1.basic concepts, laws, and principles

Upload: mihai-bogdan

Post on 10-Jan-2016

222 views

Category:

Documents


0 download

DESCRIPTION

Labview + Arduino

TRANSCRIPT

  • 1

    Basic Concepts, Laws, and Principles

    TOPICS DISCUSSED

    Theneedtostudyelectricalandelectronicsengineering

    Behaviourofmaterialsasconductors,semiconductors,andinsulators

    Conceptofcurrent,resistance,potential,andpotentialdifference

    Differencesbetweenelectricfieldandmagneticfield

    Ohmslaw

    Effectoftemperatureonresistance

    Electromagnetismandelectromagneticinduction

    Lawsofelectromagneticinduction

    DynamicallyandstaticallyinducedEMF

    Selfandmutualinductance

    Electricalcircuitelements

    1.1 INTRODUCTION

    Weseeapplicationsofelectricityallaroundus.Weobservethepresenceofelectricityinnature.Itisindeedamazingaswellasinterestingtoknowhowmankindhasbeenabletoputelectricityforitsuse.Allelectronicandelectricalproductsoperateonelectricity.Beityourcomputersystem,cellphones,homeentertainmentsystem,lighting,heating,andairconditioningsystemsallareexamplesofapplicationsofelectricity.Applicationofelectricityislimitlessandoftenextendsbeyondourimagination.

    Electricalenergyhasbeenacceptedastheformofenergywhichiscleanandeasytotransmitfromoneplacetotheother.Allotherformsofenergyavailableinnatureare,therefore,transformedintoelectricalenergyandthentransmittedtoplaceswhereelectricityistobeusedfordoingsomework.Electricalengineering,therefore,hasbecomeadiscipline,abranchofstudywhichdealswithgeneration,transmission,distribution,andutilizationofelectricity.

    Electronicsengineeringisanoffshootofelectricalengineering,whichdealswiththetheoryanduseofelectronicdevicesinwhichelectronsaretransportedthroughvacuum,gas,orsemiconductors.Themotionofelectronsinelectronicdeviceslikediodes,transistors,thyristors,etc.arecontrolledbyelectricfields.Moderncomputersanddigitalcommunicationsystemsareadvancesofelectronics.Introductionofverylargescaleintegrated(VLSI)circuitshasledtotheminiaturizationofallelectronicsystems.

    Electricalandelectronicengineeringare,therefore,veryexcitingfieldsofstudy.Apersonwhoisunawareofthecontributionofthesefieldsofengineeringandthebasicconceptsunderlyingtheadvancement,willonlyhavetoblamehimselforherselffornottakinganyinitiativeinknowingtheunknown.

    PREVPreface

    NEXT2. DC Networks an

    Basic Electrical and Electronics Engineering Recent

    Topics

    Tutorials

    Highlights

    Settings

    Feedback(http://community.safaribooksonline.com)

    Sign Out

    Settings

    10 days left in your trial. Subscribe.

    Feedback(http://community.safaribooksonline.com/)

    Sign Out

    Enjoy Safari? Subscribe Today

  • Inthischapter,wewillintroducesomebasicconcepts,laws,andprincipleswhichthestudentsmighthavestudiedinphysics.However,sincetheseformthebasisofunderstandingoftheotherchaptersinthisbook,itwillbegoodtostudythemagain.

    1.2 ATOMIC STRUCTURE AND ELECTRIC CHARGE

    Severaltheorieshavebeendevelopedtoexplainthenatureofelectricity.Themodernelectrontheoryofmatter,propoundedbyscientistsSirEarnestRutherfordandNielBohrconsiderseverymatteraselectricalinnature.Accordingtothisatomictheory,everyelementismadeupofatomswhichareneutralinnature.Theatomcontainsparticlesofelectricitycalledelectronsandprotons.Thenumberofelectronsinanatomisequaltothenumberofprotons.

    Thenucleusofanatomcontainsprotonsandneutrons.Theneutronscarrynocharge.Theprotonscarrypositivecharge.Theelectronsrevolveroundthenucleusinellipticalorbitsliketheplanetsaroundthesun.Theelectronscarrynegativecharge.Sincethereareequalnumberofprotonsandelectronsinanatom,anatomisbasicallyneutralinnature.

    Iffromabodyconsistingofneutralatoms,someelectronsareremoved,therewillbeadeficitofelectronsinthebody,andthebodywillattainpositivecharge.Ifneutralatomsofabodyaresuppliedsomeextraelectrons,thebodywillattainnegativecharge.Thus,wecansaythatthedeficitorexcessofelectronsinabodyiscalledcharge.

    Chargeofanelectronisverysmall.Coulombistheunitofcharge.Thechargeofanelectronisonly1.60210 Coulomb(C).Thus,wecansaythatthenumberofelectronsperCoulombisthereciprocalof1.60210whichequalsapprox.6.2810 electrons.Therefore,chargeof6.28

    10 electronsisequalto1C.Whenwesaythatabodyhasapositivechargeof1C,itisunderstoodthatthebodyhasadeficitof6.2810electrons.

    Anychargeisanexampleofstaticelectricitybecausetheelectronsorprotonsarenotinmotion.Youmusthaveseentheeffectofchargedparticleswhenyoucombyourhairwithaplasticcomb,thecombattractssomeofyourhair.Theworkofcombingcausesfriction,producingchargeofextraelectronsandexcessprotonscausingattraction.

    Chargeinmotioniscalledelectriccurrent.Anychargehasthepotentialofdoingwork,i.e.,ofmovinganotherchargeeitherbyattractionorbyrepulsion.Achargeistheresultofseparatingelectronsandprotons.Thechargeofelectronsorprotonshaspotentialbecauseitlikestoreturnbacktheworkthatwasdonetoproduceit.

    1.3 CONDUCTORS, INSULATORS, AND SEMICONDUCTORS

    Theelectronsinanatomrevolveindifferentorbitsorshells.TheshellsarenamedasK,L,M,N,etc.Thenumberofelectronsthatshouldbeinafilledinnershellisgivenby2n wherenisshellnumber1,2,3,4,etc.startingfromthenearestone,i.e.,firstshelltothenucleus.Ifn=1,thefirstshellwillcontaintwoelectrons.Ifn=2,thesecondshellwillcontaineightelectrons.Thisway,thenumberofelectronsintheshellsare2,8,18,32,etc.Thefilledoutermostshellshouldalwayscontainamaximumnumberofeightelectrons.Theoutermostshellofanatommayhavelessthaneightelectrons.Asforexample,copperhasanatomicnumberof29.Thismeans,copperatomhas29protonsand29electrons.TheprotonsareconcentratedinthenucleuswhiletheelectronsaredistributedintheK,L,M,andNshellsas2,8,18,and1electrons,respectively.Theoutermostshellofacopperatomhasoneelectrononlywhereasthisshellcouldhave8electrons.

    Thepositionoccupiedbyanelectroninanorbitsignifiesitsenergy.Thereexistsaforceofattractionbetweentheorbitingelectronandthenucleusduetotheoppositechargetheofelectronandtheproton.Theelectronsintheinnerorbitsarecloselyboundtothenucleusthantheelectronsoftheouteroroutermostorbit.Iftheelectronisfarawayfromthenucleus,theforceofattractionisweak,andhencetheelectronsofoutermostorbitareoftencalledfreeelectrons.Forexample,acopperatomhasonlyoneatominthelastorbitwhichotherwisecouldhaveeightelectrons.

    Inacopperwireconsistingoflargenumberofcopperatoms,theatomsareheldclosetogether.Theoutermostelectronsofatomsinthecopperwirearenotsureaboutwhichatomtheybelongto.Theycanmoveeasilyfromoneatomtotheotherinarandomfashion.Suchelectronswhichcanmoveeasilyfromoneatomtotheotherinarandomfashionarecalledfreeelectrons.Itisthemovementoffreeelectronsinamateriallikecopperthatconstitutesflowofcurrent.Here,ofcourse,thenetcurrentflowwillbezeroasthemovementofthefreeelectronsisinrandomdirections.Whenweapplyapotential,whichisnothingbutaforce,itwilldirecttheflowofelectronsinaparticulardirection,i.e.,fromapointofhigherpotentialtowardsapointoflowerpotential.Thus,currentflowisestablishedbetweentwopointswhenthereexistsapotentialdifferencebetweenthepoints.

    Wheninamaterialtheelectronscanmovefreelyfromoneatomtoanotheratom,thematerialiscalledaconductor.Silver,copper,gold,andaluminiumaregoodconductorsofelectricity.Ingeneral,allmetalsare

    19

    19 18

    18

    18

    2

  • goodconductorsofelectricity.Althoughsilveristhebestconductorofelectricity,thesecondbestconductor,i.e.,copper,ismostlyusedasconductorbecauseofthecostfactor.Inelectricalandelectronicengineeringfields,thepurposeofusingaconductorascarrierofelectricityistoallowelectriccurrenttoflowwiththeminimumofresistances,i.e.,theminimumofopposition.

    Inamaterialwheretheoutermostorbitoftheatomsiscompletelyfilled,thematerialiscalledaninsulator.Insulatorslikeglass,rubber,mica,plastic,paper,air,etc.donotconductelectricityveryeasily.Intheatomsofthesematerials,theelectronstendtostayintheirownorbits.However,insulatorscanstoreelectricityandcanpreventflowofcurrentthroughthem.Insulatingmaterialsareusedasdielectricincapacitorstostoreelectriccharge,i.e.,electricity.

    Carbon,silicon,andgermaniumhavingatomicnumbersof6,14,and32,respectively,arecalledsemiconductingmaterial.Thenumberofelectronsintheoutermostorbitoftheiratomsisfourinsteadofthemaximumofeight.Thus,intheoutermostorbitofasemiconductormaterial,therearefourvacantpositionsforelectrons.Thesevacantpositionsarecalledholes.Inamaterial,theatomsaresoclosetogetherthattheelectronsintheoutermostorbitorshellbehaveasiftheywereorbitingintheoutermostshellsoftwoadjacentatomsproducingabindingforcebetweentheatoms.Inasemiconductormaterialtheatomsformingabonding,calledcovalentbonding,sharetheirelectronsintheoutermostorbit,andtherebyattainastablestate.Theconditionislikeaninsulatorhavingalltheeightpositionsintheoutermostorbitfilledbyeightelectrons.However,insemiconductingmaterials,withincreaseintemperatureitispossibleforsomeoftheelectronstogainsufficientenergytobreakthecovalentbondsandbecomefreeelectrons,andcausetheflowofcurrent.

    1.4 ELECTRIC FIELD AND MAGNETIC FIELD

    Whenchargesareseparated,aspaceiscreatedwhereforcesareexertedonthecharges.Anelectricfieldissuchaspace.Dependinguponthepolarityofthecharges,theforceiseitherattractiveorrepulsive.Therefore,wecansaythatstaticchargesgenerateanelectricfield.Anelectricfieldinfluencesthespacesurroundingit.Electricfieldstrengthisdeterminedintermsoftheforceexertedoncharges.Acapacitorisareservoirofcharge.Thetwoparallelplatesofacapacitor,whenconnectedtoavoltagesource,establishesanelectricfieldbetweentheplates.Thepositiveterminal,orpoleofthevoltagesourcewilldrawelectronsfromplate1whereasthenegativepolewillpushextraelectronsontoplate2.Voltageacrossthecapacitorwillrise.Thecapacitorgetschargedequaltothevoltageofthesource.Thecapacitanceofacapacitorisameasureofitsabilitytostorecharge.Thecapacitanceofacapacitorisincreasedbythepresenceofadielectricmaterialbetweenthetwoplatesofthecapacitor.

    Acurrentcarryingconductororacoilproducesmagneticfieldaroundit.Thestrengthofthemagneticfieldproduceddependsonthemagnitudeofthecurrentflowingthroughtheconductororthecoil.Thereispresenceofmagneticfieldaroundpermanentmagnetsaswell.

    Amagnetisabodywhichattractsiron,nickel,andcobalt.Permanentmagnetsretaintheirmagneticproperties.Electromagnetsaremadefromcoilsthroughwhichcurrentisallowedtoflow.Theirmagneticpropertieswillbepresentaslongascurrentflowsthroughthecoil.

    Thespacewithinwhichforcesareexertedbyamagnetiscalledamagneticfield.Itistheareaofinfluenceofthemagnet.

    1.5 ELECTRIC CURRENT, RESISTANCE, POTENTIAL, AND POTENTIAL DIFFERENCE

    1.5.1 Electric Current

    Inanyconductingmaterial,theflowofelectronsformswhatiscalledcurrent.Electronshavenegativecharge.Chargeonanelectronisverysmall.ForthisreasonchargeisexpressedintermsofCoulomb.ChargeofoneCoulombisequaltoachargeof6.2810 electrons.Theexcessordeficitofelectronsinabodyiscalledcharge.Thus,electricalcurrentisexpressedasaflowofnegativecharge,i.e.,electrons.Anysubstancelikecopper,aluminum,silver,etc.whichhasalargenumberoffreeelectrons(i.e.,looslyboundelectronsintheoutermostorbitofitsatom)willpermittheflowofelectronswhenelectricalpressureintheformofEMF(electromotiveforce,i.e.,voltage)isapplied.

    Sincethesematerialsconductelectricity,theyarecalledconductors.Theyeasilyallowelectriccurrenttoflowthroughthem.Thestrengthofcurrentwilldependupontheflowofchargeperunittime.Thisisexpressedas

    wherechargeQismeasuredinCoulombandtime,tinseconds.Theunitofcurrent,therefore,isCoulombpersecond,when1Cofchargeflowsin1

    18

  • sthemagnitudeofcurrentiscalledampere,namedafterAndrMarieAmpere.

    Thus,1ampereofcurrentisequivalenttotheflowofchargeof1Coulombpersecond.

    Inearlieryears,currentwasassumedtoflowfrompositivetonegativeterminals.Thisconventionisusedevennowalthoughitisknownthatcurrentisduetothemovementofelectronsfromthenegativetothepositiveterminal.

    1.5.2 Resistance

    Electricalresistanceisthehindranceoroppositiontotheflowofelectronsinagivenmaterial.Itismeasuredinunitcalledohm.Sincecurrentistheflowofelectrons,resistanceistheoppositionofferedbyamaterial,totheflowoffreeelectrons.Resistance,R,isdirectlyproportionaltothelengthofthematerial,andinverselyproportionaltotheareaofthecrosssectionofthematerial,throughwhichcurrentflows.Theresistanceofferedbyconductingmaterialslikecopperandaluminumislowwhereasresistanceofferedbysomeotherconductingmaterialslikenicrome,tungsten,etc.isveryhigh.Allthesematerialsarecalledconductingmaterials.However,thevaluesofresistivityofthesematerialsaredifferent.Theresistance,Rofamaterialisexpressedas

    whereistheresistivity,isthelengthandAisthecrosssectionalareaoftheconductingmaterial.

    Theresistivity,isalsocalledthespecificresistanceofthematerial.Themostconductingmaterial,silverhasthelowestvalueofresistivity,i.e.,0.01610 ohmm.Aftersilver,copperismostconducting.Theresistivityorspecificresistanceofcopperissomewhatmorethanthatofsilver,i.e.,0.01810 ohmm.Thatistosay,copperislessconductingthansilver.Wewillseealittlelaterwhyandhowthevalueofresistancechangeswithtemperature.

    1.5.3 Potential and Potential Difference

    EMFproducesaforceorpressurethatcausesthefreeelectronsinabodytomoveinaparticulardirection.TheunitofEMFisvolt.EMFisalsocalledelectricpotential.Whenabodyischarged(i.e.,eitherdefficiencyofelectronsorexcessofelectronsiscreated),anamountofworkisdone.Thisworkdoneisstoredinthebodyintheformofpotentialenergy.Suchachargedbodyiscapableofdoingworkbyattractingorrepellingothercharges.Theabilityofachargedbodytodoworkinattractingorrepellingchargesiscalleditspotentialorelectricalpotential.Workdonetochargeabodyto1Cisthemeasureofitspotentialexpressedinvolts:

    Whenworkdoneis1jouleandchargemovedis1C,thepotentialiscalled1volt.Ifwesaythatapointhasapotentialof6volts,itmeansthat6Joulesofworkhasbeendoneinmoving1Cofchargetothatpoint.Inotherwords,wecansaythateveryCoulombofchargeatthatpointhasanenergyof6Joules.

    Thepotentialdifferenceoftwopointsindicatesthedifferenceofchargedconditionofthesepoints.SupposepointAhasapotentialof6volts,andpointBhasapotentialof3volts.WhenthepointsAandBarejoinedtogetherbyaconductingwire,electronswillflowfrompointBtopointA.WesaythatcurrentflowsfrompointAtowardspointB.Thedirectionofcurrentflowistakenfromhigherpotentialtolowerpotentialwhiletheflowofelectronsareactuallyintheoppositedirection.Theflowofcurrentfromhigherpotentialtolowerpotentialissimilartotheflowofwaterfromahigherleveltoalowerlevel.

    1.6 OHMS LAW

    GeorgeSimonOhmfoundthatthevoltage,Vbetweentwoterminalsofacurrentcarryingconductorisdirectlyproportionaltothecurrent,Iflowingthroughit.Theproportionalityconstant,Ristheresistanceoftheconductor.Thus,accordingtoOhmslaw

    6

    6

  • Thisrelationwillholdgoodprovidedthetemperatureandotherphysicalconditionsdonotchange.

    Figure1.1(a)ShowslinearrelationshipbetweenVandI(b)VIcharacteristicsfordifferentvaluesofR

    OhmslawisnotapplicabletononlineardeviceslikeZenerdiode,voltageregulators,etc.OhmslawisexpressedgraphicallyonVandIaxiesasastraightlinepassingthroughtheoriginasshowninFig.1.1(a).

    TherelationshipbetweenVandIhavebeenshownfordifferentvaluesofRinFig.1.1(b).HereinV=RI,Rindicatestheslopeoftheline.ThemorethevalueofRis,themorewillbetheslopeofthelineasshowninFig.1.1(b).

    1.7 THE EFFECT OF TEMPERATURE ON RESISTANCE

    Resistanceofpuremetalslikecopper,aluminum,etc.increaseswithincreaseintemperature.ThevariationofresistancewithchangeintemperaturehasbeenshownasalinearrelationshipinFig.1.2.

    Thechangeinresistanceduetochangeintemperatureisfoundtobedirectlyproportionaltotheinitialresistance,i.e.,R R R .Resistance(R R )alsovariesdirectlyasthetemperatureriseandthischangealsodependsuponthenatureofthematerial.Thuswecanexpressthechangeinresistanceas,

    R R R t

    or,R R = R t,where iscalledthetemperaturecoefficientofresistanceat0C.

    Figure1.2(a)Showsthevariationofresistancewithtemperature(b)resistancesattwodifferenttemperatures

    Thisexpressioncanbeappliedforbothincreaseanddecreaseintemperature.FromthegraphofFig.1.2(a)itisseenthatresistanceofthematerialcontinuestodecreasewithdecreaseintemperaturebelow0C.Ifwegoondecreasingthetemperaturetoaverylowvalue,thematerialattainsastateofzeroresistance.Thematerialatthatstatebecomessuperconducting,i.e.,conductingwithnoresistanceatall.

    t 0 0

    t 0

    t 0 0

    t 0 0 0 0

  • Nowsupposeaconductorisheatedfromtemperaturet tot .Theresistanceoftheconductoratt isR andatt isR ashasbeenshowninFig.1.2(b).

    Usingeq.(1.5),

    Usingeq.(1.5),wecanwrite

    Fromfig1.2(b)usingtherelationin(1.6),wecanwrite

    Thus,ifresistanceatanytemperaturet isknown,theresistanceatttemperaturecanbecalculated.

    Calculation of at different temperatures

    Wehaveseen,

    If and arethetemperaturecoefficientsofresistanceatt andtdegrees,respectively,then

    Thus,wecanwrite,

    Therefore,

    1 2

    1 1 2 2

    1 2

    1 2 1 2

  • Temperaturecoefficientofresistance,at20CandspecificresistanceofcertainmaterialhavebeenshowninTable1.1.

    Table1.1TemperatureCoefficientandSpecificResistanceofDifferentMaterials

    Material Temp.coeff.ofresistance Specificresistanceinmicro

    ohm

    Silver 0.004 0.016

    Copper 0.0039 0.018

    Aluminium 0.0036 0.028

    Iron 0.005 0.100

    Brass 0.0015 0.070

    Lead 0.0042 0.208

    Tin 0.0046 0.110

    Carbon 0.00045 66.67

    Itistobenotedthatcarbonhasanegativetemperaturecoefficientofresistance.Thismeans,theresistanceofcarbondecreaseswithincreaseintemperature.

    Bythistimeyoumustbewonderingastowhyresistanceinmostmaterialsincreaseswithincreaseintemperaturewhileresistanceinsomedecreaseswithincreaseintemperature.

    Thechargedparticlesinsideamaterialisinthestateofvibration.Temperatureriseinmostmaterialsincreasesthisvibrationinsidethematerialobstructingtheflowofelectrons.Obstructiontotheflowofelectronsiscalledresistance.Atlowertemperaturesthevibrationgetsreduced,andhencetheresistance.

    1.8 WORK, POWER, AND ENERGY

    1.8.1 Work

    Whenaforceisappliedtoabodycausingittomove,andifadisplacement,discausedinthedirectionoftheforce,then

    IfforceisinNewtonsanddisinmeters,thenworkdoneisexpressedinNewtonmeterwhichiscalledJoules.

    1.8.2 Power

    Poweristherateatwhichworkisdone,i.e.,rateofdoingwork.Thus,

    TheunitofpowerisJoules/secondwhichisalsocalledWatt.Whentheamountofpowerismore,itisexpressedinKilowatt,i.e.,kW.

    1kW=110 W

    Wehaveearlierseenineq.(1.3),thatelectricalpotential,Visexpressedas

    20

    3

  • ThusinacircuitifIisthecurrentflowing,andVistheappliedvoltageacrosstheterminals,power,Pisexpressedas

    Thuselectricalpowercanbeexpressedas

    1.8.3 Energy

    Energyisdefinedasthecapacityfordoingwork.Thetotalworkdoneinanelectricalcircuitiscalledelectricalenergy.Whenavoltage,Visapplied,thecharge,Qwillflowsothat

    IfpowerisinkWandtimeisinhour,theunitofenergywillbeinKilowatthourorkWh.

    1.8.4 Units of Work, Power, and Energy

    InSIunit,workdoneisthesameasthatofenergy.

    Mechanical work or energy

    WhenaForce,FNewtonactingonabodymovesitinthedirectionoftheforcebyadistancedmeters:

    Workdone=FDNmorJoules

    WhenaforceFNewtonisappliedtangentiallyonarotatingbodymakingaradiusrmeters,then

    IfNisexpressedinrevolutionsperminute(rpm)

  • Whenabodyofmassmkgisliftedtoaheighthmetersagainstthegravitationalforcegm/sec ,workdoneisconvertedintopotentialenergyofthebody.

    Electrical energy

    Asmentionedearlier,workdoneinanelectricalcircuitisitsenergy.

    IfelectricalpowerisexpressediskWandtimeinhour,then

    WewillnowconvertkWhintoCalories

    Since1Calorie=4.2Joules

    Thermal energy

    InSIunit*thermalenergyisexpressedincalories.Onecalorieindicatestheamountofheatrequiredtoraisethetemperatureof1gmofwaterby1C.Thisheatisalsocalledthespecificheat.Ifmisthemassoftheliquid,Sisthespecificheat,andtisthetemperatureriserequired,thentheamountofheatrequired,Hisexpressedas

    Example1.1Acopperwirehasresistanceof0.85ohmsat20C.Whatwillbeitsresistanceat40C?Temperaturecoefficientofresistanceofcopperat0Cis0.004C.

    Solution:

    2

  • Example1.2Theheatingelementofanelectricheatermadeofnicromewirehasvalueofresistivityof110 Ohmm.Thediameterofthewireis0.2mm.Whatlengthofthisnicromewirewillmakearesistanceof100Ohms?

    Solution:

    Substitutingthevalues,lengthofwire,is

    Example1.3Itisrequiredtoraisethetemperatureof12kgofwaterinacontainerfrom15Cto40Cin30minthroughanimmersionrodconnectedtoa230Vsupplymains.Assuminganefficiencyofoperationas80percent,calculatethecurrentdrawnbytheheatingelement(immersionrod)fromthesupply.Alsodeterminetheratingoftheimmersionrod.Specificheatofwateris4.2kiloJoules/kg/C.

    Solution:

    OutputorEnergyspentinheatingthewater,His

    H=ms(t t )

    Wheremisthemassofwaterandsisthespecificheatofwater.

    Here,H=124.210 (4015)Joules

    =12610 Joules

    Weknow,efficiency

    So,Energyinputtoimmersionrod

    Thetimeofoperationoftheheaterrod

    2 1

    6

    3

    4

  • Currentdrawnfrom230Vsupply

    P=VI=870Watts.

    Example1.4Amotordrivenwaterpumplifts64m ofwaterperminutetoanoverheadtankplacedataheightof20metres.Calculatethepowerofthepumpmotor.Assumeoverallefficiencyofthepumpas80percent.

    Solution:

    Workdone/min=mghJoules

    m=6410 kg(1m ofwaterweights1000kg)

    g=9.81m/sec

    h=20m

    Substitutingvalues

    Inputpowerofthepumpmotor

    =261.3KW

    Example1.5Aresidentialflathasthefollowingaverageelectricalconsumptionsperday:

    1. 4tubelightsof40wattsworkingfor5hoursperday2. 2filamentlampsof60wattsworkingfor8hoursperday3. 1waterheaterrated2kWworkingfor1hourperday4. 1waterpumpof0.5kWratingworkingfor3hoursperday.

    Calculatethecostofenergypermonthif1kWhofenergy(i.e.,1unitof

    energy)costs

    Solution:

    Totalkilowatthourconsumptionofeachloadfor30daysarecalculatedas:

    3

    3 3

    2

  • TotalkWhconsumedpermonth

    =24kWh+28.8kWh+60kWh+45kWh

    =157.5kWh

    OnekWhofenergycosts

    Thetotalcostofenergypermonth=157.53.50

    Example1.6Anelectrickettlehastoraisethetemperatureof2kgofwaterfrom30Cto100Cin7minutes.Thekettleishavinganefficiencyof80percentandissuppliedfroma230Vsupply.Whatshouldbetheresistanceofitsheatingelement?

    Solution:

    Outputenergyofthekettle=mst

    Supplyvoltage,V=230Volts.

    Power,P=1.74kW=1740Watts.

    V=230V

    Example1.7Calculatethecurrentflowingthrougha60Wlampona230Vsupplywhenjustswitchedonatanambienttemperatureof25C.Theoperatingtemperatureofthefilamentmaterialis2000Canditstemperaturecoefficientofresistanceis0.005perdegreeCat0C.

    Solution:

  • Thisresistanceofthefilamentisat2000C.LetuscallitR =881.6Ohms.

    Attheinstantofswitching,resistanceisatroomtemperature,i.e.,at25C.LetuscallitasR .

    WeknowR wehavetocalculateR given =0.005ohm/C.

    Weknow,

    Weknowtherelation,

    Thecurrentflowingthroughthe60Wlampattheinstantofswitchingwillbecorrespondingtoitsresistanceat25C.

    Example1.8Acoilhasaresistanceof18at20Cand20at50C.Atwhattemperaturewillitsresistancebe21Ohms?

    Solution:

    weknow,

    Wecanwrite,

    substituting,

    2000

    25

    2000 25 0

  • Example1.9Theresistanceofawireincreasesfrom40at20Cto50at70C.Calculatethetemp.coefficientofresistanceat0C.

    Solution:

    given

    or,

    or,

    Example1.10Aresistanceelementofcrosssectionalareaof10mmandlength10mdrawsacurrentof4Aat220Vsupplyat20C.Calculatetheresistivityofthematerial.Whatcurrentwillbedrawnwhenthetemperaturerisesto60C?Assume =0.0003/C.

    Solution:

    a=10mm

    =1010 m

    V=IR

    or,

    Thisresistance,wecallasR

    SincewehavetocalculateR ,wehaveto

    Now,

    20

    20

    60 60

    2

    2

    6 2

  • Current,

    1.9 ELECTROMAGNETISM AND ELECTROMAGNETIC INDUCTION

    1.9.1 Introduction

    Electromagnetismisthestudyofinteractionbetweenelectriccurrentandmagneticfield,andforcesproducedthereof.Thissectionwillincludedescriptionsofmagneticfieldaroundcurrentcarryingconductors,magneticfieldproducedbyacurrentcarryingcoil,forceproducedonacurrentcarryingconductororacoilwhenplacedinamagneticfield.

    ADanishscientist,Oerstedintheearlynineteenthcenturydiscoveredthattherewasamagneticfieldaroundacurrentcarryingconductor.Linesofforceintheformofconcentriccirclesexistedonaperpendicularplanearoundacurrentcarryingconductor.Thismeant,magnetismcouldbecreatedbyelectriccurrent.Itwasalsoobservedthatthedirectionoflinesofforcegotchangedwhenthedirectionofcurrentflowingthroughtheconductorwaschanged.AfewyearsafterthediscoveryofOersted,Faraday,anotherscientistfromEnglanddiscoveredthatamagneticfieldcancreateanelectriccurrentinaconductor.Whenthereisachangeinfluxlinkageinaconductororacoil,EMFisinducedinit.ThisphenomenoniscreditedtoFaradaywhoestablishedfamouslawsofelectromagneticinduction.Youwillobservethatmostoftheelectricalmachinesanddeviceshavebeendevelopedutilizingtheobservationsanddiscoveriesmadeasmentionedabove.

    1.9.2 Magnetic Field Around a Current-carrying Conductor

    InFig.1.3isshownaconductorcarryingacurrent,I.Linesofforceareestablishedaroundtheconductoronaperpendicularplane.InFig.1.3(a)magneticfieldaroundalongconductorhasbeenshown.Thelinesofforceareestablishedonaperpendicularplane.InFig.1.3(b)and(c),thecrosssectionalviewsofacurrentcarryingconductorhavebeenshown.Thecrossatthecentreoftheconductorindicatesthatcurrentisenteringtheconductorwhichisplacedperpendiculartotheplaneofthepaper.Thelinesofforceintheformofconcentriccirclesareontheplaneofthepaper.ThedirectionofcurrentthroughtheconductorisreversedinFig.1.3(c).Thedotatthecentreoftheconductorindicatesthatthecurrentiscomingtowardstheobserver.Thedirectionofthelinesforcearoundtheconductoralsogetreversed.

    Thedirectionoffluxlinesaroundacurrentcarryingconductorisdeterminedbyapplyingthecorkscrewrulewhichisstatedbelow.

    Figure1.3(a)Alongcurrentcarryingconductor(b)crosssectionalviewofaconductorwithfluxaroundit(c)crosssectionalviewoftheconductorwiththedirectionofcurrentreversed(d)resultantmagneticfieldproducedbytwocurrentcarryingconductors

    CorkScrewRule:Considerarighthandscrewheldononeendofacurrentcarryingconductorandisrotatedintheclockwisedirection.Iftheadvancementofthescrewindicatesthedirectionofcurrent,thedirectioninwhichthescrewisrotatedwillindicatethedirectionofthelinesofforcearoundtheconductor.

    InFig.1.3(d)hasbeenshownthattwocurrentcarryingconductorsplacedsidebysideproducearesultantmagneticfield.

    1.9.3 Magnetic Field Around a Coil

    Acoilisformedbywindingawireofcertaincrosssectionaroundaformer(ahollowcylindermadeofsomenonmagneticmateriallikebakelite,plastics,etc).Suchacoilisoftencalledasolenoid.Whencurrentisallowedtoflowthroughsuchacoil,amagneticfieldisproducedbythecoil.Thedirectionoffluxproducedbyacurrentcarryingcoilisdeterminedbyapplyingtherighthandgriprule.InFig.1.4(a)isshownacurrentcarryingcoil.Ifweholdthecoilbyourrighthandinsuchaway

  • thatthefourfingersbendtowardsthedirectionofthecurrentflowthroughthecoilturns,thethumbwillindicatethedirectionoftheresultantfluxproduced.

    Figure1.4(a)Righthandgripruleappliedtodeterminedirectionoffluxproducedbyacurrentcarryingcoil(b)magneticfieldproducedbyacurrentcarryingcoil

    Thefourfingersbendinthedirectionofcurrentthroughthecoil.Thedirectioninwhichthethumbpointsisthedirectionoffluxproduced.InFig.1.4(b),wehaveshownthecrosssectionalviewofthesamecoil.Forthedirectionofcurrentflowthroughthecoil,crosssectionshavebeenshownbyputtingcrossanddotconvention.Theuppersideofthecoilturns1,2,3,4,5willindicatethatcurrentisenteringwhiletheywillcomeoutfromtheothersideasshowninthebottomconductorcrosssections.ByapplyingthecorkscrewrulealsowecandeterminethedirectionoftheresultantmagneticfieldandshowthepositionsofNorthandSouthpolesformed.Ifthedirectionofcurrentflowthroughthecoilisreversed,thedirectionofthemagneticlinesofforcewillbeopposite,andhencethepositionsofNorthandSouthpoleswillchange.

    IfweapplysomealternatingvoltageacrossthecoilasshowninFig.1.5,thepolarityofpowersupplywillchangeineveryhalfcycleoftheappliedvoltage.Ifasinusoidalacsupplyisprovided,boththemagnitudeaswellasthedirectionofcurrentflowwillchange.Asaresult,themagnitudeofthemagneticfieldproducedwillchangestartingfromzerovaluereachingitsmaximumvalue,thengettingreducedagaintozero,andthenbecomingnegative.Thedirectionoffluxproducedwillchangeineveryhalfcycleofcurrentflow.Suchamagneticfieldwhosemagnitudeasalsoitsdirectionchangesiscalledapulsatingalternatingmagneticfield.Incaseofdcsupply,themagneticfieldproducedwillbeofconstantmagnitudeandfixedpolarity.

    Figure1.5ACsupplytoacoilproducesanalternatingmagneticfieldofvaryingmagnitude

    1.9.4 A Current-carrying Conductor Placed in a Magnetic Field

  • Whenaconductorcarryingcurrentisplacedinamagneticfielditexperiencesaforce.Theforceactsinadirectionperpendiculartoboththemagneticfieldandthecurrent.

    InFig.1.6aconductorisshownplacedperpendiculartothedirectionofmagneticfield.Suchaconductorincrosssectionalviewhasbeenshownbyasmallcircle.Thedotinsidethesmallcircleindicatesthatcurrentisflowingtowardstheobserver.Theconductorwillexperienceaforceintheupwarddirectionashasbeenshown.Ifthedirectionofcurrentthroughtheconductorisreversed,theforceontheconductorwillbeinthedownwarddirection.

    Theforceontheconductorwilldependupontheflux, orfluxdensity,

    B whereAistheareaofthemagneticpoles.Theforcewillalsodependupontheeffectivelengthoftheconductorinthemagneticfield,i.e.,onthemagnitudeofcurrentflowing,i.e.,I.Theforcedevelopedisexpressedas

    Herethecurrentcarryingconductorandthemagneticfieldsareatrightanglestoeachother.If,however,theconductorisinclinedwiththemagneticfieldbyanangle,thenthelengthoftheconductorperpendiculartothemagneticfieldistobeconsideredasshowninFig.1.7.ThelengthoftheconductorperpendiculartothemagneticfieldisSin.Thus,thegeneralexpressionforforceFis

    ThedirectionoftheforceisdeterminedbyapplyingFlemingslefthandrulewhichisstatedas:

    Figure1.6Forceexperiencedbyaconductorcarryingcurrentinamagneticfield

    Figure1.7Forceonacurrentcarryingconductor

    Flemings left-hand rule

    ThethreefingersofthelefthandarestretchedasshowninFig.1.6.Iftheforefingerpointstowardsthedirectionofthelinesofforce,andthemiddlefingerpointstowardthecurrentflowingthroughtheconductor,thenthethumbwillpointtowardsthedirectionofforceexperiencedbytheconductor.

    1.9.5 A Current-carrying Coil Placed in a Magnetic Field

    Nowwewillconsideracoilplacedinamagneticfield.Acoilhastwocoilsideswhichlieinthemagneticfield.Thesecoilsidesarecalledconductors.Thus,acoilhastwoconductors.Ifacoilhastwoturns,thenumberofconductorswillbefour.SeeFig.1.8(aandb).InFig.1.8(c)hasbeenshownasingleturncoilplacedinamagneticfield.Thedirectionofcurrentthroughthecoilhasalsobeenshown.ThedirectionofthemagneticfieldisfromNorthpoletoSouthpole.Thedirectionofcurrentincoilsideaisupward,i.e.,towardstheobserver.IfweapplyFlemingslefthandrule,wefindthatcoilsideawillexperienceanupwardforce.

  • Similarly,byapplyingthesamerule,weobservethatcoilsidewillexperienceadownwardforce.ThetwoforcesactingsimultaneouslyonthecoilwilldevelopatorquewhichwilltrytorotatethecoilalonganaxisxxintheclockwisedirectionashasbeenshowninFig.1.8(c).Thecoilwillrotatebyanangleof90.TheNorthpoleofthemagneticfieldproducedbythecurrentcarryingcoilwillfacethestationarySouthpoleasshowninFig.1.9.

    ThetwomagneticfieldsgetalignedasshowninFig.1.9(b).IfitispossibletochangethedirectionofcurrentinthecoilwhenitchangesitspositionfromDDaxistoXXaxis,thecoilwillcontinuetodeveloptorqueintheclockwisedirection.Wewillgetcontinuousrotationofthecoil.Thisisthebasicprincipleofdirectcurrentelectricmotorwhichwillbediscussedindetailinaseparatechapter.

    Figure1.8(a)Acoilhavingoneturn(b)acoilhavingtwoturns(c)asingleturncoilcarryingcurrentisplacedinamagneticfield(d)thecoilsidesofthecurrentcarryingcoilinthemagneticfieldexperienceforce

    Figure1.9(a)Acurrentcarryingcoilinamagneticfieldexperiencesatorque(b)magneticfieldproducedbythecurrentcarryingcoilandthestationarymagneticfieldgetaligned

    1.10 LAWS OF ELECTROMAGNETIC INDUCTION

    Faraday,onthebasisoflaboratoryexperiments,establishedthatwheneverthereaischangeinthemagneticfluxlinkagebyacoil,EMFisinducedinthecoil.ThemagnitudeoftheEMFinducedisproportionaltotherateofchangeoffluxlinkages.Faradayslawsofelectromagneticinductionarestatedas:

    Firstlaw:EMFisinducedinacoilwhenevermagneticfieldlinkingthatcoilischanged.

    Secondlaw:ThemagnitudeoftheinducedEMFisproportionaltotherateofchangeoffluxlinkage.

    Therateofchangeoffluxlinkageisexpressedas whereNisthenumberofturnsofthecoillinkingtheflux.Thus,theinducedEMF,eisexpressedas

  • TheminussignisintroducedinaccordancewithLenzslawwhichisstatedbelow.

    Lenzslaw:ThislawstatesthattheinducedEMFduetochangeoffluxlinkagebyacoilwillproduceacurrentinthecoilinsuchadirectionthatitwillproduceamagneticfieldwhichwillopposethecause,thatisthechangeinfluxlinkage.

    Thestudentsmayconductanexperimentinthelaboratory,similartothatdonebyFaraday,whichisexplainedbelow.

    IfthemagnetshowninFig.1.10(a)isquicklybroughtnearthecoil,therewillbedeflectioninthegalvanometerindicatingEMFinducedinthecoilandcurrentflowinthecircuit.Ifthemagnetisheldstationarynearthecoil,althoughthereisfluxlinkingthecoil,therewillbenoinducedEMFsincethereisnochangeinthefluxlinkage.TheinducedEMFwillbethereonlyifthereisincreaseordecreaseinfluxlinkagebythecoil.Itwillbeobservedthatwhenthemagnetistakenawayquicklytherewillbedeflectioninthegalvanometer.ItmayalsobenotedthatEMFwillalsobeinducedinthecoilwhenthecoilismovedkeepingthemagnetstationary.

    Figure1.10Faraday'sexperimentonelectromagneticinduction.(a)Amagnetissuddenlybroughtnearacoil(b)determinationofthedirectionofcurrentproducedinthecoil

    Thedirectionofcurrentflowingthroughthecoilcanbedeterminedbyapplyingtherighthandgriprule.Theruleisexplainedasfollows.

    Right-hand-grip rule

    Holdthecoilwithyourrighthandwiththethumbopposingthedirectionofmovementofthemagnet.Theotherfourfingerswillindicatethedirectionofcurrentflowthroughthecoil.Thismeansthatthecurrentinducedinthecoilwillproducefluxinthedirectionofthethumb,thusopposingthefluxproducingtheinducedEMFinthecoil.SeeFig.1.10(b).

    1.11 INDUCED EMF IN A COIL ROTATING IN A MAGNETIC FIELD

    NowwewillconsideracoilrotatedinastationarymagneticfieldasshowninFig.1.11.

    Hereacoil,havingtwosides(conductors)isrotatedinauniformmagneticfieldasshowninFig.1.11.Becauseoftherotationofthecoilinthemagneticfield,fluxlinkagebythecoilchanges,i.e.,thenumberoflinesofforcepassingthroughthecoilchanges.Becauseofchangeoffluxlinkage,EMFisinducedinthecoil.ThedirectionoftheinducedEMFintheconductorscanbedeterminedbyapplyingFlemingsrighthandrule(FRHR).

  • Figure1.11(a)EMFisinducedinacoilwhenrotatedinamagneticfield(b)determinationofdirectionofinducedEMF

    FRHRstatesthatwhenwestretchthethreefingersoftherighthandperpendiculartoeachother,iftheforefingerpointstowardsthefluxlinesfromNorthpoletoSouthpole,andthethumbshowsthedirectionofmovementoftheconductor,thenthemiddlefingerwillrepresentthedirectionoftheinducedEMForcurrentintheconductor.InFig.1.11(b)isshownthedirectionoftheinducedEMFincoilsideaboftherotatingcoilabcd.Thiscoilsideisshowngoingupwards.ThemagneticfielddirectionisfromNorthpoletoSouthpole.Hence,thedirectionoftheinducedEMFwillbefrombtoaasdeterminedbyapplyingFRHR.Thestrongerthemagneticfieldis,themorewillbethemagnitudeofEMFinduced.Themorethespeedofrotationofthecoilis,themorewillbethe

    magnitudeoftheEMFinduced.Thisisbecause willincreaseifboth

    aswellastherateofchangeoflinkageof arechanged.ThemagnitudeoftheEMFinducedwillalsobedirectlyproportionaltothenumberofturnsoftherotatingcoil,orthenumberofcoilsconnectedinseries.TheEMFinducedcanalsobeconsideredintermsoffluxcutbyaconductor(coilside)persecond.

    HereinFig.1.11,thenumberofpolesistwo.Wecanalsohavefourpoles,sixpoles,etc.Whenaconductorrotatesinsuchmagneticfield,itcutsthelinesofforce.Thenumberoflinesofforcecutbyaconductorinone

    revolution,whentherearetwopoles,is2 Webers,where isthefluxperpole.IftherearesayPnumberofpoles,fluxcutbyaconductorinone

    revolutionwillbeP Webers.Ifthecoilmakesnrevolutionspersecond,thetimetakenbyaconductortomakeonerevolutionwillbe1/nseconds.Thus,fluxcutpersecondwillbetheEMFinduced,ewhichis

    1.12 EMF INDUCED IN A CONDUCTOR

    Intermsoflengthofconductor,andvelocityoftheconductor,vinamagneticfieldoffluxdensity,B,theEMFinducedinaconductor,eiscalculatedas

    Toestablishtheaboverelation,letusconsiderasingleconductorrepresentedbyasmallcircle(crosssectionalview)ismovedinamagneticfieldofstrengthBWb/m asshowninFig.1.12.

    2

  • Figure1.12EMFinducedinaconductormovinginamagneticfield

    Lettheconductorcutthefluxatrightanglesbymovingadistancedxmeter.Theareasweptbythemovingconductorisdxm .ThefluxdensityisBWb/m .

    Thetimetakentomoveadistancedxmisdtseconds.

    Inducedemf,e=Fluxcutpersecond

    Since thelinearvelocityvoftheconductor,

    IftheconductormovesinadirectionmakingananglewiththedirectionofmagneticfieldasshowninFig.1.12,theinducedEMFwillbeasstatedearlierineq.1.26.

    1.13 DYNAMICALLY INDUCED EMF AND STATICALLY INDUCED EMF

    Whenemfisinducedinacoilorconductorbyvirtueofmovementofeithertheconductororthemagneticfield,theemfiscalleddynamicallyinducedEMFashasbeenexplainedinsection1.11.

    WhenEMFisinducedinastationarycoilbychangingitsfluxlinkageduetochangeincurrentflowthroughthecoil,suchemfiscalledstaticallyinducedEMF.

    Ifacoilcarriesacurrent,fluxisestablishedaroundthecoil.Ifthecurrentischangedquickly,thefluxlinkagebythecoilwillchangeasshowninFig.1.13(a).

    2

    2

  • Figure1.13(a)ChangeinfluxlinkageinacoilduetoswitchingONandswitchingOFFofdccurrent(b)changeinfluxlinkageduetoalternatingcurrentsupply(c)inducedemfincoils1and2duetochangingfluxproducedbyalternatingcurrentflowingincoil1

    InFig.1.13(a),acoilofcertainnumberofturnsiswoundonaformer,i.e.,itscore.CurrentissuppliedfromabatterybyclosingaswitchS.Iftheswitchiscontinuouslyturnedonandoff,fluxlinkagebythecoilwillchange.TherateofchangeofthefluxlinkagewillinduceEMFinthecoil.

    AsimilareffectwillbethereifanacsupplyisappliedacrossthecoilasshowninFig.1.13(b).Thedirectionofcurrentinthecoilisshownforthepositivehalfcycleofthealternatingcurrent.Thedirectionofcurrentwillchangeineveryhalfcycle,andhencethedirectionoffluxproducedwillchangeineveryhalfcycle.Themagnitudeofcurrentchangescontinuouslysinceasinusoidalcurrentisflowing.Thischangingcurrentwillcreateachangingfluxlinkage,therebyinducingEMFinthecoilinboththecasesasshowninFig.1.13(a)and(b).NotethatinFig.1.13(a),iftheswitchSiskeptclosed,asteadydirectcurrent,i.e.,aconstantcurrentwillflowthroughthecoil.Thisconstantcurrentwillproduceaconstantflux.Therewillbenochangeinfluxlinkagebythecoilwithrespecttotime,andhencenoEMFwillbeinducedinthecoil.Thus,thenecessaryconditionfortheproductionofinducedEMFisthatthereshouldbeachangeinfluxlinkageandnotmerelyfluxlinkagebyacoil.

    1.14 SELF-INDUCED EMF AND MUTUALLY INDUCED EMF

    TheEMFinducedinacoilduetochangeinfluxlinkagewhenachangingcurrentflowsthroughthecoiliscalledselfinducedEMF.

    AsshowninFig.1.13(c),whenasecondcoilisbroughtnearacoilproducingchangingflux,EMFwillbeinducedinthesecondcoilduetochangeincurrentinthefirstcoil.ThisiscalledmutuallyinducedEMF.Infact,EMFwillbeinducedinboththecoilsasboththecoilsarelinkingachangingflux.However,inthesecondcoilEMFisinducedduetochangingfluxcreatedbycoil1.ThemagnitudeoftheinducedEMFwilldependupontherateofchangeoffluxlinkageandthenumberofturnsoftheindividualcoils.TheinducedEMFinthetwocoils,e ande willbe

    whereN andN arethenumberofturnsofcoil1andcoil2,respectively.

    YouwillstudyinaseparatechapterhowtransformersarebuiltutilizingthebasicprincipleofmutuallyinducedEMF.

    1.15 SELF-INDUCTANCE OF A COIL

    ConsideracoilofNturnswoundonacoreofmagneticmaterial.LetanalternatingcurrentipassthroughthecoilasshowninFig.1.14.

    1 2

    1 2

  • Figure1.14Inductanceofacoil

    Theemfinduced,ewillbe

    whereisthepermeabilityofthecorematerialisthelengthoffluxpathAistheareaofthecoil.substituting,

    Liscalledthecoefficientofselfinductanceorsimplyselfinductanceofthecoil.

    Inductanceofacoilis,therefore,dependentuponthepermeabilityofthecorematerial.Ifweputironasthecorematerialinsteadofanynonmagneticmaterial,orairasthecore,theinductancewillincreasemanytimes.The(permcability),isexpressedas

    =

    where istherelativepermeabilityand isthepermeabilityoffreespace.Therelativepermeabilityofironmaybeashighas2000timesthanthatofair.Hence,anironcorecoilmayhaveaninductancevalue2000timesmorethanthatofanaircoreone,otherdimensionsremainingthesame.Again,inductance,Lisinverselyproportionaltothelengthofthefluxpathanddirectlyproportionaltotheareaofthecorematerialorthecoil.Inductanceisproportionaltothesquareofthenumberofturns.Tohaveaninductanceofalargevalue,thenumberofturnsshouldbehigh.

    Theinductance,Lcanbeexpressedintermsoftherateofchangeofthefluxwithrespecttocurrentflowinginthecoilas

    Forasmallincrementofdi,lettheincreaseoffluxbed .Therefore,

    o r

    r o

  • If andihavealinearrelationship,

    Rememberthatreluctanceistheinverseofthepermeability.Lowreluctancewillgiverisetoahighvalueofinductance.Thatiswhyinordertoproducehighvalueinductance,thenumberofturnsshouldbehighandthereluctancetothefluxpathshouldbelow.Thecoreshouldbemadeofhighpermeabilitymateriallikeiron.

    Consideringasmallincreaseofiproducingasmallincreasein asd

    Inductanceisthepropertyofacoilcapableofinducingemfinitselfduetochangingcurrentthroughit.

    The formulae so far derived are

    1. Forceonacurrentcarryingconductorinamagneticfield

    F=BINewtons.

    Iftheconductorisinclinedatananglewiththemagneticfield,

    F=BISinNewtons.

    2. InducedEMFinacoilwherethereischangeoffluxlinkageorchangeincurrent,

    3. InducedEMFinaconductorrotatinginamagneticfield,

    e=P nV

  • wherePisthenumberofpoles, isthefluxperpoleandnistherevolutionspersecond.

    4. InducedEMFinaconductormovinginamagneticfieldinaperpendiculardirection,

    e=BvV

    whereBisthefluxdensityinWb/m ,isthelengthoftheconductorinmandvisthevelocityinm/sec.

    Iftheconductorismovingatanangleofwiththemagneticfield,theinducedEMFis

    e=BvSinV.

    5. InducedEMFinacoil,

    Thus,wecansaythatacoilhasaninductanceof1Henryifacurrentof1Ampereflowingthroughthecoilproducesafluxlinkageof1Wbturn.

    1.16 MUTUAL INDUCTANCE

    ConsidertwocoilshavingN andN numberofturnsplacedneareachotherasshowninFig.1.15.Letachangingcurrent,i ,flowthroughcoil1.

    Thefluxproducedbyi inN is .Sincecoil2isplacednearcoil1,a

    partofthefluxproducedbycoil1willbelinkedbycoil2.Letflux

    linkedbycoil2is =K whereK 1.

    Ifmagneticcouplingbetweenthetwocoilsisverytight,i.e.,verygood,thewholefluxproducedbycoil1willlinkthecoil2,inwhichcasethecoefficientofthecouplingK willbe1.TheinducedEMFincoil2ise .

    Figure1.15Mutualinductanceoftwocoils

    From(i)and(ii),

    1 2

    1

    1 1 1

    2

    2 1 1 1

    1 2

    2

  • Similarly,ifwecalculatetheinducedEMFincoil1,duetochangeincurrentincoil2,wecanfindtheinducedEMFe incoil1as

    Now,multiplyingtheexpressionforMasin(iii)and(iv)above,

    Againfrom(iii),

    From(iii)and(vi),

    1

  • Fromeq.(1.38)wecandefinethemutualinductanceMbetweentwocoilsasthefluxlinkageinonecircuitduetochangeperunitofcurrentintheothercircuit.

    Similarly,consideringcurrentchangeinthesecondcoil

    1.17 INDUCTANCE OF COILS CONNECTED IN SERIES HAVING A COMMON CORE

    WehavetwocoilshavingselfinductanceL andL connectedinseries.InFig.1.16(a),theyproducefluxinthesamedirection,andinFig.1.16(b),theconnectionissuchthattheyproducefluxintheoppositedirections.

    Sincethetwocoilsareconnectedinseries,thesamecurrentflowsthroughthem.

    Ifthereisachangeincurrentdiamperesintimedtseconds,theEMFinducedincoil1duetoitsselfinductanceL is

    Similarly,theEMFinducedincoil2duetoitsselfinductance,L is

    Duetomutualinductance,theEMFinducedincoil1duetochangeincurrentincoil2andviceversaareexpressedasEMFinducedincoil1duetochangeincurrentincoil2is

    Figure1.16Coilsconnectedinseriesin(a)commulativelyin(b)differentially

    EMFinducedincoil2duetochangeincurrentincoil1is

    1 2

    1

    2

  • Nowletthetotalequivalentinductanceofthesinglecircuitcomprisingcoil1andcoil2astheyareconnectedasinFig.1.16(a)beL

    TheEMFinducedinthewholecircuitwill,therefore,be

    Thus,equatingtheexpressionforein(iv)withthetotalEMFsasin(i),(ii),(iii),and(iv):

    WhenthecoilsaredifferentiallyconnectedasinFig.1.16(b),theEMF

    inducedincoil1duetodiintimedtincoil2,i.e., inoppositiontotheEMFinducedincoil1duetoitsselfinductance.SimilaristhecaseoftheEMFinducedincoil2duetomutualinductance.Thus,forthedifferentiallyconnectedcoil

    Thus,thetotalinductanceofaninductivelycoupledseriesconnectedcoilcircuitcanbeexpressedas

    Dotconventionisusedtodeterminethesignofinducedvoltage.

    Ifweusedotconvention,itwillnotberequiredtoknowthewaythecoilshavebeenactuallywound.

    Example1.11Thetotalinductanceoftwocoilsconnectedinseriescumulatativelyis1.6Handconnecteddifferentiallyis0.0.4H.Theselfinductanceofonecoilis0.6H.Calculate(a)themutualinductanceand(b)thecouplingcoefficient.

    Solution:

    Substitutingthegivenvalues

    From(i)and(ii)

    e

  • 1.18 ENERGY STORED IN A MAGNETIC FIELD

    Letusconsideracoilsuppliedwithanalternatingvoltagevduetowhichanalternatingcurrentflowsthroughthecoil.Whencurrentincreasesfromitszerovalue,themagneticfieldstartsincreasingandreachesitsmaximumvaluewhencurrentreachesitsmaximumvalue.Whencurrentstartsdecreasing,thefieldgoesondecreasingandgraduallybecomeszero.Then,inthenegativecycleifthecurrentflows,thefieldgetsestablishedintheoppositedirection,whichcollapseswhencurrentagainreacheszero.Thiswaythefieldisestablishedandthencollapsesineveryconsecutivehalfcycleofcurrentflow.Whenthefieldisestablished,energyintheformofamagneticfieldisstoredandwhenthefieldcollapses,thesameenergyisreturnedtothesupplysource.Assuch,noenergyisconsumedbythepurelyinductivecoil.Therefore,energystoredisequaltotheenergysupplied.

    ThisinducedEMFopposestheappliedvoltagefromwhichitisproduced.ThisisduetoLenzslaw,sothat

    e=vor,v=e

    Thus,

    foracurrentchangefrom0toI

    EnergystoredinacoilofinductanceLis

  • Figure1.17Magneticfieldenergy

    Example1.12Aconductoroflength0.5misplacedinamagneticfieldofstrength0.5Wb/m .Calculatetheforceexperiencedbytheconductorwhenacurrentof50Aflowsthroughit.Iftheforcemovestheconductoratavelocityof20m/sec,calculatetheEMFinducedinit.

    Solution:

    Force,Fonacurrentcarryingconductorplacedinamagneticfieldisgivenas

    F=BINewton

    Substitutingthevalues,

    F=0.5Wb/m 500.5m=12.5N

    InducedEMF,einaconductormovinginamagneticfieldisgivenas

    e=BlvV

    Substitutingthegivenvalues,

    e=0.5Wb/m 0.5m20m/sec=5Wb/sec=5V

    Example1.13Anironcoredtoroidalcoilhas100turns.Themeanlengthofthefluxpathis0.5mandthecrosssectionalareaofthecoreis10cm .Calculatetheinductanceofthecoil.Assumerelativepermeabilityofironas2000.Alsocalculatetheinducedemfinthecoilwhencurrentof5Aisreversedin10ms.

    Solution:

    Theexpressionforinductanceintermsofitsparametersis

    Currentinthecoilischangedfrom+5Ato5Ain1010 secs.Totalchangeofcurrentis10A.

    Puttingthegivenvaluesweget,

    2

    2

    2

    2

    3

  • Example1.14Thereismutualmagneticcouplingbetweentwocoilsofnumberofturns500and2000,respectively.Only50%ofthefluxproducedbythecoilof500turnsislinkedwiththecoilof1000turns.Calculatethemutualinductanceofthetwocoils.AlsocalculatetheEMFinducedinthecoilof1000turnswhencurrentchangesattherateof10A/secondintheothercoil.Theselfinductanceofthecoilof500turnsin200mH.

    Solution:

    Figure1.18

    Mutualinductance,

  • InducedEMFinthesecondcoil,e is

    Example1.15Acurrentof5Aflowingthroughacoilof500turnsproducesafluxof1mWb.Anothercoilisplacednearthiscoilandcurrentinthiscoilissuddenlyreversedin10ms.Asaresult,theEMFinducedinthesecondcoilismeasuredas50V.Calculateselfandmutualinductanceofthecoilsassumingacoefficientofcouplingas60percent.

    Solution:

    Selfinductanceofcoil1is

    Usingtheformula,M=K

    Example1.16TwocoilsofnumberofturnsN =1000andN =400,respectively,areplacedneareachother.Theyaremagneticallycoupledinsuchawaythat75percentofthefluxproducedbytheoneof1000turnslinkstheother.Acurrentof6Aproducesafluxof0.8mWbinN andthesameamountofcurrentproducesafluxof0.5mWbinthecoilofNturns.DetermineL ,L ,M,andKforthecoils.

    Solution:

    2

    1 2

    1

    2

    1 2

  • Usingtherelation,M=K

    substitutingvalues,

    So,

    Selfinductanceofcoil1=0.133H

    Selfinductanceofcoil2=0.033H

    Mutualinductanceofthecoils=0.04H

    Coefficientofcoupling=0.606

    1.19 ELECTRICAL CIRCUIT ELEMENTS

    Resistors,inductors,andcapacitorsarethethreebasiccircuitparametersorcircuitcomponentsofanyelectricalnetwork.Resistorscanbewirewoundtypeorcarbonmouldedtype.Whencurrentflowsinaresistance,heatisproduced,whichisdissipated.Theheatisproducedbecausefrictionbetweenmovingfreeelectronsandatomsobstructthefreeflowofelectronsproducingelectriccurrent.Aresistorisanelementthatdissipatesenergyasheatwhencurrentflowsthroughit.

    Inductorsaremadeofacoilhavinganumberofturns.Thecoreofthecoilmaybeairoramagneticmaterial,whichisplacedinsidethecoil.Whenthecoiliswoundonanironcore,theinductorformediscalledanironcoreinductorcoil.Inductanceofaninductorisdirectlyproportionaltothesquareofthenumberofturnsofthecoilused.Inductorstoresenergybecauseofcurrentflowingthroughit.

    Acapacitorconsistsoftwoconductorsorconductingplatesbetweenwhichadielectricisplaced.Thecapacitanceofacapacitorisitsabilitytostoreelectriccharge.Differenttypesofcapacitorsareavailable.Theyarenamedaccordingtothedielectricplacedbetweentheconductors.Commontypesofcapacitorsareair,mica,paper,ceramic,etc.

    1.19.1 Resistors

    Wirewoundresistorsaremadeofwiresofconstantan,manganinornichromewoundonaceramictube.Theseresistancesareavailableinrangesvaryingfromafractionofanohmtothousandsofohms.

    ThepowerratingalsovariesfromafractionofaWatttofewkiloWatts.Whilespecifyingaresistance,bothresistancevalueandpowerdissipatingvaluemustbementioned.Electroniccircuitsrequireresistorsofaccuratevalues.Thevalueofresistorsusedinelectroniccircuitsisquitehigh,oftheorderofkiloohms.Sincecarbonhashighresistivity,carbonresistorsaremadewithcopperleads.TheirpowerratingvariesfromafractionofaWatttoseveralWatts.Colorcodeisusedtoindicatethevalueofsuchresistors.

    1.19.2 Inductors

    TheabilityofacoiltoinduceEMFinitselfwhenthecurrentthroughitchangesiscalleditsinductance.TheunitofinductanceisHenry.1Henryofinductancecauses1Volttobeinducedwhencurrentchangesattherateof1Amperepersecond:

  • whereLisinHenry,eisinVolt,and isinAmperepersecond.

    Whensteadydirectcurrentflowsthroughaninductor,itwillnotaffectthecircuitasthereisnochangeincurrent.Inductorsareoftwotypesvizaircoretypeandironcoretype.Inductorsarealsocalledchokes.Inductorsareavailableinallcurrentranges.Aircoreinductorsarewoundonbakeliteorcardboardrodsandareextensivelyusedinelectroniccircuitsinmillihenryandmicrohenryranges.Highvalueinductorsaremadeofironcore.Theyaremainlyusedinacpowersupplyoffrequencyof50Hz.

    Thedetailsofselfandmutualinductancehavebeendiscussedearlier.

    1.19.3 Capacitors

    Acapacitor,initssimplestform,consistsoftwothinparallelplatesofconductingmaterialseparatedbyadielectricmaterial.Acapacitoriscapableofstoringchargewhenavoltageisappliedacrossthecapacitorplates.Ifavoltagesource,sayabattery,isconnectedacrossthetwoplatesofaparallelplatecapacitorasshowninFig.1.19,electronsfromthenegativeterminalofthevoltagesourceaccumulateonplateAofthecapacitor.TheotherplateBloseselectronsasitisconnectedtothepositiveterminalofthesourceofvoltage.Thisway,theexcesselectronsproducenegativechargeononesideofthecapacitorwhiletheoppositesidewillhavepositivecharge.Thedielectricmaterialplacedinbetweentheplatesholdthechargebecausethefreeelectronscannotflowthroughaninsulator(i.e.,thedielectricmateriallikeair,paper,ormica).Storageofchargebyacapacitormeansthatthechargeremainsinplaceevenafterthevoltagesourceisdisconnected.Capacitanceofacapacitoristheabilitytostorecharge.Charginganddischargingarethetwomaineffectsofcapacitors.Whenavoltageisapplied,thereisaccumulationofchargeinthecapacitorandasaresultvoltageisbuiltupacrosstheterminalsofthecapacitor.Thisiscalledchargingofthecapacitor.Thecapacitorvoltagebecomesequaltotheappliedvoltagewhenthecapacitorisfullycharged.Thevoltageacrossthecapacitorremainsevenafterthevoltagesourceisdisconnected.Thecapacitordischargeswhenaconductingpathisprovidedacrosstheplateswithoutanyappliedvoltageconnected.

    Figure1.19Acapacitorstoreschargeinthedielectricmaterialplacedbetweentheconductingplates

    Themorethechargingvoltageis,themoreistheaccumulationofchargeinthecapacitor.Theamountofcharge,Qstoredinacapacitoris,therefore,proportionaltothechargingvoltage,V.Acapacitorwithalargeareaoftheparallelplatescanstoremorecharge.Capacitanceofacapacitoralsodependsonthedistancebetweentheplatesandthetypeofdielectricusedbetweentheplates.Alargecapacitor,obviously,willstoremorecharge.Thus,wecanwrite

    Q=CVCoulombs

    whereQisthechargestoredinCoulombs,Visthevoltageappliedacrosstheplates,andCisthecapacitanceofthecapacitorinFarads.Thecapacitanceofaparallelplatecapacitorisexpressedas

    whereistheabsolutepermittivityconstant,Cisthecapacitance,Aistheareaoftheplateanddisthedistancebetweentheplates.

    Thetermabsolutepermittivityisexpressedas

  • =

    where isthepermittivityconstantofvacuumand istherelativepermittivityofthedielectricmaterialplacedbetweenthetwoplates.

    Thevalueof hasbeencalculatedexperimentallyas8.8510 Faradpermeter.

    Therefore,thecapacitanceofaparallelplatecapacitorcanbeexpressedas

    1.20 ENERGY STORED IN A CAPACITOR

    Wehaveknownthatwhenacapacitorisswitchedontoadcsupply,thechargeqcanbeexpressedasq=Cv,whereatanyinstantqisthechange,visthepotentialdifferenceacrossthecapacitorplates,andCisthecapacitanceofthecapacitor.

    PotentialdifferenceofvvoltsacrossthecapacitormeansvJoulesofworkhastobedoneintransferring1Coulombofchangefromoneplatetotheother.Ifasmallchargedqistransferredthentheworkdonedwcanbeexpressedas

    dw=vdq=Cvdv

    ThetotalworkdoneinraisingthepotentialofthecapacitortothesupplyvoltageofVvoltcanbeexpressedas

    Thisworkdoneisstoredintheelectrostaticfieldsetupbetweentheplatesofthecapacitorintheformofenergy.Thus,theenergystored,Eisexpressedas

    Example1.17Thecurrentthrougha100mHinductorchargesfrom0to200mAin4s.WhatisthevalueoftheinducedEMFintheinductororthechoke?

    Solution:

    Itisobservedthatahighvoltageisinducedinthechokebecauseofveryfastchangeofcurrentflowthroughit.Inatubelightcircuit,ahighvoltageisinducedinthechokebythesamemethodandisusedtoionizethegasinsidethetubelight,andthusstartthetubelight.

    Example1.18SelfinductancesoftwocoilsareL =2HandL =8H.ThecoilL producesamagneticfluxof80mWbofwhichonly60WbarelinkedwithcoilL .Calculatethemutualinductanceofthetwocoils.

    Solution:

    Thecoefficientofcoupling,Kisgivenas

    o r

    o r

    o

    1 2

    1

    2

    12

  • MutualinductanceMiscalculatedas

    Example1.19Calculatethecapacitanceofacapacitormadeoftwoparallelplatesof3m havingadistancebetweentheplatesof1cm.Thedielectricisairbetweentheplates.

    Solution:

    =265510 F

    Notethatalthoughtheareaoftheplatesislarge,thevalueofcapacitanceisverysmall.Insteadofairasthedielectric,ifweplacemicaorpaperbetweentheplates,capacitancewillincrease.Ifwealsoreducethedistancebetweentheplates,thecapacitancewillincrease.

    Example1.20A25microfaradcapacitorisswitchedontoatimevaryingvoltagesource.Thevoltagewaveissuchthatvoltageincreasesattherateof10Vpersecond.Calculatethechargeaccumulatedinthecapacitoratanelapseof1secondandtheamountofenergystoredinthecapacitor.

    Solution:

    1.21 CAPACITOR IN PARALLEL AND IN SERIES

    Whenweconnecttwocapacitorsinparallel,theplateareasareadded.Thetotalcapacitance,therefore,getsaddedup.WhencapacitancesC ,C ,C ,etc.areconnectedinparallel,thetotalcapacitanceC becomesequalto

    C =C +C +C +

    Figure1.20(a)Equivalentofcapacitorsconnectedinparallel(b)equivalentofcapacitorsconnectedinseries

    ThisisshowninFig.1.20(a).

    Seriesconnectionofcapacitors,asshowninFig.1.20(b),isequivalenttoincreasingtheeffectivedistancebetweentheplatesorthethicknessofthedielectricused.Thecombinedcapacitanceislessthantheindividualvalue.

    1 2

    3 r

    r 1 2 3

    2

    12

  • Thevalueofacapacitorisalwaysspecifiedineithermicrofaradorpicofarad.Thereareavarietyofwaysinwhichmanufacturersindicatethevalueofacapacitor.

    1.22 Review Questions

    1. Giveanoverviewofthescopeofelectricalandelectronicsengineering.

    2. Chargeinmotioniscalledcurrent.Explainwiththehelpofatomictheory.

    3. Distinguishbetweenconductors,semiconductors,andinsulators.4. DistinguishbetweenWork,Power,andEnergy.5. Differentiatebetweentemperaturecoefficientofresistanceand

    specificresistance.6. Distinguishbetweenanelectricfieldandamagneticfield.7. Definethefollowingterms:Volt,Ampere,Ohm.8. Explainwhytwoparallelcurrentcarryingconductorsattracteach

    otherwhencurrentinthemflowinthesamedirection.9. StateFlemingsRightHandRule.

    10. ExplainthattheEMFinducedinacoildependsuponthefluxandthespeedofrotationofthecoil.

    11. DistinguishbetweenstaticallyinducedEMFanddynamicallyinducedEMF.

    12. Explainwhyanironcorecoilwillhavemoreinductancethananaircorecoilofthesamenumberofturns.

    13. Whatisthemeaningofcoefficientofcouplingbetweentwocoils?Whenisthisvalueequaltounityandequaltozero?

    14. WhatareFaradayslawsofelectromagneticinduction?15. WhatistheLenzslaw?Giveanexample.16. Whatisthemagnitudeofforceexperiencedbyacurrentcarrying

    conductorplacedinamagneticfield?17. Howdoyoudeterminethedirectionofforcedevelopedina

    currentcarryingconductorplacedinamagneticfield?18. Whatarethefactorsonwhichinductanceofacoildepends?19. Whydoestheinductanceofacoilincreaseifthecorehasa

    magneticmaterialinsteadofair?20. Derivethefollowingexpressionforselfinductanceofacoil

    21. Youhavetomakeaninductanceofhighvalue.Howwillyouproceed?

    22. WhatisFlemingsRightHandRule?Whereisitused?23. Whatruledoyouapplytodeterminethedirectionofforceona

    currentcarryingconductorplacedinmagneticfield?24. Whatisthemagnitudeofforceonacurrentcarryingconductor

    placedinamagneticfield?25. Showthattheenergystoredinamagneticfieldproducedbyan

    inductoris .26. Distinguishbetweenselfinductanceandmutualinductance.27. Explainwhyinductanceofacoilincreasesifanironpieceforms

    itscoreinsteadofairoranynonmagneticmaterial.

    28. Establishtherelation, fortwoadjacentcoilslinkingflux.

    29. Onwhatfactorsdoesthereluctanceofamagneticmaterialdepend?

    30. Whatisthecorkscrewrule?Wheredoyouuseit?31. Twoadjacentconductorsarecarryingcurrentintheopposite

    directions.Showthattherewillbeforceofrepulsionbetweentheconductors.

    32. Whencapacitorsareconnectedinparallel,theirequivalentcapacitanceisincreased.Explainwhy?

    33. Explainwhycapacitorsarecalledenergystoragedevices.34. Whatisthemeaningofrelativepermittivityordielectric

    constant?Whatisitsunit?35. Writethreeformulaeofelectricalpower.36. Provethat1kWhisequalto3.610 Joules.37. Themostimportantpropertyofacapacitorisitsabilitytoblock

    steadydcvoltagewhilepassingacsignals,explain.38. DefinetheFaradunitofcapacitance.39. Howisenergystoredinacapacitor?Onwhatfactorsdoesit

    depend?40. Whatarethephysicalfactorsthataffectthecapacitanceofa

    capacitor?41. TwocoilsofN =50andN =500turns,respectively,arewound

    sidebysideonanironringofcrosssectionalareaof50cm andmeanlengthof120cm.Calculatethemutualinductancebetweenthecoils,selfinductanceofthecoils,andthecoefficientofcouplingassumingpermeabilityofironas1000.

    1 2

    6

    2

  • [Ans0.13H,0.013H,1.3H,1.0]

    42. TwocoilsofN =1500andN =200turnsarewoundonacommonmagneticcircuitofreluctance2510 AT/Wb.Calculatethemutualinductancebetweenthecoils.

    [Ans1.2H]

    43. Twocoilshaveamutualinductanceof400mH.CalculatetheEMFinducedinonecoilwhencurrentinthesecondcoilvariesatarateof6000Amperespersecond.

    [Ans2.4V]

    44. Twosimilarcoilshaveacouplingcoefficientof0.4.Whenthecoilsareconnectedinseriescumulatively,thetotalinductancebecomesequalto140mH.Calculatetheselfinductanceofeachcoil.

    [Ans50mH]

    45. Twocoilswhenconnectedinseriescumulatativelyshowtohaveatotalinductanceof2.4Handwhenconnectedinseriesbutdifferentiallyshowatotalinductanceof0.4H.Theinductanceofonecoilwhenisolatediscalculatedasequalto0.8H.Calculate(a)themutualinductanceand(b)thecoefficientofcouplingbetweenthecoils.

    [AnsM=0.5H,0.75]

    46. Calculatetheinductanceofacoilhaving100turnswoundonamagneticcoreofpermeabilityequalto1000,meanlengthof0.25m,andcrosssectionalareaof10cm .

    [AnsL=50.24mH]

    47. Aconductoroflength25cmisplacedinauniformmagneticfieldofstrength0.5Wb/m .CalculatetheEMFinducedintheconductorwhenitismovedattherateof10m/sec(a)paralleltothemagneticfield,(b)perpendiculartothemagneticfield.

    [Ans(a)0V(b)1.25V]

    MultipleChoiceQuestions

    1. ThenumberofelectronsperCoulombisequalto1. 1.602102. 6.28103. 1.602104. 6.2810 .

    2. Ininsulatorstheoutermostorbitoftheiratomsisfilledwith1. 4electrons2. 8electrons3. 1electron4. 18electrons.

    3. Intheatomsofsemiconductingmaterialslikesiliconandgermaniumtheoutermostorbithas

    1. 1electron2. 2electrons3. 8electrons4. 4electrons.

    4. Whichofthefollowingexpressionsisincorrect?

    1. Current,2. Charge=currenttime

    3.4. Volt=joulesperCoulomb.

    5. Whichisthefollowingexpressionsdoesnotrepresentpower?1. I R

    2.3. VI

    4. .6. Whichofthefollowingisnottheunitofpower?

    1 24

    2

    2

    19

    18

    18

    19

    2

  • 1. Joules/second2. Watthour3. KW4. VoltAmpere

    7. AconductoroflengthanddiameterdhasresistanceofRohms.Ifthediameterisreducedtoonethirdandlengthincreasedbythreetimes,theresistanceoftheconductorwillbe

    1. 3R2. 6R3. 9R4. 27R.

    8. Whichofthefollowingexpressionsisincorrect?

    1.

    2.

    3.

    4. .9. Whichofthefollowingexpressionsisincorrect?

    1.

    2.

    3.

    4. .10. Inductanceofanaircorecoilwillincreaseifthecoreismadeof

    1. copper2. aluminium3. iron4. porcelain.

    11. Whichofthefollowingstatementsisnottrue?1. Inductanceofacoilwillincreasebyfourtimesifthe

    numberoftermseqisdoubled2. inductanceofacoilwillincreaseiftheareaofcross

    sectionofthecoil,i.e.,thefluxpathisincreased3. inductanceofacoilwillincreasedifthelengthofflux

    pathisincreased4. inductanceofacoilwillincreaseifthecoreismadeupof

    materialhavinghigherpermeability.12. ThedirectionoftheinducedEMFinthecoilsidesofacoil

    rotatinginamagneticfieldcanbedeterminedbyapplying1. Flemingslefthandrule2. Righthandgriprule3. Flemingslefthandrule4. Corkscrewrule.

    13. Whichofthefollowingisnottheunitofenergy?1. kWh2. Joules/second3. Watthour4. Joules.

    14. Selfinductanceoftwomagneticallycoupledcoilsare8Hand2H,respectively.Whatcoefficientofcouplingwillmaketheirmutualinductanceequalto4H?

    1. K=0.52. K=0.253. 0.14. 1.0.

    15. Whichofthefollowingeq.isincorrectwithrespectofincreaseinresistancewithincreaseintemperatureofaconductingmaterial?

    1.

    2.

    3.

    4. .

    AnswerstoMultipleChoiceQuestions

    1. (b)2. (b)3. (d)4. (c)5. (d)6. (b)7. (d)8. (b)9. (a)

    10. (c)11. (c)

  • Recommended / Queue / Recent / Topics / Tutorials / Settings / Blog(http://blog.safaribooksonline.com) /Feedback(http://community.safaribooksonline.com/) / Sign Out 2015 Safari(http://www.safaribooksonline.com/). Terms of Service / Privacy Policy

    12. (c)13. (b)14. (d)15. (d)

    People who finished this also enjoyed:

    Time for action coloring andtexturing the sloop hullfrom: Blender 3D Basics by Gordon FisherReleased: June 20128 MINS

    Digital Media

    BOOK SECTION

    Chapter 15: Artificial IntelligenceTechniques for Solar Energy andPhotovoltaic Applicationsfrom: Handbook of Research on Solar EnergySystems and Technologies by Sohail Anwar...

    Released: August 2012156 MINSEngineering

    BOOK SECTION

    Synchronous Motorsfrom: Electrical Machines, 2nd Edition by SmarajitGhoshReleased: March 201275 MINS

    Engineering

    BOOK SECTION

    Chapter 8. Number Systemsfrom: Circuit Design: Know It All by Darren Ashby...Released: August 200829 MINS

    DIY & Hardware / Engineering

    BOOK SECTION

    Chapter 12: Measuring and AnalyzingCircuitsfrom: Electronics For Dummies, 2nd Edition byCathleen Shamieh...Released: September 2009

    33 MINSDIY & Hardware

    BOOK SECTION

    PREVPreface

    NEXT2. DC Networks an