an integer multiple of 2π.

x[n] |X[k]|

∠X[k]

Phase unwrapping adds multiples of 2π onto each ∠X[k] to make thephase as continuous as possible.

Page 77: 2: Three Different Fourier Transforms

Phase Unwrapping

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 11 / 14

Phase of a DTFT is only defined to within an integer multiple of 2π.

x[n] |X[k]|

∠X[k] ∠X[k] unwrapped

Phase unwrapping adds multiples of 2π onto each ∠X[k] to make thephase as continuous as possible.

Page 78: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

Page 79: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

Page 80: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.

Page 81: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

Page 82: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Page 83: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Page 84: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Page 85: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Now∫

txdxdtdt= 1

2 tx2(t)

∞t=−∞ −

12x

2dt = 0− 12 [by parts]

Page 86: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Now∫

txdxdtdt= 1

2 tx2(t)

∞t=−∞ −

12x

2dt = 0− 12 [by parts]

So 14 =

txdxdtdt∣

2≤

(∫

t2x2dt)

(

∫∣

dxdt

2dt)

[Schwartz]

Page 87: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Now∫

txdxdtdt= 1

2 tx2(t)

∞t=−∞ −

12x

2dt = 0− 12 [by parts]

So 14 =

txdxdtdt∣

2≤

(∫

t2x2dt)

(

∫∣

dxdt

2dt)

[Schwartz]

=(∫

t2x2dt)

(

|v(t)|2 dt)

Page 88: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Now∫

txdxdtdt= 1

2 tx2(t)

∞t=−∞ −

12x

2dt = 0− 12 [by parts]

So 14 =

txdxdtdt∣

2≤

(∫

t2x2dt)

(

∫∣

dxdt

2dt)

[Schwartz]

=(∫

t2x2dt)

(

|v(t)|2 dt)

=(∫

t2x2dt)

(

12π

|V (jω)|2 dω)

Page 89: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Now∫

txdxdtdt= 1

2 tx2(t)

∞t=−∞ −

12x

2dt = 0− 12 [by parts]

So 14 =

txdxdtdt∣

2≤

(∫

t2x2dt)

(

∫∣

dxdt

2dt)

[Schwartz]

=(∫

t2x2dt)

(

|v(t)|2 dt)

=(∫

t2x2dt)

(

12π

|V (jω)|2 dω)

=(∫

t2x2dt)

(

12π

ω2 |X(jω)|2dω

)

Page 90: 2: Three Different Fourier Transforms

Uncertainty principle

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 12 / 14

CTFT uncertainty principle:( ∫

t2|x(t)|2dt∫|x(t)|2dt

)1

2

( ∫ω2|X(jω)|2dω∫|X(jω)|2dω

)1

2

≥ 12

The first term measures the “width” of x(t) around t = 0.

It is like σ if |x(t)|2 was a zero-mean probability distribution.The second term is similarly the “width” of X(jω) in frequency.

A signal cannot be concentrated in both time and frequency.

Proof Outline:Assume

|x(t)|2dt = 1⇒

|X(jω)|2dω = 2π [Parseval]

Set v(t) = dxdt⇒ V (jω) = jωX(jω) [by parts]

Now∫

txdxdtdt= 1

2 tx2(t)

∞t=−∞ −

12x

2dt = 0− 12 [by parts]

So 14 =

txdxdtdt∣

2≤

(∫

t2x2dt)

(

∫∣

dxdt

2dt)

[Schwartz]

=(∫

t2x2dt)

(

|v(t)|2 dt)

=(∫

t2x2dt)

(

12π

|V (jω)|2 dω)

=(∫

t2x2dt)

(

12π

ω2 |X(jω)|2dω

)

No exact equivalent for DTFT/DFT but a similar effect is true

Page 91: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

Page 92: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

Page 93: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

Page 94: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

Page 95: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

• DTFT: Convolution → Product; Product → Circular Convolution

Page 96: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

• DTFT: Convolution → Product; Product → Circular Convolution

• DFT: Product ↔ Circular Convolution

Page 97: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

• DTFT: Convolution → Product; Product → Circular Convolution

• DFT: Product ↔ Circular Convolution

• DFT: Zero Padding → Denser freq sampling but same resolution

Page 98: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

• DTFT: Convolution → Product; Product → Circular Convolution

• DFT: Product ↔ Circular Convolution

• DFT: Zero Padding → Denser freq sampling but same resolution

• Phase is only defined to within a multiple of 2π.

Page 99: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

• DTFT: Convolution → Product; Product → Circular Convolution

• DFT: Product ↔ Circular Convolution

• DFT: Zero Padding → Denser freq sampling but same resolution

• Phase is only defined to within a multiple of 2π.

• Whenever you integrate over frequency you need a scale factor

12π for CTFT and DTFT or 1

Nfor DFT

e.g. Inverse transform, Parseval, frequency domain convolution

Page 100: 2: Three Different Fourier Transforms

Summary

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 13 / 14

• Three types: CTFT, DTFT, DFT

DTFT = CTFT of continuous signal × impulse train

DFT = DTFT of periodic or finite support signal

• DFT is a scaled unitary transform

• DTFT: Convolution → Product; Product → Circular Convolution

• DFT: Product ↔ Circular Convolution

• DFT: Zero Padding → Denser freq sampling but same resolution

• Phase is only defined to within a multiple of 2π.

• Whenever you integrate over frequency you need a scale factor

12π for CTFT and DTFT or 1

Nfor DFT

e.g. Inverse transform, Parseval, frequency domain convolution

For further details see Mitra: 3 & 5.

Page 101: 2: Three Different Fourier Transforms

MATLAB routines

2: Three Different FourierTransforms

• Fourier Transforms

• Convergence of DTFT

• DTFT Properties

• DFT Properties

• Symmetries

• Parseval’s Theorem

• Convolution

• Sampling Process

• Zero-Padding

• Phase Unwrapping

• Uncertainty principle

• Summary

• MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 – 14 / 14

fft, ifft DFT with optional zero-paddingfftshift swap the two halves of a vectorconv convolution or polynomial multiplication (not circular)

x[n]⊛y[n] real(ifft(fft(x).*fft(y)))unwrap remove 2π jumps from phase spectrum