2 hli analytical

Upload: spoof183

Post on 03-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 2 HLI Analytical

    1/21

    HL-I Adequacy Evaluation(Analytical Approach)

    B. Bagen

    Section Outl ine

    Objective and System Representation

    Deterministic Assessment

    Probabilistic Evaluation

    Analytical Approach

    Single Area Reliability Analysis

    n erconnec e ys em e a y na ys s

  • 8/12/2019 2 HLI Analytical

    2/21

    Objective and System Representation(A small representative system: RBTS)

    1X40 MW4x20 MW2x5 MW

    Bus 2

    2

    Capacity=

    240 MW

    Peak Load=

    185 MW

    2x40 MW

    1x20 MW

    1x10 MW

    20 MW

    1 6

    3

    2 7

    4

    Bus 1

    Bus 4Bus 3

    1

    20 MW

    20 MW

    40 MW85 MW5 8

    9Bus 5

    Bus 6

    Objective and System Representation

    Main Ob ective: To determine the s stem

    resource required to satisfy the system

    demand

    System representation:

    Total

    TotalSystem

    Generation

    System

    Load

  • 8/12/2019 2 HLI Analytical

    3/21

    Basic Evaluation Model

    Generation Model Load Model

    Risk Model

    Analytical Approach

    (Basic Models)

    Generation System Model

    Load Model

    Risk Model (Margin Model)

    Other Features can be included by: Modifying generation model: energy limited units, intermittent

    generation, Unit derated states, external assistances

    Adjusting load model: load forecast uncertainty, interruptible

    load, contracts, demand side management

  • 8/12/2019 2 HLI Analytical

    4/21

    Deterministic Assessment

    System reserve margin/capacity isdetermined based on bein able to su lthe forecast peak load with a specifiednumber of units out of service.

    Indices Percent Reserve (PR):

    Reserve Margin: %100

    PL

    PLICRM

    Reserve Capacity: RC=IC-PL=RMxPL

    Loss of the Largest Unit (LOLU):

    Reserve Capacity:

    Combination of the Two

    CLURC

    Deterministic Assessment

    (Pros and Cons)

    Easy to apply and understand

    PR: Does not incor orate an individual eneratin unitreliability data or load variation information

    LOLU: Considers the size of the largest unit but does notrecognize the system risk due to an outage of one or moregenerating units. The system reserve increases with theaddition of larger units to the system.

    In Summar deterministic method not reco nize andreflect uncertainties associated with power systems(Review example on Page 28 of Billinton and Allanbook)

  • 8/12/2019 2 HLI Analytical

    5/21

    Probabilistic Evaluation

    System reserve margin/capacity is set to keep

    demand below a specified value considering

    variabilities and uncertainties associated with

    both system resource and demand.

    Most commonly used indices:

    Loss of Load Probability (LOLP)

    Loss of Load Expectation (LOLE) Loss of Energy Expectation (LOEE)

    Analytical Approach

    (Generation Model: Individual Unit)

    Repairable Forced Failure (Two State Representation)

    d

    r

    Time (years)

    d+r

    Up

    Down

    r

    1

    rdf

    1

    d

    1

  • 8/12/2019 2 HLI Analytical

    6/21

    Analytical Approach

    (Generation Model: Individual Unit)

    Repairable Forced Failure (Two State Representation)

    MTBF

    Up

    MTTF

    MTTRTime (hours)

    Down

    Analytical Approach

    (Generation Model: Individual Unit)

    Repairable Forced Failure (Two State Representation)

    11

    MTTRr

    8760

    MTTFd Note: and f are two

    completely differentquantities. In mostcases MTTR is ,however, a very small

    8760

    8760

    11

    MTTRMTTFrdf

    MTTF and therefore and f are numericallyclose

  • 8/12/2019 2 HLI Analytical

    7/21

    Analytical Approach

    (Generation Model: Individual Unit)

    State Probabilities

    AP0

    FORUP

    Up Down

    0 1

    MTTRMTTF

    MTTR

    MTTR

    U

    8760

    Analytical Approach

    (Generation Model: Individual Unit)

    is typically a function of time (A bath tub curve )

    Infant Period Wear-out Period

    Normal Operating Period

    )(t

    It is fairly common to assume constant transitionrates in reliability modeling.

    Time

  • 8/12/2019 2 HLI Analytical

    8/21

    Analytical Approach

    (Generation Model: Individual Unit)

    Repairable Forced Failure (Multi-State Representation)

    Operating

    Partial

    RepairDerated

    Partial

    Failure

    Complete

    FailureComplete

    Repair

    Capacity(MW)

    Failed

    Time Period

    Analytical Approach

    (Generation Model: Individual Unit)

    Three State Representation

    Up

    121

    12

    31

    13

    32 23

    ya a1

    DFORP 2

    2 3 FORP 3

  • 8/12/2019 2 HLI Analytical

    9/21

    Analytical Approach

    (Generation Model: System)

    System Capacity Outage Probability Tables (COPT)

    Capacity Out

    (MW)

    Capacity In

    (MW)

    Probability Cumulative

    Probability

    0 150 0.970299 1

    50 100 0.029403 0.029701

    100 50 0.000297 0.000298

    150 0 0.000001 0.000001

    Can be developed using several different

    methodologies Discuss: state enumeration and recursive methods

    Analytical Approach

    (Load Model) Daily Peak Load Variation Curve (DPLVC): The

    cumulative load model formed by arranging theindividual dail eak loads in descendin order.

    Chronological Daily Load

    0.4

    0.6

    0.8

    1

    1.2

    di

    nP

    ercentofPeak

    Daily Peak Load Variation Curve

    0.6

    0.8

    1

    1.2

    n

    PercentofPeak

    0

    0.2

    1 61 121 181 241 301 361

    Day

    Loa

    0

    0.2

    .

    1 61 121 181 241 301 361

    Day

    Load

    i

  • 8/12/2019 2 HLI Analytical

    10/21

    Analytical Approach

    (Load Model)

    Load Duration Curve (LDC): The cumulative load modelformed by arranging the individual hourly load values in

    escen ng or er. n s case, e area un er ecurve represents the energy required by the system in

    a given period.Chronological Hourly Load

    0.8

    1

    1.2

    fPeak

    Load Duration Curve

    1

    1.2

    ak

    0

    0.2

    0.4

    0.6

    1

    801

    1601

    2401

    3201

    4001

    4801

    5601

    6401

    7201

    8001

    Hour

    Loa

    d

    in

    Percent

    0

    0.2

    0.4

    0.6

    0.8

    1

    801

    1601

    2401

    3201

    4001

    4801

    5601

    6401

    7201

    8001

    Hour

    Load

    in

    PercentofPe

    Analytical Approach(Convolution of Generation wi th DPLVC)

    Installed Capacity

    W

    kt

    Peak Load

    kO

    DPLVC

    LoadorCaacit(kW/M

    Time Period (days)

    valueactualis),/(

    valueunitperis,

    1 k

    kn

    k

    kktifyeardaysinLOLE

    tifLOLPtp

  • 8/12/2019 2 HLI Analytical

    11/21

    Analytical Approach(Convolution of Generation with LDC)

    kt

    kE

    Peak Load

    Reserve

    kO

    LDC

    orCapacity(kW/MW)

    Time Period (hours)

    Load

    Analytical Approach(Convolution of Generation with LDC)

    valueunitperis, kn tifLOLP

    t

    n

    k

    kk EpLOEE1

    n

    k

    kk

    E

    EpEIR

    1

    1

    va ueactuas,1 kk tifyearhoursinLOLE

    610E

    LOEEUPM60

    PL

    LOEESM

    orma ze :

  • 8/12/2019 2 HLI Analytical

    12/21

    Analytical Approach(A Simple Example)

    1 Generation: 3 generators,

    2 Load

    3

    identical FOR of 0.01 and

    each generator fails

    independently.

    Develop: COPT0.2050

    ProbabilityLoad (MW)

    0.2050

    ProbabilityLoad (MW)

    a cu a e: oss o oa

    probability (LOLP) andLOLE for the given load

    distribution

    0.05150

    0.75100

    0.05150

    0.75100

    Analytical Approach

    (State Enumeration: System State Space)

    11 11 11 11

    2 oa

    3

    2 oa

    3

    2 oa

    3

    2 oa

    3

    2 oa

    3

    2 oa

    3

    2 oa

    3

    2 oa

    3

    Load

    1Load

    1Load

    1Load

    1Load

    1Load

    1Load

    1Load

    1

    (1U,2U,3U) (1D,2U,3U) (1U,2D,3U) (1U,2U,3D)

    33 33 33 33

    (1D,2D,3U) (1D,2U,3D) (1U,2D,3D) (1D,2D,3D)

  • 8/12/2019 2 HLI Analytical

    13/21

    Analytical Approach(Capacity Outage Probability Table)

    Capacity Out Capacity In Individual Cumulative

    (MW) (MW) Probability Probability

    0 150 0.970299 1

    50 100 0.029403 0.029701

    100 50 0.000297 0.000298

    100 0 0.000001 0.000001

    Analytical Approach

    (Load: 50 MW)

    2 50

    1

    2 50

    1

    2 50

    1

    2 50

    1

    2 50

    1

    2 50

    1

    2 50

    1

    2 50

    1

    2 50

    3

    1

    2 50

    3

    1

    2 50

    3

    1

    2 50

    3

    1

    2 50

    3

    1

    2 50

    3

    1

    2 50

    3

    1

    2 50

    3

    1

    150 100 100 100(1U,2U,3U) (1D,2U,3U) (1U,2D,3U) (1U,2U,3D)

    50 050 50(1D,2D,3U) (1D,2U,3D) (1U,2D,3D) (1D,2D,3D)

    P{ (1D,2D,3D)} = 0.000001

  • 8/12/2019 2 HLI Analytical

    14/21

    Analytical Approach(Load: 100 MW)

    2 100

    1

    2 100

    1

    2 100

    1

    2 100

    1

    2 100

    1

    2 100

    1

    2 100

    1

    2 100

    1

    2 100

    3

    1

    2 100

    3

    1

    2 100

    3

    1

    2 100

    3

    1

    2 100

    3

    1

    2 100

    3

    1

    2 100

    3

    1

    2 100

    3

    1

    150 100 100 100(1U,2U,3U) (1D,2U,3U) (1U,2D,3U) (1U,2U,3D)

    50 050 50(1D,2D,3U) (1D,2U,3D) (1U,2D,3D) (1D,2D,3D)

    P{(1D,2D,3U),(1D,2U,3D),(1U,2D,3D), (1D,2D,3D)}

    = 0.000297 + 0.000001 = 0.000298

    Analytical Approach(Load: 150 MW)

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    33 33 33 33

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    2 150

    1

    150 100 100 100(1U,2U,3U) (1D,2U,3U) (1U,2D,3U) (1U,2U,3D)

    50 050 50(1D,2D,3U) (1D,2U,3D) (1U,2D,3D) (1D,2D,3D)

    P = 1 - P{ (1U,2U,3U) } = 0.029701

  • 8/12/2019 2 HLI Analytical

    15/21

    Analytical Approach( Calculation of LOLP and LOLE)

    LOLP = 0.0000010.20 + 0.0002980.75 +

    0.0297010.05= 0.00170875

    LOLE = 0.00170875*365=0.6237 days/year

    Analytical Approach(Approximations)

    Grouping

    Rounding

    Truncating

    Continuous Approximations

  • 8/12/2019 2 HLI Analytical

    16/21

    Analytical Approach

    (Recursive Algorithm)

    Capacity Out Individual Probability Cumulative Probability

    X1 p1 1

    X2 p2 P2 = pn +pn-1 ++p2

    Xi pi Pi = pn +pn-1 ++pi

    Xn-1 pn-1 Pn-1 = pn +pn-1

    Xn pn Pn =pn

    Analytical Approach(Recursive Algorithm)

    X MW can be calculated as follows:

    n

    ii CXPpXP )(')(

    i 1

  • 8/12/2019 2 HLI Analytical

    17/21

    Analytical Approach(Recursive Algorithm)

    n: number of unit state

    i

    pi: Probability of existence of the unit state i

    P(X): the cumulative probabilities of a capacity outage level of

    X MW before the unit of capacity C is added. For initialization:

    P(X)=1 if X 0 and otherwise P(X)=0.

    P(X): the cumulative probabilities of a capacity outage level of XMW afterthe unit of capacity C is added.

    Analytical Approach

    (Recursive Algori thm)

    Step 1: Add the first unit

    Capacity Out

    (MW)

    Capacity In

    (MW)

    Individual

    Probability

    Cumulative

    Probability

    = . - . - = . . =

    P(50)=0.99*P(50-0)+0.01*P(50-50)=0.99*0+0.01*1=0.01

    .50 0 0.01 0.01

  • 8/12/2019 2 HLI Analytical

    18/21

    Analytical Approach

    (Recursive Algorithm)

    Step 2: Add the second unitP 0 =0.99*P 0-0 +0.01*P 0-50 =0.99*1+0.01*1=1

    Capacity Out

    (MW)

    Capacity In

    (MW)

    Individual

    Probability

    Cumulative

    Probability

    P(50)=0.99*P(50-0)+0.01*P(50-50)=0.99*0.01+0.01*1=0.0199

    P(100)=0.99*P(100-0)+0.01*P(100-50)=0.99*0+0.01*0.01=0.0001

    .

    50 50 0.0198 0.0199100 0 0.0001 0.0001

    Analytical Approach

    (Recursive Algorithm)

    Step 3: Add the third unit

    P(0)=0.99*P(0-0)+0.01*P(0-50)=0.99*1+0.01*1=1

    P(50)=0.99*P(50-0)+0.01*P(50-50)=0.99*0.0199+0.01*1=0.029701

    P(100)=0.99*P(100-0)+0.01*P(100-50)=0.99*0.0001+0.01*0.0199=0.000298

    P(150)=0.99*P(150-0)+0.01*P(150-50)=0.99*0+0.01*0.0001=0.000001

  • 8/12/2019 2 HLI Analytical

    19/21

  • 8/12/2019 2 HLI Analytical

    20/21

    Analytical Approach

    (Recursive Algorithm)

    Ste 3 becomes:

    P(0)=0.96*P(0-0)+0.033*P(0-20)+ 0.007*P(0-50)

    P(20)= 0.96*P(20-0)+0.033*P(20-20)+ 0.007*P(20-50)

    P(50)= 0.96*P(50-0)+0.033*P(50-20)+ 0.007*P(50-50)

    P(70)= 0.96*P(70-0)+0.033*P(70-20)+ 0.007*P(70-50)

    = . - + . - + . -

    P(120)= 0.96*P(120-0)+0.033*P(120-20)+ 0.007*P(120-50)

    P(150)= 0.96*P(150-0)+0.033*P(150-20)+ 0.007*P(150-50)

    Analytical Approach(Recursive Algor ithm)

    The cumulative probability of each sate is:

    P(0)=0.96*1+0.033*1+ 0.007*1=1

    P(20)= 0.96*0.0199+0.033*1+ 0.007*1=0.0591040

    P(50)= 0.96*0.0199+0.033*0.0199+ 0.007*1=0.0267607

    P(70)= 0.96*0.0001+0.033*0.0199+ 0.007*0.0199=0.000892

    P(100)= 0.96*0.0001+0.033*0.0001+ 0.007*0.0199=0.0002386

    P(120)= 0.96*0+0.033*0.0001+ 0.007*0.0001=0.000004

    P(150)= 0.96*0+0.033*0+ 0.007*0.0001=0.0000007

  • 8/12/2019 2 HLI Analytical

    21/21

    Analytical Approach

    (Recursive Algorithm)

    Step 3:Add the third unit

    Capacity Out

    (MW)

    Capacity In

    (MW)

    Individual

    Probability

    Cumulative

    Probability

    0 150 0.9408960 1

    20 130 0.0323433 0.0591040

    50 100 0.0258687 0.0267607

    . .

    100 50 0.0002346 0.0002386

    120 30 0.0000033 0.0000040

    150 0 0.0000007 0.0000007