1biología matematica

22

Upload: yunuen-fg

Post on 10-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 1/22

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 2/22

Fisher: la primera síntesis

Introducción:

Para hablar de historia de lo que hoy llamamos Genética de Poblaciones es preciso partir cuando menos de la segunda mitad del siglo XIX, pues es en esta época cuando aparecen

dos trabajos fundamentales para el ulterior desarrollo de la Biología y de la ciencia engeneral. Se trata de la publicación, en 1859, del libro ''El Origen de las Especies...'' por 

Charles Darwin, y la presentación del reporte ''Experimentos de Hibridación en Plantas'' por 

Gregor Mendel en el año de 1865, ante la Sociedad para el Estudio de las Ciencias

 Naturales de Brün, Austria (hoy Brno, República Checa).

La ciencia biológica anterior a la segunda mitad del siglo XIX estuvo enfocada

 principalmente hacia introducir cierto orden en la clasificación de plantas y animales; habíamuy poca teoría cuantitativa y muy poca especulación cualitativa sobre las causas de la

enorme variabilidad observada de formas y especies: es por esta razón que, aunque pueda perfectamente trazarse la historia del estudio de la Genética y de los conceptos estadísticosy matemáticos en la Biología con mucha anterioridad a las dos fechas mencionadas arriba,

 pueda abordarse con legitimidad -para el objetivo de este ensayo- la historia de la Genética

Matemática a partir de estos dos fundamentales y exitosos intentos de aplicación de los

conceptos matemáticos en la teoría biológica.

En efecto, las leyes de la herencia, tal y como fueron enunciadas por Mendel, constituyen el

 prototipo de teoría cuantitativa en Biología; el experimento mismo y el reporte final sonejemplos sorprendentes de un magnífico diseño experimental y de una habilidad no común

en aquel tiempo para la inferencia estadística. Por otro lado, el trabajo de Charles Darwin,

meditado y preparado durante casi veinte años, ofrece un ejemplo de una experienciafascinante de observación, acopio de datos, síntesis, inferencia y especulación cualitativa

teórica sin igual hasta entonces en la historia de la Biología, a excepción, por supuesto, deltrabajo de Lyell en Geología y del trabajo paralelo de Wallace que llevó a éste a concebir,

independientemente de Darwin, a la selección natural. Es precisamente en la concepción

del fenómeno de la selección natural donde la especulación teórica se ve claramenterecompensada por la influencia del pensamiento matemático -o estadístico-, fundado en una

tradición filosófica contraria al vitalismo y al esencialismo: el ver a las especies o grupos de

seres vivos, no como formas o tipos únicos, sino como  poblaciones cuyos miembros

  presentan gran variabilidad, aunado al razonamiento lógico matemático, basado en laobservación de que los seres vivos se reproducen a tasas constantes, de modo tal que, en

condiciones ideales, las poblaciones crecerían explosivamente (exponencialmente, o

''geométricamente'', según las palabras de Malthus), lleva a Darwin a inferir correctamente -como puede admirarse en el capítulo III de su libro- que la razón de que esto no suceda se

debe a una mortandad diferencial (o reproducción diferencial, en sentido positivo) debida a

la competencia por el alimento, la capacidad diferencial de huir del depredador, etc.,aptitudes variables de individuo a individuo correlacionadas con la variabilidad de formas,

lo que implica que, en promedio, ''los más aptos sobrevivan''. Es claro entonces que

''selección natural'' es un concepto estadístico: las poblaciones de seres vivos se enfrentan a

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 3/22

la vida en un medio ambiente en el cual algunos tienen mayores  probabilidades que otros

de dejar descendencia.

Mendel y el mendelismo

Desde un siglo antes de Mendel se habían hecho ya experimentos sobre hibridación en

 plantas, destacando los trabajos de Koelreuter, quien explicaba las diferencias encontradasentre las generaciones F1 y F2 en términos químicos, quizá influido por el mecanicismo

reduccionista de la época, motivado por el éxito de los métodos de Descartes y Newton;

llegó a demostrar un par de hechos importantes: que la hibridación no produce nuevasespecies y que las contribuciones genéticas de ambos progenitores -padre y madre- son

iguales, refutando así las afirmaciones de Linneo y sus seguidores, quienes suponían cosas

distintas a partir de resultados de cruzas que nunca llevaron más allá de las generaciones F1.

Otros dos investigadores anteriores a Mendel fueron Naudin y Gaertner, quienes

redescubrieron la segregación en la generación F2, consistente en los tres tipos: dos

  parentales y un híbrido, pero no pusieron atención a las proporciones y vieron en sus

resultados sólo una reversión de los híbridos a las especies progenitoras. Quizá la

contribución más importante de Gaertner fue probar un gran número de especies,

mostrando que algunas eran más susceptibles que otras para la investigación genética, loque debió facilitar a Mendel el elegir a los famosos chícharos (  Pisum sp.) para sus

experimentos, pues este género es excepcionalmente adecuado para estos propósitos. En

efecto, se sabe que Mendel poseía una copia del libro de Gaertner y que lo estudiócuidadosamente, haciéndole posible no sólo seleccionar esmeradamente su material

experimental, sino también el plantearse las preguntas correctas que desembocarían en una

interpretación exitosa, completamente diferente, de los resultados.

Mendel realizó sus experimentos en un destartalado jardín de 40 m. de largo por unos 7 m.

de ancho que se hallaba junto a la biblioteca de su monasterio en Brün. Antes de

convertirse en monje había estudiado Filosofía en Olmütz y, ya en el monasterio, el preladole dio oportunidad no sólo de estudiar Botánica y hacer experimentos en el jardín, sino de ir 

a Viena a estudiar Física, Matemáticas y Zoología en la Universidad. Estuvo allí casi dos

años bajo la tutela de eminentes físicos y zoólogos. Su profesor de Botánica, Franz Unger,le enseñó no sólo Anatomía y Fisiología, sino que lo introdujo en los entonces modernos

campos de la Citología y la Embriología vegetales. Unger había adoptado la Teoría de la

Evolución y había expresado la opinión de que las variantes aparecen en las poblacionesnaturales y dan lugar a variedades y subespecies hasta que finalmente las más diferentes

alcanzan el nivel de especies distintas. Aparentemente, Mendel quiso probar la hipótesis de

Unger y tuvo que fijarse en variantes y variedades en vez de hacerlo en la ''esencia de laespecie'', como había sido hecho por sus predecesores.

Además de los resultados expresados en las leyes, una contribución fundamental de Mendel

fue su método, consistente en la contabilidad cuidadosa y sistemática de las clasesobservadas y en el cálculo de las razones numéricas. Mendel tuvo una excelente educación

en Física y Matemáticas y llevó cursos en Viena con el famoso físico Doppler, sirviendo

incluso como ayudante en el Instituto de Física de la Universidad de Viena por un tiempo.

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 4/22

Así, debió aprender mucho de la Teoría de Probabilidades que se estudiaba en aquel

tiempo, sobre todo los modelos binomial, de Poisson y normal diseñados por losmatemáticos Bernoulli, Poisson y Gauss, quienes eran muy famosos en las principales

universidades alemanas; debió aprender también a llevar registros cuidadosos de sus

observaciones y a obtener generalizaciones numéricas. Mendel, en contraste con los

  primeros hibridadores, se había construido una hipótesis de trabajo definida antes decomenzar sus experimentos con  Pisum; tal vez su primer modelo fue puramente

matemático y sólo después obtuvo razones numéricas definidas que fueron las que lollevaron a preguntarse qué factores dentro de los organismos podrían explicar la ocurrencia

tan precisa, definida y predecible de tales cocientes. Quizá fue entonces que propuso -y

 probó una y otra vez- la hipótesis de que una planta produce dos clases de células huevo ydos clases de polen para cada uno de sus caracteres.

En aquella pequeña parcela Mendel plantó cientos de plantas de chícharos de varios tipos:de flores violetas y de flores blancas, altas y enanas, de semillas lisas y de semillas rugosas,

de color amarillo y de color verde, etc., y durante siete años realizó cientos de experimentos

de cruce. De entre los caracteres elegidos que cumplían con los requisitos elegidos por élmismo (que fuesen caracteres diferenciantes constantes), elegiremos dos para seguir sus

experiencias y razonamientos: la textura del tegumento de la semilla, que podía ser liso o

rugoso, y el color del mismo, que podía ser amarillo o verde.

Cada par de los correspondientes caracteres diferenciantes mencionados fue unido por 

fecundación cruzada; para la textura se hicieron 60 fecundaciones con 15 plantas; para el

color, 58 fecundaciones con 10 plantas: posteriormente observó que, de estos cruces, las  plantas hijas (F1) no eran de carácter intermedio, sino igual al de alguno de los

 progenitores, siendo el carácter manifiesto siempre el mismo, al que por ello Mendel llamó

dominante, y recesivo al otro puesto que ''espera'' a manifestarse hasta la segundageneración, como vio después. De los caracteres que aquí hemos elegido para mostrar el

razonamiento de Mendel, los dominantes eran: para la textura del tegumento, el liso; para el

color, el amarillo.

El reporte de Mendel procede a describir las cruzas de los híbridos entre sí, manteniendo

aislados a los grupos de cada carácter; apunta que los descendientes obtenidos de esta cruza

(generación F2 para nosotros) son de dos tipos: exactamente los de los individuos de lasestirpes parentales y que se hallan presentes en la proporción 3:1 ''en promedio'' (sus

  palabras); esto es, 3/4 de los individuos poseen el carácter dominante y 1/4 el recesivo.

Inmediatamente subraya que ''no se observaron formas de transición en ningúnexperimento''. Los resultados que registra (omitimos otros caracteres que no sean textura

del tegumento y color de la semilla) son los siguientes:

Experimento 1: Textura.- Se obtuvieron 7324 semillas de 253 híbridos; 5474 lisas y 1850

rugosas. Proporción: 2.96:1

Experimento 2: Color.- Se obtuvieron 8023 semillas de 258 híbridos; 6022 amarillas y 2001verdes. Proporción: 3.01:1

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 5/22

Mendel hace notar que el carácter dominante ''puede tener doble significado: parental o

híbrido'' (homócigo o heterócigo, diremos nosotros), mientras que aquellas plantas concarácter recesivo producen progenie constante con ese carácter en todas las generaciones

sucesivas. El siguiente experimento trata de confirmar que, de los dominantes, un tercio es

con carácter dominante constante (como en los recesivos) y los dos tercios restantes se

comportan como híbridos (dan progenie de dos tipos en la proporción 3:1) y apunta que''aparece determinada con certeza la razón media de 2:1'' y que ''queda claro ahora que los

híbridos forman semillas que tienen uno u otro de los caracteres diferentes y que de éstosuna mitad se desarrolla de nuevo en forma híbrida, mientras que la otra mitad da plantas

que permanecen constantes y que reciben en igual cantidad los caracteres dominante o

recesivo''.

Mendel procede entonces a elaborar un modelo matemático representando con mayúsculas

a los caracteres dominantes y con minúsculas a los recesivos, conviene en que el símboloAa se refiere a los híbridos y las letras solas A y a se refieren a los caracteres constantes y

 postula que ''la expresión A + 2Aa + a representa los términos de la serie de la progenie de

los híbridos de dos caracteres diferenciantes...'' que se hallan en las proporciones 1:2:1.

Registra enseguida los experimentos sobre progenie de híbridos con varios caracteres

diferentes asociados y concluye que ''la progenie de los híbridos en los que hay combinados

caracteres esencialmente distintos presenta los términos de una serie de combinaciones enlas que están unidas las series evolutivas de cada par de caracteres diferentes'', haciendo ver 

que en el mismo experimento se concluye que ''la relación de cada par de caracteres

diferentes de la unión híbrida es independiente de las otras diferencias de las dos razas  paternas originales'' y concluye esta parte del reporte diciendo que ''queda demostrado

 prácticamente que los caracteres constantes que aparecen en las distintas variedades de un

grupo de plantas pueden obtenerse en todas las asociaciones que sean posibles según las

leyes [matemáticas] de combinación mediante fertilización artificial repetida...''.

Por último, en el capítulo final del reporte, redondea y da forma a su teoría postulando la

manera en que los caracteres se hallan presentes en las células germinales, llamando''factores'' a los entes responsables (''genes'' para nosotros) y es capaz de predecir con

absoluta precisión los resultados de diversas cruzas en las que se hallan involucrados dos

caracteres. Siguiendo su nomenclatura (y con los caracteres que elegimos arriba) denotacomo A - lisas, a - rugosas; B - amarillas, b - verdes, y realiza los siguientes experimentos

de fecundación:

1.- híbridos con polen de AB2.- híbridos con polen de ab3.- AB con polen de híbridos4.- ab con polen de híbridos

y dice: ''Si la teoría fuese correcta, debería cumplirse en las células huevo y polen de los

híbridos la presencia de las formas AB, Ab, aB y ab y se combinarían:

1.- células huevo AB}, Ab}, aB y ab con polen AB2.- células huevo AB, Ab, aB y ab con polen ab

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 6/22

3.- células huevo AB con polen AB, Ab, aB y ab4.- células huevo ab con polen AB, Ab, aB y ab

y resultarían solamente las siguientes formas:

1.- AB, ABb, AaB, AaBb2.- AaBb, Aab, aBb, ab3.- como en 14.- como en 2''

y apunta, después de explicar su razonamiento: ''La cosecha colmó plenamente estasesperanzas. Se obtuvo:

- En el primer experimento: 98 semillas exclusivamente lisas y amarillas- En el segundo: 31 semillas lisas y amarillas, 26 lisas verdes, 27 rugosas y amarillas, 26

rugosas verdes

- En el tercero: 94 semillas exclusivamente lisas y amarillas- En el cuarto: 24 semillas lisas y amarillas, 25 lisas verdes, 22 rugosas amarillas y 27

rugosas verdes.

...por tanto, queda confirmada experimentalmente la teoría de que los chícharos híbridosforman células polen y huevo que, en su constitución, manifiestan en números iguales todas

las formas constantes que resultan de la combinación de los caracteres unidos por 

fertilización.''

Es en ese momento cuando nace la primera teoría matemática en Biología: la Genética

Mendeliana.

El principal resultado de esta fascinante investigación fue el descubrimiento de que ciertos

caracteres paternos son transmitidos sin variación, ''sin atenuación ni fusión'' (Huxley, J.)

  porque son transportados por cierta unidad distintiva o partícula. Desde un principioMendel pudo ver la necesidad de determinar ''el número de formas distintas bajo las que

aparecen los descendientes de los híbridos'', ''sus relaciones estadísticas'' y ''sus

  proporciones numéricas''. Este énfasis en la definición precisa, cuantitativa, es lo quedistingue sus métodos y sus resultados, así como la correcta interpretación de aquéllos, de

todos sus predecesores y de los investigadores posteriores (antes de 1900) imbuidos todavía

 por el pensamiento esencialista. Del trabajo se desprenden dos conclusiones fundamentales(las ''leyes de Mendel''): En cada individuo los genes se encuentran formando pares, los

genes contenidos en esos pares, ya sean dominantes o recesivos, son entidades

independientes ''que emergen separadas y sin cambio en los gametos para cooperar en elzigoto'' (primera ley); cuando las células sexuales maduran, los pares se disuelven y los

genes se separan unos de otros; esta separación da la oportunidad de que se combinen

caracteres diferentes porque los miembros de cada par de genes se separan

independientemente de los otros pares -durante la gametogénesis- y se mezclan ydistribuyen también independientemente de los otros pares al momento de la formación del

zigoto (segunda ley).

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 7/22

Así pues, ''sin ningún conocimiento de citología cromosómica, sin los análisis teóricos de

Weismann, y sin el beneficio de muchos otros descubrimientos seminales hechos entre1865 y 1900, él [Mendel] descubrió una nueva manera de ver la herencia expresándola en

términos del comportamiento de caracteres unitarios y usó ese interés para llegar a

generalizaciones de largo alcance. Su éxito fue uno de los más brillantes en toda la historia

de la ciencia'', como resalta Mayr (1973) su admiración por el inspirado trabajo de Mendel;sin embargo, este mismo autor apunta que la contribución más significativa de Mendel no

fue -contrariamente a lo que muchos biólogos suponen- el demostrar la realidad de unateoría corpuscular o discreta de la herencia, sino su insistencia en que ''cada carácter está

representado en un zigoto por sólo dos factores, uno derivado del padre y el otro de la

madre'', lo que ''fue la idea que revolucionó la Genética'' (Mayr, 1973).

Esta pertinente aclaración de Mayr es importante pues, desde el mismo Darwin y en los

trabajos de Weismann -e incluso en los de De Vries y Bateson anteriores a 1900- sesostenía que existían numerosos factores idénticos determinantes para un carácter dado, en

cada célula (teoría de los pangenes o Pangénesis). Según la Pangénesis, cada célula del

cuerpo producía un ''germen'' que se instalaba en las células gaméticas con el fin dereproducir el fragmento del futuro individuo que cada una representaba en la generación

siguiente. Una vez refutada por Mendel esta hipótesis -aunque habría que esperar hasta el

siguiente siglo para su conocimiento universal- era necesario el trabajo minucioso en

Citología para sentar las bases materiales de la nueva Genética Mendeliana.

Otra característica significativa de su trabajo es que la Estadística, con Mendel, entra a

  jugar un papel esencial en la Biología, del modo en que, con Boltzmann, lo hizo en laFísica. No es el desarrollo de un individuo y el comportamiento de sus características

hereditarias en relación a sus ancestros lo importante, sino es el comportamiento de tales

características en las poblaciones, entre una y otra generaciones, lo que ofrece ante losnuevos científicos una fenomenología susceptible de ser cuantificada. Esta actitud, con la

que Mendel se adelantó a su época, es la que a finales del siglo comienza a ser adoptada y

rápidamente extendida (y no es casual entonces que en diversos lugares e

independientemente se comience a trabajar con ella), siguiendo la misma metodologíaexperimental de procesamiento de datos e inferencia estadística para llegar finalmente a las

mismas conclusiones, ''redescubriendo'', así, en Alemania, en Holanda, en Austria, los

resultados del trabajo de Mendel. Son hibridadores de nuevo, De Vries, Correns,Tschermark, quienes independientemente llegan, al mismo tiempo, a las mismas

conclusiones no tan casualmente; la comunicación de los resultados se propaga con rapidez

y todos ceden el honor del descubrimiento original al monje austriaco fallecido sin pena nigloria años atrás.

Simultáneamente, los avances hechos en Citología por Fleming, Waldeger, Van Beneden,etc., habían llevado a los naturalistas a proponer una drástica separación entre ''soma'' y

''germen'' y a los citólogos a identificar el papel central del núcleo celular primero, y luego

definitivamente de los cromosomas -por Boveri- como responsables de la transmisión de

los caracteres hereditarios. Así , Weismann afirma que las células germinales pueden dar origen a células somáticas y germinales, mientras que las somáticas sólo dan origen a

células somáticas; esto último tiene una implicación importante: las alteraciones sufridas

  por las células somáticas no tienen nada que ver con la herencia, ''todos los cambios

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 8/22

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 9/22

En la última parte del siglo XIX los estudios de Genética se concentraron en la cruza de

  plantas (principalmente Horticultura) y los investigadores se veían abrumados por lasinnumerables sutilezas y variaciones manifiestas en los caracteres cuantitativos, pero

estaban intrigados por los cambios en las frecuencias de rasgos continuos tal y como se

transmiten a través de generaciones sucesivas en las poblaciones humanas. Francis Galton

(primo de Darwin) y Karl Pearson (un protegido de Galton, originalmente economista)desarrollaron los fundamentos de la Biometría, precursora de la ciencia bioestadística

moderna -a la que legaron conceptos fundamentales como los de covarianza y correlación-motivados principalmente por problemas planteados por la Teoría de la Evolución y la

Eugenesia.

Durante los primeros años del siglo XX el campo de la Biología Evolutiva se hallaba en un

estado de controversia (como hoy) y desorden. Los encuentros personales entre sus

 protagonistas exacerbaron las ya de sí profundas divisiones sobre las cuestiones relevantesde la evolución y no alcanzaba a verse la posibilidad de una conciliación. La causa

  principal, como hemos dicho, fue el redescubrimiento de las leyes de Mendel, lo que

reforzó una previa división entre los biólogos acerca de la naturaleza de la evolución, yaque cuando fue publicado ''El Origen de las Especies...'', aparte de las controversias de

índole no científica que provocó, puso a los científicos en posiciones encontradas con

respecto a varios aspectos de la teoría. El hecho de que la evolución ocurriese no fue, en

general, cuestionado; lo más controvertido fue la aseveración de que el agente que lallevaba a cabo fuese la selección natural e, incluso dentro de los seleccionistas, la

controversia estaba en la forma en que debía darse el cambio evolutivo. El punto de vista de

Darwin fue el ''gradualista'', consistente en postular que los cambios en la naturaleza de losorganismos en las poblaciones son graduales y por incrementos. Curiosamente, algunos de

quienes defendieron la teoría de Darwin, como T.H. Huxley y Francis Galton, fueron, sin

embargo, ''saltacionistas''; esto es, pensaban que los cambios evolutivos ocurrían másfrecuentemente ''a saltos'' de magnitud no despreciable. Se desarrollaron, por tanto, dos

escuelas de pensamiento a partir de estos puntos de vista, cuyos argumentos intentaremos

describir brevemente.

Siendo desconocido el mecanismo de la herencia antes de 1900, existía una visión común

acerca de ella, consistente en pensar que las características de un individuo son -o tienden a

ser- una mezcla de las de sus padres. Esta hipótesis ''mezcladora'' atrajo quizá la mássustancial objeción científica a la teoría de Darwin. Es fácil ver que, ante la hipótesis de

apareamientos aleatorios, la varianza de una característica en una población, bajo la

herencia mezcladora, decrecería en un medio en cada generación. La consecuenteuniformidad de características que rápidamente se obtendría no dejaría lugar a la variación

sobre la cual actuase la selección natural. Esa tasa de decremento tan rápida en la varianza

se modificaría sólo muy ligeramente ante hipótesis de apareamientos no aleatorios. Puestoque tal uniformidad no se observa en las poblaciones reales, el argumento queda

incompleto y, dado que el grado de variación observado sólo puede explicarse entonces

  postulando la existencia de otros factores de notable efecto que hiciesen que las

características de la progenie se desviasen de las de sus padres, entonces no se podríaargumentar razonablemente que los padres favorecidos positivamente por la selección

 produjesen descendencia que se les pareciese cercanamente y que por ello fuese también

favorecida por la selección. Este argumento fue reconocido por Darwin como un gran

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 10/22

obstáculo para su teoría de la evolución mediante selección natural y resulta interesante el

notar que las versiones posteriores a 1859 de ''El Origen...'' se vieron claramenteinfluenciadas por dicho argumento.

Galton jugó un papel ambiguo en la controversia entre gradualistas y saltacionistas. Por un

lado, él mismo era un convencido de la teoría de los saltos y esto debió inducirle a llegar a proponer a Darwin, en una carta que escribió a este último en 1875, una teoría de herencia

en mucho similar a la mendeliana y basada solamente en especulaciones y razonamientoabstracto. No obstante, tenía una relación intelectual y personal muy cercana con Darwin y,

debido a ella, intentó cuantificar el proceso de la evolución gradualista; esto lo llevó a

introducir los conceptos estadísticos de correlación y de regresión, que se convirtieron  pronto en las principales herramientas del grupo de científicos después conocidos como

  biómetras, quienes fueron en cierto sentido los herederos de la teoría gradualista

darwiniana. El trabajo de investigación matemática de este grupo comenzó en 1890 bajo elliderazgo de W.F.R. Weldon y Karl Pearson. Al mismo tiempo, los saltacionistas ganaron

muchos adeptos, entre los que sobresale William Bateson, y la disputa entre estos dos

grupos llegó, en el final del siglo, a un clímax.

Habiéndose redescubierto el mendelismo en 1900, la naturaleza particular de esta teoría

fue, por supuesto, muy atractiva para los saltacionistas. Muchos biólogos comenzaron a

 pensar en un proceso no darwiniano de evolución a través de saltos mutacionales. Por otrolado, los biómetras continuaban convencidos por la teoría darwiniana de evolución gradual

mediante selección natural y estaban, por ello, reacios a creer en el mecanismo mendeliano

de herencia, o por lo menos a pensar que éste fuese de importancia fundamental para laevolución. Incluso los argumentos brillantes de Yule (1902), basados en un análisis

matemático del sistema mendeliano, acerca de que el mendelismo y el darwinismo podrían

conciliarse, fueron largamente ignorados. Sin embargo, como veremos, no solamente fueesta conciliación posible, sino inmensamente fructífera para la Teoría de la Evolución en la

forma de lo que llamamos la Genética Matemática de Poblaciones.

La Ley de Hardy-Weinberg

Considérese una población monoica que se reproduce formando parejas al azar, losuficientemente grande (infinita, en teoría) como para que las frecuencias génicas puedan

determinarse de modo exacto y sin desviaciones debidas a ''errores de muestreo''; céntrese

la atención en un locus génico dado donde pueden presentarse dos alelos, digamos A1 y A2.Supóngase que en cualquier generación las proporciones de los tres genotipos: A1A1, A1A2,

A2A2, son d , h y r , respectivamente. Debido a la hipótesis de apareamientos aleatorios, la

frecuencia de los apareamientos A1A1 × A1A1 es d 2, la de A1A1 × A1A2 es 2rh, la de A1A1 ×A2A2 es 2dr , etc. Ahora considérense los resultados de estos apareamientos. Si se ignora la

muy pequeña probabilidad de mutación, y si no hay diferencias en adecuación para estos

genotipos, las elementales reglas mendelianas indican que el resultado del primer apareamiento debe ser progenie tipo A1A1 en el cien por ciento, que la mitad de la progenie

del segundo apareamiento debe ser de tipo A1A1 y la otra mitad de tipo A1A2, que toda la

 progenie del tercer apareamiento debe ser de tipo A1A2, etc., con resultados similares parael resto de los apareamientos posibles.

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 11/22

Entonces, puesto que la progenie A1A1 sólo puede obtenerse de apareamientos A1A1  ×A1A1 (con frecuencia 1 para tales apareamientos), de apareamientos A1A1  × A1A2 (con

frecuencia 1/2) y de apareamientos A1A2 × A1A2 (con frecuencia 1/4), y puesto que lasfrecuencias de tales apareamientos son: d 2, 2dh, h2

, respectivamente, la frecuencia d’  de

A1A1 en la siguiente generación es:

d’ = d 2 + ½ (2dh) + ¼ h2= d 2 + dh + ¼ h2

= (d + ½ h)2

… (1)

Consideraciones similares dan las frecuencias h’ de A1A2 y r’ de A2A2 como:

h’ = ½ (2dh) + ½ h2+ 2dr + ½ (2rh) = 2(d + ½ h) (r + ½ h) … (2)

r’ = ¼ h2

+ ½ (2rh) + r 2

= (r + 1/2 h)2

… (3)

Las frecuencias d ’’, 2h’’, r ’’ para la siguiente generación se encuentran remplazando d ’, h’,

r ’ por d ’’, h’’, r ’’ y d , h, r por d ’, h’, r ’, teniéndose:

d ’’ = (d ’ + ½ h’) = ((d + ½ h))2

+ (d + ½ h)(r + ½ h))2

=

= ((d + ½ h)((d + ½ h) + (r + ½ h)))2

== ((d + ½ h)(d + h + r ))

2= ((d + ½ h)(1))

2= (d + ½ h)

2= d ’ … (4)

De manera similar se encuentra que h’’ = h’, r’’ = r ’. Por tanto, las frecuencias genotípicas

establecidas en la segunda generación se mantienen en la tercera y consecuentemente entodas las generaciones subsecuentes. Nótese que las frecuencias que tienen esta propiedad

 pueden caracterizarse por satisfacer la relación

h’ 

2

= 4d’r ’ … (5)

Claramente, si esta relación se da desde la primera generación, de modo que

h2

= 4dr  … (6)

entonces no sólo no habría cambios en las frecuencias genotípicas entre la segunda y latercera generaciones, sino que estas frecuencias también serían las mismas que las de la

 primera generación. Las poblaciones para las cuales la relación (6) se cumple, se dice que

tienen sus frecuencias genotípicas en equilibrio Hardy-Weinberg.

Puesto que d + h + r = 1, sólo dos de las frecuencias d , h, r , son independientes. Si, además,la relación H-W (6) se cumple, sólo una de las frecuencias es independiente. Un breveanálisis de las relaciones (1) - (3) nos lleva a que la cantidad más conveniente para

considerarla como independiente es p = d + ½ h ; esto es, la frecuencia (gamética) del alelo

A1.

Los resultados de arriba pueden resumirse en la forma de un teorema:

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 12/22

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 13/22

cantidades que juegan un papel clave en su argumentación han resultado ser de importancia

fundamental para consideraciones evolutivas.

La Correlación entre Parientes

Considérese cualquier carácter cuantitativo medible, digamos m, que esté determinadoenteramente por un locus A en donde puedan hallarse los alelos A1 o A2. Supóngase que

todos los individuos A1A1 tienen medida m11, todos los individuos A1A2 tienen medida m12

y todos los individuos A2A2 tienen medida m22. Supóngase de momento que no hay

ninguna contribución ambiental a este carácter, por lo que, conociendo el genotipo, puede

conocerse de inmediato el fenotipo (el valor de esta medida). Supóngase también que, conrespecto a este carácter, los apareamientos son aleatorios y que las frecuencias de A1A1,

A1A2 , A2A2 son, inicialmente: p2, 2 pq, q

2, respectivamente. Entonces el valor medio de m

es:

   m = p2m11 + 2 pqm12 + q

2m22 … (7)

y la varianza:

σ2= p

2(m11 -   m) + 2 pq(m12 -   m) + q

2(m22 -   m) … (8)

¿Cuál es la covarianza entre padre e hijo con respecto a esta medida?

Supóngase que el padre es A1A1; entonces el hijo será A1A1 (con probabilidad  p) o A1A2

(con probabilidad q); el padre es A1A1 con probabilidad  p2, etc. De este modo es posible

construir una tabla con las probabilidades asociadas a las varias combinaciones padre-hijo

y, por tanto, del carácter medido entre ellos:

HIJO

GENOTIPO A1A1 A1A2 A2A2

FENOTIPO m11 m12 m22

A1A1 m11 p3  p2q 0

PADRE A1A2 m12 p2q pq pq2

A2A2 m22 0 pq2

q3

La covarianza entre la medida del padre y la del hijo, suponiendo que no hay cambio en la

frecuencia de A1 entre las dos generaciones es entonces:

 p3m

11

2+ 2 p

2qm

11m

12+ pqm

12

2+ 2 pq

2m

12m

22+ q

3m

22

2=

= pq( pm11 + ( p - q)m12 -qm22)2 … (9)

La correlación entre las dos medidas, que es el cociente de la covarianza entre la varianza

(ya que la varianza es la misma en ambas generaciones, tanto para padres como para hijos),

es entonces:

 pq( pm11 + ( p - q)m12 - qm22)2/σ2

… (10)

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 14/22

Considérese ahora cuáles serían los cambios en el carácter m si se hiciese el reemplazo deun alelo A1 por uno A2. El efecto de esto depende de si el reemplazo se hace en un

individuo A1A1 o en un individuo A1A2. En el primer caso este efecto sería m12 - m11,

mientras que en el segundo sería m22 - m12, y éstos, en general, no tienen por qué ser 

iguales. Para hallar una expresión que describa este efecto, supóngase que los valores m11,m12, m22 pueden aproximarse mediante expresiones de la forma µ + 2α1, µ + α1 + α2, µ +

2α2, respectivamente, con la restricción:  pα1 + qα2 = 0 (pues pensamos que los valores αson desviaciones de un hipotético valor medio µ y que corresponderían al efecto de cadaalelo). Si derivamos la expresión:

S (µ, α1, α2) = p2(m11 - µ - 2α1)

2+ 2 pq(m12 - µ - α1 - α2)

2+ q2

(m22 - µ - 2α2)2

(que se interpreta como un tipo particular de varianza) con respecto a µ, hallamos que el

valor mínimo para µ es µ =    m. Diferenciando ahora la expresión lagrangiana:

S (   m, α1, α2) - 4λ( pα1 + qα2) == p

2(m11 -    m - 2α1)

2+ 2 pq(m12 -    m - α1 - α2)

2+ q

2(m

22-    m - 2α2)

2- 4λ( pα1 + qα2)

con respecto a α1 y a α2 (siendo λ el ''multiplicador'' del método lagrangiano), obtenemos:

α1 = p(m11 -    m) + q(m12 -    m)

… (11)

α2 = p(m12 -    m) + q(m22 -    m)

y podemos entonces definir al efecto promedio de sustituir a A1 por A2 como:

α2 - α1 = p(m12 - m11) + q(m22 - m12) … (12)

El valor mínimo para S es:

σD2

= p2q

2(2m12 - m11 - m22)

2… (13)

Ahora bien, regresando a la expresión para la varianza σ2, si a esta última (la suma de

cuadrados) restamos el término recién obtenido σD2

(la suma de cuadrados residual), setiene:

σ2- σD

2= σA

2= 2 pq( pm11 + (q - p)m12 - qm22)

2… (14)

Entonces, puesto que σA2

ha resultado ser un término de la varianza total, siendo el otro la

suma de los residuales, se le llama varianza génica aditiva, ya que viene a ser la parte de lavarianza total en cuanto al carácter medido que puede achacarse a los efectos promedio de

los alelos A1 y A2, mientras que a σD2

-la suma de residuales- se le denomina varianza de

dominancia; esta denominación proviene de la forma específica en que aparecen en ella la

medida de los caracteres fenotípicos (nótese que para una dominancia completa, digamos

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 15/22

de A1, se tendría que m12 = m11 y σD2

=  p2q

2(m11 -m22)

2, mientras para una ausencia

completa de dominancia, esto es, para m12 = ½ (m11 + m22), se tendría σD2

= 0.). Ahora bien,

recordando el resultado (9), podemos escribir, para la correlación entre padre e hijo:

 corr (padre, hijo) = ½ (σA2

/σ2) = ½ ρ2

… (15)

y decir que la correlación entre padres e hijos es la mitad del cociente entre la varianza

genética aditiva y la varianza total, denotando a dicho cociente por  ρ2. Esta correlación

siempre es no negativa, y sólo tomaría el valor cero cuando  p = (m12 - m22)/(2m12 - m11 -m22), una posibilidad que puede darse sólo si m12 > m11, m22, o m12 < m11, m22. Se debe

enfatizar el hecho de que esta correlación ha sido hallada basando todos los cálculos en lanaturaleza mendeliana del proceso hereditario. Puede hacerse una tabla análoga a la

anterior para el caso de hermanos de padre y madre y mostrar que, bajo las mismas

condiciones de arriba:

corr (hermano, hermano) = ½ ρ2+ ¼ δ2

… (16)

donde δ2= σD

2/σ2

. Consideraciones similares usando tablas mendelianas de asociacióntambién similares -aunque más complicadas- nos llevarían, bajo las mismas hipótesis, a

que:

corr (tío, sobrino) = ¼ ρ2… (17)

corr (primos dobles) = ¼ ρ2+ 1/16 δ2

… (18)

y así.

Con estos resultados, Fisher consideró situaciones más complejas, en particular casos conmás de dos alelos por locus, donde los caracteres son determinados por alelos en varios

loci, y casos donde se suponen apareamientos preferenciales. En cuanto al caso de alelos

múltiples, Fisher mostró que las fórmulas de correlación (15), (16), (17) y (18) permaneceninalteradas si es que las varianzas aditiva y de dominancia se definen de la manera natural a

través del procedimiento de mínimos cuadrados descrito arriba.

El problema de los caracteres determinados por muchos loci es en principio más complejo

 puesto que deben tomarse en cuenta los efectos interactivos o epistásicos. En el caso de un

carácter relacionado con la adecuación, es muy difícil determinar cuán importantes puedenser estos efectos. Si el carácter no está correlacionado con la adecuación, puede suponerse

razonablemente que

 frec(AiA jBk Bl....) = frec(AiA j) ×  frec(Bk Bl) × .... … (19)

donde Ai, A j, ... son los alelos posibles en el A que determinan parcialmente ese carácter,Bk , Bl , ... son los posibles alelos en el locus B que también determina parcialmente ese

mismo carácter, etc. (Hablando en sentido estricto, suponemos que ninguno de estos alelos

tiene efectos en la adecuación).

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 16/22

La ecuación (19) implica que la frecuencia de cualquier cromosoma puede escribirse comoel producto de las frecuencias de sus alelos constituyentes. En este caso puede hallarse la

varianza aditiva τ2simplemente sumando las varianzas aditivas de cada uno de los loci

individuales (τ2= ∑ σA

2), con un resultado similar para la varianza total (ϖ2

= ∑ σ2).

Entonces, suponiendo que (19) es cierta, la correlación entre padres e hijos en el carácter medido sería:

corr (padre, hijo) = ½ (τ2/ ϖ2

) … (20)

que es la generalización natural de (15), teniéndose también valores similares para las otras

relaciones en este caso. Es muy posible que, mientras estos resultados son estrictamenteverdaderos (bajo las hipótesis dadas), sólo cuando el carácter en cuestión, y los alelos que

lo determinan, no están correlacionados con la adecuación, puede demostrarse que estosvalores darían una aproximación satisfactoria aun cuando existiese tal correlación (Ewens,

1980).

Hasta ahora no hemos tomado en cuenta a la varianza ambiental. En la práctica esto es

extremadamente difícil, debido a la muy alta correlación ambiental para padres e hijos,

hermanos, etc. (esto es, no se encuentran dispersos al azar, sino que, en general, viven  juntos, en el mismo ambiente, al menos una buena parte de su vida). Ignorando la

correlación ambiental, Fisher usó las fórmulas de arriba en conjunción con las correlaciones

observadas para estimar las varias componentes de la varianza en cualquier carácter. Bajo

estos supuestos simplificadores, el componente genético de la correlación entre parientesestá dado en términos de dos parámetros y los patrones de correlación concuerdan -para los

datos usados por Fisher- razonablemente bien con los observados, por lo que puede decirse

que Fisher comenzó una significativa síntesis entre la biometría y la genética mendeliana y

  por tanto la fusión de éstas en una sola disciplina. A partir de entonces, la Genética dePoblaciones Teórica comenzó con una base firme, siendo fundamentales las variables

usadas por Fisher en esta síntesis para una cuantificación del proceso evolutivo.

Evolución

Veamos ahora las consecuencias evolutivas de la dinámica genética mendeliana. Los hitos

de la teoría darwiniana de la evolución son la variación y la selección natural; la variación

es dada, bajo el sistema mendeliano, en última instancia por la mutación: en todas las  poblaciones naturales la mutación provee de una fuente continua de variación genética.

Puesto que los diferentes genotipos creados de tal modo tendrán diferentes adecuaciones(diferirán en viabilidad, éxito reproductivo y fertilidad), la selección natural podrá actuar.El objetivo de Fisher era cuantificar este proceso, y su trabajo realizado durante las décadas

de los 1920 y 1930 (paralelamente al de Haldane y Wright) estaba encaminado en esa

dirección. Tal cuantificación implicó una descripción científica de la teoría darwiniana entérminos mendelianos.

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 17/22

Como un primer paso, es necesario hacer una serie de suposiciones y aproximaciones

acerca de los procesos evolutivos considerados. Por ello, aunque hemos dicho que lamutación es esencial para la evolución, y puesto que las tasas de mutación son

normalmente muy pequeñas, entonces, para ciertos problemas específicos puede

ignorársele. Además, aunque la adecuación de un individuo está determinada de un modo

complejo por su acervo genético completo (y aun así diferirá de un ambiente a otro), sesupondrá, como una primera aproximación, que su adecuación depende de su genotipo en

un solo locus, o que al menos puede hallarse ''sumando'' las contribuciones de varios loci ala adecuación. También es difícil el trabajar con la componente de la adecuación que se

relaciona con la fertilidad, y se harán suposiciones especiales acerca de esto.

Supóngase entonces que las adecuaciones de los tres genotipos A1A1, A1A2, A2A2, en cierto

locus A, están dadas por:

genotipo A1A1 A1A2 A2A2

adecuación ω11 ω12 ω22

frecuencia p

2

2  pq q

2

  Nótese que se han escrito las frecuencias de estos genotipos en la forma apropiada a lasuposición de apareamientos aleatorios. Las frecuencias Hardy-Weinberg se aplican sólo en

el momento de la concepción puesto que a partir de entonces las viabilidades diferenciales

alteran las frecuencias genotípicas de su forma H-W. Por esta razón contamos a la  población al momento de la concepción en cada generación y por tanto también se está

haciendo implícitamente la suposición extra de un modelo de generaciones ''separadas''.

La cuestión más interesante es el comportamiento de la frecuencia  p del alelo A1 bajo la

selección natural. Puesto que se piensa que la unidad fundamental del proceso evolutivo es

el reemplazo de un alelo ''inferior'' por uno ''superior'', esta cuestión es esencial para lacomprensión del proceso evolutivo. Esta cuestión fue atacada por primera vez, en ciertos

casos específicos, por Norton y después, con mayor detalle, por Haldane. Se considerarán

aquí sólo los casos más simples. Antes, nótese que se requiere de explicar dos fenómenos

aparentemente contradictorios. Por un lado debe poder explicarse el proceso dinámico de lasustitución de un alelo por otro y, por otro lado, debe explicarse la existencia observada de

 polimorfismo génico considerable, aparentemente estable. La primera cuestión es hallar la

frecuencia p’ de A1 en la siguiente generación.

Considerando las adecuaciones de cada individuo y todos los apareamientos posibles, se

encuentra fácilmente que

 p’- p = ( pq(ω11 p + ω12(q - p) - ω22q)) / (ω11 p2

+ 2ω12 pq + ω22q2) … (21)

La iteración de la relación de recurrencia (21) da los valores sucesivos que toma la

frecuencia de A1. Desafortunadamente no siempre es posible dar expresiones explícitas

(como funciones dependientes del tiempo) y sólo puede contarse con aproximaciones.

Antes, nótese que  p’ depende de los cocientes de las adecuaciones ωij , más que de sus

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 18/22

valores absolutos, por lo que  p’ permanecerá sin cambio si se multiplica a cada ωij por 

alguna constante. Por tanto, es posible escalar a las ωij en cualquier forma conveniente.

Diferentes escalas son convenientes para diferentes propósitos, como se verá. Abajo seindican dos escalas alternativas para los valores de adecuación:

A1A1 A1A2 A2A2ω11 ω12 ω22

1 + s 1 + sh 1

1 –  s1 1 1 –  s2

… (22)

 Normalmente se supone que, excepto en casos extremos (tal vez implicando letalidad) losdiferenciales de adecuación  s,  sh,  s1,  s2, son pequeños, tal vez del orden del 1 %. En este

caso se ignorarán términos de orden superior en estos parámetros. Usando el esquema(22)(3er renglón), en la relación de recurrencia (21) puede escribirse, con suficientemente

 buena aproximación:

 p’ –  p = spq( p + h(q - p)) … (23)

además, si se mide el tiempo en unidades de una generación, esta ecuación puedeaproximarse por la ecuación diferencial: d p/ dt = spq( p + h(q - p)), o mejor:

d p / dt = sp(1 - p)( p + h(1 - 2 p)) …(24)

Si se denota por t ( p1, p2) al tiempo requerido para que la frecuencia de A1 cambie del valor 

 p1 al valor  p2, entonces:

t ( p1, p2) = ∫ 12

  ( sp(1 - p)( p + h(1 - 2 p)))

-1

d p … (25)

Aun cuando es posible obtener una expresión explícita para t ( p1,  p2), es más conveniente

usar la expresión (25) directamente. Supóngase primero que s > sh > 0; entonces, de (24), la

frecuencia de A1 se incrementará hasta valer 1. Sin embargo, cuando esta frecuencia seaproxima a la unidad, el tiempo requerido para incluso pequeños cambios será muy grande,

debido al factor 1 -  p en el denominador del integrando en (25). Este comportamiento es

aun más marcado en el caso h = 1 (A1 dominante con respecto a A2 en adecuación), ya que

entonces el integrando contiene un término (1 - p)-2

. Esta tasa muy lenta de incremento sedebe al hecho de que una vez que p está cerca de la unidad, la frecuencia del genotipo A2A2

(en contra del cual actúa la selección) es extremadamente baja. En el caso particular  h = ½

(no dominancia en adecuación), la ecuación (25) toma la forma:

t ( p1, p2) = ∫ 12  (½ ( sp(1 - p))

-1d p … (26)

A partir de las ecuaciones (25) y (26) es posible evaluar los tiempos requeridos para

cualesquiera cambios en la frecuencia de A1 (ver tabla abajo). Los tiempos mostrados en latabla apoyan las conclusiones dadas y, mientras actúa la selección hasta que la variación es

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 19/22

destruida, los tiempos requeridos son usualmente muy largos, mucho más de los que se

requieren bajo la teoría mezcladora de la herencia.

rango 10-3

– 10-2

10-2

– 10-1

0.1 – 0.5 0.5 – 0.9 0.9 – 0.99 0.99 –  

0.999

h½ 462 480 439 439 480 462

1 232 250 309 1020 9240 90631

Se puede esperar observar un polimorfismo genético considerable en las poblaciones aun

cuando estén sujetas a selección natural direccional: los artículos de Haldane ofrecen

valores análogos a los de la tabla en condiciones cada vez más complejas (p. ej. endogamia,

adecuaciones diferenciales dependientes del sexo, etc.) Este procedimiento cuantifica,aunque sea aproximadamente, al proceso unitario microevolutivo del reemplazo de un alelo

 por otro.

Es claro que si  s <  sh < 0, sucederá un proceso paralelo al anterior, con el alelo A2reemplazando al alelo A1. Este proceso es la imagen especular del anterior y no requiere

más comentario. Un comportamiento completamente diferente sucede cuando la

adecuación ω12 del heterócigo es mayor que las adecuaciones de los dos homócigos. Estecaso puede tratarse de manera más conveniente usando el esquema (22) (4º renglón) con  s1, s2 >0. Aquí la relación de recurrencia (21) puede ser reescrita, con suficiente aproximación,

como:

 p’ –  p = p(1 - p)( s2 - p( s1 + s2)) … (27)

Es claro que no habrá cambio en la frecuencia p de A1 si p toma el valor particular 

 p* = s2 / ( s1 + s2) = (ω22 - ω12) / (ω11 + ω22 - 2ω12) … (28)

 Nótese además que si p < p*, entonces p < p’ < p*, mientras que si p > p*, entonces p* < p’

< p. Por tanto, p* es un punto de equilibrio estable y, cualquiera que sea su valor inicial, la

frecuencia p de A1 se aproximará a p*. No es difícil ver que si s1 < 0,  s2 < 0, entonces p*sigue siendo un punto de equilibrio del sistema de recurrencia (20), pero en este caso se

trata de un equilibrio inestable y por ello es de poco interés. La frecuencia de A1 caerá a

cero si su valor inicial es menor que  p* y subirá a uno si es mayor que  p*. Todas estas

consideraciones muestran que una condición necesaria y suficiente para que exista unequilibrio estable de la frecuencia de A1 en el intervalo (0,1) es que el heterócigo tenga una

mayor adecuación que los dos homócigos. Este hecho tan importante fue establecido por Fisher en 1922 y brinda una posible explicación para la ocurrencia de frecuencias alélicasestables en las poblaciones. Puede decirse que en la década de 1920 ya se habían dado los

 primeros grandes pasos para explicar y cuantificar en términos mendelianos las que quizá

sean las dos principales propiedades de las poblaciones biológicas: su capacidad deevolucionar y su capacidad de mantener la variación por lapsos muy largos.

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 20/22

Ahora será conveniente considerar brevemente el efecto de la mutación. Se supondrá que

A1 muta a A2 a una tasa µ y que A2 muta a A1 a una tasa ν. Entonces es fácil ver que, si nohay selección,

 p’ = p(1 - µ) + ν(1 - p) … (29)

y que se alcanza un equilibrio estable cuando

 p = p* = ν /(µ + ν) … (30)

Supóngase ahora que se dan ambos fenómenos, mutación y selección; teniendo en cuenta

que las diferencias selectivas son del orden del 1 % mientras que las tasas de mutación sondel orden de 10

-5o 10

-6. Considérese primero el caso en el que exista una ventaja selectiva

 para el heterócigo, de modo que, con sólo selección y mutación, habrá un nuevo equilibrioestable que diferirá sólo trivialmente del dado por (29). No se considerará este caso, por 

tanto, más allá. Usando el esquema (22) (3er renglón) con s > sh > 0, es claro que habrá un

 punto de equilibrio estable para cuando la frecuencia de A1 se encuentre cerca de la unidad.Más exactamente, encontramos la fórmula aproximada

 p* = 1 - (µ / ( s - sh)) … (31)

mientras que si s > 0, h = 1 (A1 dominante sobre A2) la fórmula correspondiente es:

 p* = 1 - √(µ / s) … (32)

Fórmulas paralelas se aplican cuando s < sh < 0; en tal caso, para el equilibrio:

 p* = ν / sh … (33)

mientras que para s < 0, h = 1:

 p* = √(ν / s) … (34)

Todas estas fórmulas fueron obtenidas durante los años 1920; nótese que ellas implican una

segunda forma en que la variación genética puede mantenerse en una población; esto es, por el ''balance entre selección y mutación''. Sin embargo, la frecuencia de uno u otro alelo

será muy pequeña para cualquiera de los equilibrios arriba descritos, aunque la frecuencia

del alelo menos frecuente es menos pequeña si la dominancia es completa, así que cuando

 s = 0.01, µ = 10-6

, la frecuencia de A2 en equilibrio será de 0.01 cuando h = 1 (dominanciacompleta) y de 0.00002 cuando h = 1/2 (no dominancia).

Ya se había hecho notar antes que el sistema mendeliano de herencia permite cuantificar, al

menos a una primera aproximación, la tasa de sustitución alélica en un proceso evolutivo:

¿Es posible llegar a principios generales, derivados del sistema mendeliano, quecuantifiquen a las dos principales características de un proceso evolutivo a través de la

selección natural darwiniana: el requerimiento de la variación y el ''mejoramiento''

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 21/22

alcanzado por esta población? . En su Teorema Fundamental de la Selección Natural,

Fisher (1930) intentó encontrar ambos principios. Su derivación original no está claramente basada en un modelo explícito acerca del modo en que una frecuencia alélica cambia en el

tiempo, y por ello se da aquí una derivación basada en un modelo explícito que lleva

efectivamente a las mismas conclusiones a las que llegó Fisher.

Considérese una población para la cual la adecuación de cada individuo depende sólo de su

constitución genética en un sólo locus A. Supóngase que dos alelos, A1 y A2, son posiblesen este locus y que las adecuaciones de los tres posibles genotipos están dadas como en

(22). Se supone que la población se reproduce en generaciones separadas de modo que se

aplica la ecuación (7), con ω en vez de m. En cada generación podemos definir la

adecuación media ϖ de la población en esa generación como

ϖ = ω11 p2

+ 2ω12 pq + ω22q2

… (34)

donde p es la frecuencia de A1 y q la de A2 en esa generación. La frecuencia p’ de A1 en la

siguiente generación puede hallarse a partir de (21) y por tanto la adecuación media ϖ’ enesa otra generación puede computarse como

ϖ = ω11 p’2

+ 2ω12 p’q’ + ω22q’2

… (35)

Considérese el cambio ∆ϖ = ϖ’ - ϖ en adecuaciones medias entre estas dos generaciones.

 No es difícil mostrar, usando (21), que

∆ϖ = 2 pq(ω11 p + ω12(q - p) - ω22q)2(ω11 p

2+ (ω12 + ½ ω11 + ½ ω22) pq + ω22q

2) / ϖ2

… (36)

Claramente ∆ϖ es no negativa, de modo que podemos concluir que la selección naturalactúa de modo que incrementa, o al menos mantiene, la adecuación media de la población.

Esta es la primera parte del Teorema Fundamental de la Selección Natural, y es claramente

una cuantificación en términos genéticos del concepto darwiniano de que ha habido un''mejoramiento'' (''adaptación'', se puede decir) en la población, debido a la selección

natural. También podemos usar (36) para cuantificar la segunda parte del principio

darwiniano en cuanto a que la variación (en este caso la variación genética) es necesaria

 para que actúe la selección natural. Claramente, ∆ϖ es cero si p = 0, o si p = 1; esto es, si no

hay variación genética en la población. Una aseveración más fuerte que ésta es posible:

nótese que si las ωij son todas cercanas a 1, puede escribirse, con buena aproximación:

 ∆ϖ = 2 pq(ω11 p + ω12(q - p) - ω22 q)2 … (37)

Ahora, la ecuación (14) muestra inmediatamente que la varianza genética aditiva en

adecuación es:

σA2

= 2 pq(ω11 p + ω12 (q - p) - ω22 q)2

… (38)

8/8/2019 1Biología matematica

http://slidepdf.com/reader/full/1biologia-matematica 22/22

y podemos entonces cuantificar en términos genéticos al segundo mayor elemento de la

teoría darwiniana: la tasa de incremento de la adecuación media es esencialmente igual a

la componente aditiva de la varianza genética en adecuación}. Si los diferenciales en

adecuación no son pequeños, se ha encontrado (Seneta, 1973) una fórmula diferente.

Inicialmente puede pensarse que la varianza total en adecuación, esto es:

σ2= ω11 p

2+ 2ω12 pq + ω22q

2- ϖ2

… (39)

en vez de la sola componente aditiva de la varianza, deberíaa estar relacionada con el

incremento en la adecuación media. Existen al menos dos argumentos por los cuales estono es así. Primero, si los valores de adecuación son de la forma (22) con  s1, s2 > 0, y si la

 población está en el punto de equilibrio (28), entonces la varianza total en adecuación será

 positiva y, aun así, debido a que la población está en equilibrio, no habrá incremento en laadecuación media. Segundo -y más importante- la componente aditiva de la varianza

genética es aquella porción explicada por los alelos mismos liberados, tanto como sea

 posible, de desviaciones debidas a dominancia. Puesto que, en el modelo considerado, los

cambios en las frecuencias alélicas son los componentes fundamentales de la evolución, latasa de incremento de la adecuación media puede esperarse que esté relacionada con

aquella componente de la varianza genética total que es explicada por los alelos mismos.

BIBLIOGRAFÍA

Fisher, Ronald Aylmer. 1958. The Genetical Theory of Natural Selection. New York.

Dover.

Hardy, Godfrey Harold. 1908. “Mendelian proportions in a mixed population”. Science, 28,

49

Mendel, Gregor. 1965.   Experiments in Plant Hybridisation. J. H. Bennett (e.), London,

Oliver & Boyd

Seneta, Eugene. 1973.  Non-negative Matrices: an introduction to Theory and Application,London, Allen & Unwin