1.置換積分...授業資料 質問メールなど [email protected] 0 t s1= 1 2 a2t s2= 1...

3
授業資料 http://www.st.nanzan-u.ac.jp/info/sugiurah 質問メールなど [email protected] 0 t S 1 = 1 2 a 2 t S 2 = 1 2 x a 2 - x 2 S=S 1 +S 2 x a x a y 微積分学II 第4回 積分の計算 1.置換積分 [定理1] x = g(t ) のとき, f ( x ) dx = f ( g(t )) g (t ) dt (1) さらに a = g( α ), b = g(β ) なら,すなわち t α β x a b なら, f ( x ) dx a b = f ( g(t )) g (t ) dt α β .// (2) (証明) F( x ) = f ( x ) dx と置くと.合成関数の微分則①と F ( x ) = f ( x ) …②より, d dt F( g(t )) = F ( g(t )) g (t ) = f ( g(t )) g (t ) 両辺を t で積分して, x = g(t ) に注意すると, f ( x ) dx = F( x ) = F( g(t )) = f ( g(t )) g (t ) dt またこの等式より, f ( x ) dx a b = F(b) F(a) = F( g(β )) F( g( α )) = f ( g(t )) g (t ) dt α β .// [例1] F( x ) = a 2 x 2 dx = 1 2 a 2 sin 1 x a + x a 2 x 2 教科書の記法: sin 1 x = arcsin x, cos 1 x = arccos x, tan 1 x = arctan x x = a sin t (π 2 t π 2 sin 1 の主値 !" # $ # ) と置くと, t π 2 π 2 x a a a 2 x 2 = a 2 a 2 sin 2 t = a cos t , dx dt = a cos t ここは π 2 t π 2 ゆえ, 1 sin 2 t = cos 2 t = cos t 注意.ゆえに, a 2 x 2 dx = ( a cos t a 2 x 2 ! )(a cos t dx dt ! ) dt = a 2 cos 2 t dt = a 2 1 + cos2t 2 dt = a 2 2 t + 1 2 sin 2t x の関数として書くために, sin 2t = 2 sin t cos t , cos t = 1 a a 2 x 2 , sin t = x a , t = sin 1 x a を代入して, F( x ) = a 2 2 t + sin t cos t ( ) = a 2 2 sin 1 x a + x a 2 a 2 x 2 = 1 2 a 2 sin 1 x a + x a 2 x 2 上図の面積 S = a 2 u 2 du 0 x = F( x ) F(0) = F( x ) を考えると, F( x ) の成り立ちが分かる.// [例2] G 1 ( x ) = x dx x 2 + a 2 = 1 2 log( x 2 + a 2 ), G n ( x ) = x dx ( x 2 + a 2 ) n = 1 2(n 1)( x 2 + a 2 ) n1 (n 2). u = x 2 と置き置換積分. 0 t S 1 = 1 2 a 2 t S 2 = 1 2 x a 2 - x 2 S=S 1 +S 2 a 2 - x 2 x a x a y

Upload: others

Post on 22-Jun-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1.置換積分...授業資料  質問メールなど sugiurah@nanzan-u.ac.jp 0 t S1= 1 2 a2t S2= 1 2 x a2-x2 S=S1+S2 a 2-x x a x a y 微

授業資料 http://www.st.nanzan-u.ac.jp/info/sugiurah 質問メールなど [email protected]

0

t

S1=12a2t

S2=12x a2 - x2

S=S1+S2

a2 - x2

x ax

ay

微積分学II 第4回 積分の計算

1.置換積分[定理1] x = g(t)のとき,

f (x)dx∫ = f (g(t)) ′g (t)dt∫ . (1)

さらに a = g(α ), b = g(β )なら,すなわち t α → βx a → b なら,

f (x)dxa

b∫ = f (g(t)) ′g (t)dt

α

β∫ .// (2)

(証明) F(x) = f (x)dx∫ と置くと.合成関数の微分則①と ′F (x) = f (x)…②より,

ddtF(g(t)) =

①′F (g(t)) ′g (t) =

②f (g(t)) ′g (t).

両辺を t で積分して, x = g(t)に注意すると,

f (x)dx∫ = F(x) = F(g(t)) = f (g(t)) ′g (t)dt∫ .

またこの等式より,

f (x)dxa

b∫ = F(b)− F(a) = F(g(β ))− F(g(α )) = f (g(t)) ′g (t)dt

α

β∫ .//

[例1] F(x) = a2 − x2 dx∫ = 12a2 sin−1 x

a+ x a2 − x2⎛

⎝⎜⎞⎠⎟ .

 教科書の記法: sin−1 x = arcsin x, cos−1 x = arccos x, tan−1 x = arctan x.

  x = asin t (− π2 ≤ t ≤

π2

sin−1の主値! "# $#

)と置くと,

t − π2 → π

2x −a → a

, a2 − x2 = a2 − a2 sin2 t = acost, dxdt

= acost.

ここは − π2 ≤ t ≤

π2 ゆえ, 1− sin2 t = cos2 t = cost に注意.ゆえに,

a2 − x2 dx∫ = (acosta2−x2! )(acost

dxdt

!)dt∫ = a2 cos2 t dt∫ = a2 1+ cos2t2

dt∫ = a2

2t + 12sin2t⎛

⎝⎜⎞⎠⎟ .

xの関数として書くために, sin2t = 2sin t cost, cost = 1a

a2 − x2 , sin t = xa, t = sin−1 x

aを代入して,

F(x) = a2

2t + sin t cost( ) = a

2

2sin−1 x

a+ xa2

a2 − x2⎛⎝⎜

⎞⎠⎟ =

12a2 sin−1 x

a+ x a2 − x2⎛

⎝⎜⎞⎠⎟ .

 上図の面積 S = a2 − u2 du0

x∫ = F(x)− F(0) = F(x)を考えると, F(x)の成り立ちが分かる.//

[例2]G1(x) =

x dxx2 + a2∫ = 1

2log(x2 + a2 ),

Gn(x) =x dx

(x2 + a2 )n∫ = −12(n −1)(x2 + a2 )n−1

(n ≥ 2).

⎨⎪⎪

⎩⎪⎪

   u = x2と置き置換積分.

0

t

S1=12a2t

S2=12x a2 - x2

S=S1+S2

a2 - x2

x ax

ay

Page 2: 1.置換積分...授業資料  質問メールなど sugiurah@nanzan-u.ac.jp 0 t S1= 1 2 a2t S2= 1 2 x a2-x2 S=S1+S2 a 2-x x a x a y 微

授業資料 http://www.st.nanzan-u.ac.jp/info/sugiurah 質問メールなど [email protected]

2.部分積分[定理2]  (1) 不定積分: ′f (x)g(x)dx∫ = f (x)g(x)− f (x) ′g (x)dx∫ ,

  (2) 定積分 : ′f (x)g(x)dxa

b∫ = f (x)g(x)[ ]a

b − f (x) ′g (x)dxa

b∫ .//

(証明)積の微分則より, ′f (x)g(x) = f (x)g(x)( )′ − f (x) ′g (x).両辺を積分して(1),(2).//

[例3] xn log xdx∫ = xn+1

(n +1)2(n +1)log x −1( ). f (x) = xn:積分が簡単な方. g(x) = log x.

( n ≠ −1 )  xn ⋅ log xdx∫ = xn+1

n +1⋅ log x − xn+1

n +1⋅ 1x∫ dx = xn+1

n +1⋅ log x − xn

n +1dx∫ = xn+1

n +1⋅ log x − xn+1

(n +1)2.

( n = −1 )  x−1 ⋅ log xdx∫ = log x ⋅ log x − log x ⋅ x−1∫ dxより, x−1 ⋅ log xdx∫ = 12log2 x.//

[例4] sin−1 xdx∫ = xsin−1 x + 1− x2 . f (x) = 1, g(x) = sin−1 xとして,

1⋅sin−1 xdx∫ = xsin−1 x − x ⋅ 1

1− x2dx =∫ xsin−1 x − x ⋅ 1

1− x2dx∫ .

右辺第2項の積分は, u = 1− x2と置いて, du = −2xdx より,

x ⋅ 1

1− x2dx∫ = u−1/2 − 1

2du⎛

⎝⎜⎞⎠⎟∫ = − 1

2⋅2u1/2 = − 1− x2 .//

[例5] Fn(x) =dx

(x2 + a2 )n∫ (n ≥1)の漸化式:F1(x) =

dxx2 + a2∫ = 1

atan−1 x

a⎛⎝⎜

⎞⎠⎟ ,

Fn+1(x) =1

2na2x

(x2 + a2 )n+ (2n −1)Fn(x)

⎛⎝⎜

⎞⎠⎟(n ≥1).

⎨⎪⎪

⎩⎪⎪

Fn(x) = 1⋅ dx(x2 + a2 )n∫ = x ⋅ 1

(x2 + a2 )n− x ⋅ 2x(−n)

(x2 + a2 )n+1∫ dx = x ⋅ 1(x2 + a2 )n

+ 2n x2

(x2 + a2 )n+1∫ dx

= x(x2 + a2 )n

+ 2n 1(x2 + a2 )n

− a2

(x2 + a2 )n+1⎛

⎝⎜⎞

⎠⎟∫ dx = x(x2 + a2 )n

+ 2nFn(x)− 2na2Fn+1(x).

これを Fn+1(x)について解いて漸化式を得る.//

第4回練習問題 次の積分を求めよ.

 (1) xsin(x2 −1)dx∫  (2) 6x2 tan−1 xdx∫  (3) 2 − x20

1∫ dx (4) x dx

(x2 +1)2∫  (5) dx(x2 +1)2∫

(1)は置換積分,(2)は部分積分,(3),(4),(5)は例1,2,5の公式を使え.

Page 3: 1.置換積分...授業資料  質問メールなど sugiurah@nanzan-u.ac.jp 0 t S1= 1 2 a2t S2= 1 2 x a2-x2 S=S1+S2 a 2-x x a x a y 微

授業資料 http://www.st.nanzan-u.ac.jp/info/sugiurah 質問メールなど [email protected]

第4回練習問題 次の積分を求めよ.(各2点,計10点)

 (1) xsin(x2 −1)dx∫  (2) 6x2 tan−1 xdx∫  (3) 2 − x20

1∫ dx (4) x dx

(x2 +1)2∫  (5) dx(x2 +1)2∫

(1)は置換積分,(2)は部分積分,(3),(4),(5)は公式を使え.

解答 sudden death! 正解に2点.部分点無し.(1) u = x2と置くと, du = 2x dxゆえ,

xsin(x2 −1)dx∫ = sin(ux2! −1) du

2dx!

∫ = − 12cos(u −1) = − 1

2cos(x2 −1).

(2) F(x) = 6x2 ⋅ tan−1 xdx∫ = 2x3 ⋅ tan−1 x − 2x3 ⋅ 11+ x2

dx∫ .右辺第2項の積分をもとめる.

u = x2と置くと, du = 2x dxゆえ,

x2

1+ x22xdx∫ = u

1+ udu∫ = 1− 1

1+ u⎛⎝⎜

⎞⎠⎟ du∫ = u − log(1+ u) = x2 − log(1+ x2 ).

よって, F(x) = 2x3 ⋅ tan−1 x − x2 + log(1+ x2 ).

(3) 例1の公式で, a = 2 とすると,

2 − x20

1∫ dx = a2 − x2 dx∫ = 1

22sin−1 1

2+1 2 −12⎛

⎝⎜⎞⎠⎟− 122sin−1 0

2+1 2 − 02⎛

⎝⎜⎞⎠⎟

= 122π4+1⎛

⎝⎜⎞⎠⎟ =

π + 24.

(4) 例2の公式で, a = 1, n = 2とすると, x dx(x2 +1)2∫ = −1

2(x2 +1).

(5) 例5の漸化式で, a = 1, n = 1とすると, F1(x) = tan−1 xゆえ,

dx(x2 +1)2∫ = F2(x) =

12

xx2 +1

+ F1(x)⎛⎝⎜

⎞⎠⎟ =

12

xx2 +1

+ tan−1 x⎛⎝⎜

⎞⎠⎟ .