1972 junk (gc-ms combinations and applications)

71
Internatiwai Journal of Mass Spectrometry and Ion Mysiu Elsevier Publishing Company, Amsterdam - Printed in the Netherlands 1 REVIEW GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS AND THETR APPLICATIONS” GREGOR A. JUNK In.stit~~te for Atomic Research, Iowa State Unicersity, Ames, lowa %_WIO(U.S.A.1 COlTrENTs 1. Introduction . -_____.__.-___...._. - . . -. - - . . . . 2. Components of cx4bf.S system. ....................... A. Gaschromatograph. ........................... B-Interface ................................ C. Mass spectrometer ............................ 3. Interfacinf systems ............................. A. Direct couple - method A ......................... B. E&ent split-method B ......................... C. Diffusion separators - method C ...................... Jet............................_ ...... Pore .................................. Reaction ................................ Salvation ................................ 4. GC perfOmance: in CC-MS SyStemS ....................... 5. Interface performance ............................ -4. Yield and enrichment ........................... B. Temperature and inertness. ........................ C- DeIay and hold-up ............................. D. Comparative performance ......................... 6. Mass spectrometer specifications in GC-MS instrument .............. A. Ion chamber, sensitivity and reproducibility ................. B. Mass range, resolution and scan speed ................... <. Pumping speed. ............................. D. Read-out and othez ........................... 7. Data reduction and manipulations. ...................... 8. Commercial systems-cost and specifications .................. 9. Current and future developments ....................... 10. Applications ................................ A.Foodsandfiavors . _ _ _ _ _ . _ _ _ . . _ _ . . _ . _ . _ _ _ _ _ _ . _ B.Geochemiml._.._ .......................... C. Pesticides and other environmental residues .................. D. Organometallic compounds ........................ E. Biochemical and medical Steroids. . .. .... 11:: 11: 1: 1 ................................ Fattyacids. .............................. Amino acids and related compounds .................... -- - 2 3 3 4 4 6 7 7 8 8 10 11 12 13 16 16 18 19 21 22 22 24 25 26 26 27 28 30 30 31 31 31 31 32 32 32 * Work performed partially in the Ames Laboratory of the U. S. Atomic Energy Commission. Contribution No. 3047. Int. J- Mass Spectrom. Ion Pkys., 8 (1972) l-71

Upload: danielapiderit

Post on 21-Apr-2015

54 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1972 JUNK (GC-MS Combinations and Applications)

Internatiwai Journal of Mass Spectrometry and Ion Mysiu Elsevier Publishing Company, Amsterdam - Printed in the Netherlands

1

REVIEW

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS AND THETR APPLICATIONS”

GREGOR A. JUNK

In.stit~~te for Atomic Research, Iowa State Unicersity, Ames, lowa %_WIO (U.S.A.1

COlTrENTs

1. Introduction . -_____.__.-___...._. - . . -. - - . . . . 2. Components of cx4bf.S system. .......................

A. Gaschromatograph. ........................... B-Interface ................................ C. Mass spectrometer ............................

3. Interfacinf systems ............................. A. Direct couple - method A ......................... B. E&ent split-method B ......................... C. Diffusion separators - method C ......................

Jet............................_ ...... Pore .................................. Reaction ................................ Salvation ................................

4. GC perfOmance: in CC-MS SyStemS .......................

5. Interface performance ............................ -4. Yield and enrichment ........................... B. Temperature and inertness. ........................ C- DeIay and hold-up ............................. D. Comparative performance .........................

6. Mass spectrometer specifications in GC-MS instrument .............. A. Ion chamber, sensitivity and reproducibility ................. B. Mass range, resolution and scan speed ................... <. Pumping speed. ............................. D. Read-out and othez ...........................

7. Data reduction and manipulations. ...................... 8. Commercial systems-cost and specifications .................. 9. Current and future developments .......................

10. Applications ................................ A.Foodsandfiavors . _ _ _ _ _ . _ _ _ . . _ _ . . _ . _ . _ _ _ _ _ _ . _ B.Geochemiml._.._ .......................... C. Pesticides and other environmental residues .................. D. Organometallic compounds ........................ E. Biochemical and medical

Steroids. . .. .... 11:: 11: 1: 1 ................................ Fattyacids. .............................. Amino acids and related compounds ....................

-- -

2

3 3 4 4 6 7 7 8 8

10 11 12 13 16 16 18 19 21 22 22 24 25 26 26 27 28 30 30 31 31 31 31 32 32 32

* Work performed partially in the Ames Laboratory of the U. S. Atomic Energy Commission. Contribution No. 3047.

Int. J- Mass Spectrom. Ion Pkys., 8 (1972) l-71

Page 2: 1972 JUNK (GC-MS Combinations and Applications)

2. G. A_ JUNK

Carbohydrates _ _- _ _ . _ _ _ . . _ _ _ . . . . _ _ . _ _ _ * _ _ _ _ . _ 32 Drugs and metabolites _ . . . _ . _ _ _ _ _ _ . . _ _ _ _ . _ _ _ _ _ . . 32 General . . . _ . _ . . . . . _ . _ . . . _ . . . _ . . _ . . . . . . . 32

F. Miscelkneous . . . . . . . . . . _ _ . . . . . . . . _ . . . . _ _ . _ . 32 Bibliography. . . . . . . . _ . _ . . . . . . . . . . _ . _ _ . _ _ _ _ _ _ _ _ 33 Suppletint to bibliography _ . _ . . . . . . . . _ . . _ . . _ _ . . _ . _ . . _ 69

1. IETRODUCTION

The integrated gas chromatograph-mass spectrometer (GC--MS) system combines the exceptional separation capabilities of the gas chromatograph (CC)

with the unexcelled identification potential of the mass spectrometer (MS).

Although this claim concerning the latter is not seriously questioned, one can develop added appreciation for the merits of the MS by comparing the detection and identification limits for analytical techniques originally proposed by McFadden464 and reproduced in condensed form in Table 1. It is obvious that the least sensitive MS method of sampling, viz. the batch inlet system, approaches

TABLE 1

D?XECTION AND IDENTXFfC.4TION LIMITS FOR TECHNQUES COM,MONLY USED FOR XNALYSE.9’

Technique

cd’

IR

L-v NMR (time averaged) MS (batch inlet) MS (direct probe) GC-_MSb

Limits (g) Detection

I()-~-IO- 13

10-7 10-7 IO-’ 10-6 IO-‘= IO-”

Identification

10-6 10-6 10-S 10-s IO-” lo-‘0

a Condensed and adjusted from data by _McFadden46J. b Employed without sample collection.

any of the other techniques in identification limits. The most sensitive lcis method, viz. direct probe sampling, surpasse; the limits of the other techniques. Tbjs statistic is impressive since the quality of information for truly unknowns is much higher for the mass spectral data than for data from any of the other lisred tech- niques. All the techniques except GC and GC-MS require sample collectiim of the GC effluent which is a tedious and refined technique in itself (refs. 40, 56, 103, 120, 145, 161,327, 661,724,727). The major advantage of the GC-MS system is its ability to provide an on-line identification of as little as lo-” g of material.

This combkration of the two techniques provides scientists with an exuemely powerful analytical tool. Its possibilities have not yet been fully exploited, although the growth of original literature reports is astounding (see bibliography). In addi-

Page 3: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATCGRAPH-MASS SPECTROMETER COMBINATIONS 3

tion to al1 the individual reports, many review-type articles (refs- 34, 66, 74, 76, SS, 92, 130, 143, 150, 151, 166, 170,299,337, 340, 350, 355-357, 379a, 401,420, 451, 508, 510, 558, 571, 671, 713, 719) and reviews (refs. 64, 172, 316, 339, 398, 457, 464-466, 475, 553, 598, 599, 633, 635, 636, 657, 672, 573, 695, 710) have appeared recently_ The reviews generally stress the methods and procedures employed to successfully combine the GC at‘d the MS. This present review has two somewhat different objectives_

The first is to provide the reader with a general overview of the potential, construction, theory of operation and availability of GC-KS instruments. The second is to emphasize the applications of GC-MS for the solution of a variety af chemical identification problems by pcov&ug a compce&eusive citation list, covering the period 1957-1970, indexed into various categories.

Components

-Sk&-

function

Implementation c r C-UnccioE

{a) liquid phase <bl capil{ary (c) packed (d) SCOT

(e) tandem (f) temperature (g) flew

(a) capillary tube Unique line spectra to (& $ sCream split finger-print each campanenC (c) wparator

* Not al: interfaces provide enrichment so this function is listed in parenthesis :o denote this fact.

The major compon~sts sl’ a ~ZSMS system as shown in Table 2 are the lgas c’hromatograph, &e mass spectrometer an& the int,-r”iacing device used to join the two instrizri-er2s. The gas chu~xtugraph pruvides mixture seprations, the interface provides -he required pressurz re&zcZion fur operation of the miiss ~pe~Wx22~2e~ 2~~3 2t-Le mass spidrnn&er g~&&s infu~tion lead@ to the identification of the materials separated by ti;le chromatograph_

A. Gas chratnatagraph

A variety of liquid phases are used in egillary, packed, open-tubular and tandem columns to effect separations using temperature and/or flow programming if necessary. A detailed description of gas chromatography is unnecessary here sin= may exel1e.t textsl44,f90.227,232.S46 adequately discuss both instrumen- tation and techniques.-

ht. J_ Mass Spectrom. Ion Phys., 8 (1972) l-f1

Page 4: 1972 JUNK (GC-MS Combinations and Applications)

4 G. A. JUNK

23. Interface

An interface is a _ reneral designation for any device whjch ,-educes the pressure at the GC outlet to a tolerable level, usually - lo- ’ torr, for proper operation of the mass >Ftrometer. Three basic methods of interfacing are employed_ The first method utilizes a capillary tube for connecting the GC to the MS. The second consists of a stream splitter which diverts most of the GC

effluent to waste. The third method makes use of molecular separators (or simply separators or enrichers), which are preferential or selective stream splitters. The design and operation of these interfacing devices are restricted in order to retain the full capabilities of both the mass spectrometer and thr: gas chromatograph when the two are coupled. These devices will be discussed in detail in Sections 3, 4 and 5.

C. Mass specrrumeter

The often-repeated claim that the mass spectrometer provides more chemical information per microgram of sample than any other instrument is primarily due to the unique line spectrum of mass and the associated intensities which accurately “lingerprin~” most chemical combinations. Unfortunately, the interpretation of mass spectral data is more empirical than theoretical so that structure predictions for true unknown materials are virtually impossible without a strong background and backlog of empirical and semi-empirical information. Excellent discussions of mass spestrometers, tec’hniques, and data interpretation are available from many texts 51.52.54.101.102.470.~52_ ~~ performanoe specifications of a maSS

spectrometer as an integral part of a GC-MS instrument will be considered in Section 6.

Before considering the interfacing systems in detaii, the operational flow modes which are normally employed in GC-MS work are explained for the benefit of the neophyte_ These fiow modes are shown schematically in Fig. 1. The series operation is the ieast versatile since the MS has no provision for obtaining a GC

peak record. The column efB.rent passes through a conventional nondestructive GC detector, nsuaIly of the thermal conductivity type, and then the entire effiuent passes into the mass spectrometer where scans are initiated each time the GC

detector senses a peak. The scan(s) may be triggered automatically from the strip chart GC recorder and manual override may be provided if desired.

In the parallel operational mode, the MS is again incapable of providing a GC record. A stream splitter is used to conduct only a portion of the GC effluent to the mass spectrometer while the remainder is carried away to a conventional GC detector. Proper correlation of the mass spectral records with the GC peaks requires knowledge of the g:ts conduction times in the splitter lines.

The third operational mode utilizes a mass spectrometer which is capable of providing a GC record as >crell as mass spectra for the identification of .each GC

hr. J. Mass &t-ctrim. fan Pliys., 8 (1973) 1-71

Page 5: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHRUMATOGRAPH-MASS SPECTROMETER COMBINATIONS 5

OPERA~ON SCI-IEMATIC OF PLOW PATHS

SERIES

GC FWZORD MS ~RECORD

j’_A_TATd.ET. GC _RIXORD

GC BJAL GC DETECTOR ------d GC RECO-RD

PAR_ALLEL COLuMhT

7 MS DETECTOR AND IDEKPIFIER

t t

GC RECORD MS REXORD

._

Fig. I. Schematic bIock diagram of GC-MS operational modes.

peak. The GC peak record is usually achieved by continuously or intermittently monitoring a portion of the total ion current.

The best operatiocai mode incorporates a combination of the dual and parallei schemes. Here :here is sufficient versatility for continuously monitoring the operation of the entire system. To illustrate this point, note in Table 1 that milny mass spectrometers are a factor of 100 iess sensitive to the detection of a

Int. J. Mass Spectrom Ion Phys., 8 (1972) l-71

Page 6: 1972 JUNK (GC-MS Combinations and Applications)

6 G. A. JUNK

GC comg?onent than the more sensitive but destructive GC detectors. Thus a 100

to 1 split of the GC effluent cau be used to obtain nearly equal GC and MS

detector hmits of approximately IO-f0 g_ Under these conditions of operation two GC records are obtained which wih indicate any deterioration of GC column performance caused by the interface unit, the connecting Iines and the mass spectrometer pumping system. Note that the destrrictive GC detector wJ?k-F, receives oniy one percent of the total effluent is stiil more sensitive to the dzkction of low level components than would be the case with a non-destructivz detector (IO- 6- lo-* g) in the series operational mode. DuaLseries operation *Ah a stream split to waste between the GC detector and the mass spectrometer is also possible but much Jess desirable.

It may be heIpfu1 to stress before continuing to the discussion of the genera! methods of coupling a GC to a MS, that the interfacing dEvice is situated in series with the connecting line to the mass spectrometer in all operational modes.

3. MTERFACINGSYSTEh~S

The general methods of coupling the GC to the MS are shown schematicahy in Fig. 2. The letter designations are for convenience in referring to the coupling method employed and are used to the right of each citation in the bibliography_

capillary c O~IXIAS

capillary or pack& coltlEns

capillary or packed colums

~++~+pe~~:~~e~~~ ’

Fig- 2. General methods of coupling a &is chromatograph t0.a mass spectrometer.

Iti- J- Mzss Spectrom. Jon Php., 8 (1972) l-71

Page 7: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 7

A. Direct couple - method A

This method h-as historical significance because Holmes and Morrell in 19573’2 and Gohlke in 1959230 used this approach when they were the hrst to successfully employ the GC-MS technique. It is still a desirable method of coupling today, although its use is confined to low flow capillary columns because it is impractical to incorporate mass spectrometer vacuum stations capable of handling the gas loads from packed columns. Indeed, the gas how rate in some capillary columns is too high for the pumps of many mass spectrometers to handle. TO illustrate, refer to the equation governing gas flow in the system,

s,, = 103F,,, (1) where S,, is the pumping speed of the mass spectrometer in liters per second

(1 set- I), F,, _ IS t h e carrier gas fiow rate in milliliters per minute (ml min-l), and a maximum pressure of lo- 5 torr for proper operation of the mass spectrometer has been assumed For a 311s limited to a practical pumping speed of 100 1 set- ‘, the maximum allowable carrier gas ff ow is 0.1 ml min- ‘_ For gas flow rates greater than this, method A cannot be used and methcd B or C must be employed.

B. Efllient split - method B

The scheme shown for method B in Fig. 2 is that described by Brunnee et aZ.p’*p6 in one of their reports on the GC-MS combination. It is not intended as a recommendation of any one of several splitting methods described in the literature (refs. 11, 105, 148, 152, 160, 230, 3.98, 299, 301, 333, 400, 433, 463, 473, 560, 594, 59S, 639,654) but is intended merely to show how high GC column flow rates may be accommodated Inherent in this method is the loss of a considerable amount of the sample with consequent loss in sensitivity. For example, if a packed column flow rste of 100 ml min-’ is used with a his whose pumping speed is limited to 100 I set-‘, the orifice size which defines the split ratio must be small enough to cause a 1000 to 1 split (eqn. (1)) of the GC effiuent. With this ratio only l/1000 of the total amount of separated component is conducted to the mass spectrometer and the identification limit based on the amount of sample injected into the chromatograph is reduced by a factor of loo;3 from that achieved with method Aand a capillary column flow rate of O.lmlmin-l. Of course,the use of capillary columns has disadvantages, one of which is the low dynamic range of concentrations due to the sample capacity iimitation2p’*33p~537_ Even though recent successes (refs. 29, 60, 73, 109, 110, 200, 202, 266, 282a, 283, 284,291, 292, 304,305,341,441,442,471,477,502,509,542,553b, 560,564,584,590,647,670, 705, 716, 722, 731) in the use of support-coated-open-tubular (SCOI-) and huge bore capillary columns suggest a revival in the use of low flow rate columns, most researchers using the GC-&%~ technique still choose to employ individual or tandem- packed column chromatography to effect the desired separation of mixtures.

Ink 3. Mass Specrrom. Zon Phys., 8 (1972) 1-71

Page 8: 1972 JUNK (GC-MS Combinations and Applications)

8 G. A. JUNK

C ~l3ijEtsim separators - method C

Near maxixnum identification &its are attained when a molecular separator is used as part of the interface between the GC and MS. The basic function of the separator is to reduce the gas load to the mass spectrometer by removing as much of the carrier gas as possible. At the same time most of the gas chromato- graphicaHy separated component must be rapidly transferred, without chemical transformation, to the ion source of the mass spectrometer for identification. Ideally this should be accomplished without loss of chromatographic resolution. A variety of separators (rtfs. 55, 73, 74, 79, 98, 99, 135, 192, 240, 241, 286, 347a, 380, 381, 393,412,421,423,425,427,428,445,489, 505, 509, 564, 569, 620, 632, 674,694,695,709) have been described since the original deveIopments of Ryhage and von Sydow ’ 6 3 in 1963 and Watson and Biemaxm7’* in 1964. Some selected references which give the btst descriptions of these devices are given in Table 3. Abbreviated designations of the construction type and suppliers are incIudcd for convenience.

These separators may be categorized for purposes of discussion into four d&sion classifications -jet, pore, reaction, and salvation.

TABLE 3

SELECTED LITERATURJZ WEREPU’CES FOR DESCRIPTIO3i OF GC-.VS SEPAR4TOR COSSl-RUCTIOS _4XD

CO;XWERCIAL SUPPLIERS

-Name Supplier * References

Ryhage Watson Li&y Krueger Cree Luchte Blumer GohIke Brunnee

LKB, CEC, Finn&n Ark. Kemi, 26 (1967) 205.

Ail Anal. Citem., 37 (1965) 844.

None Anal. CXem., 38 (1966) 1585. None Anni. Chem., 41 (1969) 1930. G.E. Pittsburgh Conference, March, 1967. Bendix Amer. Lab., Sept. (1970). None Anal. Chem., 40 (1968) 1590. Finnigan _ Finnigan Instruments. Varian 18th Annual Conference on Mass Spectrometry and

AIIied Topics, San Francisco, 1970. Lleweliyn Varian 3. Chromatogr. Sci., 7 (1969) 254. Simmonds None AI&_ Chem., 42 (1970) %I.

* These supp!iers are only those which sell mass spectrometers_ Components such as porous metal and glass tubes and diaphrams are available from many other commercial sources.

The jet diffusion separator, shown in Fig. 3A, is based on the diffusion principles established by Becker and was originally developed as an interface to a mass specfxometer by Ryhage and von Sydow563 in 1963. The only commercial source of this separator until recently was as part of a total GC-MS package sold by .LKB. Currently other manufacturers sell units which are similar in principle

Im. J. ,Mzss Specrrom. Ion Phys_, tl (1972) 1-71

Page 9: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COM :BINATIONS

I TORki lO-4 TORR

CA)

BACKING PUMP DlFF_ PUMP

.:;:i CARRIER GAS 0,” SAMPLE

10-l TORR

(B)

700 TORR 760 TaRR

(Cl CC ‘Y-y MS

0

760 TORR (AIR1 OUT-SE

760 TORR

CC

MS

760 TORR (AIR)

Fig. 3. Selmator classificatio.?_ (A) Jet diffusion (Ryhage shown); (B) pore diffusion (Watson shown); ( 2) reaction diffusion (Simmonds shown); (D) salvation diffusion (Lleweliyn shown).

to the two stage device in Fig. 3A. The diameter, length, and alignment of the orifices as well as their spacings are critical in this system_ The lighter gas molecules preferentially dif3bse to the periphery of the jet stream as it passes through the separator. The enrichment and the yield, two of the separator performance factors to be discussed in Section 5A, are related to the diserence in the molecular

Int. J_ Mass Specirom; Ion Phys., 8 (1972) l-71

Page 10: 1972 JUNK (GC-MS Combinations and Applications)

111 G. A. JUNK

weights of the gases in the jet stream so He and Hz are the oest carrier gases. The main advantage of this separator is the retention of sample integrity due to ‘.he negligible number of vraII collisions for that part of the sample which eventually gets to the mass spectrometer.

More GC-MS resuits have been obtained using the jet system than with any other separator. l__ the reported biological and medical applications, where com- plex muitifimctional molecules are studied, the jet separator has been used almost exclusively (see Section 10 and the Bibliography). This statistic is most impressive when one notes that over 50 oA of the GC--MS applications are in this aria. The major disadvantages of this separator have been its general unavailability, cost, difficuit in-field repair and the !ong delay in publication of its construction details.

Pore

The most popular pore diffusion separator is the porous glass tube device shown in Fig. 3B. It was first described by Watson and Biemann708 in 1964. Enrichment is achieved because of the more rapid diffusion of light molecules through small holes (0.1 to 1 micron diameter) in a porous giass tube (shaded area in Fig. 3B)- The gas flow through the pores in the glass tube is more accurately described with the term effusion since a pressure di_qerential is maintained across the pores. However, the more general term diffusion is employed in this review for the sake of consistency in categorizing the various molecular separators. The flow restrictors at the entrance and exit of the porous glass tube are critical and optimum performance is obtained for a particular set of pore and restrictor dimen- sions at only one GC cohmn flow rate. Since the rate of diffusion is inversely proportional to the square root of the molecular weight this separator is most effective for He and Hz carrier gases. The enrichment and yield vary with the molecuIar weights of the components being enriched in much the same manner as with the jet separator.

Several other devices based upon the same principle as the porous glass tube have been described by Creel 3 ‘, Lipsky ez QZ_“‘*, Krueger and McCloskey380, Blumer7’ and Luchte and Damoth 42s The differences in these devices are in the .

configuration and the materials used for the housing and the porous tube or diaphram-

The Brrinnee separator g8~gg is a special and potentially more versatile form of the pore diffusion separator_ It is pictured in Fig. 4 and is commercially available from Varian/MAT as part of a recently developed GC-MS system. It is included here in the pore diffusion category, even though pores as such are not present, because of the preferential diffusion of the lighter carrier gas molecules through the annular orifice formed by the two circular -knife edges. As with the other pore separators, the relative rate of diffusion of molecuks is proportional to the square root of the molecular weights involved. The distinctive advantage of this separator is in the adjustability of the clif&sion rate to levels of ncx-optimum performance

Inr. J. Mass Spectrom. Ion Phys., 8 (1972) 1-7 1

Page 11: 1972 JUNK (GC-MS Combinations and Applications)

G.4S CRROMATOGRAPH-AMASS SPECTROMETER COMBiNATLONS 11

Fig. 4. Brunnee separator with convenient external adjustment for near optimum performance over a wide range of carrier gas flow rates (see refs. 98 and 99).

for a wide range of GC flow rates. This is conveniently accompiished by raising or Iowering the surface plate above the knife edges. Al1 the other pore separators require dismantiing to change the separator flow pararneters for optimum performance.

Reaction

This separator has been described in recent reportss23-“26~620*621 from thz Jet Propulsion Laboratory, Pasadena, Calif. The scheme shown in Fig. 3C is in effect an accurate display of the total system. A two-foot length of Pd-Ag (25 %) aiioy capillary (0.01~in. o-d. and O.OlO-in. i-d.) is used to connect the exit of the GC cohrmn to the MS. When this capibary is heated above 250” C it is capable of seiectively pumping large quantities of hydrogen carrier gas. The prin- ciple of separation is the catalytic dissociation of hydrogen on the inside surface of the capillary with subsequent diffusion through the walls to the external surface where the hydrogen atoms either recombine to form Hz or react with the oxygen of the room air to form H20. The Hz and Hz0 are flushed away from the separator into the room atmosphere by nor-ma1 air currents or by means of an air or oxygen blower.

AIthough restricted to the use of hydrogen as the carrier gas, this device has several inherent advantages. The most important of which, 100 F< transmission of the sample to the mass spectrometer, resuIts from the selective rather than the preferential removal of the carrier gas. Other advantages are ruggedness, simplicity, the absence of a pumping station, and the abihty to handle high carrier gas Aow rates. With regard to the last advantage, a two-foot-long capillary tube heated to - 500” C is capable of handiing hydrogen fiow rates as high as IO0 ml min- l with negiigibfe hydrogen conductance to the mass spectrometer_ Thus enrichment

Int. X Mass Specrrom. Ion Phys-, 8 (1972) 1-7 1

Page 12: 1972 JUNK (GC-MS Combinations and Applications)

12 G_ A JUNK

values approaching i&n&y are possible. An article which describes this and other initial test results with Pd-Ag capilfary tubes is enjoyable, surprising and recom- mended reading42 5.

Naturally this system has the disadvantage of sample transformation cata- lyzed by the active Pd surface but this may be tolerable based on recent tests6”. In a properiy designed system, with selectable by-pass to one of the other separators in parallel with the Pd-Ag tube, the catalytic behavior of the tube may be used to the experimenter’s advantage. The reader is I.:ft to speculate about this and other potential usage of mod&d reaction-diffusion separators.

The essentia1 features and components of this separator first described by LIeweIIyn and Littlejohn42’ in 1966 have been retained in subsequent more detailed investigations by other workers73~74B2”‘.‘86*526_ A schematic diagram is shown in Fig. 3D. The principle of operation is the almost instantaneous soivation of an organic sampIe on the surface of a thin (- 0.002-in.) methyl- siIicone polymer membrane foliowed by diEusion of the sample through the membrane to the mass spectrometer.

This device has two unique separator features. First, the GC column exhaust is at 760 torr rather than near zero torr. Second, a large portion of the sample rather than the carrier gas is removed from the effluent stream. These features provide the basis for the foiiowin, = advantages: accomodation of all inorganic carrier gases; column effluent at one atmosphere; availability of undissolved sample for conventional gas chromatographic detection and/or trapping; and apparent high sensitivity for hydrocarbons. These Iast three advantages have been adequately discussed in recent reports 73*74*241B426. The first deserves some com- ment since nitrogen carrier gas has not been used in tests of this separator even though nitrogen has been used extensively in normal chromatography as an inexpensive and reliable substitute for helium. It shouId be superior to helium in GC-MS work since the determinental effects of the diffusion of the carrier gas through small holes in the membrane should be less severe.

The disadvantages of this system are based more on expectations and theory7”*426 than on performance tests. Fortunately, a revival of interest in the use of this separator has occurred recently (refs. 65, 73, 74, 108, 110, 201, 202, 241, 286, 403, 407, 421, 426, 526, 540) and the reported results suggest that the loss in GC cohnnn resolution for polar functional molecules may be no more severe than for hydrocarbons. This Ioss in GC resolution, as an inherent problem of the salvation separator, is discussed in detai1 in Section 5. Other documented disadvantages are: the need for separate temperature programming of the mem- brane in order to maintain maximum sensitivity24’*242”*286; an upper temperature limit of _ 200” ~73.74.286; and the rather universal complaint concerning

ht. 3. Mass Spectrum. Ion Pkys., 8 (1972) l-71

Page 13: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH--MASS SPECTROMETER COMBINATIONS 13

membrane porosity. Unless some dramatic developments in polymer te-zhnology are made, the first two disadvantages will remain. Hopefully, the suppliers can

alleviate the last problem by providing membranes of higher quality which are and remain more impermeable to the carrier gas.

4. GC PFtRFOFthiANCE IN GC-MS SYSTEMS

The only difference between operation of a gas chromatograph in a conven- tional mode and the gas chromatograph as part of a GC-MS combination is that the chromatograph effluent pressure is reduced from atmospheric to near zero pressure for all but these systems which -use the salvation-diffusion separator. Giddingsz2 6 has discussed the theory of gas chromatographic performance under these conditions and concludes that vacuum e,xhaust should provide equal or superior performance. Experimental data usin, 0 GC-hfS systems seems to confirm this conclUsion60”658,687,705 B . esults are shown in the upper portion of Fig. 5

1 L 1 I I 1 I 1

UUTWT = I ATM FID

‘34

OUTPUT = IxIO-~ TOUR TIM

1 ! I I I 4

IO 9 8 7 6 5 4 3

-TIME IN MN_ m

Fig. 5. Separaticns achieved using atmospheric and vacuum output techniques (see ref. 687).

for the separation of hydrocarbons with the chromatographic exhaust at one atmosphere and FID peak detection. The same column was then connected directly to a Bendix TOF mass spectrometer and the results shown in the lower portion were obtained The calculated resolution of the column increased slightly from 15500 to 19000 HETP with the effluent at the ?a vacuum of - lob5 torr. Had the authors of the repGrt from which these data were taken chosen to reduce-the head pressure by - 14 p.s.i.g. for the vacuum test the retention times would have been nearly identicai. Thus failure to achieve optimum column resolution in a GC-MS

Int. f. Mass Spectrom. Ion Phys_, 8 (1972) i-71

Page 14: 1972 JUNK (GC-MS Combinations and Applications)

14 G. A. JUNK

system is not due to vacuum exhaust and may be traced to one or more of the fofiowing reasons:

1. 3 I_

3. 4_ 5. 6.

in&rent separator problems; dead volumes; long connecting lines where the gas flow is moIecuIar or near molecular; “tight” ionization chambers; inadequate pumping capacity; cold spots.

ALCOHOLS

METnYL ESTERS ---

lo

8

6 c, 4

C? 2

C6 0 FID SlGNAL TIM SIGNAL

ALKANES

FtD SIGNAL +a TIM SIGNAL

Fig. 6. Comparative chromatographic separation of alkanes, methyf esters and alcohols US~:I~ conventional FIP detection and the TIM detector of the mass spectrometer after passage of the separated components through a silicone polymer membrane (see Ixf. 286).

Page 15: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH--MASS SPECTROMETER COMBLNATIONS 15

The Grst reason particularly applies to the silicone rubber membrane separator and has been well documented in recent reports73~74~241=2*6. Data reproduced in Fig. 6 show that a GC peak is broader when the sample passes through the rubber membrane (right plots) than when the sample passes over the membrane (left plotsj. More recent data 241 have shown that very little loss in resolution occurs when the sample passes over the membrane, so the peak broadening is an inherent problem of the separator associated with the salvation and diffusion properties of the membrane. Black et al.‘& have also cited this problem in their comparison of GC column performance without the separator to that achieved with the sample passing through the separator_ An approximate three-fold loss in the theoretical plates of a larg% bore (0.03~in) capillary column resulted when the organic components were passed through the separator. No significant differences i: the loss of resolution were observed in tests of a limited number of hydrocarbons, aldehydes, esters and alcohols. Although three repor&- (refs. 74,241,256) d ocument the loss in column resolution caused by the solvation and diffusion properties of the membrane, the results are actually encouraging since functional molecules which are quite polar are shown to behave much like non-polar hydrocarbons. For this reason the solvation separator may have broader application potentiai, within its current temperature limit of - 200” C, than is generally expected.

A second inherent problem, divorced from the solvation and diffusion effects of the membrane, has been documented by Grayson242”. The GC peak width after passage through the membrane is wider by an amount equal to the residence time of the separated component in contact with the membrane surface. Since a fairly long residence time is necessary to achieve a reasonable yield, the GC coIumn resolution suffers significantly. Loss in column resolution due to solva- tion and diffusion factors may well be negligible compared to the loss due to this residence time.

Other separators are not affected by these two inherent problems and deterioration of column resolution can be remedied by proper design and opera- tion. Awareness that GC resolution is related to the total system is essential. Losses in resolution are not restricted to the separator and the following discussions of the other five reasons itemized at the beginning of this section refer to situations where the separator is not the primary source of problems.

Loss in column resolution due to dead volumes in the apparatus is obvious and predictable based on Iong standing GC considerations alone. The problem is more serious in GC-MS systems because of the existence of regions of low gas pressure where mass transport of the separated components is negligible4@2. For this reason the use of isolation and/or by-pass valves in the transport lines leading from the separator to the mass spectrometer must be done with full recognition of this dead volume problem. Likewise a bakeable bellows-sealed needle valve, while desirable and convenient for metering the flow to the mass spectrometer,

Znr. J. Mass Speczrom. Zon Phys., 8 (1972) l-71

Page 16: 1972 JUNK (GC-MS Combinations and Applications)

16 G. A. JUEiK

creates problems due to the large dead volume between the valve bonnet and the bellows_ The sampIe transport system should make use of extremeIy low dead volume valves for isolation, by-pass and metering.

The detrimental effects of iong connecting lines, “tight” ionization chambers, and inadequate pumping capacity are discussed elsewhere in this review. With regard to cold spots, many GC-MS systems do not perform as expected due to the “heating tape syndrome” which afflicts many analytical laboratories.

It seems reasonable to conclude from available reports (refs. 226, 306, 402, 477, 604, 658, 687, 7G5) that the full GC column performance, established by conventional GC techniques with the effluent at one atmosphere, can be retained in a properly designed and operated GC4S system. By choice, some column performance may be sacrificed for convenience in most practical applications. This sacrifice, however, is usually associated with large rewards in GC resolution due to the GC-MS capability of r&convoluting (refs. 6, 21, 22, 75, 104, 152, 173, 264, 347, 410, 430, 489, 495, 549, 589, 590, 624, 625, 647, 649, 653, 684, 712) multicomponent GC peaks.

5. INTERFACE PERFORMANCE

It is essential to realize that performance of a GC-MS instrument is mutually dependent upon the performance of the individual components and the operation parameters employed. For a given set of operational parameters the most critically involved components are the interface and the mass spectrometer. The discussion of the iufluence of the mass spectrometer on the over-all performance of the system will be defe_ned to Section 6. The performance of the interface may be partially quantified from experimentally measured factors such as: (1) yieId; (2) enrich- ment- (3) temperature limits; (4) inertness; (5) delay; and (6) hold-up. These factois are grouped in pairs in the following discussions and they may be used as aids in making decisions regarding the purchase, the construction, or the modifica- tion of a GC-MS system.

A. Yield and enrichment

These factors for assessing separator performance have been used in several reports (refs. 38,98,99, 240,241,380, 569). They are useful for comparing and/or predicting separator performanti even though the procedures for measuring them have not yet been standardized.

Yield, Y, is defined by the equation,

where Q, is the- amount of sample entering the mass spectrometer and Q, is the

Znt.. L Muss Sjwctrom. Z&z Phys, 8 (X972) l-71

Page 17: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 17

amount of sample enterin g the separator. It is common practice to report yields in terms of percentage_

Enrichment, N, is defined by the equation,

N = QmJ=c, = (Q,)(CGs) QSICG (QsWLs)

(3)

where CG, is the amount of carrier gas entering the mass spectrometer and CG, is the amount entering the separator. The quantities Qms and Q, are as above for eqn. (2). Substituting Y for Qms/Qs gives,

N = Y(CGJCG,,j. (4)

The separator should be designed to achieve as high a value for N as possible. Practical limits exist since those separators which are based on preferential diffusion of the carrier gas, remove a significant quantity of the sample when the jet or pore diameters are changed to accommodate a higher carrier gas flow. Literature values for Y have been quoted in the 10 to 80 percent range and values for N from 2 to 1000 for various jet, porous and solvation type separators. Some of these N and Y values taken from various literature and conference meeting reports are presented as part of Tabie 4 for individual separators. Only limited

TABLE 4

ESTIMXTE OF SEPARATOR PERFORMAXCEa

Parameter Wafson Gohike %Iumer Krueger Lipsky Ryhage Lfewellyn Simmon& glass glass Ag S.S. Teflon ier rubber PdlAg

N <-ratio) IO-100 I5 15 20-100 5 100 1000 100,ooo y <%I 60 60 50 30 80 40 70 100 M;ix. temp. (“C) 300 450 300 1000 250 300 250 500

Dr!ayb (set) 1 1 1 1 10 1 0.1-10 2 -

a Estimations based on limited originti literature and conference reports from various laboratories. b Characteristic times for the entire GC-MS system (see Section 5 C).

confidence should be placed in the comparison of values quoted since they were obtained by non-standardized procedures. For example, the values for both N and Y would be improved if high molecular weight molecules are tested with the jet and pore separators. Similarly, the values for the solvation separator would improve for test molecules of high solubility and at concentrations below the saturation limit of she membrane. In theory the enrichment for the solvtition separator should be extremely high since inorganic carrier gas molecules are practically insoluble in the membrane. In practice high values are not obtained hecause of the appreciable conductance of the carrier gas t’hrough small holes in the membrane.

Inr. .T. Mass Spectrom. Ion Phys., 8 (1972) 1-71

I

Page 18: 1972 JUNK (GC-MS Combinations and Applications)

18 G. A-JUNK

The prime consic%xation which dictates the choice of a separator (or the modi&cation of an existing unit) is its ability to reduce the gas load which has been previously established for the separation of mixtures of interest. If minor compo- nents are present in the mixture(s) then high yield is the oier-riding factor and the enrichment becomes an inherent by-product of the separator type of seIective or preferential stream splitting.

B. Temperature and inertness

These factors are important considerations in a proposed GC-MS applica- tion. Since the sampIe mus< be transferred through the separator to the mass spectrometer, condensation areas must be eliminated to maintain chromatographic resolution and to avoid loss of part of the separated components. Operation of the separator at or above the maximum temperature employed in the chromatographic separation is not necessary but temperatures suf%icient to maintain adequate vapor conductance are required. If elastomers are used in the separator they must be capable of maintaining vacuum tight seals at the temperatures of intended use and be free of out-gassing properties_ In addition, Dossible breakdown of vacuum seals due to temperature cycling must be considered since it may be desirable or necessary to temperature program the separator as we11 as the chromatographic coIumn. Most of the devices have maximum temperature limits which are well above those employed in chromatography_ This is showu in row three of Table 4 where estimates of the upper temperature Emits are given for several separators. The Lipsky and Llewellyn devices are the o&y ones where temperature may be a limitation.

Inertness implies that the sample does not decompose or react in any other manner in passing through the separator. Decomposition of the sample is the most common chemical transformation in al1 but the reactiondiffusion separator. Collisions within the separators are multiple and molecules undergoing wall coilisions may be subject to possible catalytic decomposition effects. An approach frequently employed to reduce or eliminate decomposition is to de-activate the inside wall surface by silanization procedures. Various methods and reagents have been described38 5*43 6.

Decomposition probability in the separator may be tested with any known sensitive sampIe. Cholesterol 380 has been used frequently and &ionone has been recently recommendedso7. Libbey4” has used hexanal as a test compound. The decomposition reactions are,

hexanai $ hexenal 2 hexadienal 5 benzene m/e L 100 m/e = 98 m/e = 96 m/e = 78 (5)

The 98+, 96+ and 78+ ion currents relative to the IOO* parent ion current of heXaId, are diagnostic indicators of the extent of thermal decomposition. This

Inr. J. Mass Specrrom. Ion Phys., 8 (1972) l-7 1

Page 19: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 19

test material should be useful whenever sensitive oxygen-containing compounds are to be analyzed. Researchers should realize that definitive tests are necessary for isolatin;: decomposition effects since they may not be restricted to the separator. Connecting lines, particularly the one leading from the separator exit to the MS ion source, and the ion source itself must be considered as possible causes of decomposition deduced from the mass spectra of test compounds. The decomposi- tion should be minimized in the entire system since low-level components of interest may be lost easily or incorrectly identified due to chemical transformations. Assum- ing that it is possible to reduce but not eliminate decomposition, those separators of low internal surface area are superior. An added problem confined to reaction separators is the chemical reduction of certain samples6” by reaction with the active atomic hydrogen formed on the Pd surface.

C_ DeIaJl and hold-up

Delay is de&red as the time required to transfer the sample from the exit of the gas chromatograph to the ion source of the mass spectrometer. It is more a function of the size and length of the connecting lines than the separator itself. No direct measures of the delays which can be attributed entirely to the various separators have appeared in the literature. The values quoted in Table 4 ace those of entire GC-MS systems and not of the separator alone_

Many systems employ long capillary tubes to effect the pressure reduction required for the separator. These account for some of the delay time. Most of the remaining delay time is due to the length of line leading from the separator to the ion source of the MS. An example of a delay measurements2* is shown in Fig. 7. Here the gas chromatographically separated component is detected by both a conventional Thermal conductivity detector (TC) and a mass spectrometer detector (TIM) and the results are plotted with a two-channel reeorder. The time difference in the onsets of the two records is a direct measure of the delay or the time it takes to transport the sample from the TC detector, located just prior to

Fig. 7. Graphical representation of delay in commercial GC-MS system equipped with a porous metal diaphram diffusion separator.

Int. J. Mass Specrrom. Ion Phys., 8 (1972) l-71

Page 20: 1972 JUNK (GC-MS Combinations and Applications)

20 G. A. JUNK

the GC exit, to the ion source of the MS. Very Iittle of the observed two second delay is attributable to the separator_

Although delay time measurements are frequently quoted to define GC-MS

performance, these times are important only in-so-far as they are a measure of the possible loss in GC column resohxtion. The probabiijty of this is small for all but the membrane separators where an appreciable portion of the total delay time can be caused by the separator. In other devices the delay is related to GC resolu- tion only when long connecting lines are used between the separator and the ion source. The flow in this line is almost totahy molecuIar with very littIe mass transport_ Observed loss of column resolution occurs because of remixing of separated components due to the random nature of molecular flow.

Hold-up as defined here, is a much more informative GC--MS system specifica- tion than delay time. It is defined as,

H = MS,IGC,,, (6) where His the hold-up, M$,, is the gas chromatograph peak width as measured by the MS detector, and GC,, is the same peak width as measured by the GC

detector prior to the sample going through the interface. Both peak widths are measured at 10 oA of their maximum intensity. When calculated in this manner, His directly related to, and a measure of, the loss in resolution of the GC column caused by the entire system. The use of the ratio of peak widths allows one to compare merent systems when the measurements are made using d.iEerc;nt devices and chromatographic conditions. To illustrate a hold-up measurement, some data accumulated from a GC-MS system equipped with a porous metai cylinder separator (ref. 347aj is shown in Fig. 8. The hold-up (H) calculated from equation 6 is l-4_

Fig. 8. Delay and hold-up representation for 8 GC-MS system equipped with a porous metal cylinder separator. Peak widths for hold-up (N) calculation measured at the arrow indicators.

Int. L Mass Spectrom. Ica Phyzr~, 8 (1972) i-71

Page 21: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 21

It is expected that other GC-MS systems have similar values of hold-up with only the directly coupled devices approaching the ideal value of unity. For example, hold-up values of about 1.0 have been calculated from the figures showing GC

and MS detector peaks from systems using the direct couple interface6”. Values as great as 3.0 for W have been calculated from similar figures in reports73*7**286 of the performance of salvation separators. Relative GC peak widths for systems employing the other separators are not available for calculating H values.

It should be stressed again that the hold-up values are indicators of the performance characteristics of the entire system and not solely related to the separator. As will be discussed later in Section 6B, the ion source design and the pumping efficiency of the mass spectrometer mai well be the dominant specifica- tions which dictate the value of hold-up for all GC-MS systems exceptingthose which utilize the solvation+Ufnsion separator_ A concluding warning is that hold-up has no absolute relationship to delay even though these two factors are considered together in this section.

D. Compmctice per$ommnce

Comptrisons of the performance i-actors of the individual separators Iisted in Table 4 may !ead to erroneous conchrsiocs because of the non-standard methods of measurerrent. A more valid and useful approach is to summarize some perfor- mance facto:% of the various interface devices and to compare these values. This summary is given in Table 5.

TABLE 5

CONDENSED PERFORMA?XE CHARACTERISTICS OF EXISTIXG INTJXFACES FOR GC-MS SYSTEMS

CIassificalion N Y( %)

Jet 102 40 Pore IO’ 50 Salvation 103 80 Reaction 105 100 Directb 1 1 “Perfect”c a3 100

Delay in set

1 1

ViW. 2 1 0

H” Inert Carrier gases

1-2 Ye He, Hz l-2 - 3 He, HZ 3 ? inorg. l-2 no Hz

1 Ye ail 1 Y&S all

a See Section SC for a discussion of expected values for hold-up (H). b In this table high flow rates are assumed and a 100 to 1 split of the GC efRuent establishes the yield at the 1 0A value. c A hypothetical device for comparison to the ultimate in interface performance.

Since none of the interface classifications fulfill all the specifications for the “perfect” separator, ideals must be sacrificed and a compromise made to achieve a working GC+MS system. Various laboratories have different analytical problems which are solvable with the aid of GC-MS equipment. The choice of the interface

Inr. 3. Mass Specrrom. Ion Phys., 8 (1972) 1-71

Page 22: 1972 JUNK (GC-MS Combinations and Applications)

22 G. A. JUNK

is dictated by the nature of the problem(s) and the state-of-the-art performance characteristics of existing interface devices. It is hoped that Table 5 will be an aid in making decisions regarding the use or substitution of interfaces. The direct coupIe approach, while the Ieast elegant, should not be disregarded It is often the_ best solution when low Row columns are practical or when the m spectrom- eter vacuum station is designed to handle the gas loads from high flow columns.

6. %iASS SPECTROMEIER SPECIFICATIONS IN GC-MS INSTRUMEXT

In retrospect, it is not unusual that one of the f&t “30GC-~~~ systems used a time-of-fiight @OF) mass spectrometer. Of the commercia1 instruments available in the Iate 50’s, only the Bendix TOF fitted the GC-.WS system requirements with respect to the critical areas of pumping speed, ion chamber design, scan speed, sensitivity and read-out. During a period of increasing competition from magnetic sector instruments, the TOF was and still is used for a large fraction of Gc--MS work, except in the biomedical field where magnetic sector instruments Iiave been used almost exclusively.

Simplicity of operation and ruggedness are self-evident p~is specifications for a satisfactory GC+~ system and will not be further discussed. However the others mentioned above, along with mass range, resolution and reproducibility will be considered below in detail.

A. Ion chakber, sensi~hi~y and reproducibility

A continuing effort to improve the sensitivity of mass spectrometers has occurred over the years. Most of these sensitivity developments are compatible with use of the MS as a GC detector and identifier. However, one approach toward improved sensitivity, particularly in magnetic sector instruments, has been to construct “tight” ion chambers where the pressure differential between the ion chamber and the remainder of the &a vacuum system is appreciable. The higher pressure in the ion chamber is caused by the reduced flow rate out of the small holes in the structurally tight chamber. Such a system improves the probability of ionization with consequent increase in sensitivity by extending the average residence time of molecules in the ion chamber. However, it inherentiy caluses re-mixing of the separated components in CC-MS combinations. Much of the hold- up in many GC-MS systems may be directiy attributed to the inability of the pump- ing system to rapidly remove the gas from ion chambers designed to retain it for as long a time as is possible. Thus nude ion chambers such as those in most quadrupole and TOF instruments are superior for GC-MS systems, Here sensitivity is sacrificed since most of the incoming gas molecules make only one pass through the region of ionization but better GC-MS performance results. The limit cf detec-

Iit&; L Mass Spectrom. Ion P&s., 8 (1972) 1-71

Page 23: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH--MASS SPECTROMETER COMBINATIONS 23

tion for GC-MS quoted in Table 1 is an estimate. Some systems easily detect iO-‘* g of a component injected onto the gas chromatograph column Others are hard pressed to detect IO-’ g. Part of this difference is due to the procedures used for measuring the detection limits. For example, if a component such as benzene, which has relatively few fragment ions, is rapidly separated into a narrow band by the chromatograph employed, the sensitivity of the GC-MS system will be high compared to a high moiecular weight saturated hydrocarbon, which has many fragment ions, and is separated into a broad band by the GC column. Although related to the sensitivity of the mass spectrometer, the sensitivity of the GC-MS

instrument is a property of the total system. All other factors being equal the higher the sensitivity of a mass spectrometer the higher will be the sensitivity of the GC-MS system which uses this his. As noted above, one must be aware of how the increased sensitivity of the MS is achieved so that the penalty of reduced per- formance is not too severe.

Another consideration related to sensitivity should not be ignored when the MS is used as the identifier and is also the sole CC peak detector. Those systems which utihze a total ion monitor electrode and an eIectrometer circuit for GC peak detection have a low sensitivity compared to that of an electron multiplier- electrometer combination. Consequently, the identifier which reads mass separated ion currents from an eIectron mrrltiplier-electrometer circuit may be receiving useful mass spectral information while the GC peak detector is registering a base line record To overccme this difficulty, mass fragmentography (refs. 271, 346a, 347, 579), where the G.YG is used as a specific detector for one or more suspected components, is often used. Even though a smaIIer number of the total amount of ions produced in the ion source are sampled by the e!ectron multiplier+%zctrom- eter circuit an increase in sensitivity is achieved due to the multiplier gain.

The reproducibihty of the mass spectra is very important in GC-MS work. With fast scan instruments several mass spectra are recorded for a single GC peak. If the GC peak is proven to be singular, the identification of the component is made by matching the average of the observed spectra with a mass spectrum in a reference f?Ie or by running the mass spectrum of an authentic sample at some future time. With a poor MS, variations in intensity can lead to erroneous identifica- tions. Most of the present instruments produce spectra whose variations are min- imal. Positive identifications can be made from exact matches of GC-MS speer-L

and authentic sample spectra. However it should be noted that the mass spectral fiIes134;335.375.469.559 are tabulated from data accumulated on magnetic sector instruments. Minor differences in intensities exist for different magnetic sector instruments_ Large differences are apt to be present for mass spectrometers based on other means of mass separation The present situation is such that TOF spectra may be somewhat safefy compared to spectra catalogues but a spectrum which has been accumuIated with a quadrupole or monopole MS should be compared to reference spectra only after due respect for the mass discri;nination inherent with

Int. J. Mass Spectmm. Ion Phys., 8 (1972) 1-71

Page 24: 1972 JUNK (GC-MS Combinations and Applications)

24 G. A. JUNK

these mass titers3 “_ One of the considerations to be weighted in the decision to construct or purchase a Gc-_%ts shouid be the ability of the mass spectrometer to deliver mass spectral data which can be safely related to existing reference spectra so that at least tentative identtications can be made without requiring a continuous search for authentic samples.

B. Mass range, resolution and scan speed

Most ef ;he Gc-MS work done in the past and a_ very large share of that expected in the future can be accommodated readiIy with a single mass range of 10 to 1000 and a resolution of about 1000. Resolutions as low as 400 are tolerable although they limit possible Tlsage. Nevertheless, over 90 ‘A of the past CC-MS

work listed in the bibliography could have been done within this resolution limit. Scan speed is one of the more important mass spectrometer specifications

for C-C-MS systems. The concentration of the sample is changing as the GC peak is eluted and this change in concentration can distort drasticalIy the observed spectrum at slow scan rates. If this was the only performance consideration, any scan speed shorter than the time width of the GC peak would be satisfactory since ratio recording364 of the individual intensities and the total ion current could easiIy be incorporated to normalize the change in concentration. However many GC separations are inccmpiete and rapidly recorded successive mass spectra can usually indicate this fact. This information is essential for proper characterization of complex mixtures. Even if positive identifications cannot be made from the changing mass spectra, this information is very useful for judging the eff&tiveness of a chromatographic separation and for deciding upon future approaches to separation_ A dramatic illustration of effectively increasing the resolution of a capillary GC coiumn by %rs detection is the identification of five different compo- nents of a~ unresolved GC peak by McFaddena64 Other reports of the ability of GC-MS to de-convolute GC peaks exist (refs. 6,21,22, 75, 152, 173,264,346,410, 489,495, 588,589, 590,624, 625, 647, 649,653, 684, 712). One of these5” shows that 6.6 x 108 theoretical plates can be achieved in GC--MS for a column whose conventional resolution is only 3.6 x 10’ theoretical plates. A less dramatic ibus- tration is shown in Fig. 9 where an apparent single component GC peak reproduced on &he right is deconvoluted on the left to identify benzene and cyclohexene as con~butors to the observed GC peak3”“. Both the total ion current monitor (-1) of the mass spectrometer and a conventional TC detector were used to record the GC peak. The doublet nature of this peak is not apparent from either the TC or IBM records. The unique ion currents at 78’ for benzene and 82+ for cyclohexene were used as specific detectors for each component_

The deconvolution potential of GC-Ms is best realized when these unique ion currents are available to track the elution of each component, but is not limited to these cases. As Iong as the components comprising a single GC peak have different mass spectral fragmentation patterns and the column has effected

Page 25: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHRDMATOGRAPH-MASS SPECTROMETER COMBINATIONS 25

Fig. 9. Graphicai representation of the deconvolution capability of the GC--MS system. Chromato- graph% conditions were puposely set to obtain poor CC separation of a 50150 mixture of benzene and cyclohexene- The time axis for the Cc detected peak is displaced to the right for figlre cIarity. TC and TIM refer to thermal conductivity and total ion monitor, respxtively.

a partial separation of the components, these may be identified if the scan time

of the mass spectrometer is very short. It is not necessary to achieve a pure spec-

trum record, though this often is the case, since contributions from previous spectra may be subtracted in later manipulations of the data. Generally, scan times of l-10 seconds are sufficiently short but faster scan times make the GC-MS

system more versatile. A reahstic demand, in view of present day instrumental developments, is a scan speed of two seconds for the mass range of I@-1000 in a proposed tic-his system. Such a system will handle nearly all GC-MS app!ications.

C. Pumpirzg speed

While extremely fast pumping speeds in the region of a nude ion chamber could be achieved by the use of cryogenic devices, these would be costly and are not currently available. ‘The reliability of moiecular separators is constantly improving anda practical specification for pumping speed is 1001 set- ’ in the ion source area- Ion source pressures > lo-’ torr can be tolerated if good differential pumping maintains pressures < lo- ’ torr in the analyzer section. The pumping speed of the diffusion pump is not an accurate measure of the pumping abilities

Int. J. Mass Spectrom. ion P&S., 8 (1972) I-71

Page 26: 1972 JUNK (GC-MS Combinations and Applications)

26 G. A. JUNK

of most mass spectrometers. The true pumping speed is also related to the restric- tions and conducting tubes which are part of the total vacuum system. The poor performance of some systems is undoubtedly due to the slow pumping speeds caused by low conductance valves, small tubulations, and “tight” ion chambers, rather than the pumping limitations of the vacuum station.

D_ Read-out and others

In practical routine operation of a GC-MS system, the visual display of mass spectra on an oscilIoscope is so useful and convenient that the author considers it essential. When enough sample is available, a preliminary experiment with only visual display can signi5cantIy reduce the data burden. Gross changes in the mass spectra across each GC peak are immediately visible and decisions regard- ing the scan rate and number of spectra to be recorded per GC peak can be made prior to recording the data in its final form in a succeeding run. When the data is logged on magnetic tape, the parallel visual display of the raw data can eliminate the cost and time wasted in reading tapes NIed with unusable data.

Most mass spectral patterns in GC-MS applications have been recorded with oscillographic devices. While these recorders are satisfactory in both speed and dynamic range, one must consider the almost certain eventuality of anaIog or digitai tape recording of the data. The use of a small computer for logging and real-time interpretation of the GC--klS data is certainly desirable_ Thus convenient and Iow cost modifrcations of the read-out system to incorporate devices associated with computer manipulation and interpretation of the data should be considered in evaluating various GC-MS systems.

Other desirable spectications for the &IS in a GC-MS system are the rapid control of the electron accelerating voltage and automatic attenuation of the ampHer output so that all intensities are within the range of the recording device. Other SpecSications which increase the versatility of the mass spectrometer, but also significantIy increase its complexity and cost are considered ;lon-es_sential for a routine GC-MS SyStem.

7. DATA XEDUCTION AXD MAMPULATIONS

The man-hours spent reading mass spectral records and performing simple mathematicai manipulations Es enormous71o compared to the GC-MS instrumental time required to accumulate the data. For example, suppose a complex mixture which yields 900 GC peaks can be chromatographed in 30 minutes. Even though many of the GC peaks will probably be mono-component, it is necessary to get a compositional profhe of each peak to establish its true nature. Assume that five

scans across each peak are required for establishing this profile. Most organic compunds yield mass fragments in the range of m/e = 12 to 500 and these are

Int. L Ma.6 Spect&n. Ion Phys.., 8 (1972) l-7 1

Page 27: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 27

used to “fingerprint” the compounds for identification. Assume that 500 mass numbers and intensities may be necessary for a positive identification. Thus, (5 spectra per GC peak) x (500 masses per spectrum) x (100 GC peaks) equals 250,000 mass positiorz and intensities which must be accurately tabulated Then begins the equally burdensome task of subtracting background andjor contributions fIrompre~U3us 9eczr2.?%Lmrdi~zairon as 3zsc3l~m~;aSaFlnar,~T~r

the interpretation must then be made. Clearly some form of automated data r&uctjon is necfSsary ‘ro &I& &Zen1 Usi? 03 13x i3c-33ssy5wm_ TDD D&33 lhjsjs

accomplished by not recording or not reading much of the data output which may result in the loss of pertinent information. A variety of more reliable approaches are available and several have been discussed recently (refs. 46, 61, 242, 290, 307-310, 337, 346,474,490,495, 554-556, 651,732). A block diagram of one”’ automated read-out system is reprcduced in Fig. 10. Although systems such as this are quite versatile, the cost is significant and budget limitations may force compromises involving semi-automatic read-out and data reduction systems. A realistic view is that the cost of the read-out and data reduction equipment for achieving efficient operation of the GC-hfS system will exceed the initial investment in the Gc-MS ~nsZtnrnen1.

interl'ace

Many GC-&IS systems are currently available from commercial sources. With the exception of the LKB mstrument, these have not been extensively field

Page 28: 1972 JUNK (GC-MS Combinations and Applications)

28 G. A. JUNK

tested so that an estimation of their reliability is difficult_ However, many of the systems utilize modifications of mass spectrometers which have previously been used in field operations for years with satisfactory results. These commercial systems are tabulated in Table 6 which is primariIy a listing of availabihty and approximate cost. The tabuiated specifications are those supplied or deduced from the manufacturer’s literature and aII but mass range and resolution should be viewed as approximations. Other specikations critical to GC-MS performance, as discussed in Sections 5 and 6, must be secured by personal inquiry directed to the manufacturers.

TABLE 6

cCWMERCWL GC-MS SY!XEMS AND H.4KUFACTURER SUPPLIED SPECIFICATIONS*

Price KS

Detection Interface Delay (JJS) J&c)

_wass range

Resolution Type

AEI-MS30 50-75 MS902 90-125

DuPont CEC 21490 19 CEC 21491 24

LKB 90@0 50 Nwlide G3G(GC) 85-125

12-!3OG(GC) 43-w Perkin-Elmer RMS4 27 Varian CHS 65-90

CH7 34-45 Mat ill 21 Mat 311 60-70

Bendix MA2 40 MAIA 20

GE 22MSllO 2.5 22MSlll 20

Finnigan IO15 25-30 10155L 24-35 3ooO GC 14-15

0.001 1 3 3 0.01

10 10

1 0.001 0.01 2 0.02 I 1 NR NR 0.01 0.01 0.01

GF, SM Negl. l-2&0 GF, SM Negl. l-7200 GF, MM, JS 1 12-1000 GF, MM, JS I 12-1000 JS NR lo-3w GF, MM 1 l-6000 GF, MM 1 I-6000 GF Negl. l-1200 GF, SM, VD NR l-3600 GF, SM, VD NR I-3603 S-M, VD NR 1-1000 GF. SM, VD NR l-3600 MM 2 I-1200 MM 2 l-750 MM NR I-600 MM NR l-300 GF 0.1 l-750 3.5 NR I-750 JS NR I-500

10,000 MS 100,000 MS

1,100 MS 2,500 MS 5,ooo MS

50,000 MS 10,000 MS 2,500 MS

10,000 MS 5,ooo MS 1,030 tus

20,000 MS 500 TOF 150 TOF

1,200 MF 600 MF 750 MF 750 MF 500 MF

* Condensed from information in Industrial Research, November, 1970. NR = not reported; GF = ghss frit; GO = glass orifice; SM = silicone membrane; MM = metal membrane; JS = jer separator; VD = variable aiffusion; MS = magnetic sector; MF = mass filter; TOF = time of flight.

9. CURRENT AXD FUTURE DEVJXOP_?tfEBTS

Lengthy discussions based on speculatious about the future are unwarranted in a review. However, some current developments will certainly be exploited and new deveIopments such as the combination of negative ion mass spectrometry with gas chromatography and the joining of other instruments with GC--MS should occur.

Int J. Mass Spectrom. Ion P&s., 8 (1972) 1-71

Page 29: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH--MASS SPECTROMETER COMBINATIONS 29

The integration of IR with GC*‘. 3 7g and IR with GC-hEi “* 5 ” has already begunalthoughstopped-3ow techniquesare still required. The almost simultaneous development of pyrolysis-gas chromatography (PY_GC)‘~* and Gc-MS has al- ready led to d:scriptions Of PY-GC-MS units (refs. 198a, 476,535,537,614,617-619, 623, 648a, 675, 693). The unique thermal decomposition of certain molecules combined with the separation and identification capabilities of GC-bIS make possible the study of reiativeiy invofatiIe molecules. Chemical ionization mass spectrometry (cIw.), an evolution from ion-molecule reaction procedures known for over a decade, wiII be further developed as a CC-CIMS coupie. Preliminary results using GC-CI%I.S units28*29*587 h ave already appeared in the Iiterature. This development is especially welcomed since the ionization chamber in CIMS is operat- ed at - 1 torr and the gas flow to the MS may be increased by about 103 over that used in conventional mass spectrometers. Field ionization mass spectrometers (FIMS) may well prove to be rugged enough for GC+I&Is units and the initial developments 45*1 46*1g7 further exploited_ Such devices would be useful for those cases where parent ion identifications are difficult from electron impact measure- ments. The plasma chromatograph’ 31 shows great promise in residue and pollu- tion studies and commercial units are already available.

A host of other developments such as increased reliability, computer control, reduced cost, improved vacuum systems and more reliable mass marking and seIection should occur in the future. These, coupled with gas [email protected] developments, particularly in the area of trouble-free employment of large bore capillary and SCOT columns, should make the Gc-his technique even more widely used than at present. Certainly the limited number of cases where .quantification (refs. 6, 22, 300, 346a,m347, 410, 446, 579, 595) of results has been attempted will be expanded. Where deconvolution of unresolved GC peaks is possible this ap- proach seems superior to attempts to improve the chromatographic resolution.

A development, which is indispensable, based on past, present and predict- able future needs is a comprehensive listing of reference spectra available at a reasonabIe cost in both tabular and computer tape formats. Ahhough those who have compiled catalogues of mass spectral data’ 34*3 3 5*37 ‘* 469* 5 59~ 609 are to be commended for their efforts, much still needs to be done before the mass spectral information which is now segmented, and generally unavailable, at various laboratories around the world becomes a part of existing general ties. The list of different compounds subjected to mass spectral -analysis and amenable to gas chromatographic techniques grows daiIy while the archaic filing procedures remain to cause duplication of efforts and wasted time in developingpositive identification schemes. The gratis approach to the solution of this problem has not yielded sufficient relief and more effective means of securing mass spectral data for filing purposes are needed The efforts of the Imperial Chemical Industries Ltd. and the Mass Spectrometry Data Centre at Aidermaston to alleviate this problem has yielded some positive results. A two-volume tabulation of 17,OfXI

int. J. Mass Spectrum. ion PIzys., 8 (1972) l-71

Page 30: 1972 JUNK (GC-MS Combinations and Applications)

30 G. A. JUNK

mass spectra is currently available 335 for S 100.00 from the British Information Services, 3rd Avenue, New York.

10. APPLICATIOXS

A mimber of GC-MS applications are reported in such diversified journals that missed citations are inevitable. The author apologizes for these possible omissions. Nevertheless, the bibliography is considered to be a reasonably com- prehensive listing of the literature reports through 1970 where GC-MS has been used to aid in the solution of chemical identification problems. Each citation is preceded by the title of the articIe cited. Letter designations (A, B or C) follow each reference to indicate the coupling method employed (refer to Fig. 2). The second letter when present designates the type of separator used where 3, P, R and S refer to jet, pore, reaction and soivation diffusion separators, respectively. Thus a short summary of each report is directIy available from the bibliography and repetition of this information in the text would be redundant. Additional details are available from the original reports or in some cases from the recently begun GC-MS abstracts4J*.

Those references which deal with applzations are classified into rather artificial and somewhat overlapping categories in this section of the review. This classification when used in conjunction with the short summary of each reference shotrId reduce the literature searching and reading load. In addition the ciassifica- tion provides a quick indicator of the activity in various research areas.

An adequate discussion and critica evaluation of any one of these areas is subject matter for individual reviews, so the author has chosen to limit discussion to only a few general comments_

A. Foods andflavors

A large fraction of the early and a significant amount of current GC-MS

applications are in this researcfi area. GC-MS results provide an invaluable base of information for the attack of more complex food and flavor problems_

Researchers in this area have developed the use of high resolution capillary columns in GC-MS. Usually the broadest range of different compound types are identified in these GC-MS applications. A single report may incIude the identifica- tion of Xl-100 compounds, including aliphatic and cyclic hydrocarbons, aromatics, alcohols, aldehydes, ketones and esters. The excellent quality of most of these papers suggests that more extensive use of capillary column techniques, particularly large bore capillaries, will occur in future research in this and other areas of GC-MS applications.

References: 9-l 1: 1 la, 16-19,24-26,30,38,39, 5’7, 58,74,86, 104-l 1 I, 123, 126,132,138--140,147,148,169,180,192,193, 199-203,205,2822,283,284,

ht. 3. MGSS Spectrom. Ion Phys., 8 (1972) l-71

Page 31: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 31

288,289,291,328,329,333,337,338,341,348,3482,354,365,366,370, 371, 390, 395a, 405, 4072, 408, 409, 41 I, 429, 430, 433, 441, 442, 449, 460-463, 471a,4?2a, 473, 475, 488,497-499, X&t, 507, 529, 532-534, 542, 549-551, 553a, 553b, 558a, 572, 581-585, 588,589a, 594,595,600,602,603, 611,613, 6132, 615, 630-632, 634, 637-644, 654-656, 669a, 674, 690, 696-701, 703, 704,706,707, 716, 716a, 720,721, 723, 728-730.

B. Geochemical

Most of the applications in this area have been reported in the past five years. Generally the research concerns the search for hydrocarbon molecules which are considered or proven to be positive “biological markers”. Because of the nature of the samples studied, some of the development of combination PY-GC-MS may be traced to research in this area. A few of the reports go beyond hydrocarbon identifications and deal with other compound types. All reports dealing with terrestrial and extraterrestrial studies are included in this section.

References: 1, 2, 36, 81, 85, 141, 156156, 162-168, 210-225, 278-282, 287, 295-297,332,403,435,437,459,484,494-496,506,514-521,522a, 523-526, 591, 601, 6i6-618, 647, 648, 663-665, 692.

C. Pesticides and other environmental residues

Most of the applicatiozx in this area have been -,oncerned with pesticide identifications and confirmatio& The unexpIained d.eIa;l in using GC-MS in this

research area has apparently ended and future applications are expected to be c1 extensive, particularly in the identification of toxins and their metabolites in man

and animals. References: 33, 37, 47, 61, 62, 63, 65, 247, 334, 355, 363, 376, 467, 568, 522, 539, 608, 694, 717.

D. Qrgmometallic compounds

The increasing realization that many organometallic compounds can be successfully gas chromatographed has already led to four reports of the use of GC-MS for these compounds.

References: 452, 3462,440, 6762.

E. Biochemical and medical

Applications in this area are the most numberous and constitute a limited, though vitally important, aspect of the total research effort. Because of the number of papers and the somewhat clear-cut classification into various molecular types (refs. 457, 458) this section is subdivided. Steroids and fatty acids have heen the most extensiveIy studied compounds. A large share of the steroid references deal with metabolites and these citations have not been repeated in the section devoted to drugs and metabolites. Since metabolic produkts are of such high interest a

Inf. J. Mass Spectrom. Ion Phys., 8 (1972) 1-71

Page 32: 1972 JUNK (GC-MS Combinations and Applications)

32 G. A. JUNK

great deal of very interesting research is in this area. The gas c’hromatograph-mass spectrometer combination is uniquely applicable to a solution of many metabolic and ybarmacological problems because of its ability to identify trace amounts of unknowns in a broad matrix of complex biological molecuks. Applications where GC is coupled to both low and high resolution mass spectrometers are most promis- ing in this research area.

Stem&k 3, 7, 8, 20, 71, 72, 77, 78, 89, 90, 93, 94, 114, 121, 122, 133, 136,

137,158,175,177-179,182-188,20Sa, 207,228,237,243,249-265,297,311, 313,321,322,330,331,343, _144,349,353,371-373,373a, 374,378,38c389,

394,396,413-419,422,431,432,450,480,493,501,503,511,531,565, 580, 593,605, 606, 6X-628, 676,678, 679,681,685, 691,733.

Fatty aci&r 12,23,33a, 35a, 42, 53, 59, 89,90,9Oa, 112, 113, 115a, 116, 117, 119, 124, 127, 128, 153, 157, 171, 174, 176, 177, 188a, 198, 207a, 236, 238, 239,244,268,276,277,310,323,324,336,352,360,367,368,374a, 392,399, 438,439,447,452,454,455,491,492,500,504,527,528,534a, 536,540,541, 544, 545, 548, 566, 567, 570, 57’579, 586, 592, 629, 644a, 648a, 650, 666, 667, 708,709, 711, 712,714,715, 725, 734.

Amino acids and related molecules: 41,4la, 49,265a, 377, 395,453,476, 513, 543, 556, 610, 614, 617, 623, 677, 682, 684, 693, 713a.

Carbohydrates: 32, 50, 67-70, 142, 142a, 159, 229,293, 294, 302, 303, 357a,

358,369,41la, 472,547, 550a, 55X, 554,61la, 612,619,668,669,702.

Drugs and metubolites: 4, 4a, 5, Sa, 13-15, 27, 44, 118, 127, 149, 195, 197, 198,206,209,229,238,239,244,248,268-275,277,306,314,3 17-320, 325, 326,336,342,382,397,434,443,444,472,482484,487,530, 537,607,610, 645, 659, 660, 66la, 662, 665, 683.

General: 21, 31, 31a, &la, 48, 90b, 115, 157, ‘174a, 194, 245, 285, 315, 345,

358a, 381,391,456,458,499a, 502,538,557,675a, 680,683a, 688,689,726.

F. Mis.ce,llaneous

The remaining GC-&IS applications are combined into this single category.

The titles of these reports in the bibliography will aid the reader in making his own personal categorization.

Referen-: 6,22,35,60,75,80,91,95-97,125,152,160,173,181,196,204, 330,231,234,240,286,292,298,300,301,304,305,312,347,351,359,364, 400,402,404,406,407,410,425,436,446,471,486,509,560-563,568,589, 590,604,620-622,649,652,653,658,670,686,687,705,718,722,731.

Inr- 3. Mass Spt?CmM. km ?hys., 8 (1972) l-71

Page 33: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 33

In conclusion a representstive number of references which deai with the chemical identification of compounds separated by gas chromatography, and collected and assayed by mass spectrometric methods is included (refs. 43, 83, 84, 87, 100, 129, 189, 19i, 203a, 208, 233, 235, 267, 361, 362, 481, 512, 646) Iest the reader forget that this approach is available and may be the most desirable for solving many identification problems..

ACKNOWLEDGEMENTS

The author is indebted to Drs. H. J. Svec, F. J. Biros, M. A. Grayson, I. S. Fagerson, E. G. Perkins, P. Issenberg, R. G. Buttery, J. A. McCioskey, E. C, and 134. G. Horning, P. Simmonds, L. M. Libbey, D. R. Black, E. Gelpi, G. Eglinton and C. T. Pillingcr who generously responded to my request for GC-MS

information. While much of this information has not been directly quoted in this review, it was a very important factor in establishing a more balanced base for discussing GC-MS systems and applications. My appreciation is extended to Irene Maas for typin g the manuscript and to the Ames Laboratory of the U.S.A.E.C. for providing the atmosphere and opportunity to do the work. finally, my colleagues deserve gracious thanks for proofing various sections of the manuscript and offering constructive criticisms.

BIBLIOGRAPHY

Search for organic material in lunar ties by mass spectrometry

P. 1. ABELL, G. H. DRAFTAN, G. EGLX~TON, G. HAYES, J. R. MAXWELL AND J. R. PILLINGER, Science, 167 (1970) 7.57. (B) Indigenous lunar methane and ethane P. I. ABELL, G. EGLINTON, J. R. MA,X~ELL, C. T. P~LLINGER AE~D J. M. HAYES, Nurure, 226

(1970) 251. (B) Reduction of dehydroepiandrosterone sulfate in the liver during ethanol metabolism W. H. AIXIIWND, T. CRONHOLM AND J. SJOVALL, Biochim. Biophys. Acta, 202 (1970) 343.

(C, J) MetaboIism of 5-methoxy-N,N-ciimethyltryptamine-’-sC in the rat S. AGURELL, B. HOMSTEDT AND J. E. LI;~~DGREN, Bio&em. Phmnawl., 18 (1969) 277L (C, J)

4a Identification of alkaloid intermediates by CC-h¶Zi S_ AGURELL, Uoydia, 32 (1969) 41. (C, J)

5 Fate and metabolism of some halIucinogenic indolealkylamines V_ AHLBORG, B. Hor_xs~~~r ~SND J. E. LrnmGm, A&ZK Pharmucool., 6 (1968) 213. (C, J)

6 Chromato-mass-spectrornetric analysis of paraffin and naphthene hydrocarbons with the same retention time A. N. .&KSAXDROV, A. S. RABINOVICH AND S. L. SKOP, Zh. Anal. Khirn., 24 (1969) 762. (A)

7 The structure of some reaction products of the acidic urinary metabolites of progesterone J. G_ ALLEN, A_ M_ COOKE AND G. H- THOMAS. f- Endocrinol- 40 (1968) 153. (C= J)

8 Determination of the stereochemistry at C-5 of 3,bdioxygenated steroids J. G. ALLEN, G. H. THO,~, C. J. W. BROOKSAND B.A. KNIGHTS, Steroids, 13 (1969) 133. (C, J)

8a GC-his of T-MS derivatives of various thiamine metabolites W. H. k~Os A~V R. A. NEAL, AnaL Biochem.; 36 (1970) 332. (C, J)

IIU. J. Mass Spectrom. Ion Pb., 8 (1972) 1-71

Page 34: 1972 JUNK (GC-MS Combinations and Applications)

34 CL A. JUNK

9 Composition of the essential oil of black cm-rant leaves (Ribe.r nigrunr) J. AxnERssox, R- Bosvxx AST E- VON &-now, J- Sci. Food Agr., 14 (1963) 534. (C, J)

10 The aroma of black currants J. ANDERSON API?, E VOX SYDOW, Acia Chem. Stand., 18 (1969) 1105. {C, 1)

11 Methods of isolation and identification of volatile compounds in lipids P. --GELI, D. A. FORSS, M. L. BA~IXXT mm C. MERRITT, J. Amer. Oil Chem. Sot-, 41(1967)

26. 03) 1 la VoIatiIes in controlled-atmosphere appie storage

12

13

14

15

16

17

I8

19

20

21

22

23

24

25

26

27

28

29

30

P- ANGUJNI A%D I. J. PFLUG. -Food Technol. (Chicago), 21 (1967) 1643. (B) Prostaglandins and related factors- XLII- Metabolism of prostaglandin Es in guinea pig Iung E. ANGGARD ANI B. SAMUELSSON, Biochemistry, 4 (1965) 1864. (C, J) Derivatives of sympathomimetic arnines for gas chromatography with electron capture detection and mass spedrometry

E. AXGG.ARD A%W A- HAN~~JZY, Acfa Chem. j’cami-, 23 (1969) 31 IO- (C, J) Gas chromatography of catecbo1amine metabolites using electron capture detection and mass spectrometry E. ANGGHD AND G_ SEDV~~L, AM!_ Chem.. 41 (1969) 1250. (C, J) Chromatography of biogenic amine metabolites and related cotipounds on lipophific sephade.. E. ANGGARD, B- Sroouxsr AXD R. SJ~.TIROI*I, J_ Chromafogr., 50 (1970) 21.5. (C, J) The aroma of cranberries- I- Vuccinium niiis-idaeu L- K. &JOu ohm E. VON SYWW, Acta Chem. Stand., 21 (1967) 945. (C, J) The aroma of cranberries- II. Vuccinium macroc~r~on Ait K- ANJOU _4XD E. VOX SYDOW, Acta. Chem. Szu: ?_, 21 (1967) 2076. (C, J) The aroma of cranberries- III- Juice of Vacciniur;. citis-i&ea ‘L.

K. ANJOU AND E. VON SYDOW, Acta. Chem. Scar& 23 ( 1969) 109. (C, J) The aroma of cranberries. IV. Juice of Vccciniun; macrocarpon Ait K. Au3ou AX- E. VOX SYWW, Ark. Kern., 30 (.1959) 9. (C, J) Cyclic boronates as derivatives for gas chromatography G. M- Axit-Bo~~, C- J. W. BROOKS. I. M_mLUE( AND I_ SKXGSTER, J_ Chromatogr- Sri-. 7 (1969) 623_ (C, J) The acid-catalysed rearrangement of diterpene hydrocarbons- Part 1_ Kaurene, isoatisirene, stachene and tachylobane R. A. A~PL!ZON, k J. McAms. A. MCCORMICK, R. MCCRINDLE AND R. D. H. MU-Y,

J_ Che;n. Sot_, (1966) 2.319. (C, J) Quantitative analysis of mixtures of diterpene hydrocarbons by GC-MS R- A- &PLETON AND A. MCCORUCK. Tetruhedron. 24 (1968) 633 (C. J) Determination of double bond position in monounsaturated fatty acids using combination GC-_XS

C. J. ARGOuDurS AND E. G. PERKINS. Upidr, 3 (1968) 379_ (C, P) Identification of components in the stale flavor fraction of sterilized concentrated milk R- G. -OLD, L- M- LIBEEY AND E. A_ DAM, J. Food Sci., 31 (1966) 566. (B) Identification and quantitative determination of -- 7 furfurol in sterilized concentrated milk R. G. Anxou, AND R. C. LINDSAY, J. Dairy Sci., 51 (196s) 224. (B) Volatile flavor compounds produced by heat degradation of thiamine (vitamin B1) R. G. MOLD, L. M. LIEBEY ANZ R C. LINDSEY, J_ dgr. Food Chem., 17 (1969) 390. (B) Mass spectrometric detection of drug metabolites (barbiturates, Noludar, Pyramidon) in forensic analysis W. ARXOID AND H_ F_ GRUI-Z~. -ZCHER, 2. AnaL Chem.. 247 (1969) 179. (B)

Gas chromatography-chemicaI ionization mass spectrometry G. P- ARSENXULT AND J_ J. DOLHIJ_~, 18th Annual Conference on Mass Spectrometry and Allied Topics, San Francisco, l970. Paper No- Rl l_ (A) Gas chromatography-chemical ionization mass spectrometry G. P- ARSESAVLT, J. J. DOLHKIM AXT K. BIEMANN, Chem. Commun., (1970) i542. (A) Studies on the aroma of intact Hamlin oranges 3. A- ATTAWAY _ND M. F. OBEF~BAUER, J_ Food Sci_, 33 (1968) 287. (B)

In&. J. IwaSs Spectrom. Ion Whys., 8 (1972) I-71

Page 35: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 35

3 1 Biosynthesis of methylcyclopentane monoterpenoids. I. Skyrunfhrrr alkaloids A. AUDA, H. R. JUXEJA, E. J. EISENBRAZI’N, G. R. Wxrrut, W. R. KAYS AND H. H. APPEL, J. Amer. Chem. SM., 89 \1967) 2467. (C, J)

3 la Biosynthesis of methyhzyclopentane monoterpenoids Y. ALD~, G. R. WALLER AND E. J. EISEXSR~~~~, J. Biol. Chem., 242 (1967) 4157. (C, J)

32 Structure of the fucoxylomannan from Poiyporus pinicola (Fr) K. AXE-N, I-l. BJORNDAL AND B. LINDBERG, Actu Chem. Scund, 23 (1969) 1597. (C, J)

33 Identification of PCB’s in two baid eagles by combined GC--MS G. E. BAGLM, W. L. REICHEL XND E. CRO~~~RTIE, J. Ass. O&k Anal. Chem., 53 (1970) 251. (C, Unk.)

33a Identification of 9,10-methylenehexadecanoic acid in s3me aerobic Aclinomycetales by cc-% technique A. BALLIO, S. BARCELLONA AND T. SALVATORI, J_ Chromatogr., 35 (1968) 211. (C, J)

34 Gas chromatography A. E. BANNER, R. M. EUIOT AND W. I(ELLY, in A. GOLDUP (Editor), Gas Chromatography 1964, Institute of Petroleum, London, 1965, p- 180.

35 Distortion of peak shape in fast scanning of mass spectra A. BAFZZGER, J. Sci. Inwrum., 43 (1966) 138. (B)

35a Lipid analysis by coupled GC-ss. I. Diglycerides

36

37

38

39

40

41

M. BARBER, J. R. CHAPS&N A&) W. A. WoLSnmoLnsE, Inr. J. Mass Specrrom. Iori Phys-, 1 (1968) 98. (C, P) Faleobiolo_q of a Precambian shale E. S. BARGHOORN, W. G. MEINSCHEIN AXC J. W. SCHOPF, Science, 148, (1965) 461. (C, J) Determination of pentachlorophenol in blood, urine, tissue and clothing W. F. BARMEL, A. CURLEY, C. L. THRASHER AND V. A. SEDLAK, .r. Ass. Ofic. Anal. Chem., 52 (1969) 294. (C, J) Analysis of the gas phase of tobacco smoke by GC&%S K. D. BARTLE, L. BERG-T, M. Novo~hr AND G. WID?~WRK, J. Chromarogr., 45 (1969) 256.

tc, JI Mass spectrometry and gas chromatography applied to the study of volatiles in milk R. Bm XND C. H. WHITNAK, J. Dairy Sci., 44 (1961) 1164. (B) Combined micro dry-cohumn chromatography and mass spoctrometry A. J. BAU~~ AND H. G. BOEX-~GER, Microchem. J.. 14 (1969) 452. Sequence analqxis of pofypeptides by chromatography and mass spectrometry E. BAYER AXD W. A. KOENIG, J. Chromafogr. Sci., 7 (1969) 95. (C, J)

41a Mass spectrometxy of cystein peptides E. BAYER, G. JOG AND W. KOENNIG, Z. Nururforsch., 22b (1967) 924. (C, J)

42 Phytenic acid: identification of five isomers in chemical and biological products of phytol J. H. BAXTER AND G. W. A. MILNE, Biochim. Biophvs. Acta, 176 (1969) 265 (C, J)

43 Techniques for the mass jpectrometric analysis of volatile compounds isolated from natural sources M. L. B.urm AND C. MERRITT, Anal. Chem., 34 (1962) 1143.

44 Routine detection and identification in urine of stimulants and other drugs, some of which may be used to modify sport performance A_ H. BECH~, G. T. TUCKER AND A. C. MOFFAT, J_ Pharm. Pharmacol., 19 (1967) 273. (C, P)

44a The occurrence of doubly-charged ions in the mass spectra of aromatic amine derivatives J. L. BECK, W. J. A. VANDENHEUVU A%Z J. L. SMITH, Org. &fms Specrrom., Suppl., 4 (1970) 237 (C, J)

43 Analytische Anwendungsmiiglichkeiten des Feldionen-Massenspektrometers H. D. BECICEY ASD G. WAGXR, 2. Anal. Chem., 197 (1963) 58. (B)

45a Volatile complex chelates of rare earth and alkali metals

46

47

R. BELCHER, 6. J. M-R, R. PERRY ALP W. I. STEPHEN, J. Znorg. Nucl. Chem., 31 (1969) 471. (C, J) Data acquisition system for CC* L. BERGSTEDT tim G. WID_ARK, Chromatographia, 1 (1969) 524. Repetitive scanning in GC-Xfs

Int. J- Mass Spectrom- ion Whys_, 8 (1972) l-71

Page 36: 1972 JUNK (GC-MS Combinations and Applications)

36 G. A. JUNK

48

49

50

51

52

53

54

55’

56

57

L. BEXGSTEDT AND G. WID_MARK, Chromatographb, 3 (1970) 59. (C, Unk.) Studies of natural odoriferous compounds. II. Identification of 2,3dihydrofamesol as the main component of the marking perfume of ma!e bumble bees G. BERCSIROE!% B. K-BERG, S- ST-BERG-S~HXGEN khi~ E_ SMIDGEN, Ark. Kern., 28 (1968) 453. (C, J) Trimethylsiiylation of amino acids. 1_ Study of gIycine and lysine TMS Derivatives by GC-_a K. Bergstrom, J. GURIXER AND R. Bro~snuh?>, Anal. Biochem., 34 (1970) 74. (C, J) Struc%ral investigatio_ns on Tl lipopol_ysaccharides M. BERST, C. G. HELLERQVIST. 3% LR*-DBERG, O- L~~ERITZ, S. S~QN AND 0. WESTPHXL, Eur. J. Biochem., 11 (1969) 353. (C, J)

i2fass Spectrometry and its applications to Organic C’hemistry J. H. BEYE;ON, Elsevier, Amsterdam. 1960. Tke hfa.rr Spectra of Organic Molecules

J. H. BEYXOX, R. A. SAUNDERS AND A. E. WILLIAMS, Eisevier, New York, 1968. The occurrence of tetradecasphing4enine and hexadecasphing4enine as the principal sphingosines of Musca domest%a larvae and adults L. L. BIEBER, J. D. 0’330~0~ AND C. C. SWEELEY, Biochim. Biophys- Acta. IS7 (1969) 157. (C, J) Mass Spectrometry: A_op!ications to Organic Chemirtry

K. Bmw%x, McG_raw-Hi& New York, 1962. Aufnahme und Interpretation von Hochauflosungs-Massenspektren von Naturstoffen wihrend threr gaschromatographischen Trennung K. BIEX0ii AND J. T. WAGON, Monatsh. C/tern., 96 (1964) 305_ (C, P) Collection and t.ransfer device for gas chromatographic fractions EL k BIERL, M. BEROZA tin J_ M_ RUTII, J_ Chromatogr- Sci.. 6 (1968) 286. Differentiation between Coffea arabica and Co_tfea robusta by computer evaluation of GC profiles - Comparison of numerically derived quality predictions with or8anoleptic evalua- tions

R. E. BIGGER& J. J. HILTON AXD M. A. GIA~~RCO, Adcances in Chromatography, A. Zr~rrcls (Editor), Preston Tech_ Abstract Co., Evanston, Ill., 1969, p_ 236. (C, Unk.)

58 Identification of compounds responsible for fruity flavor defect of experimental Cheddar chesses D. D. Brrrs, M. E. EiIoaGaN, L. M. LiBBEY AAD E. A. DAY, J. Dairy Sci., 45 (1965) 1168.

59 Plant hormones. VIII. Combined GC--MS of the methyl esters of gibberellins Ai to a414 and their trimethyIsily1 ethers R. BINKS, J. MACMILLAX _4m R. J. PRYCE, Ph_ytochemistry, 8 (1969) 271. (C, J)

50 The investigation of coal extracts by gas chromatography mass spectromztry and paper chromatography L. B~RKOFJZR AE~, W. PAULY, Brennst. Chemi, 50 (1969) 376. (C, Unk.)

61 Enhancement of rni spectral data by means of a time avera8ing computer F- J. BIROS, Anal. Chem., 42 (1970) 537. (C, P)

62 Pesticide residue analysis in human tissue by combined GC-~S F_ J. BIRos x&l) A_ C_ WALKER, J. Agr. Food Chem., 18 (1970) 425. (C. P)

63 Polychlorinated biphenyls in human adipose tissue F. J. BIROS, A. C_ W_~LKER AND A. MEDBERY, Bull. Enciron. Contam. Toxicol., 5 (1970) 317.

(C. P) 64 Recent applications of mass spectrometry and combined GC--MS to pesticide residue analysis

F. J. BIROS, Residue Rec., in press_ 65 An integrated gas chromatograpl+flame ionization detector-mass spectrometer for pesticide

residue analysis F. J. BIRCX, Paper presented at 161st National Meeting of American Chemical Society, Din.

of Pesticide Chemistry, Los Angeks, Calif., March, 1971. (C, P+S) 66 Applications of combined GC-MS to pesticide residue identifications

F. J. BIRCIS, Adcan- Chem. Ser., to be published. 67 Mass spectrometry of partially methylated alditol acetates

H. BJ~RMML, B. LI&?~RERG -D S. SVEXSSOE;, Carbohyd_ Res., 5 (1967) 433. (C, J)

int. J. Mass Spectrom. Ian Phys-, 8 (1972) l-71

Page 37: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH--MASS SPECTROMETER COMBINATIONS 37

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Poiysaccharides elaborated b>- Polyporus fomenturius and Polyporus igniarius. Part I I-I. BJ~RNXLAND B.L~x~~~~~,Carbohycf. Res., 10 (1969)79.(C,J)

Poly&ccharides elaborated by Polyporus fomentarius and Polyporus igniarius. Part II H. BJGR~~AL AhP B. L.rhmBERG, C’urbohyd. Res., 12 (i970) 29. 02, J) Gzs-Fliissigkeits-Chromatographie und Massenspektrometrie bei der Methyllierungsanalyse von Polysacchariden H. BJ~RUDXL, C. G. HELLERQVIST. B. LIKDBERG AND S. SVENSSON, Angew. C’hem., 82 (1970) 643. (C, J) On the mechanism of the enzymatic conversion of cholest-S-ene-3#?, 7r-diol into 7x-hydroxy- cholest-4-en-3-one i. BJORKHBS, Eur. J. Biochem., 8 (1969) 337. (C, J) hietabolism of steroids in germfree and conventional rats treated with a 3.6-hydroxy-As- steroid o.xidoreductase inhibitor E. BJORKHEM. J. k G~s-r~~sso~ _M-ZZ S. A. GUSTAFSSON, Eur. J_ Biochem., 16 (1970) 557. (C, J) Membrane moiecular separators for GC--MS interfaces D. R. BUCK, R. A. FUTH AND R_ TERXNISHI, Adrances in Chromatography, A. ZLATKIS

(Editor), Preston Tech. Abstracts Co., Evanston, Ill., 1969 p. 203. (C, S) Membrane moleculzr separators for GC-m interfaces D. IX. BUCK, R. A_ FLKTH AND R. TERANISHI, J. Chromatogr. Sci., 7 (i9G9) 284. (c. S) Enrichissement des isotopes du carbone et du neon par chromatographie en phase gazeuse C. Bust, C. T. HIJYNH AND L. ESPAGNO, J. Chromatogr., 28 (1964) 177, 194. (B) Spectrometry as an aid to the pesticide analyst R. C. BLINN, Amer. Lob., Not. (1969). A method for minimizing the “bleeding effect” in GLC-3% R. BLOMSTRX";D ~DJ.GuRTHER,A&. Kern., 30 (1968)213.(C,J) Separation and identification of some neutral steroids in human lymph chylomicrons by CLC-&Is R.BLo~~~A~J.GuRTLER. A&. Kern.,30 (1969) 233.(C, J) An integrated GC--MS system with carrier gas separator M. BLL'S~ER, Anal. Chem., 40 (1968) 1590. (C, P) Phytol-derived Cl9 di- and triolefinic hydrocarbons in marine zooplankton and fishes M. BLU.~R,J. C. ROBERTSON,J. E. GOFUXNANDJ. !3ss, Biochemistry, 8 (1969) 4067. (C,P) Isoprenoid acids in serpiano and Green River shales M. BLL'~*XR,K.DOURAGHI-ZADEK,A.G. D~UGLA~AND E.EGLINTON, Tetrahedron, inpress. (C, J) Optimale Arbeitsbedingungen fiir die Kombination eines GC mit dem Schneliregistrierenden Spektralphotometer IR-102 H. BOBER AND K. BUR~R, Z. Anal. Chem., 238 (1968) 1. Some aspects of the chemistry of tea. A contribution to the knowledge of the volatile con- stituents H-A. BONDAROVICH,A.S_GIAMMARINO,J.A.~U~*ER,F.W.SHEPHARD,A.J.SHI~G~RA~~ M. A. GIANTURCO, J. Agr. Food Chem., 15 (1967) 36.

Mass spectrometry of crude biological extracts. Absolute quantitative detection of metabolites at the submicrogram level k A. BOULTON AND J. R. MNER, J_ Chromatogr., 48 (1970) 322.

Application of gas chromatography and mass spectrometry to porphyrin microanalysis D-B. BOYUN, Y_ I. AL~RKI,G.EGLINTON, inA. SCHENCK AND B. HAVENAAR (Editors), Advances in Organic Geochemistry, Pergamon Press, Oxford, 1968, pp- 227-240. IsoIations and identification of new constituents in milk fat CR. BREWJSGTOS,E.A.CARESSA~~D D.P.SCH\\-~RIZ. J.LipidRes., 11 (1970) 3%. (C.J) Sur la composition de l’ardme de the noir J. Bmcour, R. VIANI, F_ M&GLER-CHAVAN, J. P. MARION, D. REYMOXD AND R. H. EGLI, Neic. Chim. AC&, 50 (1967) 1517. Steroids C. J. W. BROOKS, Proc. Biochem., 2 (1967) 27.

Squalene, 26hydroxycholesterol and 7-ketocholesterol in human atheromatous plaques

Int. 3_ Mass Spectrom. Ion Phys., 8 (1972) l-71

Page 38: 1972 JUNK (GC-MS Combinations and Applications)

38 G. A. JUNK

C. J. W. BROOKS, W. A. m AND G. SNL, Biochim. Siophys. Actu, 125 (1966) 620. (C, J)

90 Lipids of human atheroma: isolation of hydroxyoctadecadienoic acids from advanced aorta1 ‘. lesions : C. J. W. BROOKS, W. A. H~RLA~~, G. Srnr AND J. D. GILBERT, Biochim. Biophys- Acfa,

’ 202 (1970) 563- (C, J) 9Oa The mass spectra of some 1,3,2_oxazaborolidines

C. J. W. BROOKS, B. S. MZDDLEDZTCX XND G. M. _qh?Ho~y, c)rg_ &Gs_s Specrram., 2 (1969)

1023. (C, J) 9Cb GC-MS of some boro.xines

91

92

93

94

95

96

97

98

99

100

101

102

103

104

IO5

106

107

C. J. W. BROO~CS, D. J. HARVEY XVD B. S. MIDDLEDITCH, Org. :Wa.ss Spectrom., 3 (1970) 231.

(C, Ji Characterization of 1,2- and 1,3-dials by gas chromatography-mass spectrometry of cyclic boronate esters C. J. W. BROOKS AND J. WAYSON, Chem. Czmmun., (1967) 952. (C, Unk.) Characterization of steroids by gas chromatography and mass spectrometry C. J. W. BROOKS, Biochem. J., 107 (1968) 13P. Characterization of sterols by GC-?ds of the trimethylsiIy1 ethers C. 3. W. BROOKS, E. C. HORNING AND J. S. YOUNG, Lip&& 3 (1968) 391. (C, J) Gas chromatographic-mass spectrometric studies of oximes derived from 20-oxosteroids C. J. W. BROOXS AND D. J. HARVEY, Steroiris, 15 (1970) 283. (C, J) Kontinuierliche massenspektrometrische Analyse von gaschromatographisch getrennten Fraktionen C. BRUNI, L. JENCKEL AND K. KRONENBERGER. Z. Anal. Chem., 189 (1962) 50. (B) Fortschritte in der Anwendung von Massenspektrometem aIs spezifrsch anzeigende I&i- sationsdetektoren fir die Gaschromatographie C. BRU&%X~, L. JEXCKEL AND K. KRONMBERGER, Z. Anal. Chem., 197 (1963) 42. (B) Small mass spectrometer as a substance-sensitive detector for gas chromatographs C. BRUXXEE AND L. DELG%~A>~, Chem.-lng.-Tech., 38 (1966) 730. (A) A Separator with variabfe conductance for GC-_MS analysis C. BRUNNEE, H. J. BUL~~ANN AND G. KAPPUS, 17th Annual Conference on &fass Spectrom-

etry and Allied Topics, Dallas, May, 1969, paper No. 46. (C, P) A new CC-MS system - commercial system C. BRUNJEE, L. DELG.?.u%x, K. HABFXX AND S. MEIER, 18rh Annual Conference on IHass

Spectrame+ and Al!ied Topics, San Francisco, June, 1970, Paper No. Ll 1. (C, P) Triterpenoids from New Zealand plants. II. The triterpene methyl ethers of Corraderir Toefoe zoroo

T. A. BRA-7~, G. EGLINTON, R_ J. HX+~ILTON, M. MARTIN-S~IITH AXD G. SUBRAMASIAS,

Phytochemistry, 6 ( 1967) 727.

Interpretation of Mass Spectra of Organic Molecules

Hi Bvr>z~rcr~~~~, C. D JERASSI AND D. H. WILLIAMS, Holden Day, San Francisco, 1964. Structure kacidation of Natural Products by Mass Spectrometq

H. B~DZZKIEWI~Z, C. DE-z AND D. H. WZLLI~~S, Vols. 1 and 2, Holden Day, San Fran- cisco, 1964. A simple trap for co!Iecting GC fractions for his analysis K. R. Bunsox AND C. 1. KENX’ER, J. Chromorogr. Sci., 7 (1969) 63. Constituents of hop oil R. G. B UTTERY, W. H. MCF_+DDEN, R. TERANISEI, M. P. SEXY AND T. R. MON, hrature, 200 (1963) 435. (A) Voiatile hop esters R. G. B TITERY, D. R. BLACK, M. P. KEALY AND W. H. MCFADDEX, Nature, 202 (1964) 701. (A) Volati!e oxygenated constituents of hops - Identification by GC--hlS R. G. BUTTERY, D. R. BUCK, M. P. KEALY, I. Chromarogr-, 18 (1965) 399. (A) Characterization of some volatile constituents of carrots R. G. BUTTERY, R. M. SIXF~%T, D. G. GUADAGNI, D. R. BUCK AM) L. C. LmG, J. Agr. fiod Chem., 16 (1958) 100% (A)

ht. L Mass Specmom. 30s Pi_vs, 8 (1972) l-71

Page 39: 1972 JUNK (GC-MS Combinations and Applications)

108 Volatile tomato constituents. Identification of 2&dimethylundeca-2,6_dien-lO-one R_ Ci. BU~-I-ERY AND R. M. SEIFERT, J. Agr. Food Chem., 16 (1968) 1053. (C, S)

109 Characterization of some volatile potato components R. G. BI_QTERY, R. M. SEIF~RT A&T L. C. LING, J_ Agr. Food Chem., IS (1970) 538. (A)

110 Characterization of an important aroma component of bell peppers R. G. BUTTERY, R. M. SEIFERT, R. E. LUSDIN, D. G. GUADAC;NI AND L. C. LING, Chenz. Ind. (London), (1969) 490. (C, S)

111 R. G. BLXTERY, private communication. (C, S) 112 Mass spectral discrimination between monoenoic and cyclopropanoid, and between norurul,

iso, and anreiso fatty acid methyl esters

I. M. CAMPBELL AND J. NAWORAL, J. Lipid Res., 10 (1969) 589. (C, J) 113 Composition of the saturated and monounsaturated fatty acids of Mycobacterium phlei

I. M. CASPBELL AND J. NAWORAL, J. Lipid Res., 10 (1969) 593. (C, J) 114 Evidence for the biological conversion of A e.r” sterol dienes into choiesterol

L. CAXONICA, A. FIECCHI, h-f. G. KIENLE, A. SCALA, G- GALLI, E. G. PAOUFITI AND R. PAOLEITI, J. Amer. Chem. Sot., 90 (1968) 6532.

115 Separation and identification of derivatives of biological amines by gas-liquid chromatog- raphy P. CAPELLA AND E. C. HORNING, Anal. Chem., 38 (1966) 316. (C, J)

115a Hydroneroxide formation in the course of fat autoxidation. II. GC--MS of a reaction product

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 39

116

117

118

119

120

I21

122

123

124

125

126

127

12s

129

130

P. CAPE&, M. PIWZXX AND A. STROCCHI, Rio. Ital. Sostanze Grasse, 66 (1969) 659. (C, J) Determination of double bond position in monounsaturated fatty acid esters by mass spec- trometry of their TMSiO derivatives P. CAPJXLA AXD C. M. ZORZUT, Anal. Chem., 40 (1968) 1458. (C, J) Hydroxy fatty acids from cerebrosides of the central nervous system: GLC determination and mass spectrometric identification P. CAPELLA, C. CALLI AND R. FIJX-IGALLI, Lipids, 3 (1968) 431. (C, J) Gas chromatographic study of phosphatidyl serines G. CASPARRINI, M. G. HORNING AT-‘, E. C. HORNING, Anal. Left., 1 (1968) 481. (C, J) Gas phase analytical separation and structural study of ceramides G. CGPARRINI, E. C. HORNING AND M. G. HORNIXG, J. C/tern. Phys. Lipids, 3 (1969) 1. (C, J) A general method for collection and mass spectrometer analysis of submicrograrn samples E. M. CHAIT, J. W. hw AND F. W. MCL.AFFERTY, 14th Annual Conference on Mass Spec- trometry and Allied Topics, Dallas, Texas, May, 1966, Paper No. 142. Silylation of steroids, formation of enol TMSi ethers and oxysilylation products E. M. CHAWLAZ, G. MAU~IE, B. MAUME AND E. C. HORNING, Anal. Lett., I (1968) 749. (C, J) Conversion of steroids to trimethylsilyl derivatives for gas phase analytical studies: reactions of silylating reagents E. M. CHXWBAZ _WD E. C. HORNING, Anal. Biochem., 30 (1969) 7. (C, J) The volatile components of irradiated beef and pork fats J. R. C-XXHPAG~T AND W. W. NAWAR, J. Food Sk, 34 (1969) 335. (C, P) Synthesis and mass spectra of esters of branched chain fatty acids D. CHASIN ASD E. G. PERKINS, J. Chem. Pfzys. Lipids, in press. (C, P) The mass spectra of alkyl2-diethylphosphonoalkanoates D. CHAIN ASP E. G. PERKINS, 3- Chem. P&x- Lipids, in press. (C, P) Volatile compounds from autoxidizing /karotene N. CHIBA, R. C. LINDUY, L. M. LIBBEY AND E. A. DAY, J. Dairy Sci., 50 (1967) 951. (B) Formation of monohydroxy-polyenic fatty acids from lipid peroxides by a glutathione pero.xidase B. 0. CHRISTOPHERSEN, Biochim. Biophys. Acto, 164 (1968) 35. (C, J) Reduction of linolenic acid hydroperoxide by a glutathione peroxidase B.O. CHRISTOPHESEN, Bfochim. Biophys. Acta, 176 (1969) 463. (C, J) Some constituents of city smoke C. R. CLEWO, Tetrahedron, 23 (1967) 2389. Bericht iiber einige Themen des Ms/oc-Diskwions-treffens T. CLERC, J. SEIBL AT~D J. A. VOLLMIN, Chromotographia, (1969) 520.

Int. J. Mass Spectrom. Ion fhys., 8 (1972) 1-71

Page 40: 1972 JUNK (GC-MS Combinations and Applications)

G. A. JUNK 40

131

133

133

134 Compilation of Mass SpecfraI Darn

135

136

A. CORW XIZD !R. M-T, Heyden. London, 1966. An efiicient device for the removaI of helium from chromatographic carrier gas stream R. F. CREE, Pitrsburgh Confereme on Analyrkar Chemistry and Applied Specfroscopy* March, 1967. Abstracts of papers, p_ 96, No. 188. (C, P) Ethanol-induced increase of the ratio between hydroxy- and ketosteroids in human pregnancy PIa-==

137

138

139

I40

I41

142

T. CRO~HOLTW, 3. SJOV~LL ABD K. SJOVALL, Sreroids, 13 (1969) 671. (C, J) Position of the sulfate group in steroid sulfates from human plasma T. CRONHOLV, Sferoiak, 14 (1969) 285. (C, J) Major volatile components of the juice of the American cranberry R. J. CROTWU d,NI) I. S. FAG-N, J. Food Sci., 33 (1965) 356. (C, P) The constituent cutin acids of cranberry cuticle R. J. CROTEAU ~.hm I. S. FAGERSOM, ir pia. (C, P) VolatiIe substances derived from the cuticle wax of cranberry R. 3. CROTEAU rn~ 1. S. FXGERSON, in press. (C. P) Simplification ofcomplex mixtures of alkanez using a 7A moleeuhu sieve R. CU~~*N, G_ EGLIFZTOX, I. MACLEAX, A_ G. DOUGX_G AND G_ DUXGWORTH, Tetrahedron

Lezr., (1968) 1669. (C, J) Studies on the ring structures of ketoses by lmeans of gas chromatography and mass spec- trometry H. Cr-r. CURTIUS, IM. MUELIXR AND 3. A. VOUMIN, J. Chromufogr., 37 (1965) 2i6. (C, J+P)

Piasmz chromatography - a new dimension for gas chromatography and mess spectrometry M. 3. COHEN NGD F. W. KARUEK, J. Chromutogr. Sci., 8 (1970) 330. Composition of orange oil essence R. L. Carry, E. D. Lm ~h?3 M. C. MOSHOXAS, J. Food Sci., 34 (1969) 610. @_lnk.) Separation of the cyclization and rearrangement processes of Ianosterol biosynthesis. Enzymic conversion of 20,2l-dehydro-2,3_oxidosquaIene to a dehydroprotosterol E. J. CZ~R-FY, K. Llrr XND H. Y.~!roro, J_ Amer. Chem. Sot, 91 (1969) 2132. (C, J)

142a Bestinunung der Mutarotation von Monosacchariden

143

144

145

146

147

I48

I49

150

151

152

H. CH_ CURTIVS. 2. Anal. Chem., 243 (1968) 341. (C, J-I-P) Gas chromatography and its instrumental combinations H. CH. CUR~~Z~S, 2. K&r. Chem. Kiin. Biochem., 6 (1968) 122. Gas-Liquid Chromatography

S. DAL NOGARE AND R. S. JUVET, WiIey, New York, 1962. Use of activated charcoa1 to trap GC fractions for his analysis and to introduce volatile com- pounds into the mass spectrometer 3. N. D~h;xco, N. P. WOXG AND J. A. SPHON, Anal. Chem., 39 (1967) 1045. Application of field ionization to gas-liquid chromatography - mass spectrometry (GC-XfS) studies

J. N. DAMICO AND R. P. B-RON, Anul. eem., 43 (1971) 17. (C, S) Cheddar cheese flavor; GCMS analyses of the neutral components of the aroma fraction E. A. DAY AND L. M. LIBBEY, J. Food Sci., 29 (1964) 583. (E3)

Gas chromatoetaphic and mass spectral identification of natural components of the aroma fraction of blue cheese E. A. DAY AND D. F. ANDERSON, I. Agr. Food Chem., 13 (1965) 2. (B) A GLC procedure for separating a wide range of metabolites occurring in urine or tissue extracts C. E. DALGLIESIZ, E. C. HORNING, M. C. HORNWG, K. L. KNOX AND K. YARGAR, 23iochem. J., 101 (1966) 792. (C, 3) The gas chromatograph-mass spectrometer E. B. DEUNEY, Amer. Lab, June (1969) 19. BiochemicaI ana.Iysis A. 3. D’EUSTACI-IIV, Anal. Chem., 40 (1968) 19R. Rapid scanning MS: continuous analysis of fractions from capillary gas chromatography 3. A. Dow, R. H. Herr i~“r’~ M. J. 0. O’NEN., Anal. Chem., 35 (1963) 511. (B)

Inr. J. .Wrss Specrrom. Zon Phys., 8 (1972) !-71

Page 41: 1972 JUNK (GC-MS Combinations and Applications)

GAS CRROMATOGRAPH--MASS SPECTROMETER COMBINATIONS 41

153

154

I55

I56

157

158

IS9

160

161

162

163

164

165

166

The fatty acids of the alga &rryococcus braunii A-G. D~uGI_c~,K.DOWR.AGHI-ZADEH AND G. E~~1~0~,Ph_vr~che~i~t~~,8(1969)285.(C.J) The organic geochemistry of certain sampIes from the Scottish carboniferons formation A. G- Doucras, G. EGLI&.?oN &xo 3. R. M~v~?~zLL, Geochim. Cosmoctzim. Acra, 33 (1969) 579. (C, 3)

The hydrocarbons of coorogite A. G. DOUGLAS, G. EGLIN~-ON, J. R. MAXWELL, Geochim. Cosmochim. Acta, 33 (1969) 569. K, J) Organic analysis of the returned lunar sample G. H. DRAFFAN, G. EGLINTON, J. M. HAYES, J. R. MAXWELL AND C. T. PLLLINGER, C/zem.

Brir., 5 (1969) 296. (B)

Erectron-impact induced rearrangement of trimethyl-sibyl groups in long chain compounds G. H. DIWFFAN, R. N. STILLWELL ;5ho J. A. McCross~~, Org. Mass Specfron;., 1 (1968) 669.

(C, J) Identification of 0-methyioximti of ketosteroids by gas chromatography, thin layer chro- matography, mass spectra and kinetic studies P. DRAY Ap\I, 1. WELIKY, Anal. B&hem., 34 (1970) 387. CC, Unk.) -Analysis of trimethylsilyl derivatives of carbohydrates by Gc-MS D. C. DEJONGH, T. RADFOORD, J. D. HRIBAR, S. HAhXSSiAN, M. BIEBER, G. Dxwsox AXD C. C. SWEELEY, J. Amer. Chem. Sot., 9 1 (1969) 1728. (C, Jj Improved sampling and recording system in gas chromatography time-of-flight mass spec- trometry A. A. BERT, Anal. Chem., 33 (1961) 1865. (B) Cotlection of gas chromatographic fractions for infrared analysis R. A. EDWARLX AND I. S. FAGERSON, Anal. Chem., 37 (1965) 1630. Occurrence of isoprenoid fatty acids in the Green River shale G. EGUSTOX, A. G. DOUGUS, J. R. MAXWELL, 3. N. RAXQ~Y hhm S. STAU_BERC&=XHACEN, Science, 153 (1966) 1133. (C, 3) Occurrence of isoprenoid alkanes in a Precambrian sediment G- Ecsrrxeos, P- M. Scam, T. BELSKY. A. I_. BKJRLIXG~~~E, W. RICHTER AND M. CALWN, in G. D. HOBSON ASP M. C. LOUIS (Editors), Adcunces in Organic Geochemisq, Pergamon Press, Oxford, 1966, pp. 41-74. Hydrocarbons and fatty acids in living organisms and recent and ancient sediments G. EGLIX~ON, in A. SCHENCK AND 33. HAVENAAR (Editors), Adcanceq in Organic Geo- chemistry, Pergamon Press, Oxford, 1969, pp. l-24. (C, J) Chemical fossils G. EGLI~~ON AND M. CALVIK, Sci. Amer., 216 (1967) 32. (C, J) Recent advances in organic geochemistry

G. EGLI~~ON, Geof. Run&h., 55 (1965) 551. 167 GC--MS studies of long chain hydroxy acids. Part 11. The hydroxy acids and fatty acids of a

5@GO year oid lacustrine scdimeat

G- EGU-ON, P. H. HXJNNE~~AN AND K. DOURAGHI-ZU)EK, Terrahedron, 24 (1968) 5929.

(C. 3) 168 Analysis of lunar samples in the United Kingdom

G. EGLI37ON, Spectrum, in press. (C, J) 169 Gas chromatographic-ma spectrometric studies of long chain hydroxy acids. 1. The con-

stituent cutin acids of apple cuticle G. EGLX~ON _U+D D. H. HUNKIMAN, Phytochemisrry, 7 (1968) 313. (C, 3)

170 Leaf epicuticular waxes G. EGL~XTDN AND R. J. HAMILTON, Science, 156 (1967) 3322. (C, J)

171 GC-MS studies of long chain hydroxy acids. III. The mass spectra of the methyl esters tri- methybilyl ethers of aliphatic hydroxy acids. A facile method of double bond location G. EGLIXION, D. H. HUPU~AN m A. MCCORMICK, Org. _Wass Specrrom., 1 (1968) 593.

(C, 3) 172 Applications of GC--MS in organic gcochemista

G. EGLI~OX, i+oc. SOC. Anof. Chem., 4 (1967) 11 I.

In?. i. lcfass Spectrom. Zon Phys., 8 (1972) 1-71

Page 42: 1972 JUNK (GC-MS Combinations and Applications)

42 G. A. JUNK

173 Identification of chromatographic fractions by mass spectrometry R. M. ELLIOTT AND Ii. J. M. FIT~HJZ,, Method. P&x. Anal., 2 (1966) 340. (C, Unk.)

174 A new class of lipids: chlorosulfoiipids J. Erovsox AND P. R. VAGELOS, Proc. Nut. Acad. Sci. U.S.. 62 (1968) 957. (C. J)

174a Structure of the major swies of the chlorosulpholipid from 0chronm.r danicu. 2,2-l 1,13,15,

17.5

176

177

178

179

IS0

181

182

183

184

185

186

187

188

16-Hexachloro-n-doco&e-l , 1 bdisulfate - J. Erovsor-i AFTT P. R. VAGELOS, Biochemisrry, 9 (1970) 3110. (C, J) Identification and quantification of neutral fecal steroids by GLC--LIS: Studies of human excretion during dietary regimens P. Eh’ER0TI-f. K. HELLSTEOM AX!I R. RYHAGE, J. Lipid Res., 5 (1964) 245. (C, J) Identification of mono- and dihydroxy bile acids in human feces by GLC-m P. ENER~TH,B.GORD~N, R. RYHAGEA~?~ J.SJOVXL, J. LipidRes.,7 (1966) 511. (C,J) Characterization of trisubstituted cholanic acids in human feces P. Ehmom, 33. GORDON AND J. SJOVALL, J. Lipid Res., 7 (1966) 524 (C, J) Identification of two neutral metabolites of stigmasterol found in human feces P. EMZOTH, K. HELIZXOM AKD R. RYHAGE, Sreroi&, 6 (1965) 707. (C, J) Steroids in newborns and infants. Identification of 24,25-dihydro-~g~“~-lanosterol and &,14r&imethyI substituted sterols among the esteritied and free sterols in human meconium P. EhzRoTE, J. A. Gtisr,\rsso~ AND E. NYSTROM, Eur. f. Biochem., 11 (1969) 456. (C, J) Tobacco chemistry. I. Occurrence of C 11 to CIs lie-paraffins and Crz anreiso-paraffins in Greek tobacco C. R. EXZELL, A. ROSESGREX AXIJ 1. WAHLBERG, Tobacco Sci., 13 (1969) 127- (C. J) Mass spectrometric studies of diterpenes. 6. Aromatic diterpenes C. R. ENZELL A&C I. WAHLBERG, Acra Chem. Scund., 23 (1969) 871; also other 5 papers in series. (C, 3) Steroids in germfree and conventional rats. 4. Identification and bacterial formation of 17x- pregnane derivatives H. ERIKSSON, J. A. GLJ~T~N A&w J. SJOVALL, Eur. J. Biochem., 6 (1968) 219. (C, J) Steroids in germfree and conventional rats. Free steroids in faeces from conventional rats H. ERIKSSON, J. A. Gus~_4~sso~ AND J. SJOV~LL, Eur. f. Biochem., 9 (1969) 286. (C, J) Steroids in germfree and conventional rats. 21-Dehydroxylation by intestinal microorganisms H. ERIKSSON, J. A. GU~K~F~QX AND J. SJOVALL, Eur. J. Biochem.. 9 (1969) 550. (C, J) Excretion of steroid hormones in aduhs. Crs and C,, steroids in faeces from pregnant women H. ERIKSSON, J. A. GUST.~FSSON AXD J. SJOVXL, Eur- J. Biochem., 12 (1969) 520. (C, J) Steroids in germfree and conventional rats. Steroids in the mono- and disulfate fractions of faeces from females H_ ~lKSSON A&W J. A. GUSTAFF,ON, Ear_ J. Biochem., 16 (1970) 252. (C, J) Steroids in germfree and conventional rats. Unconjugated metabolites of Irl’%]pregne- nolone and [4-“Clcorticosterone in faeces from female rats H. ERIKSV)H, Ear-J. Biochem., 16 (1970) 261. (C, J) Excretion of steroid hormones in aduhs. Steroids in urine from a pregnant woman H. Ericsson AND 3. A. Gusrxrsso~. Eur_ J_ Biochem., 16 (1970) 268_ (C, J)

188a GC-_MS of hydroxy!ated octadecanols derived from hydroxylated stearic acids

189

190

191

192

193 194

W’. J. ESSELHAN A&W C. 0. Cucm, J. Lipid Res., 10 (1969) 234. (C, J) The use of p_yroIysis gas chromatography and mass spectrometry in the study of the structure of mycolic acids A_ H. E TE~~ADI, /- Gas Chromarogt., 5 (1967) 447. The Practice of Gas C/vomatography

L. S. Errtt~ _MD A. ZLATKIS, Wiley-Interscience, New York, 1967. Joint gas chromatogmphic and mass spectrometry aruilysis Identification of impurities H. EUSTACHE, C. L. GVILJXMIN -4~13 F. AURKOURT, Bull. Sot. Chim. Fr., (1965) 1386. Fast scan mass spectrometry applied to gas chromatography S. EVANS, J. Sci. Instram., 44 (1967) 676. (C, P) I. FAGERSON, private communication. (C, P) Some examples of the use of high and low resolution MS in biology and medicine H. M. FALES, I6rh ArmuaI Conference on Mass Specnometry and AIIied Topics, Pittsburgk

In?. J_ Mass S@ectrom. Ion Ph_vs., 8 (lgi/“J l-71

Page 43: 1972 JUNK (GC-MS Combinations and Applications)

195

196

197

19s

May, 1968. Paper No. S9, p_ 236. (C, 3) Some exampks af the use of cambined GC-% in dry metabolism H. M. FALES, T. GUARINO, G. K~PODIA AND D. STEINPERG, 4fh Middle Atlantic Regional Meeting of the A.C.S., Washington, DC., February, 1969, No. C3, 59. (C, J) Artifacts in GC disclosed by combined GC-MS

H. M. FALES, H. A. LLOYD AND G. KAPODIA, 4th Midki~e Atlantic Regional Meefing of the A.C.S., Washington, DC., February, 1969, No. AIS. (C, J) Identification of barbiturates by chemical ionization mass spectrometry H. M. FALES, G. W. A. MILNE AXD T; AXENROD, Anal. Chem., 42 (1970) 1432. (.C, P) Biosynthesis of hydrocarbons in Anubaena coriabilis Incorporation of [methyl-‘%] and [methyl-‘Hs] methionine into 7- and S-methylheptadecanes S. W. G. FEHLER AND R. J. LIGHT, Biochemistry, 9 (1970) 418. (C, J)

19Sa Thermal decomposition of ferulic acid W. FIDDLER, W. E. PARKER, A. E. WASSE~IAK AND R. C. DOERR, J. Agr. Food Chenz., 15 (1967) 757_ (B)

199 Bis-methylthiomethane, an odorous substance from white truffle, Tuber magnatum pica A. FIECCHI, M_ GALLI-KENS, A. SCALA AND P. CAPELLA, Tetrahedron Lefr., (1967) 1681. (C, J)

200 Identification and organoleptic evaluation of compounds in Delicious apple essence R. A. FLA-IH, D. R. BLACK, P. G. GU~D~GNI, W. H. MCFADDEN AND ?. SCHULTZ, J. Agr. Food Chem., 15 (1967) 29. (A)

20 1 Volacife components of Smooth Cayenne pineapple R. A. FLATH AE~D R. R. FORREY, J_ Agr. Food Chem., 18 (1970) 306. (C, S)

202 Volatiles in Gravenstein apple essence identified by GC-%4s R. A. FLATH, D. R. BLACK, R. R. FORREY, G. M. MCDONALD, T. R. MON AND R. TERAXISHI, I- Chromarogr. Sci_, 7 (1969) 508. (-4+C, P-!-S)

203 Volatiles in Gravenstein apple essence identified by GC--MS

R_ A. FL_ATH, D_ R. BUCK, R. R. FORREY, G. M. MCDONALD, T. R. MON AND R. TEFUNISHI, in A. ZLATKIS (Editor), Adcmzces in Chromatography, Preston Tech. Abstracts Co., Evanston, Ill., 1969, p_ 211. (A;C, S)

203a Vanor analysis of fermented Spanish-type green olives by gas chromatography H. P. FLE~IIING, J. L. ETCHELLS ASP T. A. BELL, J. Food SC;., 34 (1969) 419.

204 Reactions of labile TMS derivatives with fluorocarbons in z GC--MS system R. I_. FOLTZ, M. B_ NEHER AND E. R. HINhzwc,x!wP, Anal. Chem., 39 (1967) 1338. (C, P)

205 VoIatiIe compounds produced by copper-catalyzed oxidation of butterfat D. A. Fonss, P. ANGELINI, M. L. B.XZIXZT AND C. MERRITT, J. Anzer. Oil Chenz. Sot., 44 (1967) 141. (B)

G. GAUI AND S. MARONI, Sreroids, 9 (1967) 189. (C, J) 2CDb Gas->igukl ck~rna?~_~_DXc separaijDn of C_,p and C,, human utinaly skrojds br a new

- procedure W. L. GARDI~XR AND E. C. HORNING, Biochim. Biophys. Acra, 115 (1966) 524. (C, J)

2(03 UJ%Z~Y srerojd pattern of the human newborn -k~knt W. L. GARDINTR, C. J. W. BROOKS, E. C. HORNING AND R. M. HILL, Biochim. Biophys- Acto. 130 (1966) 278. (Cc, J)

P. GWKIN AND J. MACMILLAS, Phytochemistry, 7 (1968) 1699. (C, J) 2OB New devekqments in coffee aroma rzscarch

F. GAUTSCHI, M. WINIER, I. Fu~M, B. WirrHArer AVD M. STOLL, .I. Agr. Food Chem., 15 (1967) 15.

209 Chemistry and metabolism of sphingolipids. 3-0x0 derivatives of N-acetylsphingosine and N-acetyldihydrosphingosine R. C. GAVER ~hp C. C. SWEZXEY, J. Amer. Chem. Sot., 88 (1966) 3@3. (C, J)

210 Simuitaneous determination of crude oil boiling range distribution and hydrocarbon-type

Inr. J_ Mrrrs Spectrom. 10~ Phys., 8 (1972) 1-71

Page 44: 1972 JUNK (GC-MS Combinations and Applications)

44 G.A.JUNK

distribution by gas chromatography

211

212

213

214

215

216

217

218

219

220

221

222

V-F_ GAYLOR,C.N.JOXES,L H. L,WDERLAMI E.C. HUGHES, Anal. Chem., 36(1964)1606_ (B) CC--MS analysis of isoprenoid hydrocarbons and fatty acids in shark liver products E. GELPI ANIJ J. ORO, J_ Amer_ Oil Chem. Sec., 45 (1968) 144. (C, J) Oletins of high molecular weight in two microscopic a&z E. GELPI,~. ORO, H.J. SCHNEIDER AND E-0. BENNETT, Science, I61 (1968) 700. (C, J) Isoprenoid and other hydrocarbons in terrestriaI graphite E. GELPI, D. W. NOONER AXD J. ORO. Geochim. Cosmochim. Acta, 33 (1969) 959. (C, J) The ubiquity of hydrocarbons in Nature:.Ahphatic hydrocarbons in dust samples E. GEZPI, D. W- NOOMR mm J. ORO, Geochim. Cosmochim. Ada, 34 (1970) 421_ (C, J) Organic compounds in meteorites. III. Distribution and identification of afiphatic hydrocar- bons produced by open flow Fischer-Tropsch processes E. GELPI, J. HAN, D. W. NWNER AND J. ORO, Geochim. Cosmochim. Acta, 34 (1970) 965.

(C, J) Organic compounds in meteorites. IV. ~6-m studies on the isoprenoids and other isomeric aikanes in carbonaceous chrondites E. G~PX ~m J. ORO, Geochim. Cosmachim. Ada, 34 (1970) 981. (C, J) Organic compounds in meteorites_ V_ GC-_a studies on the isoprenoids and other isomeric atkanes in graphitic nodules of iron meteorites E- GELPI ~hp J- ORO, Geochlin. Cosmochim. Actu, 34 (1970) 995. (C, J) GC-_r.fs identitication of the hydrocarbons and fatty acids of Plantago ocata seeds E. GELPI, H. SCRXZIDER, D. DOCTOR, J. TE~YSON AND J. ORO, Phyfuchemisfry, 8 (1969) 2G77_ (C, J) Lipids of geochemicai significance in microscopic algae. I. Hydrocarbons E. GELPI, H. S~HXZIDER, J. MANX AND J. ORO, Phytochemisfry, 9 (1970) 603. (C, J) Comparative mass spectrometric studies on the isoprenoids and other isomeric aikanes in terrestrial and extraterrestrial sampIes E. GELPI AND J_ ORO. In,. J_ Mass Speczrom. Ion f’hys-, 4 (1970) 323. (C, J) Combined GC-MS of amino acid derivatives E. GELPK, W. A. KOEMG, J. GILBERT AWD J. ORO, 1. Chrumarogr. Sci., 7 (1969) 604. (C, J) Utility of hydrocarbons in Nature: GC-MS determination of the hydrocarbons in cigarette smoke condensate

223

224

225

226

22 7

228

E. GELPI AND J. ORO, J. Chromatogr. Sci.. 8 (1970) 210. (C, J) GC--MS identification of the hydrocarbons and fatty acids in PIanfa.qo oltata seeds E. GHLPI, H. Sct-ihTtnER, D. DOCTOR, J. TENNYSJN AXD I_ 0~0, Phytochemisfry., 8 (1969) 2077. (C, J) Evahration on chromatographic techniques for the preparative separation of steranes and triterpanes from green river shaie EG~~~,P.C_W~~~~~K,E.YAIUGANDA.L.BURUNGX~,~_CC~~~~~~~~~-S~~-,Q(~Q~~)~~~.(C,J) CC--Hs determination of potential contaminant hydrocarbons of moon timPI= J. M. GIEERT AND J. ORO, J_ Chromatogr. Sri., 8 (1970) 295. (C. J) Theory of minimum time operation in gas chromatography J- C. GIDDINGS, Anal. Chem., 34 (1962) 314. Dynamics of Chromatography J. C. GIDDIXGS, Parts I and II, Marcel Dekicer, New York, 1965. The isolation and identification of ti-cholestan-3j?-ol from the human atheromatous aorta J. D. GILBERT, W. A. HARLAN D, G. S-~-EEL AE;D C. J. W. BROOKS, b;ochim. BiopW- Acta,

187 (1969) 453. (C, 3) 229 Intramolecular hydrogen transfer catalyzed by UDP-o-glucose 4’-epimerase from fichedia

cozi .

230

231

L. GLASER AND L. WARD, Biorhim. Bbphys. Acta, 198 (1970) 613. (C, J) TOF mass spectrometry and gas-liquid partition chromatography R. S. GOHLKE, Anal. C’em., 31 (1959).535. (A) ToF MS: Application to capiUary column chromatography R. S. GOLHKE, Anal- Chem., 34 (1962) 1332. (A)

id J, kzs.s Specrrom. Ion Phys., 8 (1972) I-71

Page 45: 1972 JUNK (GC-MS Combinations and Applications)

232

233

234

235

236

237

238

239

233

241

242

Theory ofchromatography in open and coated tubular columns with round and rectanguular cross sections M. J. E. CO-Y, in D. II. DEsrf (Editor), Gas CZiromarography, Academic Press, New York, 1958, p. 36. Snr I’ardme de cafe. II. Pyrazincs et pyridines I. M_ GoLD~~~N~ J. SEIBL, I. F~r~rrr, F. G~IJ-I-SZHI, M. WINIER, B. W~LLHALM AXD M. STOLL, Weir. Chim. Actu, 50 (1967) 694. High resolution mass spectrometry. V. Cyclic esters of aliphatic cz-hydroxy acids J. D. S. GOULDEN Ah% B. J. MILLARD. Org. Mass Spectrom., 2 (1969) 893. (C, P) Identification of S-methylfurfural in cigarette smoke J. F. GM&~, Chem. ZncL (London), (1966) 1924. Biosynthesis of 9z,IS-dihydroxy-I l-ketoprost-l3-enoic acid E. G~ahmo%f, W. E. M. LANDS ANT B. S~~~~ELSSON, .l_ Biol. Chem., 243 (1968) 4104. [C, J) Characterization of 5z-Ianost-8(9)-en-3&oI in hyperhpaemic serum hi. F. GRXY, A. Mon~rso~, E. FXRISH, T. D. V. LAWRIE AND C. J. W. BROOKS, Biochim. Biophys. A&a, 187 (1969) 163. (C, J) The structure of the main urinary metabolite of prostaglandin Fzz in the guinea pig E- GRA~OXI AND B. SAMUELSSON, Em-- J. Biochem., 10 (1969) 411. (C, J) The structure of a urinary metabolite cf prostaglandin Fz, in man E. GR~E;STRO~~ AND B. SAMUELSSON, J_ Amer. Chenz. Sot., 91 (1969) 3398. (C, J) EfIiciency of molecular separators for interfacing GC-his

M. A. G~YSON AND C. J. WOLF, Anal. Chem., 39 (1967) 1438. (C, P) Two-stage molecular separator for connecting a gas chromatograph to a mass spectrometer M_ A. GRAYSOX xND C. J. WOLF, Anal. Chem., 42 (1970) 426. (C, PS) Digitization of time-of-flight mass spectra M. A. GRAYSON AXD R. J_ CONRADS, Anal. C’hem., 42 (1970) 456. (C, PS)

K. GREEN, Acta Chem. Stand., 23 (1469) 1453. (C, Jj- i5z@imn~~~ons & mv-i~n1~ aiipiiLl-LQtn5- a-i&-irc~%mln5n~~- &&z&uXy e?atis M. GREFF, R. E. WOLFF, G. H. DRAFFAN AND J. A. MCCLOSKEY, Org. Mass Specrrom., 3 (i970) 399. (C, J+P) Spiit‘iiai- injzt&rrr err czpi*dry- 0.riirn~ i%? 2>_ ~_m-&%mr an? ~&iii-&; p&r& r~Xzz.&vXz K. GROB AND G. GROB, J. Chromatogr. Sci., 7 (1969) 584.

c.xT-H dse-xeU&~tii dc$pI-clxe s&v

K. GROB AND J. A. VOLL!~N, J. Chromatogr. Sci., 8 (1970) 218. (C, P) i&?iaSX sp?c?~~2 i&mh%r&nT uf ynrbnm 4X? rTr&cZ2Yo22~ iYi 1-H i5lh.Y A. hl_ GUA~NO AND W. D. CONWAY. Em_ J_ PharmacoL, 8 (1969) 244_ (C, Unk.) s&rui&iIT gei-nTl%i& l.Xrrr%ntilRn~? o&s. 3 2Wrth&cZ&3ir of 3Z, 2&X-~~~~,-~~~-5~-~~~~ to-one in faeces B. E. GUSTAFSSON, J. A. G~STAFSS~N AXD J. SJOVALL, Eur. J. Biocfiem., 4 (1968) 568. (C, J) S&n&& <n ~rm&fz art& ca~en_&ati r&X- I. Zci?mn crl’ CL9 s&rui& in &recXS f2-m germfree rats 3. A_ Grrs~mo~ AND J_ SJOVALL, Ear_ J_ Biachem., 6 (1968) 227. (C, J) SzrrrOids in gernT* and ~WrTvc_ntiUnzi2 oZ&. 6_Z&rrti&i&sn of 25-r- end Z2-2i~di@X&ZZ& 22 r steroids in rat facces J. A, GUSTAFX+ON AND J. SJOVALL, Eur. J. Biochem., 6 (1968) 236. (C, J) Steroids in germfree and conventional rats. 7. Identification of C,, and Czl steroids in faeces from conventional rats J. GUSTAFSSOX, Eur. J. Biochem., 6 (1968) 245. (C, 3) Studies on the metabolism of C,a steroids in rat liver. 3. Isolation and biosynthesis of 5z- androstanetriols in rat liver microsomes J, A. GUSTAFSSON, B. P. ElsBOA ~hl) J. SJOVALL, Eur. J. Biochem., 6 (1968) 317. (C, J) Studies on the metabohsm of Cl9 steroids in rat liver- 2- Biosynthesis of hydroxylated deriva-

Int. J. Mass Spectrom. Ion Phys., 8 (1972) I-71

Page 46: 1972 JUNK (GC-MS Combinations and Applications)

46 G. A. JUNK

255

tives of 17&hydroxy-k:-androstan-3-one in rat liver microsomes I. A. GUSFATSSON, B. P. LIS~OA AND J. SJOVALL, Eur. J. Biochem.. 5 (1968) 437. (C, I) fdentification of 22-, 24- and 26-hydroxychoIestero1 in the steroid sulphate fraction of faeces from infants

256

257

258

259

J. A. Gusrxrsso~ AND J. S.rov~u, Eur. J. Biochem., 8 (1969) 467. (C, J) Steroids in newborns and infants. C x9 and C,, steroids in faeces from infants J-A. Gu~~AFssox,C.H. L. SHACKLEFON AND J. SJOVALL, Eur. J. Biochem., 10 (1969)302_ (C, Jl Studies on the metabolism of Cr9 steroids in rat liver. 6x-Hydroxylation of 3-oxo-A&-steroids in rat liver I. A. GUSTAFSLWN AMI B. LISBOA, Eur. J- Biochem-, i2 (1969) 369. (C, J) Studies on the metabolism of Czl steroids in rat liver. Hydroxylation of progesterone in rat liver microsomes J. A. Gusr~xsox Arm B. P. LISBOA, Eur. J. Biochem., 15 (1970) 525. (C, J) Studies on the metabolism of Crr, steroids in rat liver. Biosynthesis ofsaturated 17-ox0-C~~O~ steroids J. A. GU~TAF~~ON ASD B. P. LISBOA, Eur. J. Biochem.. 16 (1970) 475. (C, J)

260 Steroids in germfree and conventional rats. VIII. Studies on urinary Cl9 and Czl steroids J. A. GU~TAF~~ON, Ark. Kemi., 29 (1968) 535. (C, J)

261 Biosynthesis of 6@-hydroxytestosterone from testosterone by human feca1 liver microsomes 3. A. GU~~AFSZON XND B- P. bSBOA, Sferoidr, 11 (1968) 555. (C, J)

262 Studies on the metabolism of Crg steroids in rat liver. 5. S-Hydroxylation of 17-fl-hydroxy-Cis steroids in rat Iiver microsomes J. A. Gusr~~sso~ AND B. P. LISBOA, Sferoids, 14 (1969) 659. (C, J)

263 Stud& on the metabolism of Cts steroids in rat liver. 7. 1%Kydroxylation of I7-0x0-Cl9 steroids J. A. GUSTAFSWN AND B. P. LISBOA, Steroids, 15 (1970) 723. (C, J)

264 iti-Hydroxyiation of Cl9 steroids in rat liver microsomcs J. A. GUSTAF~~ON AND B. P. LISBON, Biochim. Biophys_ AC&, 210 (1970) 199. (C, J)

265 Migrations of the tdmethylsiIy1 group upon electron impact in steroids J_ A_ Gus-r.~s%~% R. RYHAGE. J. SJOVALL AND R. M. MORIARTY, J. Amer. Chem. Sot.. 91 (1969) 1234. (C, J)

265a Identification of amino Acid nhensithiohydantoin derivatives bv mass snectrometry

266

267

268

269

270

271

272

273

H. HAGEN~IEII, W. EBBIGHA&&G. NI-&OLSON AND W. VOT&H, Z. ~~tu&wscf~, 25b (1970) 651. (C, J) Open tube coiumn.s with impregnated thin Iayer support for gas chromatography I. HALASZAZD C.HORWATH,~~MI. Chem., 35 (1963)499_ Optical resolution of D&amino acids by GC-MS

B. HALPERN, J. M. WESTLEY,~. WREMIENHAGNAXD J. LEDERBERG, Biochem.Biophys. Res. Cokmun., 20 (1965) 719. The structure of a urinary metabolite of prostaglandin E2 in the guinea pig IM. I%WBERG AND B. S.UUJE~N, Biochem. Biophys. Res. Commun., 34 (1969) 22. (C, J) The structure of the major urinary metabolite of prostaglandin Et in Man M. HA..ERG AND B. SA~~USLSSON, J. Amer. Chem. Sot., 91 (1969) 2177. (C, J) GC-MS for identification of chlorpromazine and its metabolites C. G. I-JAXWXR X~P B. Hor WXEDT, Agresso?ogie, 9 (1968) 109. (C, 3) Mass fragmentography. Identifkation of chlorpromazine and its metaholites in human blood by a new method C. G. HAXWAR, B. HOLWDT -D R. RYHAGE, Anal. Biochem., 25 (1968) 532. (Cc, J) Identification of acetylcholine in fresh rat brain by combined GC-WLS

G-C. HA?~WWI, L J~A.NIN, B. HOI_XTITDT~R.J. KITZ, D.J. JENDENA~~ B.KAwN,N~~~~. 220 (1968) 915. (C, J) The metabolism of tremorine. Identification of a new bioiogically active metabolite, N(4- pyrrolidino-2-butynyl)-j-aminobutyric acid W. HAMXXR, B. HO-DT, B. I(ARLEV,F.SJOQVIST~DJ.VESS~, Biochem.PharmacoL. 17 (1968) 1931. (C, J)

Int. J. Mass Spectrom. Ion P&s_, 8 (1972) l-71

Page 47: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROhlATOGRAPH-MASS SPECTROMETER COMBINATIONS

274

275

276

277

278

The metabolism of tremorine - The identification of l&di(oxo-pyrroiidino)-2-butyne (sym- metric dioxotremorine) C. G. HAHX~R, W. HAII~R, B. Ho LhfXEDT, B. KARLEN, F. SJoQvlST AND J. VESS%N, Bio- them. Phurmacol., 18 (1969) 1549. (C, J) Rapid identification of low molecular weight compounds in extracts by biological material C- G. HMMAX. B_ HOL~~STEDT AND R. KIT& J. Chromurogr., 49 (1970) 402. (C, J) GLC--MS of synthetic ceramides containing 2-hydroxy acids S. HAMMAFCSTROM, B. SAMUE~SSON .-wm K. SA~LSSON, J. Lipid Res., 11 (1970) 150. (C, J) Mass spectrometric characterization of ceramides derived from brain cerebrosides s. HAMh TOM, Eur. J. Biuchem., 15 (1970) 581. (C, J) A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria and in recent Iake sediment

279

280

251

282

J. HAN, E. D. MCCARTHY, W. VAN HOEVEN, M. CALVIN AND W. H. BRADLEY, Proc. Nut.

Acad. Sci. U.S., 59 (1968) 29. (A) Occurrence of CZl_Zs isoprenoids in Bell Creek crude oil J. HAX AXI M. CALVIN, Geochim. Cosmochim. Acra, 33 (1969) 733. (A) Biosynthesis of alkanes in Nostuc muscorum

J. HAN, H. W. S. CHAN AND M. CALVIN, J. Amer. Chem. Sot., PI (1969) 5156. (A) Organic analysis on the Pueblito de Allende meteorite J. HAN, B. R. SILMO~ZIT, A. L. BURLIXG_L~: AND M. CALVIN, Nature, 222 (1969) 364. (A) Occurrence of fatty acids and aliphatic hydrocarbons in a 3.4 billion-year-old sediment J. HAN AND M. CALVIN, Nature, 224 (1969) 576. (A)

47

282a Volatiie components of Feijoa fruits

283

284

285

286

287

288

289

290

291

292

293

294

P. J. HARDY AXD B. J. MICHAEL, phytochemistry, 9 (1970) 1355. (C, P) Analysis of minor constiruents of wine P. J. HARDY AND E. H. R_~_wHAw, J_ Sci. Food Agr., 21 (1970) 39. (C, P) Changes in volatiles of muscat grapes during ripening P. J. HARDY, Phyrochemistry, 9 (1970) 709. (C, P)

The intermolecular transfer of srimethylsiiyl groups induced by electron impact D. J. HARVEY, M. G. HORSING AND P_ VOUN.S, Chem. Commun., (1970) 898. (C, J) An all-glass, in-line temperature programmed interface for use in GC-_SIS combinations J. E. IIA\vEs, R. MALLABY AND V. P. WILLIAMS, J. Chromarogr. Sei., 7 (1969) 690. (C, S)

High resolution mass spectrometric investigations of the organic constituents of the Murray and Holbrook chrondrites J. M. HAYES AND K. BIE.~, Ceochim. Cosmochim. Acra, 32 (1968) 239. (C, P) Carrot volatiles. I. Characterization and effects of canning and freeze-drying D. A. HEATHERBELL, R. E. WROLZXAD .~ND L. M. LIBBEY, submitted. (B) Isolation, concentration and analysis of carrot volatiles using on-column trapping and GC-.X5 D. A. HE~THERBELL, R_ E. W~OVXAD AND L. M. LIBBEY, submitted. (B) Data acquisition and evaluating systems for a low resolution mass spectrometer 8. HEDFJALL, P. A. J.4xs.s0~, Y. MARDE, R. RYHAGE AND S. WIKZZRO~I, J. Sci. Znstrum., Ser.,

2 (1969) 1031. (C, J) Direct food vapour analysis and component identification by a coupled capillary GLC-%SS.

arrangement J. T. HEIKS, H. MA~E~E, M. C. TEN NOEVER DE BRAUW AXD C. WEURM~N, J. Gas Chromarogr.

4 (1966) 395. (B)

A specific analytical detection method for nitrosamines by combination of a gas chromato- graph with a mass spectrometer K. HEI= A&D H. ROPER, Tetrahedron tiff., (1970) 737. (B)

Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella ryphimuriwn C. G. HELEERQVIST, B. LIKDBERG, S. Sv~xsso~, T. Horwz AND A. A. LINDBERG, Carbohyd-

Res., 8 (1968) 43. (C, J) Structural studies on the O-specific side chains of the cell-wall lipopolysaccharides from Saimonelia typhia and S. enteritidi C. G. HELLLRQVIST, B. LI~PBERG XND S. S-N, Acra Chem. Scaad., 23 (1969) 1588. <C, J)

Znr. J. Mass Specrrom. Zon Phys., 8 (1972) l-71

Page 48: 1972 JUNK (GC-MS Combinations and Applications)

48

.295

G. k JUNK

296

297

298

299

300

301

302

303

304

305

Thermal alteration as a contributory process to the genesis of petroleum W_ HENDERSON, G. EGLWTOX, P. SlhmOXs AND J_ E_ tOVELCMX. ,~QtUre, 219 (1968) 1012. (C, J) Identification of steranes and triterpanes from a geological source by capiilary gas liquid chromatography and mass spectrometry W. Hm WRSON, V. WOLLRAE AND G. EGLIPUTON, in A. SCHENC~C AND B. HAVENAAR (Editors), Adcances in OrgQfIk Geochemistry, Pergamon Press, Oxford, 1968, pp_ 181-207. (C, 1) Iden*Acation of steroids and triterpenes from a geological source by capillary-liquid chro- matography and mass spcctrometry W_ HENDERSON, V. WOLLRA~ A%?) G. EGJ-INTON, Chem. Commun., (1968) 710. C, J) Eine Kombination von Gaschromatograph und Massenspektrometer zur Anaiyse Orga- nischer Stoffgemische D. HENNEBERG. 2. Anal. Chem., 183 (1961) 12. (B) Die ko.mbinierte Anwcndung von Gaschromatographie und Massenspektrometrie D. HENXTBERG AND G. SCHO.XXIRG, Z_ A~zQL Chem., 211 (1965) 55. Ein kieines Masscnspektrometer ab spezifischer gas-chromatographischen Detektor D. HEXXEBERG AND G. SCXOHBZIRG, Z. AmI. Chem., 215 (1966) 424. (A) High resolution mass spzctra of compounds separated by capillary columns D. HEXZZBERG, Anal. Chem., 38 (1966) 495. (B) Gaschromatographische Trennung und massenspektrometrische Bestimmung der permethy- lierten Furanoside, Pyranoside und Septanoside der D-Galaktose K. HEYNS, D. MULLER, R. STUTE AND H. PAULSEN, Cfrem. Ber., 190 (1967) 2664. (A) Kombination von GC und .s zur Analyse partieli-methylierter Zuckerderivate K. HEYXS, K. R. SPERLING AND H. F. GR~~CKER, Cubohyd. Res., 9 (1969) 79. (B) Specific analytical detection of nitrosamines by combined CC-%ts K. HEY% A&W H. ROPER, Tetrahedron Lerr., (1970) 737. (8)

Zur Frage der Entstehung von Nitrosaminen bei der Reaktion von Monosacchariden mit Arninosauren

306

307

308

309

I(. HEYXS AND H. KOCK, Tefrakedron Left., (1970) 741. (Bj Enzymatic formation of dihydrosphingosine l-phosphate C. B. HIRSCHBERG, A. Krs:c AXD G. J. SCHROEPFER, J_ BioL Chem., 245 (1970) 3084. (C. I) Computer recording and processing of low resolution mass spectra R. A_ HI- AXD K. BIE??NN, Adcan. Mass Specrrom_, 4 (1969) 37. (C, P) A computer-compatible digital data acqtiisition system for fast-scanning, single focusing mass spectrometer R. A. HITE~ ~&m K. BIE%NN, AIZQL Chem., 39 (1967) 965. (C, Pj Mass spectrometer-computer system particularly suited for gas chromatography of complex mixtures

310

311

312

313

314

315

316

R. A. HITE~ AND K. BIE%~x, AML Chem., 40 (1968) 1217. (C, Pj Computer evaluation of continuously scanne d mass spectra of GC effluents R_ A. HITES AXW K. BE-~, An~1. Chem_, 4’2 (1970) 855. (C, P) Bile acid composition of biIe from germ-free rabbits A. F. HOFF-, E. H. lM~~~~~ AS?, C. C. SWEELEY, Biochim. Biophys- AC~Q, 176 (1969)

204. (C, J) Oscillographic mass-spectrometer monitoring of gas chromatography J. C. HOLY AND F_ A. MOI~RELL, AppL Spectrosc., 11 (1957) 86. (Bj Studies of analytical separations of human steroids and steroid glucuronidcs E. C. HOMING, M. G. HORNISG, N. IKEKXW& E. M. CHAMBAZ, P. I. JXAKON~~XI AXD C. J_ W_ BROOKS. L Gnr C~~nmzogr_, 5 (1967) 283_ (C, J) Derivatives of aldosterone for gas phase anal_ysis E:. C. HOWING A&W B. F. IMAX.WE, J. Chromarogr_ Sri_, 7 (1969) 411. (C, J) Use of combined gas-liquid chromatography and mass spectrometry for clinical problems E. C. HORXING, C&z_ Chem., 14 (1968) 777. (C, J) Gas phase analytical methods for the study of steroids E. C. HORNING, C. J_ \V_ BROOKS ATT W_ J_ A_ VANDENHEUVEL, Adum. Lipid Res-. 6 (1968)

273_

IRt. J- MGSS Spectrom. Ion Phys., 8 (1972) 1-71

Page 49: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 49

3 17 Separation Techniques in Chemistry and Biochemistry E. C. HCR~SG, C. J. BROOKS, L. JOHE~SON XND W. L. GAIUXNER, edited by R. A. KELLER, Marcel Dekker, New York, 1967, p_ 1. (C. J)

318 The GLC separation of hydroxyl-substituted amines of biological importance including the catecholamines. Preparation of derivatives for electron capture detection M. G. HORAIISG, A.-M. Moss, E. A. B~UCHER ASD E. C. ~&WING, Anal. Left., 1 (1968) 311. (C, J) A new method for the separation of the catecholamines by gas-liquid chromatography M. G. HORKING, A. M. Moss AND E. C. HORNING, Biochim. Biophys. Acta, 148 (1967) 597. (C, J) Gas-liquid chromatography study and estimation of several urinary aromatic acids M. G. HORSING, I(. L_ Ksox, C_ E. DALGLIEXH ASD E. C. HCFSING, Anal. Biochem.. 17 (1966) 244. (C, J) Formation and gas-liquid chromatography behavior of isomeric steroid ketone methoxime derivatives

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

M. G. HORNIXG, A. M. Moss ;LUD E. C. HORSING, AnaL Biochem. 25 (1968) 284. (C, J) Characterization and estimation of urinary steroids of the newborn human by gas-phase analytical methods M. G. HORNING, E. C_ CH~~~BAZ, C. J. BROOKS. A. M. Moss, E. A. BOIJCHER, E. C. HORNIXG AND R. hf. HILL, Anal. Biochem., 31 (1969) 512. (C, J) The study of urinary acids and related compounds by gas phase analytical methods M. G. HORXIXG, E. A. BOUC-HER m-z?, A. h-1. Moss, f_ Gas CfIromazu_or_, 5 (1967) 297. (C, J)

The use of gas phase analytical methods for the analysis of phospholipids M. G. HORNING, G. GASP_*RR:NI AK?, E. C. HOXNING, .J_ Chromatogr. Sci., 7 (1969) 267. (C, J) Placental transfer of drugs: Drugs and drug metabolites in the neonate M. G. HO~IXG, L. D. WATERBURY, E. C. HORNING AND R. M. HILL, Proceedings of Inter- national Symposium of the Ewerpta bfedical Congress, 1969, Series No. 183, p. 305. (C, J) Mass spectrometric studies of drugs and drug metabolites in the newborn M. G. HORNIXG, E. C. HORXING AND R. M. HILL, 4th Middle Atlantic Regional Meeting of A-C-S., Washington, D-C., Feb. 1969, No. C4, 59. (C, J) Gas chromatography of food volati!es - An improved collection system I. HORNSTEIN AND P. F. CROWE, Anal. Chem., 34 (1962) 1354. Volatile products from mild oxidation of methyl linoleate. Analysis by combined GC-MS R. J. HORVAT, W. H. MCFADDEN, NG HAWKINS, D. R. BLACK, W. G. ONE m R. M. TEETER, J. Amer. Oil Chem. Sot., 42 (1965) 1112. (A) Volatile products from room temperature autoxidation of cis,cis-6,9-octadecadiene. Analysis by combined GC-MS

R. J. HORVAT, W. H. MCFADDEN, H. NG, A. LEE, G. FULI_ER AND T. H. APPLE\VHITE, J. Amer. Oil Chem. Sot., 46 (1969) 273. (A) Presence of testosterone and other neutral steroids in human fetal testes I- HUH-~ANIE.HI, M. IKOXEN Z~UD R. VIHKO, Biochem. Biophys. Res. Commun., 38 (1970) 715. (C, J) Identification and determination of neutral steroid sulfates in human foetal adrenal and liver tissue I. HUHT~IEMI, T_ LUUKNHEN AND R_ VIHKO. Acra Endocrinol., 64 (1970) 273. (C, J) GC-s%s identification of long chain hydroxy acids in plants and sediment D. H. HLTXXES~N AND G. EGLINTON, in A. SCHENCM AXD B. HAVENAAR (Editors), Adcances in Organic Geochemistry, Pergamon Press, Oxford, 1969. pp- 157-65. A rapid method for isolation and identification of sesquiterpene hydrocarbons in cold- pressed grapefruit oil G. L. K. Hburrrr A&Z W. B. BRODGEN, Anal. Chem., 36 (1964) 1122. (B) Identification of polychlorinated biphenyls and DDT in mixtures by mass spectrOmet0’ 0. HUIZINGER AAD W. D. JAMIESON, Nature, 226 (1970) 664. (C, Unk). Eight Peuk Index of Mass Spectra ICI Ltd and Mass Spectrometry Data Center, The Curwen Press, London, 1st Edn., 1970. Biosynthesis of 19-hydroxy-prostaglandin A,

Int. J. IMoss Spectrum. Ion Phys., 8 (1972) l-71

Page 50: 1972 JUNK (GC-MS Combinations and Applications)

5c G. A. JUNK

337

338

339

340

341 342

343

344

345

346

U_ ISRAELSXCV, M. HAS-ERG A-FCC B. SmwN, Eur. J_ Biochem., 11 (1969) 390. (C, J) Combined GC-Xs in flavor research P. ISSENBERG, A. KOBAYASHI AND T. J. MYSL~WY, J. Agr_ Food Chem., 17 (1969) I377. (C, J) Combined GC--MS in flavour research_ Recent developments and other probIems P. I-ERG AND T. 2. MYSUWY, in Eastern Analytical Symposium of the A.C.S., New York, Nov., 1968, Paper No. 32. <C, P) Mass spectrometrS; for flavour research P. ISSENBERG, Food Tech., 23 (1969) 103. Analysis of volati!e fIavor components of foods P. ISSXBERG AFZZ I. HORNSEIN, in J. C. GIDDINGS AND R. A. KELLER (Editors), Xdcances in Chromatograph_v, Vol. 9, Mzrcel Dekker, New York, 1970, p_ 318. P. Is.~E?~BERG, private communication. (C, P) The characterization by GLC of ethyl s-r)-glucosiduronic acid as a metabolite of ethanol in ratandman P. 1. J~ONHAKI, K_ L. KNOX, E. C. HORVING A,YD M. C. HORNING, Eur. J. Pharmacok 1 (1967) 63. (C, J) Identification of 3cc-hydroxj.androst-S-en-i 7-one in human plasma, urine and bi!e 0. JAXNT, T. LAATIKAI~~, J. VAIPSIO ASD R. VIHKO, Srerofdr, 13 (1969) 121. (C, J) Monosulfates of 16-oxygenated ketonic C 19 steroids in adult human urine 0. JA~>L;E AND R. VIHKO, Stero;&, 14 (1969) 235. (C, J) Analysis of organic compounds in human breath by GC-xi B. 0. JAXSS~X AND B. T. L,\RSSON, J. Lab. Clin. iWed_, 74 (1969) 961. (C. J) Mass spectral processing. 2. Computer used for processing of mass spectra recorded on magnetic tape P. A. JAXWJN, S. MELKEFCSSON, R. RYHAGE AND S. WIKSTROM, Ark. Kern.‘, 31 (1969) 565.

(C, J) 346a Identification and determination of methylmercury compounds in fish using combination

GC-3fS

B. JOHXNSXN, R. RYHAGE AXD G. WESTOO, Acta Chem. Stand., 24 (1970) 2349. (C, J) 347 Identification et dosage quantitatif de traces par le coupIage chromatographe-spetrometre

de masse D. Joru, Z. Anal. Chem., 236 (1968) 259. (B)

347a G_ A. JUNK AXE H. J. SVEC, unpublished results. 348 Whiskey composition. Identification of components by singIe pass GC-SfS

J. K_~HN,E. C. LAROE ASD H.A.CONNER, J. Foods&33 (1968) 395. (A 348a Whiskev composition. Identification of additional components by GC-XF+

349

350

J-H. K.&N, P.-A-SHIPLEY, EG. LXROE AND H-A_ CONNER, LFoodSci_,7~1(1969)587. (B) Potential and limitations of the use of a direct combination of gas chromatograph-high resolution mass spectrometry in the study of natudly occurring steroids K_ I(AIvR, H. OBEmfAhW, G. kw3ERG, M. SPITELLER - FRIED&M MD G. SPITEUER,

Monatsh. Chem., 101 (19703 240. (C, P) Thin layer chromatography in direct coupling with gas chromatography and mass spec- trometry

351

352

353

R. KAISER, Chem. Brit., 5 (E969) 54. Bicarburet of hydrogen. ReappraisaI of the discovery of benzene in I825 with the analytical methods of 1968 R I(AISER, Angew. Chem., Jnt. Ed. Engl., 7 (1968) 345. (-4) BiIe acids of the Teleost Cottas quadricarnis: Isoiation of 3z,l2z-dihycIroxy-f~-chol-7-enoi~ acid k I(AUNER, Acta Chem. Scam& 22 (1968) 2353. (C, J) Bile acids in bile of cod, Gadus caikzrks k KAILKZR, Actu C&m_ Scat& 22 (1968) 2361. (C, J)

354 A study on the low boiling constituents of Cryptotaenia japonica Haask T. K-MIX, S_ 0. T-HI, S. HAYASHI X~D T_ MAI.SURFW, Agr. Bioi. Chem. (Japan), 33 (1969) 1717. (Unk.)

353 Appiications of mass spectroscopy to pesticide residue anaiysis

Int. J_ Mass Spectrom- Ion Phys.. 8 (1972) l-71

Page 51: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 51

T. R. K~xR, R. 0. MUMA, Residue Rev., 16 (1966) 138. 356 The Cc-xs interface

F. W. KARASEIC, Res_ Cecelop-, 20(S) (1969) 34. 357 Relativity of mass spectra

F. W. KARASEK, Res. Decelop., Nov., 1970. 3572 Characterization of 2-amino-2-deoxy-D-glucose,2-amino-2-deoxy-D-galactose and related

compounds as their TM-Si derivatives by GC--,%4-S J. I(AIui~&mm A~.-D R. VIHKO, Carbohyd- Res., 10 (1969) 113. (C, J)

358 Determination of the structure of disaccharides as 0-TMS derivatives of disaccharide alditols by GLC-_MS

J. KARKKAIFZX, Carbohyd. Res., 11 (1969) 247. (C, J)

358a Analvsis of comoounds containing phosphate and phosphonate by GC-MS

359

361

362

363

364

365

366

367

368

369

370

371

372

373

K.-A.-KA-ok,-Biochem. Biophyi Res_Commun., -39 (i970) 847_-(C, J) Studies on feather waxes of hirds. VIII. The chemical composition of the wax in the free flowing secretion from the preen gland of the oystercatcher H. I&-X AND G. ODHAW, Ark. Kemi, 31 (1969) 143. (See ref. list in article.) (C, J) Studies of sphingosines. 10. Use of ,TMS ethers for gas chromatography and mass spec- trometry of sphingosines K-A. K ARLSSON, Acfa Chem. Stand., 19 (1965) 2435. (C, J) Chemical reactions involved in the deep fat frying of foods. IL Identification of acidic volatile decomposition products in corn oii T. KXWADA, R. C. KRISHXAWJXIHY, B. D. M~~KHERJEE A%?) S. S. CHANG, J_ Amer. Oil Chem. Sot., 44 (1967) 131. Lipids of Streptomycessioyaensis. V. The identification of 2-hydroxy-13-methyl-tetradecanoic acid from phosphatidylethanolamine J. &WXNAMI, A. KI%~, Y. NAKAGAWA AND M. OTSUKA, J. Chem. Phys. Lipids, 3 (1969) 29 Mixed chlomazobenzene formation in soil P. C. KEARNEY, J. R. PLIMXIER~~D F. B. GUARDIA, J. Agr. FoodChem., 17 (1969) 1418. (C, P) Ratio recording in combined GC-.,MS B. H. KE&;~-, Anal. Chem., 39 (1967) 1506. (B)

Application of GLC--.a to analysis of natural products: Sesbaniu grandiflora (L.) extracts S. S. KHA%x_+ ASD E. G. PERKISS, J. Agr. Food Chem., 17 (1969) 1335. (C, P) Application of GLC-%!s to analysis of natural products: waxes from fifangifera indica and Sesbania grandiflora S. S. KHAKI_% XND E. G. PERKINS, J. Agr. Food Chem.. 18 (1970) 253. (C, P)

Identification of some components in the aroma fraction of gamma-irradiated milk fat L. L. KHATRI, L. M. LIBBEY AND E. A. DAY, J. Dairy Sci., 48 (1965) 765. (A) Gas chromatographic and mass spectral identification of some volatile components of gamma irradiated milk fat L. L. KHATRI, L. M. LIBBEY AK+?) E. A. DAY, J. Agr. Food Chem., 14 (1966) 465. (A) Formation of partialiy trimethyIsilylated derivatives of carbohydrates. The TMS tris-O-tri- methylsilyl-D-glucopyranosides and tetrakis-0-TMS-D-glucose S. M. KIM, R. BE- ASD C. C. S~EELEY, Carbohyd. Res., 5 (1967) 373. (C. J) Composition of peel oil from Citrus umhin Y. KITA, Y. NAK~TANI, A. KOBAY~I A&Z T. YAWXNISHI, Agr. Biol. Chem. (Japan), 33 (1969) 1559. (Unk.) The sterols and triterpenes of banana peel F. F. KNAPP X~D H. J. NICHOLLS, Pbytochemistry, 8 (1969) 207. (C, J) Identification of plant steroIs using combined GLC-HS B. A. KNIGHTS, J. Gas Chromntogr., 5 (1967) 273. (C, J) Application of combined GLC-hfS to identification of sterois in oat seed B. A. KNIGHTS AND N. LAURIE, Phyrochemisfry, 6 (1967) 407. (C, J)

373a Isomers of 24-ethylidenecholesterol: GC-MS characterization B. A. KNIGHTS ~~113 C_ J. W. BROOKS, Phytochemistry, 8 (1969) 463. (C, J)

374 Sterols in Ascophylium no&sum B. A. KNIGHTS, Phyrochemisrry, 9 (1970) 903. (C, J)

Int. J. lwass Spectrom. Ion Phys., 8 (1972) l-71

Page 52: 1972 JUNK (GC-MS Combinations and Applications)

52 G. A. JUNK

374a Hydrocarbons from the green form of the freshwater ahza Borr~ococcus bruunii.

375

376

377

378

379

B. -A. Krrrotrrs, A. C. BROW, E. Cower _am 3. S. MIDDL&TCH, Phytochemistry, 9

(1970) 1317. (C, J) Compound identification by computer matching of Iow resolution mass spectra Et. A. tiocrc, L C. Swmr. D. E_ WRIGHT AXD R. G. RIDLEY, Anal. Chem., 42 (1970) 1516.

Chlorinated biphenyLs in fish, mussels and birds from the river Rhine and the Netherlands coastal area 3. W. KOE.\IAN, M. C. T’~lu NOEVER DE Baxrw A\ID R. H. DE Voss, Nature, 22 l(I969) 1126. (C, P) Gas chromatographic separation of amino acids and their enantiomers: Non-polar stationary phases and a new optically active phase W_ A_ KOEXIG, W_ PA_=, H. A_ Lrcr-rrrrssrr~~, E. BAYER AND J_ ORO, J. Chromatogr- Sci.,

8 (1970) 183. (C, J) The enzymatic aromatization of the B ring of A5.‘-sterols E. D. KORN, A_ G. ULSA~ R. R. WEIHXNG, M. G. WETZEL AND P. L. WRIGHT, Biochim. Bfophys_ Acru, I87 (1969) 555. (C, J) Continual analysis of gas chromatographic efhuents by repetitive infrared scanning B. Kru~ow, An&. Chem., 41 (1969) 815.

379a Die Kombination Gaschromatograph-Massenspektrometer zur Bestimmung orBanischer Substanzen R. KRANG, Messrechnik, 76 (1968) 121.

380 Porous SS as a carrier gas separator interface material for GC-sfs

381

382

383

384

385

386

387

388

P. M. KRUEGER ~bi J.-A. _McCrosrcr~, Anal. Chem., 41 (1969) 1930. (C, P) A porous SS separator system for GC-?.IS P. IM; KRUEGER A&Z 3. A. MCCLOSKM, 17th Annual Conference on MGSS Spectrometry and

llllied Topics, Dallas, May 1969, Paper No. 45. (C, P) Occurrence of 3$dimethoxyphenylacetic acid in urines of normal and schizophrenic individ- UiiiS F. A. KUEHL, R. E. OU~OND A&I W. J. A. VA~~ENHEUVEL, Nature, 211 (1966) 606. (C, J) Steroid sulfates in human bile T. LAATIKAI~~, P. k-ro~xrrro AND R. VIHKO, Sferoidr, I2 (1965) 407. (C, J) Identification of IS-hydroxyandrosterone in human bile T. bTIIC41NEX APUI R. VIHICO, Steroidq 13 (1969) 615. {C, f)

Quantification of C1402 and Cz102 steroid mono- and disulfate in human bile T. LAATIKAIX~ AND R_ VIHKO, Steroi&, 14 (1969) 119. (C, J) Identification of C1903 steroids in the mono and disulfate fracticns of human bile T. LAxn~xr=, Srcroic&, 1.5 (1970) 139. (C, J) identification of Cx90t and CzlOz steroids in the glucuronide fraction of human bile T. L&~TI~I~ AND R_ VIHKO, Eur. J. Biochem., 10 (1969) 165. (C, J) Identii%ation of C&O3 and C,,OJ steroids in human bile T. LAATIKAINEE~, Eur. J. Biochem., 14 (1970) 372. (C, J)

389 Secretion of neutral steroid sulfates bv the human testis

390

391

392

393

394

T. L~xrrm&m, W. A. LAtn~sN &D-R. V. Vrxno, J. Ciin. fidocrinol., 29 (1969) 219. (C, J) Identification and evaluation of selected compounds in Swiss cheese fiavor J. E OGLER, E. A. DAY .~ND L. M. LIBBEY, J. Agr. Fwd Chem., 15 (1967) 386. (B) Gas chromatographic method for analysis of volatiles in saliva sampIes B. T. LARssox ~ha G. W. WID.~RK, Acta Pharm. Sue&a, 6 (1969) 479. (C, J) Characterization of cabbage leaf lipids: n-alkanes, ketones, and fatty acids J. L. LAZIER, D. J. WEBER AND J_ ORO, Phytochemistry, 7 (1968) 1005. (C, -1) Characterization of the carbonyi position in keto-steroids k M. Lxwso~, J. M. /FF_s AND J_ A_ MCCLUSKEY, 15th Annual Con/erence OR Mass S’ctrometry and AIiied Topics, Denver, May 1967, Paper No. 116. (C, P) Oxygen-18 exchange reactions in steroidal ketones Dete rmination of relative rates of in- corporation by GCX A. M. Lawson+ F_ A. J. M. &MA-I mD J. A. MCCUSKEY, Steroids, 14 (1969) 603.

(C, J+P)

Int. 3. Muss Spectrom. ion Phys., 8 (1972) I-71

Page 53: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 53

395 Mass spectrometry of nucleic acid components. Trimethylsilyl derivatives of nucleotides A. M. LAWSON, R. N. S~LLWJXL, M. M. TACKER, K. TSUBOYA!A AND J. A. MCCLOSKEY, J. Amer. Chem. Sot., 93 (1971) 1014. (C, J+P)

395a Gas chromatographic determmation of pyrrolidone carboxylic acid.

396

397

398

399

400

401

402

403

404

405

406

407

C. Y. LEE, J_ Ass. O&k Anal. Chem., 53 (1970) 716. (Unk.) Studies on the mechanism of the enzymatic conversion of A*-cholesten-3g-ol to A’-cholesten- 3p-01 W. H. LEE, R. KX~~ERECK, B. N. LUTSKY, I. A. MCCLOSKEY -D G. J. SCHR~EPFER, J. Biol.

Chem., 244 (1969) 2033. (C, JiP) A unique hexaene hydrocarbon from a diatom (Skeletonema costatum)

R. F. LEE, J. C. NE~ENZEL, G. A. PAFENH~FER, A. A. B-SON, S. PA~ON Ah?) T. E. KAVAXAGH, Biochim. Biophys. Acta, 202 (1970) 386_ (C, J)

Combination gas chromatography-mass spectrometry F. A. J. M. LEEX~XS AXD J_ A. MCCLOSKEY, J. Amer. Oil Chem. Sot., 44 (1967) 11. New sialic acid-containing sulfolipid: “ungulic acid” E. LEXKOLA, E. NIE~II~~ AND A_ M. TEPPO, 3. Lipid Res., 10 (1969) 440. (C, J) Application of TOF mass spectrometry and gas chromatography to reaction studies E. J. LEVY, E. D. MILLER A&?) W. S. BEGGS, Anal. Chem., 35 (1963) 946. (B) Pyrolysis GC. A review of the technique J. LEVY, Chromotogr. Rex, 8 (1966) 49. Loss of chromatographic resolution in the vacuum line of a gas chromatograph mass SP~C- trOIXIeter (GC-MS) SySterII

R. L. LEVY, H_ D. GESSER -4%x1 J_ B. WESTMORE, J. Chromatogr.. 32 (1968) 740. Organic analysis of the Pueblito de Allende meteorite R. L. LEVY, C. J. WOLF, $1. A. GRAYSON, J. GIBERT, E. GELPI, W. S. UPDEGROVE, A. ZLATKIS AND J. ORO, 1vafure, 227 (1970) 148. (C, J, f, S) Application of column bleed absorption in high sensitivity gas chromatography and in GC-%s R. L. LEVY. H. GESSER, T. S. HEU~AN AM F. \V_ HOUGEN, Anal. Chem., 41 (1969) 1480. (B) Artifacts in the analysis of food flavors by gas chromatography L. M. LIBBEY, Paper presented at ASTM 19th Committee on the Practice of Gas Chromnto-

graphy, San Francisco, Oct. 8, 1967. (B) 3,5,Di-tert-butyl4hydroxytoluene (BHT) as an artifact from diethyl ether L. M. LIBBEY ~XD J. P. WXLRADT, Lipiris, 3 (1968) 561. (B) L. M. Lxasn, private communication. (C, S)

407a VoIatile comnonents of Cheddar cheese

40s

409

410

411

H. M. LIEBIC& D. R. DOUGLAS, E. BAYER Ah?) A. ZUTKIS, J_ Chromatogr., Sci., 8 (1970)

355. (C, J) Analysis of the flavor of rum by GC--MS H. M. LIEBICH, W. A. KOEXIG AND E. BAKER, J. Chromatogr. Sci., 8 (1970) 527. (C, r)

Volatile flavor components of coconut meat F. M. LIN XND W. F. WILKENS, J. Food Sci., 35 (1970) 538. (C, P) Use of a conventional mass spectrometer as a detector for gas chromatography L. P. LI~XIEM~~N Ahm J. L. Amrs, AnaL C/iem., 32 (1960) 1742. (B) Identification of volatile flavor components of butter culture R. C. LINDSAY AXD E. A. DAY, J. Dairy Sci., 48 (1965) 1566. (A)

41 la Isothermal pyrolysis of cellulose: kinetics and GC-MS analysis of degradation products A. LIPSKA AND F. A. WODLEY, J. Appl. Polym. Sri., 13 (1969) 851. (C, P)

412 Utilization of system employing the selective pennation of He through a unique membrane of Teflon as an interface for GC-.?.%s S. R. LIPSKY, C. G. HORVATH -43~ W. J. McMuRx.~~, Anal. Chem., 38 (1966) 1585. (C, P)

413 Sttldies on the metabolism of steroids in the foetus_ Biosynthesis of 6a-hydroxytestosterone in the human foetal liver B. P_ Ltsao.~ AX;D J_ GTJ~TAF~~ON, Biochem. J., 115 (1969) 583. (C, 3)

414 Biosynthesis of l&-hydroxyprogesterone by human fetal liver microsomes B. P_ LISBO.~ .XXD J. Gus~m~, Steroids, 12 (1968) 249. (C, J)

415 Studies on the metabolism of C ,,-steroids in rat liver. I. Hydroxylation of testosterone in

Im. J. Mass Spectrom. Ion Phys., 8 (1972) l-71

Page 54: 1972 JUNK (GC-MS Combinations and Applications)

54 G. A. JUNK

rat liver microsomes B. P. LISBOA, J. A. Gusr~n AND J. SJOVALL, Eur. J. Biochem., 4 (1968) 496. (C, J)

416 Biosynthesis of two new steroids in the human foetal liver I/?- and 2&hydroxytestosterone B_ P_ LISEOA AT J. A. Gtrsrarsso~, Eur. J. Biochem., 6 (1968) 419. (C, J)

417 Biosynthesis of I8-hydroxytesterone in the human foetal liver B. P_ LISBOA AND 1. Guswrssos, Ear_ J. Biochem., 9 (1969) 402. (C, J)

418 Biosynthesis of 68_ and 6cr-hydroxyprogesterone in the human foetal Iiver B. P_ LlSBoA A?? J. Gusrwx, Eur. J_ Biochem., 9 (1969) 503. (C, J)

419 Structural analysis of steroids by association of TLC techniques with GC-MS B. P_ LISBOA, J. Chromat~g~_, 48 (1970) 364. (C, J)

420 Coupling of gas chromatvgraphy with methods of identification_ 1. Mass spectrometry

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

A. B. L&LE&oOD, Chroink&&hia, 1 (1968) 37. A molecular separator for gas chromatograph and mass spectrometer P. M. LLEWELLYN AND D. P. LIITLEJOHN, Pittsburg Conference on Analytical Chemistry and -4ppiied Spectrometry, Feb., 1966. (C, S) Composition of the protoplast membrane from Saccharomyces cerecisiue R. P. LOSGEY, A. H. Ros AND B. A. KXIG~, Biochem. J. 108 (1968) 401. (C, J) The palladium trammodulator: a new component for the GC J.E. Lo~ELo~!c,K_W_CHARL~OX~DP.G.SI~~IONDS, Anaf_Chem.,41(1969)1048 (C. R) The palladium generator-separator - A combined electrolytic source and sink for hydrogen in ctosed circuit gas chromatography 1. E. LOVELOCK, P. C. SI~WONDSA~?) G-R. SHOEUKE, Anal. Chem.,42 (1970)969. Palladium devices for gas chromatography J.E. L~~EL~~K,P.G.SI~~~O~D~,G.R.SHOE~~~ AND S. RIEH, J. Chromatogr. Sri., 8 (1970) 452. (C, R) Sample enrichment techniques for a GC-Yzs analysis system D. P. Lunao AND F_ C. I-&L=, J. Gas Chromatogr., 6 (1968) 477. AR improved sample enriching system A. J. LUCHTE, D. C. DAM~TH AXD C. J. MOC)RF+MN, 17rh Annual Conference on Mass Spec- tromerry and AiIiPd Topics, Dallas, May, 1969, Paper NO. 44. (C, P) A GC-sfs interface system A. J. LUCHTE, JR, mc D. C. Dtiror~, Anter. Lab., Sept_ (1970). (C, P) Volatile components of hardwood sawdust smoke. Components of phenalic fraction A_ 0. Lusr~~ AXD P. IZ~ENBERG, J- Agr. Food Chem., 17 (1969) 1387. (C, P) Phenok components of smoked meat products A. 0. LU~TRE AND P. ISSENBERG, J. Agr. Food C/tern., 18 (1970) 1056. (C, P) Isolation and identification of I I-dehydro-estradiol-I 72, a new type of urinary steroid, in the urine of pregnant women T_ LUUKKAI~X A&I I-I. ADLERCREUTZ, Biochim. Biophys. Acta, 107 (1965) 579. (C, J) Natural steroid sulfates in amniotic fluid R. LULJ~IXI~,A_SIEGELA~D R.VIHIZO, J. Eadocrinof.,46 (1970) 391. (C, J) The analysis of voIatiIe components of a Jamaican rum H. MAX-E ADZ M. C. TEN NOEVER DE B~xuw, J_ Food. Sci, 31 (1966) 951. (B) Alkaloid from tire ant venom: identification and synthesis J. C. IMACCOXXZU AW M. S. Brri.sr, Science, I68 (1970) 840. (C, P) Correlation of stereoisomerism in present-day and geologically ancient isoprenoid fatty acids 1. MAC-N, G. EGLINTON,K.DOURAGHI-ZU)EH,R_G. ACKMAN AND S.N.Hoo~~~,Nuture, 2i8 (1968) IOI9. (C, J) Deactivation of polar chemisorption in a f&ted-glass molecular separator interfacing a gas chromatograph with a mass spectrometer W. D. MACLEOD, Ja. AND B. NAGY, Anal. Chem., 40 (1968) 841. (C, P) Combined GC--MS of compkx hydrocarbon trace residues in sediments W. D. MACLEOD, JR., J_ Gus Chromafogr.. 6 (1968) 591. (C, P) IdentiIication of gibberellins in crude piant extracts by combined GC-M.s 1. MACMEUS, R.J. PRYCTE, G_EGLINTON AX- A. M&OF~MICIC, Tetrahedron Left., (1967) 2241. [C, J)

Int. J. Mass Spectrum. Ion Phys., 8 (1972) 1-71

Page 55: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 55

439

440

441

442

443

444

445

446

447

448

449

4.50

451

452

4.53

4.54

455

456

457

458 459

Further investigations of giibereihns in Phaseolus multipor~~ by combined GC--MS J_ MACMILLAN AND R. J. PRYCE, Tetrahedron Lett., (1968) 1537. (C, J) Examination of metal chelates by gas chromatography and mass spectrometry R. J. MAJER, J. Sci. Tools, 15 (1968) 11. (C, J) Major voIati1e neutraI and acid compounds of hydrolyzed Soy protein C. H. MANLEY AND L S. FAGERSON, A Food Sci., 35 (1970) 286. (C, P) Major volatile components of the basic fraction of hydrolyzed Soy protein C. H. M_~LEY *XI L S. FAGERSON, J. Agr. Food Chem., 18 (1970) 340. (C, P) Biosynthesis of ethylene. MethanesuIfonic acid as cofactor in the enzymic formation of ethylene from methional L. W- MAPSON, R. SELF -4~ D. A. WARDALE, Biochem. J., 111 (1969) 413. (C, Unk.) Spectral studies of trimethylsilyl ether of chloramphenico1 M. MARGOSIS, 3- Pharm. Sci., 59 (1970) 501. (C, J) Improved glass frit interface for combined GC--hfs S. P. MARKEY, Anal. Chem., 42 (1970) 306. (C, P) Chromato-mass spectrometric and chromatographic determination of microadmixtures in divinyl, isoprene and piperylene A. A. MARTYNOV ANY R. A. VIBROYANT~, Zh. Anol. Khim., 24 (1969) 1744. (C, Unk.) AnaIysis of fatty acid composition in rabbit’s adrenal lipid by direct coupling of mass spectrometer and gas chromatograph Y. MASADA, K. HASHIMOTO, T. INOUE, H. YOSHIDA, 1. FUICIJI, K. MA~AKI, J. TAKAHATA, A. OSAWA AP*'D T. AKASAWA, J. Pharm. Sot. Jap., 89 (1969) 579. (C, Unk.) GC-us Abstracts P. R. MASEK, I. SIJTHEWLAND AND S. GRIYEL, Science and Technology Agency, 3 Dyers Buildings, London E.C. 1. VoIatiIe component of roasted peanuts. The major monocarbonyls and some noncarbonvl components M. E. MASON, 33. JOHNSOX i~hl~ M. G_HAX!ING, J. Agr. Food Chem., 15 (1967) 66. (C, J) Gas chromatographic and mass spectrometric study of trimethybilyl ethers of cardiac aglycones B. MAuhf& W. E. \V!UON _m~ E. C. HORNING, Anal. Lett., 1 (1968) 401. (C, J) Organic geochemistry J. R. MAXWELL, C. T. PILLINGER AND G. EGLIN~ON, Quart. Rev-, in press. Mass spectra of 0-isopropylidene derivatives of unsaturated fatty acids J. A. MCCLOSKEY AND M. J. MCCLELLAND, J. Amer. C’hem. Sot., 87 (1965) 5090. (C, J) Mass spectrometry of nucleic acid components Trimethylsilyi derivatives of nucIeotides, nucleosides and bases J. k MCCLOSKEY, A. M. LAWSON, K. TSUBOYAhf.4, P. M. KRUEGER AE~D R. N. STIL~~ELL, J. Amer. Chem. Sot., 90 (1968) 4182. (C, J) Gas chromatographic and mass spectrometric properties of perdeuterated fatty acid methyl esters J. A _McCrosm~, A. M. LAWSON AND F. A. J. M. LEE~NS, Chem. Cornman., (1967) 285. (C, J-+-P) Ring location in cyciopropane fatty acid esters by a mass spectrometric method J. A. MCCLOSK~ AND J. H. ZAw, Lipids, 2 (1967) 225. (C, J) Use of deuterium-Iabeled trimethylsiiyl derivatives in mass spectrometry J.A. MCCLOSKEY,R.N. STILLWELL AND A.M. LAWSON, Anal. Chem.,40(1968)233. (C,P) The role of mass spectrometty in biochemistry and related fields J. A. MCCLOSKEY, Adcan. Mass Spectrom., 5 (1970). J_ A_ MCCLOSKEY, private communication_ (C, J-i-P) The botryococcenes-hydrocarbons of novel structure from the alga Botryococcus brounii, Kutzing A. McComuc~, J. R. MAXWELL, A. G. DOUGLAS AP~P G. EGLINION, Phyfocitemisfry, 7 (1968) 2157. (C, -7) Use of capillary gas chromatography with a TOF ms spectrometer W_ H. MCFAT)DEX, R TERAXI~HI, D. R. BLACK AND J. C. DAY,J. Food Sci., 28 (1963) 316. (A)

Int. J. Mass Spectrom. Ion Phys., 8 (1972) l-71.

Page 56: 1972 JUNK (GC-MS Combinations and Applications)

56

461

462

463

464

465

465

467

468

469

370

471

G. A. JUNK

Fast scan mass spectrometry with capillary gas-liquid chromatography in investigation of fruit volatiks W. H. MCFADDEE~ XND R. TER,IXISHI, Nurure, 200 (1963) 329. (A) Scan rate considerations in combined GC~ W_ H_ MCFAD~EH AND E_ k DAY. An& Chem., 38 (1964) 2362_ (A)

VoIatiIes from strawberries- IL Combined MS and GC on complex mixtures W. H. MCF_=QDEN, R. TEIUZQ~HI, J. CORSE, D_ R. BLACK AND T. R. MON, J. Chromotogr., 18 (1965) 10. (A) Introduction of CC Sam&s to a mass spectrometer W. H. MCFADDEN, Separ. Sci. 1 (1966) 723.

Mass spectrometric analysis of GC eiuents W. H. MCFADDM, in J_ C. GIDDINGS AXD R. A_ KELUR (Editors), Adconces in Chromato- graphy, Institute of PetroIeum, London, 1967, p. 265. AppIications of mass spectrometry in flavor and aroma chemistry W. H. MCFADDZN .4h?) R. G. BUTTERY, in A. L. BII~LINGU~E (Editor), Topics in Orgunic Chemirtry, Wiley-Interscience, London-New York, 1970.

Synthesis and reactions of a proposed DDT metabolite, 2,2-bis(pchloropheny1) acetaldehyde J. D. MCKIX+EY, E. L. BOOZER, H. P. HOPKINS, .xxn J. E. SVGGS, Experientia, 25 (1969) 897.

(C, J) Mass spectrometric and thermogravimetric examination of gas chromatographic liquid phases R. W. MCKINXY, J. F_ LIGHT AND R. L_ JORDAV, J. Gas Chromatogr.. 6 (1968) 97. Mass s-1 correlations

F. W. MCL.+FFERTY, Adcances in Chemisiry Series, Vol. 40, American Chemical Society. Washington, DC., 1963. Interpretation of Mass Spectra F. W. MCLAFFER~, Benjamin, New York, 1966.

Fast scan high resolution mass spectrometry - operating parameters and its tandem use with gas chromatography W. J. MCMUREMY, B. N. GREE~X Ahi S. R. LIPSKY, Anal. Chem., 38 (1966) 1194. (C, P)

471 a Wheat ff avor components M. MCWILLIA~ AND A. C. MACKEY, J. Food Sci., 34 (1969) 493. (A)

472 The mechanism of S-deoxyhexose synthesis. I. IntramoIecular hydrogen transfer catal_yzed by deoxythymidine phosphate D-glucose o.xidoreductase A. IMELO, W- H. EL.LIOT _-v~i L. GLASER. J. Biol. Chem., 243 (1968) 1467. (C, J)

472a Radiation, processing and storage effects on the head gas components in clam meats

473

474

475

476

477

478

479

J. M. MEK~ELSOHN AXD R. O- BROOKE. Food Tech., 22 (1968) 1162 (B) Wide range programmed temperature gas chromatography in the separation of very complex mixtures C. IMERR~T, J. T. WALSH, D. A. FORSS, P. ANGELINI AND S. M. Swrn; Anal. Chem., 36 (1964) 1502. (B) Fast scanning of high resolution mass spectra C. MJZRR~, P. I-BERG, M. L. BAZI~ET, B. N. GREEN, T. 0. MERRON AND J. C. MIIRRAY, AML Chem., 37 (1965) 1037. Volatile compounds produced by irradiation of butterfat C. MERRITT, D. k Foxss, P. AXGELINIM.D M. L. BAZINET, J. Am. Oil Cliem. Sot. 44 (1967)

144. (B) The anaIysis of proteins, peptides and amino acids by pyroIysis-gas chromatography and mass spectrometry C. MERRIAM A&D D. H. ROBERTSON, J. Gas Chromurogr., 5 (1967) 96. (B) Consideration of parameters for coupling GC to .w

C. I~x7, JR., M. L. BAZIXET AKP W. G. YEO_MANS, J. Chronrc.zrogr_ Sci., 7 (1969) 122. (BIG, P) The combination of gas chromatography with mass spedrometry C. Mnwrr, JR, Ap_ol. Spectrosc- Ret,, 3 (1970) 263. C. MERRITT, M. L. BUIKIZ AKD W. G. Y~ox.xxs, Chem. Instrum., (1970). (B+C, P)

Inr. J. Mass Spectrom. Ion Bys., 8 (:972) l-71

Page 57: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 57

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Gas chromatographic and mass spectrometric studies on sterols in vemix gaseosa, amniotic fluid and meconium T. k ~~IETTIN?ZN AND T. LUUKKAIhW, Acta Chem. Stand., 22 (1968) 2603. (C, J) A high-temp inlet manifold for coupling a GC to the TOF-‘--BIS D. 0. MILLER, AMI. Chem., 35 (1963) 2033. The metabolism of 3-Auorobcnzoic acid. II. Studies with *sOr G. W. A. MILZ*z, P. GOLDWIN AND J. L. HGLTZMAN, J. Biol. Chem., 243 (1968) 5374. (C, J) A pathway for oxidative degradation of phytanic acid in mammals C. E. Mru, D. STEINBERG, 3. AVXGA?V xm H. M. FALES, Biochem. Biophys Res. Commun.,

25 (1966) 359. (C, J) A maior pathway for the mammalian o.xidative degradation of phytanic acid C. E. MIZE, J. AVIGAN, D. STEINBERG, R. C. PI=, H. M. FXES Ah’D G. W. A. MILE~E, Biochim. Bfophys. Acta, 176 (1969) 720. (C, 3)

A combined GC--MS method for identifying n- and branched chain alkanes in sedimentary rocks V. E. MODZELESKI, W. D. MACLEOD AND B. NAGY, AnaI. Chem., 40 (1968) 987. (C, P) A comparison of some derivatives of primary amines for gas chromatography using eiectron capture detection A. C. MOFFAT x%m E. C. HORNING, Anal. Lerr., 3 (1970) 205. (C, J) A new derivative for the GLC of picogram quantities of primary amines of the catecholamine series A. F. MOFFAT Ahm E_ C. HORNING, Biochim. Biophys. Acra, 222 (1970) 248. (C, J) Identity of additional aroma constituents in milk cultures of Streptococcus Zactis var. Maltigenes M. E. MORG~, R. C. LIKDSAY, L. M. LIBBEY AXD R. L. PEREIRA, J. Dairy Sk, 49 (1966) 15.

(B) Coupling of a mass spectrometer with a gas chromatograph M. B. MORIN, Methods Phys. Anal-, 3 (1967) 157. (C, J) A system for a small computer, gas chromatograph and mass spectrometer combination J. D. MORRISON, B. E. PURCE AND J. F. SMITH, Int. J. Mass Spectrom. Ion Phys., submitted. Polar lipids in bovine milk- I. Long-chain bases in sphingomyelin W. R. MORRISON, Biochim. Biophys. Acra, 176 (1969) 537. (C, J) Polar lipids in bovine miik. II. Long chain bases, normal and 2-hydroxy fatty acids and iso- merit cis- and trans-monoenoic fatty acids in the spingolipids W. R. Momrsos AXD J. D. HAY, Biochim. Biophys. A&a, 202 (1970) 460. (C, J) Simulation of testosterone biosynthesis by luteinizing hormone in transplantable mouse Leydig ccl! tumors W. R. MOY~E AXD D. T. AR~~~TROI-JG, Steroids, 15 (1970) 681_ (C, J) Perhydro-&carotene in the Green River shale M. T. M~;RPHY, k MCCORMICK AND G. EGLINTON, Science, 157 (1967) 1040. (C, J) Acidic components of Green River shale identified by a gas chromatography-mass spew- trometry computer system R. C. MURPHY, M. V. DJURXIC, S. P. MARKEY AND K. BIE_IANN, Science, 165 (1969) 695.

(C, P) Search for organic material in lunar fines by mass spectrometry R. C. MURPHY, G. PRETI, M. M. NAFISSI-V. AND K. BI~~NN, Science, 167 (X970)755. (C,P) Volatile flavour components from green peas (Pisam saticum). Part I. Alcohols in unblanchcd frozen peas K. E. MURRAY, J. SHIPTON, E B. WHITFIELD, B. H. m AXD G. STANLEY, J. Food Sci-,

33 (1968) 290. (B) The volatiIe aIcohoIs of ripe bananas K. E. MURRAY, J. K. PALMER, F. B. WHITFIELD, B. H. KENNETT ~&i G. STANLEY, J. Food Sci.,

33 (1968) 632. (B) Class separation of ffavour volatiles by liquid chromatography on silica gel at 1 degree C K_ E. MURXAY A&.D G. STALEY, L Chromarogr., 34 (1968) 174. (B)

499a Identification of a-towpherol from tissues by combined GLC-&fs and infrared spectroscopy

Inr. J. Mass Spectrom. Ion Phys., 8 (1972) 1-7i

Page 58: 1972 JUNK (GC-MS Combinations and Applications)

G. A. JUNK 58

500

501

502

P. P_ NAIR AND Z Lu~4, Arch. Biuchem. Biuph_vs_, 127 (1968) 413. (C, J) detection of monohydroxy “bile” acids in the brains of guinea pig affiicted with experimen- tal ailergic eucephalomyelitis S. H. M_ N~pvr, B. L_ HER~~~IX, M. T. KEiLEy, V. BLEISCH, R. T. AEXEL AND H. J. NICHOLA& i. Lipid Rex, 10 (1969) 115. (C, J) Detection of lithocholic acid in muitiple scIerosis brain tissue S. H. M. NAQVI, R_ 3. RA?&EY AXD H. J. Nrcuow- Lipi&, 5 (1970) 578. (C, J) Sa:urated hydrocarbons in bovine liver B. NAGY, v_ i% hfODZEJXS KI AND W. M. Scorr, Biochem. J., I I4 (1969) 645. (C, P)

5OZa Recovery and measurement of volatiles from lioids. Hydrocarbons in irradiated fats

503

504

505

506

507

508

509

510

511

W. W. N~WAR, J. R. CHASZPAGP~Z, M. F. DUS~VCIC ANC P. .R. LETELLIER, f. Agr. Food

Chem., I7 (1969) 645. (B) The As-3.&hydroxysteroid dehydrogenase of bovine adrenal microsomes k M. NE~ILLE, J. C. ORR A-T L. L. ESGEL, J. Endocrinol., 43 (1969) 599. (C, J) Determination of doubIe bond positions in polyunsaturated fatty acids by combination GC-?dS W. G. NIEHAL~S AXB R. RYHFLGE, ifml. Chem., 40 (1968) 1840. (C, J) Ergebnisse mit einer optimierten Kcpphmg von Gas-Chromatograph und Massenspektrom- etef M. C. TEN NOEVER DE BFX~V AND C. BRUWXE. Z. Anal. C/iem., 229 (1967) 321. (C, P) Organic compounds in meteorites. 1. AIiphatic hydrocarbons D. W. NOOXER A';D J. ORO, Geochim. Cosmochim. Acra, 31 (1967) 1359. (C, J+P) Gas chromatographic and mass spectra1 analyses of cooked chicken meat voiatilcs M. NONAKA, D. R. BLACK AND E. L. PIPPEN, J. Agr. Food C/rem., I5 (1967) 7:3. (5)

Combined identification processes: coupling of gas chromatography with other techniques II. NOR-~> AND R. Lo~~ne, Method. Phys_ Anal.. 4 (1968) 61. (C, Unk-) Coupling of open tubular cohmms with a mass spectrometer through the jet-type molecular separator M. NOVOTXT, Chromatographia, (1969) 350. (C, J) Fruit aromas: a survey of components identified H. E. Nunsr~z~ tin A. A. WILLIA_S, Chem. Ind_ (London), (1967) 486.

Locahzation of functional groups in steroids with the aid of l~ass spectrometry. I. Keto- steroids H. OBERI.U~T, M. SPLXTE~_LIX-FRIED~~N AS-~ G. SPITELLER, Chem. Ber., 103 (1970) 1497. (B)

512 A simpIe technique for trapping GC samples from a capillary column for mass spectrometry or rechromatcgraphy on another cohmm R. I(_ ODEAXD, E_ Groc~ AND N. L. B~DsH*s~~~, J_ Chromatogr. Sci., 7 (1969) 187.

513 On the structure of the emulsifiers in gastric juice from the crab, Cancer pzgurus L. A. OORD. H. Da -X az R RYI-IAGE. J. BioL Chem., 240 (1965) 2242. (C, J)

514. Organic matter in meteorites. IL Aromatic hydrocarbons R. J. OUON, J. ORO AXD A. ZLATICLS, Geochim. Cosmochim. Acra, 31 (1967) 193.5. (C, Ji-P)

515 ParatIInic hydrocarbons in pasture plants 3. ORO, D. W. N~~XER AXD S- A. WI~~TROM, Science, 147 (1965) 870. (C, J)

516 Hydrocarbons of biological origin in sediments about two billion years old J. ORO, D. W. NOONER, A. Z~.ATKIS, S. A. Wrrrsrno~r AW E. S. BARGHOORN, Science, 148 (1965) 77. (C, J)

517 High temperature synthesis of aromatic hydrocarbons from methane J_ ORO A?JD J. HA?& Science, 153 (1966) 139X (C, J)

518 Alkanes in fungal spores J. ORO, J. L. LAsrrrsrt AEGG D. WEB=, Science, 154 (1966) 399. (C, J)

519 Gas chromatographic-mass spectrometric analysis of parafimic hydrocarbons in animal products J. ORO, D. W. NOO_XER ANI~ S. A_ W~=or.r> I_ Gas ChrOfMiOgr-, 3 (1965) 105. (C, J)

52s Application of higtz resoIution gas-chromatography-mass spectrometry to the analysis of p>mlysis products of isoprene J. ORO, J. Hm AND A. ZLATKIS, Anal. Chem., 39 (1067) 27. (C, J)

521 Ahpbatic hyd roearbons in pre-carnbriau rocks

Inr. X_ d&ss Spc*om_ Ion Phys-, 8 (1972) f-71

Page 59: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 59

J. OR0 ohm D. W. NOOXER, Nufwe, 213 (1967) 1082. (C, J) 522 A comparative study by GC-_MS of environmental hydrocarbons from four different localities

J. ORO, J. GIBERT, D. W. NOONER AND E. GELPI, Enciron. Sci. Technol., in press. (C, J) 522a Application of combined chromatography-mass spectrometry to the analysis of aromatic

523

524

525

526

527

528

529

530

531

532

533

534

hydrocarbons formed by pyrolysis of methane J. OR0 AEiD J. HAX, J. Gas Chromnrugr., 5 (1967) 480. (C, J) Aliphatic hydrocarbons in meteorites J. ORO AND D. W. NOONER, Nafure, 213 (1969) 1085. (B) Aiiphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms J. ORO, T. G. TORNABE&& D. W. NOONER AND E. GELPI, J. Bacterial., 93 (1967) 1811. (C, J) Hydrocarbons in extraterrestial samples J. ORO, E. Gusr AX- D. W. NOONER, 1. Brit. Znterplanet. Sot., 21 (1969) 83. (C, J) Gas chromatographic and mass spectrometric methods applied to the analysis of iunar samples from the Sea of Tranquility J. ORO, J. GIBERT, W. UPDEGROVE, J. MCRE~OLDS, J. ImhTz, E. GIL-Av, D. FLORY AND A. ZLATKIS, J. Chromarogr. Sci., 8 (1970) 297. (C, JfS) Characterization of invertebrate sphingolipid bases: Occurrence of eicosasphinga-4,11- dienine and eicosasphing-1 l-enine in scorpion J. D. O’CONNER, A. J. POLITO, R. E. MONROE, C. C. SWEELEY AND L. L. BIEBER, ..?3iochim.

BiupIzys_ Acta, 202 (1970) 195. (C, J) Identification of pristane in human sebum and related lipid sources H. J. O‘NEILL, L. L. GER~HBEIN AND R. G. SCHO~Z, Biochim. Biophys_ Res. Cornman., 3.5 (1969) 946. (B) Uber das Vorkommen aromatischer Amine in Zigaretterauch M. PAILER, W_ J. HUBSCH AND H. KUHX, Monarch. Chem., 97 (1968) 1448. (C, P) The metabolic fate of orally administered quinidine gIuconate in humans K. H. PALMER, B. IMARTIN, B. BAGGFIT AND M. E. WALL, Biochem. Pharmacol-, 18 (1969) 1845. (C, J) Metabolic removal of a ;7z-ethynyl group from the antifertility steroid, norethindrone K. H_ PALMER,J. F. FEIERABEXD,B. BXGGE-IT ASP M. E. WALL, J. Pharmacol. Exp. Ther., 167 (1969) X7., 207. (C, 1) Detection of meat odours R. PAITERSON, Process Biochem., X5) (1970) 27. (C, J) Catty odours in food: their production in meat stores from mesityl oxide in paint solvents R. L. S. PA~RSOX, Chem. Ind. (London), (1968) 548. (C, J) Changes in the volatiIe profile of peanuts and their relationship to enzyme activity levels during maturation H. E. PAXTEE, J. A. SWGLE~ON, E. B. JOHNS AND B. C. MUUIX, J. Agr. Fond Chem., 18 (1970) 353. (C, Unk.)

534a GC-MS of plant phenol& and related compounds

535

536

537 538

539

540

541

E. D. PELLIZZARI, C. CHUAXG, J. Kuc AND Z. B. WILLIAMS, J. Chromatogr_, 40 (1969) 285. (C, J) Pyrolysis gas chromatography of phosphoglyceride. A mass spectral study of the products E. G. PERKIM oh?) P. V. JOHX~TON, Lipiak, 4 (1969) 301. (C, P) Determination of double bond position in di- and trienoic fatly acids by combination GC--MS

E. G. PERKINS AND C-J. ARGONDELIS, Lip&, 4 (1969)619. (C, P) E. G. PERKI&%, private communciation. (C, P) Mass spectrometric identification of aldonolactones as trimethylsilyl ethers G. PETE-N AXD 0. SA~L!ELSON, A&z Chem. Scan& 21 (1967) 1251. (C, J) Photooxidation of DDT and DDE J. R. PLI_MMER, U. 1. KLI~GEBIEL AND B. E. HUMMER, Science, 167 (1971) 67. (C, P) Determination of the strrrctures of sphingolipid bases by combined GC4 A. L. POLITO, J. NAWOR~ AND C. C. S‘WEELFY, Biochemistry, 8 (i969) 1811. (C, J) GC-MS of sphingolipid bases. Characterization of sphinga4,ledienine from plasma sphingo- myelin A. J. POLITO, T_ AKITA AND C_ C_ SWEELEY, Biochemistry, 7 (1968) 2609. (C, J)

Znt. J. Mass Spectrom. Zon Phy.s_, 8 (1972) 1-71

Page 60: 1972 JUNK (GC-MS Combinations and Applications)

60 G.A.fUNR

542 Steam volatite aroma constituents of roasted cocoa beans M. %kAAG, I-X. S. STEXX ASD M. S. TrBBETTS, J. Agr. Food Ckem., 16 (1968) 1005. (C, P)

543 Sequence analysis by combined gas chromatography and mass spectrometry- 11. Structure of antamanide A_ PROX. J. SCHWD ohm 1% OTENHEYM, Jus!u.s Liebigs Ann. Ckenz., 722 (1969) 179. (B)

544 A new giiberellin in the seed of Pkaseohs mulrifloras R. j_ PRY~ AXE J. MAcM~~N, Terrakedron Left., (1967) 4173. (C, 3)

545 ?he identification of bamboo gibberellin in Pkaseoius multijorus by combined Gc--MS R_ J. PRY~E, J. MACMILJ_%X AXD A. MCCORMICK, Terraked’ron Lert., (1967) 5009. (C, J)

546

547

548

549

550

Gas Chromatography

H. P~~NELL, Wiley, New York, 1962. Carbohydrate components of bovine-kidney gangliosides K. PuRO, Biockim. Biopkys- Rcfa, 187 (1969) 401. (C, J) Fatty acids and sphigosines of bovine-kidney gangliosides K. PURO A.XZ A. KER+EN. Biochim. Biophys. Acfa, 187 (1969) 393. (C, J) Composition and stability ‘of Pecan oils T. M. PYRIADI ASW M. E. MASON, .r. Amer. OiC Ckem. Sot., 45 (1968) 437. (C, J) Volatile& from a commercial pea blancher. Mass spectral identification J. W. ILULS, W. H. MCF_~DDEN, R. M. SEIFERT, D. R. BLACK AND P. W_ KILPATRICK, J.

Food Sci., 30 (!965) 228. (A) 550a A chromatographic and mass spectrometric study of 6-O-(2-hydroxyethyl)-o-glucose and

its ethylene adducts 0. RA!+~ A;*?) 0. SA&ILYZLSON, Curbokyd Res., 6 (1960) 355. (C, J)

551 Ester production by Pseua’omonas fragi. I. Identification and quantitication of some of the esters produced in milk cultures M-C. ~DY, D. D.Brrrs. R_ C. LISD~Y,L_ M. LXBBEY,A. MILLER AND M-E. MORGAN,

J_ Dairy Sri_, 51 (1968) 655_ (B) 552 Appiicar:ons of Itfass Specpometry ro Organic Chemistry

R- I- REED, Academic press, New York, 1966. 553 lnterfacial systems for the couphng of GC with 3s

D. I. REES, Tular;ra, 16 (1969) 903.

553a Nepetalactone and epinepetaIactone from Nepeta cataria L.

F. F. E. REGNIER, E. J. Ersx~r.z~ux =.rrr G. R. WXLER, Pkyrockemisfry, 6 (1967) 1271_ (C, J) 553b Studies on the composition of the essential oifs of three AIepeta species

F. E. REGNIER, G. R. WALLER A~W E. J. EISENBRAIJX, Pkytockemisrry, 6 (1967) 128 l- (C, J) 553~ Identification and quantitation of free neutrat carbohydrates in milk products by GC+IS

G. A. REIXECCIUS, T. E. KAVA~GH AND P. G. KEZQEY, J. Dairy Sci., 53 (1970) 1018. (C, J) 554 An investigation of the carbohydrate components of glycoproteins using a cc-!.fs-computer

%?RE~~~~oLD AND K. BIEXQZX, 17rk Annual Confirence on Mass Spectrometry and Allied

Topics, Dallas, IMay, 1969. Paper No. 43. (C, P) 555 Comauter control of mass analyzers

556

557

558

W. E. RE~XOLDS, J. C. BRIDGES;R. B. TUCKER AND T. B. COBURN, 16rk Annual Conference on Mass Specrrometry and Allied Topics, Pit&burg, 1968. Paper No. 33. (A) A computer operated mass spectrometer system W. E. REYXOLDS, V. A. Bxcox, J. C. BRCDGE~, T. C. COBLJRX, B. HALPERV, J. LEDERBERG, E. C. LEVINTH.+L, E. Srrs~ ASD R. B. TUCKER, Anal. Ckem., 42 (1970) 1122. (A+ C, P) Mas.s spectra and gas chromatography of the Ornuxia alkaIoicIs K-L. RIXEI%%RT,JR,K.J. SCHIL.LING,C_ L. BROWN AND R.H.HECHENDORV, 17th Annual

Conference on Mass Specrrometry andAIIied Topics, Dallas, May, 1969. Paper NO. 47. (Unk.) Mass spectrometry x L. RINFHAXT XND T. l-L KI_XXLE, Ann. Ret_ Pkys_ Ckem., 19 (1968) 301.

55Sa Occurrence of simple alkylpyrazines in cocoa butter G. P. RIZZI, J. Agr. Food Ckem., 15 (1967) 549. (C, P)

559 Introduction to Mass Sp&xtromerry, Instrumentation and Tec&iwes J_ Ro~~z, Interscience~ New York, 1968, Ch- 14.

iti- J. Ma& Spectrom. Ion Pkys.., 8 (1972) l-71

Page 61: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-$fASS SPECTRObfETER COMBINATIONS 61

560

561

562

563

564

565

566

567

568

569

570

571

572

573

575

575

576

577

578

579

580

581

582

A combination of mass spectrometer and FID for open tubular column chromatography J. ROER4ADE ASD C. R. ENZELL, Acru Chen~. Scar&, 22 (1968) 2383. (C, J) Source and multiplier modifications of a TOF mass spectrometer to increase sensitivity W. K. ROH~EDDER, E. SEXE AND E. D. BITXER, Appl. Specrmsc., 18 (1964) 134. (A) An ionization gauge detector for gas chromatography S. A. RYCE XSD W. A. BRYCE, Can. J. Chem., 35 (1957) 1293. Mass spectrometry of terpenes. 1. Monoterpene hydrocarbons R. RYHAGE AHD E. VOX SYDOW, Acra Chern. Scund., 17 (i963) 2025. (C, J) Use of a wr as a detector and analyzer for eifiuents emerging from high tempsrature gas liquid chromatography columns R. RYHAGE, Anal. Chem., 36 (1964) 759. (C, J) Direct mass-spectrometry of steroids in gas chromatography efiiuents R. RYHAGE AND J. SJOVALL, Biochem J., 92 (1964) 2P. (_C, J) The origin of oxygen incorporated during the biosynthesis of prostaglandin E R. RYHAGE AKD B. SAMIJELSSON, Biochenr. Biopllw. Res. Comtnun., 19 (1965) 279. (C, J) h1.s used as detector and analyzer for emuent emerging from capillary gas liquid chromat- ography column 1

R. RYHAGE, S. Wrssrrtou AKD G. R. WM_LEX, Anal. Chenz., 37 (1965) 435. (C, J) Unit combines GC and mass spectrometry R. RYHAGE, C. C. SWEELEY, Clrenz. &g_ :X’ellx, 44 (10) (1966) 48. (C, J)

Efiiciency of molecular separators used in GC-MS application R. RYHAGE, Ark. Kerni, 26 (1967) 305. (C, J) Identification of fatty acids from butterfat usin, .-. a combined gas chromatograph-mass

spectrometer R_ RYHAGE. J_ Dair_r Res_, 34 (1967) I 15_ (C, J) The marriage of GC and MS F. E. SAALFELQ Ind. Res., 11 (Aug.) (1969) 58. identification of the major components of nutme, _ oil by gas chromatography and mass spectrometry G. A. SAMXIY A&D W. W. NXWAR, Chem. Ind. (London), (196s) 1279. (C, P) On the incorporation of oxygen in the conversion of 8,11,14_eicosatrienoic acid to prostag- landin E B. SASWEUSOX:, J. Amer. Chenr. Sot., 87 (1965) 3011. (C, J) GLC-MS of synthetic ceramides B. SA%IUELSSOS AND K. SAML'ELSSON, J. Lipid Res., 10 (1969) 41. (C, J) Separation and identification of ceramides derived from human plasma sphingomyelins B. SAMIJELSSOX AND K. SAMIUELSSON, /. Lipid Res., 10 (1969) 47. (C, J) Gas chromatographic and mass spectometric studies of synthetic and naturally occurring ceramides K. SAMUE~N AND B. S~W_IEIS~OX, i_ Chenz. PIz_vs. Lipids, 5 (1970) 44 (C, J) Gas-liquid chromatography separation of ceramides as di-0-trimethyslilyl ether derivatives B. SAMUEI_~~ON AXD K. SAMUELSSON, Biochitn. Biophys. Acta, 164 (1968) 421. (C, J) On the occurrence and nature of free ceramicies in human plasma

K. SAMLIELSSON, Biochim Biophys. Actu, 176 (1969) 211. (C, J) Quantitative gas chromatography of prostaglandin E, at the nanogram level: USe of

deuterated carrier and multiple-ion analyzer B. SL\XKIELS%ON, M. HA.~BERG AND C. C. SWEELEY, Anal. Biochem., 38 (1970) 30% tC, J) ivle!\yl haloacetone ketats as steroidal alcohol derivatives in gas-liquid chromatography and mass spectrometry G. A. SARFATY fir H. M. FALES, Anal. Chem., 42 (1970) 288. (C, J) Heat induced compounds in milk R. A. SCAXLAN, R. C. LINDSAY, L. M. LIBBEY AND E. A. DAY, J. Dairy Sci., 50 (1967) 960.

(A) Heat-induced volatile compounds in milk R_ A_ SC~N_,~N, R. C. LINDSAY, L. M. LIBBEY AND E. A_ DAY, J. Dairy Sci., 51 (1968) 1001.

(A, B)

fnr. J. Mass S~CtrOJJJ. Ion Phys.., 8 (1972) I-71

Page 62: 1972 JUNK (GC-MS Combinations and Applications)

G. A. JUNK 62

583

584

585

586

587

588

589

method consisting of capillary GLC-_! G. SCHOMBURG AKD D. HEXXBERG, Chromarogruphiu, 1 (1965) 23. (B)

589a GC4i.s analyses of the volatile aroma of tomatoes

590 J. SCHORHULLER AND H. J. KOCHXX~X, Z. Lebensm. Infers.-Forsch., 141 (1969) I. (A) AnaIyse von i-Farafhngemischen aus “methylene insertion”. Reaktionen mit einer Kom- bination capi!Iar GC+fs

591

592

593

594

595

596

597

598

599

600

601

602

603

G. SCHOMBURGAND D.HIXXEB~RG,Z. Anal. Chem., 236 (1968)279.(B) Lipids of geochemical significance in microscopic algae II. Fatty acids H- SCIINEIDEF~, E_ GUPI, I_ ORO x+im E_ D_ BE_%-, Ph_vfochemistry, 9 (1970) 613. (C, J) Enzymatic conversion of linoleic acid to IOD-hydroxy-3”-cis-octadecenoic acid G.. J. SCHROEPFER, W_ G. NIEHAUS ASD 3. A_ MCCLOSUY. J_ Biol. Chem.. 245 (1970) 379%

ic, 1) Zum Vorkommen von Sterinen in Bakterien K. SCHC'SERT, G. ROSE, I-I_ WACHTEL, C. HORHOLD AND N_ IKELAWA, Eur. J. Biochem.,

5 (1968) 246. (C, J) Volatiles from oranges. II. Constituents of the juice identified by mass spectra T. H_ SCHULTZ, R. TER~NISHI, W. H. MCF~DDES, J. CORSE xs3 P. W. KILPATRICK, J. Food Sci., 25, (1964) 790. (B) VoIatiIes from Deficious apple essence - extraction methods T. H. Scxw~rz, R. A_ Ft~-rrr, D. R_ BUCK. D_ G. GUADAGNI, W. G. SCHULTZ AND R. TERANISHI, J_ Food Sci., 32 (1967) 279_ (B) Interrupted-zfzttion gas chromatography - Its application with eluate concentration to auto- matic production of simultaneous infrared and mass spectra R. P. W_ Scorr. I. A. Fowrrs, D. WELTE AND T. WILKINS, in A. B. L~LE~VOOD (Editor), Gus Chromurogrupk_v, Institute of Petroleum, London, 1967, p_ 318. Combined gas chromatography-mass spectrometry R. P. W. Scorr ASD J. WILNNS, Proc_ Sot_ Anal. Chem., 5 (1965) 23.

Recent techniques in flavour analysis R. P. W- Scorr, Chem- Znd (London), (1969) 797. Aspects of the combination GC-m in organic chemistry J. SEIB~ Ric. Ital. Sostanze Grasse, 46 (1969) 640.

Identification of some constituents of carrot seed oil R. M. SEIFERT, R_ G. BUTTERY AXD L. LING, 1. Sci‘. Food Agr., 19 (1963) 3P3. (B) Identitication of polycyclic naphtbenic. mono-, and diaromatic crude oil carboxylic acids W- K. SEIFERT AND R. M. TEET=R, Anol. Chem., 42 (1970) 180. (A) Mass spectronetry and lipid research E. SELKE, C. R. SCHOLFIELD, C_ D. EVAXS AXD H. J. D~oN, J. Amer_ Oil Chem. Sot, 38

(1961) 614. @I)

Tandem GC-M!r analysis of voiatiles from soybean oil E. SELI(E, H. A. MOSER X~D W. K_ ROH%XDDER, J. Amer. Oil Chem. Sot., 47 (1970) 393. (C, P)

604 Influence of the GC-_w coupling on the p)erformance of a chromatographic column

Blackberry fiavor components of commercial sence R_ A. Sm, D. D. BILLY AND L. M. LIBBEY, J. Agr. Food Chem., IS (1970) 744. (A) Collecting and transferring packed-column gas chromatographic fractions to capillary columns for fast scan mass spectral analysis R. A. Sc~nrx~, R. G_ ARXOLD AND R. C. LINDSAY, J_ Gas Chromarogr., 6 (1968) 372. (B) N-Nitrosamines not identified from heat-induced aldose amino acid reactions R. _4_ SCAXXAE~ AXD L. M. LIBBEY, submitted for publication_ (B) Bile acids on the skin of patients with pruritus hepatobilia-ry disease L.J. SCHOENFIELD,J. SJO~ALL AND E. PER&IAN, Nature, 213 (1967)94. (C, J) Combination of gas chromatography and chemicai ionization mass spectrometry D. &‘I. SCHOESGOLD AS- B. ~~~UNSON, Anal. Chem., 42 (1970) 181 l- (A) Flavor components of cognac J. SCKAEFER AND R_ TIXUER, J. Food+, 35 (19iO) IO_ (B) Retention behavior of compounds containing isotopes by application of an isotope scan

Innt- J. Mass Spectrom. Xon Phys., 8 (1972) I-71

Page 63: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH--MASS SPECTROMETER COhIBiNATIONS 63

605

606

607

608

609

610

611

N. SEJXER AND G. GUIOCHON, /_ Chrornofogr. Sci., S (1970) 147. (A) The identification and measurement of a new steroid 16#?-hydroxydehydroepiandrosterone in infant urine C.H.L. SHACKLETON, R. W. KELLY, P.M. ADHIKARY, C. 3-W. BROOKS, R-A. WRILNESS, P. J. SIKE~ AXD F. L. MITCHELL, Sreroids, 12 (1968) 705. (C, J) The identification of epimeric 5-androstene-3,16,17-triols in p&ma from the umbilical cord and in meconium, faeces and urine from infants C. H. L. SHACKLJXON, J. A. GIJ~AF~XW AND J. SJOVALL, Steroids, 15 (1970) 13 1. (C, J) Characterization of phosphonomycin by microchromatogaphic and related techniques H. SAFER, W. J. A. VANDEXHEUVEL, R ORMOXD, F. A. KUEHL AND F. J. WOLF, J- Chro-

rnorogr., 52 (1970) I1 1. (C, J) Characterization of alkylation products of diethyl phosphorothioate M-T. SHAFIK, D. BR~DWAY, F-J. BIROS AND H. F. ENOS, J. Agr- Food Chem., I8 (1970) 1174.

Book review of the Arias if _Wms Spectral Data R. H. SHAPIRO, Org. ,%fars Spectrorn., 2 (1969) 1041. Biosynthesis of nitio compounds. Studies on potential precursors for the nitro group Of & nitropropionic acid P. D. SHAW AFTP J. A. MCCLOSKEY, Biochemisfry, 6 (1967) 2247. (C, P) ButylboronaIe esters as derivatives for GC--MS of hop constituents S. J. SHAW, Tetrahedron Letr., (1968) 3033. (C, J)

61 la Combined GC-31s of inositol trimethytsilyl ethers and acetate esters W. R. SHE~L~X, N. C. EILERS AI‘;D S. L. G~~D~Ix, Org. Akss Spectrom., 3 (1970) 829- (C, J)

6i2 Mass spectrometric study on the mechanism of D-glucose 6-phosphate-r-m)-o-inositol l- phosphate cyciase W. R. SHERMAN, M. A. STEWART AND M. ZINBO, J_ Biol. Chezn., 244 (1969) 5703. (C, J)

613 Constituents of Yuzu (Citrus junos) Oil

N. SHISODA, M. SHIGA AND K. NISHIMURA, Agr. Biol. C/rem. (Japan). 34 (1970) 234. (Unk.) 613a Studies on a kerosene lil-ze taint in mullet (Mugil cephalus). II. Chemica! nature Gf the

614

615

616

617

618

619

620

621

volatile components J. SHIPTOS, J. H. LASI;K_ E. MURRAY AND G. VALE, J. Sci. Food Agr., 21 (1970) 433. (B) Thermal decomposition of aromatic and heteroaromatic amino acids G. P. SHULKLX AND P. G. SIMMONDS, Chem. Comnzun., (1968) 1040. (Unk.) Volatile components of milk fat steam distiliates identified by gas chromatography and mass spectrometry T. J. SIEK AFIP R_ C. LISDSAY, J. Dairy Sci., 51 (1968) 1887. (B) Organic analysis by pyrolysis-gas chromatography-mass spectrometry. A candidate experi- ment for the biological exploration of Mars P-G. SI~IMONDS, G. P.S~u~.mlr' AND C-H. STEMBRIDGE, in A.ZLXTKIS (Editor), Advances

in Chronrafogruphy, Preston Tech. Abstracts Co., Evanston Ill., 1969, p- 230. (C, R) Organic analysis by pyrolysicgas chromatography-mass spectrometry. A candidate experi- ment for the biological expoloration of Mars P. G. Sr~worc~~, G. P. SHULMAN AND C. H. STEWBRIDGE, J. Chronrarogr. Sii-, 7 (1969) 36.

(C, J) The unextractab!e organic fraction of the Pueblito de Aliende meteorite: Evidence for its indigenous nature P. G. SI~IMOXX, A. J. BAUX~N, E. M. BOLLIN, E. GELPI AND J. ORO, Proc. Nut. Acad. SC:.

U-S., 64 (1970) 1027. (C, J+R) Whole microorganisms studied by pyrolysis-cc-ars: Significance for extraterrestrial life detection experiments P. G. SIXTOXDS, Appi. Microbial., 20 (1970) 567. (C, J) Paliadinm-Hz system - Efficient interface for GC-Wi P.G. SIM,IMONDS,G. R. SHOEMAKE AND J-E. LovELocK,A~~I.C~~II~.,~~ (1970)881. (C, RI Potential of combined GC--MS in the analysis of planetary atmosphzres P. G. SLUIONDS, Amer. Lab., Oct. (1970). (C, R)

Int. J_ Mass Spectrom. Ion Phys.. 8 (1972) l-71

Page 64: 1972 JUNK (GC-MS Combinations and Applications)

64 G-A-JUNK

622 623

624

625

626

627

628

629

P. SIM~~ONDS, private communication- CC, R) Elucida:ion of structure of organic compounds by thermal fragmentation W- SI.UON, P. KREXUER, J. A- Vortex AND H. STEIZ~ER, J- Gas Chromatogr-, 5 (1967) 53. Determination of androsterone and dehydroepiandrosterone sulfates in human serum by GLC J_ !%ovarr .CxD R. VIHKO, &?eroi&, 6 (1965) 597_ (C, J) Identification of 38,17~~i:iydrox)iandrost-S-ene,~~,~~~hydrox~~re~-5~ne and epian- drosterone in human periferal blood J- S~OVAU. AND R- VIHKO, Srerokic, 7 (1966) &7_ (C, J) Identification of 5_Jr-pregnane-3&0,2i-trio1 in human pregnancy plasma J- SJOV.+LL Ah-D K. SJOVALL, Srerofds. I2 (1968) 359. (C. J) Applications of gas chromatography-mass spectromstry to the analysis of bile acids in bio- IogicaI materials J- QOVAU, Menu. Sot- EndocrinoL, No. 16 l.1967) 243. (C, J) AnaIysis of soIvoiyzable steroids in human plasma by combined CC-ws 3. SJOVALL AND R. VIHKO, Acta Endrocrinol., 57 (1968) 247. (C, J) ‘Mass spectromztric evidence for methyl and ethyl esters of long chain f&y acids in ox pan- creas

630

631

633

633

635

535

636

637

638

J- SKOREPA, P_ HRABXK, P. MXRE~ ASD A. LINNARSOX, Biochem. J- ,107 (1968) 318. (C, J) Heal-induced compounds in strawberries J. L- SLO.~. D. D- BIU XXD L. &I_ LIBBEY, _I. &r_ Food Ckm., 17 (1969) 1370. (A) Identification of macrolactones as odouriferous components of the scent of the solitary bees Halictus calceatus Stop. and Halictu oibipes F. S- STALL~ERG-STEXHAGEN, B. KULLEXBERG, B. BERGXROX~ A?;D C. 0. ANDERSSOS, Ark.

Kemi, 26 (1967) 191. <C, P) Chemical communication in the insect world S- STALLBERG~TESHAGES A’LID E. STEXHAGEX, SC. Kern. Tidskr_, 80 (1968) 17s. (C, J) Gas-Iiquid chromatography-mass spectrometry combination S. STALLBERG-SIESHAGEN AND E. STENHAGEX, in A_ L. BURLINGNNE (Editor), Topics in Organic Chemktry, Wiley-Interscience, London-New York, 1970- n-Pent-l-en-3-01 and n-pent-l-en-3-one in o.xidized dairy products W- STARK, J_ F_ SMITH AND D. A_ Foxes, J. Dairy Res., 34 (1967) 123. (C, P)

Jetziger Stand der 1Massenspektrometrie in der organ&hen Analyse E- S~~&GEN, Z- Anal- Chum-, 205 (1964) 109. (in German-) Mass spectrometry in biochemical research E- STENHAGEN, Chin&t. 20 (1966) 34%

VoIatiIes from oranges_ III. The structure of sinensal K. L- Sm, R- E. LUNDIN AND R. TERANISHI, J_ Org. Chem-, 30 (1965) 1690. (A) Llardme de cafe M- STorL, M. Wrxnx, F_ GAXTSCHI, I. FLP,~E~T AXE B. WILLHAL;SI, fiek Chim. Acta, 50 (1967) 628). (C, P)

638a VolatiIes from grapes. I- Some volatiles from Concord essence

639

640

641

642

643

644

I(. L- STEVEE;S, A- LEE, W.H. MCFXDDEXXXD R_TERXSISHI, J- Food Sri-, 30 (1965) 1006. (A) Volatiies from grapes- Muscat of Alexandria ic L- SLYER, J- B~%~EN. A. LEE ASD W. H. MCF=,DDEN, J_ Agr. Food Chem., 14 (1966) 249. (%I Voiatile constituents in Guava K. L. STEWS, J- E. BREKKE AND D. 5. STERS, J_ Agr. Food Chem., I8 (1970) 598. (C, S) Volatile components of canned snap beans M- A- Sm W_ -4. FRAZIER, R. C. LIXD.Q,Y AND L. M. LIBBEY. Proc- Amer. Sot- Horticul- Sci., 91 <19;7)‘833. (A) Composition of Montmorency cherry essence_ I. Low boiling components E- E- STI%%N, C. 3. IX~OLM, V_ J. FILIPIC I\ND C. H. HILLS, 1. Food Sci., 34 (1969) 246. W COWOSition of .Montmorency cherry essence. II. High boiling components E. E- S-X, C. f. ~IEY, V. -1. FILIPIC ~313 C. H. HILLS, J. Food Sci., 34 (I9691 54.4. (B) I,2-Dihydro-l.I,6_rrimethyinaphthaIene from strawberry oi1 L- P- STOLZ. T_ R- &P. W_ 0. S.HITH, JR_. W_ T_ SMI~. JR_ AND C. E- C=QLLv, PAYtO-

fnr. ,‘. Mass Spectrom- Ion Phys., 8 (1972) 1-71

Page 65: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 65

chemisrry, 9 (1970) 1157. funk.) 644a GLC senaration of thvroid hormones

645

646

647

64s

I. E. S&JFFER, P. I. J,&ZON~~AKI AXD T. J- WESGER, Biuchim. Biophys. Acra, 127 (1966) 261.

(C, J) Dimers and trimers of x-tocopherol: metabolic and synthetic studies B. S. STRXUCH, H. M. FALES, R. C. Prrrwxs AND J. AVXGAN, .I. Nurr-. 97 (1968) 194. (C, J) Organic compounds in carbonaceous chondt-ites M. H. SNDIER, R. HAYATSU AND E. ANDERS, Science, 149 (1965) 1455. Analyses of complex mixtures of hydrocarbons by TOF mass spectrometry - open tube chro- matography M. H. STUDIER AND R. HAYATSU, Anal. Chem., 40 (1968) 101 I. (A) Origin of organic matter in early solar system. II. Hydrocarbons M_ H. STUDIER. R. HAYATS~ AND E. ANDERS, Geochim. Cosmochim. Acra, 32 (1968) 151. (A)

645a Thermal and mass spectrometric fragmentation of esters of deuterated long chain carboxylic

649

650

651

652

653

acids K. K. SUX, H. W. HXYE~ AND R. T. HOLMAN, Org. hfass Spectrom., 3 (1970) 1035. (C, D) Mass spectrometric determination of unresolved components in. GC effluent C. C. SN’ZZLEY, W. H. ELLIOX, 1. FREES AXD R. RYHAGE. Anal. Chem., 38 (1966) 1549- (C, J) Determination of the structure of sphingolipid bases by combined GC-%~ C. C. SWEELEY mm A. J. POLITO, 16rfr Annriai Conference of Mass Specrromerry and Aflied Topics, Pittsburg, May, 1968. Paper No. 87. (C, J) On-line digital computer system for high speed single focusing mass spectrometry C.C. SNTELEY, B. D-RAY, W. I. WOD,J. F. HOLLAND AND M.I.KXICHR'SKY, AnaL Chem. 42 ( 1970) 1505. (C, J) Evaluation of isomeric sodium alkenesulfonates via methyiation and gas chromatography T. A. TAULLI, J_ C/zromarogr. Sci., 7 (1969) 671. (B) Analysis of alpha olefins using a gas chromatograph-mass spectrometer combination R. M. TEEXR, C. F. SPESCER, J. W. GREEN AND L. H. S.%t.rusoN, J. Amer. Oil C/rem. SOC., 43 (1966) 82_ (A)

654 Volatiles from oranges. Oxygenated compounds identified by infrared, proton magnetic resonance and mass spectra R. TERANISHI, R. E. LUXDIN, W. H. MCFADDEN, T. R. MON, T. H. STEVENS AND K. L. WASSER~LQJ, J. Agr. Food Chem., 14 (1966) 447. (B)

655 Volatiles from strawberries. I. Mass spectral identification of the more volatile components R. TERL\NISHI.J. W. CORSE, W. H. MCE~DDEN, D. R-BLOCK AND A.i. MORGAN, JR., J-Food Sci., 28 (1968) 478. (A)

657

658

656 Volatiles from oranges. 1. Hydrocarbons. Identified by infrared, nuclear magnetic resonance and mass snectra R. TERA&HI,T. H. SCHULTZ,~. H. MCFADDEN, R. E. LUNDINAND D.R. BLACK, J-Food Sci., 28 (1963) 541, (A) Role of gas chromatography in aroma research R. TERANISHI, R. G. BUI-I-ERY, R. E. LUNDIN, W. H. MCFADDEN AND T. R. MON, Proc. Amer. Sot. Brewing Chemisrs, (1963) 51. Capillary column efficiencies in ~c-Ms analysis R. TEUNISHI, R. G. BUIXRY, W. H. MCFADDEN, R. T. h40~ AXD J. WXSSER!+IAX. .AnaL Chem., 36 (1964) 1509. (A) Gas chromatographic analysis of histamine metabolites in human urine R. THAM ANII B. HOL~T, J. Chrumatogr., 19 (1965) 286. (C, J)

Identification by mass spectrometry of pyroglutamic acid as a peak in the gas chromato- graphy of human urine R. THG~, L. NYSIROEM AND B. H. HOLM~TEDT, Biuchem. Pharmncol., 17 (1968) 1735. (C, J) A Simple heated-inlet system for use with a combined gas chromatograph-mass spectrometer C. B. THOR AND B. DAVIS, Chem. ind. (London), (1969)413.

659

660

661

661a The alkaloids of Aspidosperma NebIinae. An application of directly coupled CC--MS D-W. THOXWS,H. K. SCHXOESAND K.BIEMANN, Erperienria,25 (1969)678.(C, P)

662 Chemistry and metabolism of sphingolipids. On the biosynthesis of phytosphingosine by yeast

Inr_-I. Mass Specrrom. Ion Phys., 8 (1972) 1-71

Page 66: 1972 JUNK (GC-MS Combinations and Applications)

66 G. A. JUNK

663

w

665

666

667

668

669

S. THORPE AND C. C. S~EIXW, Biochemistry, 6 (1967) 857. (C, 3) Identification of fatty acids and aliphatic hydrocarbons in Sarcina Iurea by gas chromatog- raphy and combined cc-m T. G. TOI~SXSM. E. GELX -.+>m J. ORO, J- Bacterial., 94 (1967) 333. (C. J)

Fatty acid and aliphatic hydrocarbon composition of Surcina Iutea grown %I three different media T. G. TORXABEZ~T, E. 0. EEINXZTT AS’D J_ ORO, J. Bucferiof., 94 (1967) 344. (C, J) ‘&C incorporaticn into tile fatty acids and aliphatic hydrocarbons of Surcina Iurea 1. G. TOR~ABENE AXD J. ORO, J. Bucferiof., 94 (1967) 349. (C, 3) Occurrence of squalene, di- and tetrahydrosqualenes and vitamin MKS in halophilic bacte- rium. ffalobacferium cutirubrunz T. G. TORXABEXE, M. KA-ms, E. GELPI ASZ J. ORO, J. Lipid Res., 10 (1969) 294. (C, J) Studies on the x-oxidation of phytanic acid by rat liver mitochondria S. C. Tsar, J. AVIGAX ASD D. STEINBERG, Biol. Chem., 244 (1969) 2682. (C, 3)

Gas-liquid chromatographic determination of neomycins band C K. TSUJI AXL) J. H. F,OBERTSOX, Anal_ Chem., 41 (1969) 1333. (C, J) . Gas-liquid chromatographic determination of amino-giycoside antibiotics: kanamycin and paromomycin K. TSUR ~~113 2. H. RI)nanrso~, Anti. Chem., 42 (1970) 1661. (C, J)

669a Trace components in the flavor fraction of maple syrup

670

671

672

673

674

675

J. C. UNDERWOOD, C. 3. Doot~~ ASD V. J. FILIPIC, J. Fuod Sk, 34 (1969) 105. (A) Gc-quadrupole mass spectrometric analysis of organic compounds W. S. UPDEGROVE, J. ORO A&Z -4. ZL~TIEIS, J_ Gus Chromutogr.. 5 (1967) 359. (B+C, 3) Analysis of organic matter on the moon by GC-MS. A feasibility study W. S. UPDEGROYE AT J. 030, Research in P&sirs and Chemistr_~., Pergamon Press, Oxford, Nevv York, 1969, p_ 53. The maximum potential of GC,kS W. S. UPDEGROVE ASP P.,HAuG, Amer. Lab., Feb. (1970). Cuplajul chromatognf pentru gaze-spectrometru de masa, tehnica noua de analiza a ameste- curilor complexe c. L’RZXZ ASD I. MASTXX~ Stud. Cercer. Cizim.. 16 (1968) 715.

Coupling of a gas chromatograph and a mass spectrometer through the direct insertion lock K. VAS CXUWEXBERGHE, M. VAXDEWALLE AND M_ VERZELE, 1. Gas Chromarogr-, 6 (1968) 72.

(C, P) Determination of the branching degree in alkylbenzenes by pyrolysis gas chromatography K. V.w CAU~EXBERGF~E, M. VX%PEWALL.E AND M. VERZELE, J. CIzromafogr. Sci., 7 (1969) 698. (C, P)

675a Adventitious trimethyisilylation during combined GLC-Ms W_ 3. A. VAY~XXHEWEL AXD G. W. KURON, J. Chromatogr., 38 (1968) 532. (C. J)

676 Use of bis-trimethybilylacetamide in the preparation of derivatives for the gas-liquid chro- matography of certain adrenocortical steroids W. 3. A_ VAXDEXHEUVEL, J. I__ PATTERSOX AXD K. L. K. BRALY, Biochim. Biuphys. Acta,

144 (1967) 691. (C, J) 676a GC-M5i of some arene tricarbonylchromium compiexes

677

678

679

680

W. J. A. VAX~EXHEWLL, J. S_- KELLER, H_ VE&SG AND B. R. WILLEFORD, AnaL ieff.,

3 (1970) 279. (C, 3)

Gas-liquid chromatography-mass spectrometry of carbon-13 enriched amino acids as

ttimethyisilyl derivatives W_ J. A. VA%~ENHEU~EL AND J. S. GOHEX, Biochim. Biophys. /icra, 208 (1970) 251. (C, J) Gas chromatographic behavior of methanesulfonates and p-toluenesulfonates of sterols W. 3. A. VASDENHEXMX, R. N. STIU~ELL, W. L. GARDIXER, S. WIUTROU AXD E. C. HORX-

LXG. J. Chromarogr., 19 (1965) 22. (C, J) The gas-liquid chromatopraphic behavior of methanesuifonates and mixed siiyl ethers of

bile acids

W. J. A. VASDEXHNVEL AXD K. L. K. BRXLY, J_ Chrumatugr., 3 1 (1957) 9. (C, J) Gas-liquid chromatography of the TMSi derivatives of several amines of biological interest

Znt. J. Mass Spectrum. Zon Whys., 8 (1972) 1-71

Page 67: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 67

W_ J. A. VASDEXHEWEL, J_ Chromatogr., 36 (1968) 354. (C, J) 681 Further studies on the gas-liquid chromatographic behavior of sulfonate esters

W. J- A_ VASDEXHECXJEL, J_ Chromatogr., 43 (1969) 215. (C, J) 682 cc-51s of deuterium containing amino acids as their trimethyl-silyl derivatives

W. J. A. VASDENHEUVEL, J. L. SMITH, I. PUX-I-ER XSD J. S. COHEN, J. Chromafogr., 50 (1970)

405. (C, J) 683 The gas-liquid chromatographic behavior of zearalenones, a new family of biologically

active natural products W. J. A_ V_ASDENHEUVEL, &par. Sci., 3 (1968) 151. (C, J)

683a Mass spectra of TMS derivatives of amino-hydroxy, dihydroxy and dicarboxydiphenyls

684

685

686

687

658

689

690

691

692

693

W. J. A. VANDENHEUVEL, J. L. SWITH AND 3. L. BECK, Org. Mass Spectrom. SuppI., 4 (1970) 563. (C, J) CC--MS of carbon-13 enriched and deuterated amino acids as trimethylsilyl derivatives W. J. A. VA~VENHEUVEL AND J. L. S~IITH, J. Chromatogr. Ski., S (1970) 567. (C, J) Separation and characterization of the prostaglandins by gas chromatography and mass spectrometry F. VANE AND M. G. HORXIKG, _4naf_ Lett., 2 (1969) 357. (C. J) Operation of the quantitative and qualitative ionization detector and its application for gas chromatographic studies

P. F. VARADI .&ND K. ETTRE, Anal. Chem., 34 (1962) 1417. (A) Vacuum output gas chromatography P. F. VA-I AND K. EITRE, Anal. Chem., 35 (1963) 410. (A) The GLc separation of indole amines and indole alcohols as heptalluorobutyryl derivatives J. VEX%~N, A. M. Moss, M. G. HORNING AND E. C. HORNING, Anal. Lett., 2 (1969) 81. (C, J) Gaschromatographische und massenspektrometrische Untersuchung von Phytylubichinon, Vitamin K, und Vitamin K2 W. VETTER, M. VECCHI, H. GUT~LANN, R. RL’EGG, W. WALTHER AND P. MEYER, Helc. Chim.

Acta, 50 (1967) 1866_ Sur la composition de i’arbme de tomate R. VIXM, J. BRICOIJT, J. P. MARION, F. ~MUEGGLER-CHAVAN, D. REYMOND AND R. H. EGLI,

Ifelt:. Chim_ Acta, 52 (1969) 887. (C, P) Gas chromatographic-mass spectrometric studies on solvolyzable steroids in human pe- ripheral plasma R. VIHKO, .Icta Endocrinol. (Co_aenhagerz), Sappl., 109 (1966) 67P. (C, J) The 1973 Viking voyage to Mars Viking Project Management, Astronaut. Aeronaut., 7 (Nov-) (1969) 30. (C, R) Structural elucidation with a thermal fragmentation-gas chromatography-mass spectrometry combination J. A. Vorrsrrx, P. KRIEMLER, 1. O~NJRX, 3. SEIBL AND W. SIXION, Microchem. J., 11 (1966) 73.

(C, P) 694 Einsatz gaschromatographischer Kolonnen hoher Trennleistung in direkter Kombination

mit Massenspektrometer J. A. VOLUIIN, I. OsIti~, J. SEIBL, K. GROB AND W. SIMON, ffefo. Chim. Actu, 49 (1966) 1768.

(C, P) 695 Direkte instrumentelle Kopplung der Gas-Chromatographie mit der hlassenspektrometrie

J. X. VOLLNN, W. SIMON AND R. KAISER, 2. Anal. Chem., 229 (1967) 1.

696 Mass spectrometry of terpenes. II. Monoterpene alcohols E. VON SYDOW, Acta Chem. Scar& 17 (1963) 2504. (C, J)

697 Mass spectrometry of terpenes. III. Monoterpene aldehydes and ketones E. VON SYDOW, Actn Chem. Stand., 18 (1964) 1099. (C, J)

698 Mass spectrometry of terpenes. IV. Esters of monoterpene aIcohoIs E. VOX SYDOW, Acta Chem. Stand., 19 (1965) 2083. (C, J)

699 The aroma of rye crispbread E. \ION SYDOW ~3x1 I(. ANJOU, L.ebens.-Wiss. u. Tech., 2 (1969) 15. (C, J)

700 The aroma of bilberries. I. Identification of voIatile compounds E. VON SYDOW AND K. ASJOU, Lebens.-Wiss. II. Tech., 2 (1969) 78. (C, J)

Znr. J. Mass Spectrum. Zon Phys., 8 (1972) l-71

Page 68: 1972 JUNK (GC-MS Combinations and Applications)

68

701

703.

703

7w

705

706

707

708

709

710

711

712

713

G. A. JUNK

The aroma of bilberries. II. Evaluation of the press juice by sensory methods and GC-MS E. VOX SYDOW, J. ANDERSSON, K. ANJOC AND G. KARLSSON, febetrs- Wiss. II. TecJz., 3 (1970)

I I. (C. J)

Cornplere isotopic fractionation of penta-G-TMS-D-glucose and pexna-O-trimdhyl-d,,-silyl- ~-glucose by GLC-MS G. R. W~LIXR, S. D. SASTRY AXD K. KIXYEBERG, f. Cirro~~niogr. Sci.. 7 (1969) 577. (C, J) Popcorn flavor: Identification of volatile compounds J. P. W.XLRODT, R. C. LIMXC\Y AND L. M. LIEBEY.J- Agr- Food Chem., IS (1970)916. (A) Volatile compounds from heated glucose R. H. WXL~R x?r?) I. S. FAGERSOX, J. Food Sci.. 33 (1965) 294. (C, P) Multichannel open tubular columns J. 1. WAEH AS:C C. MERRITT, JR., J. Gas Chro~nafogr., 5 (1967) 4X (A) Characterization of the non-volatile compounds farmed during the thermal oxidation of l- linoleyl-2,3-distearin. I. The nonacidic fraction L_ R. W~X-LMD XZD E. G. PERKISS, Lipi&, 5 (1970) 187. (C. P) Characterization of the non-volatile compounds formed during thermal oxidation of I- linoleyl-2,3-distearin- Ii. The acidic fraction L. R. WA~TUXD AND E. G. PERKIM, Lipids, 5 (1970) 191. (C, P) High resolution xs *of compounds emerging from a gas chromatograph J_ T. WATSOX _XXD I<. BIEMASN. Anal. CJzenz., 36 (1964) 1135. (C, P) Direct recording of high resolution mass spectra of GC etlluents J. T. Warsox AND K. BIEMASX, Anal. C/zem_. 37 (1965) 544. (C, P)

Ancillaq techniques in gas gromatography J. T. W~rsos, in L. S. Erraa XXD W. H. MCFADDEN (Editors), AnciJJur_v Techniqrres in G. C., Interscience. New York, 1969, p. 158. Nave! fatty acids from the royal jelly of honeybees CApis rne/fifera. L.) N. WVEXVER, N. C. JOHNSTON, R. BENJXMIS ASD J. H. Lsw, Lipids, 3 (1965) 535. (C, P) Mass spectrometry of prrdeuterated molecules of biological origin. Fatty acid esters from Scetzedesmus obliqurts

G. W=XDT AND J. A_ McC~oslc&, BiocJletnisrr_v, 9 ( 1970) 4854. (C, J) Advances in gas chromatogrdphic detectors illustmted from applications to pesticide residue evaluations W_ E. Wr.sr~_+~k~ AND F_ A. GUSTHER, Residae Rec.. IS (1967) 175.

7 13a Determination of steric purity and configuration of diketoplperazines

714

- 715

716

J. W_ WESTLEY, V. _4_ CLOSE, D- N. NrlZCKl AXD B. HALPER%, ritzal_ Clzem., 40 (i968) 1558. (A) Characterization of the iso-branched sphinganines from the ceramide phospholipids of Bacreroides melani~ogenicas D. C. WHITE, A. N_ TUCKER _-\ND C. C. SWEELEY, Biochittz. Biophys. Acra, 187 (1969) 527. !C, -1) Functional group interactions in the mass spectra of trimeth~~lsilyl derivatives of halo acids and hato alcohols E. WHITE AND J. A. MCCLOSKEY, J. Org. Chem., 35 (1970) ~1241. (C, J+P) Volatile constituents of banana E-L. Wrclr,T. Yx!&~NIsHI,A. KOBAYASHI, A. VALENZUELX ASD P. ISSENBERG,J. Agr. Food

Chem., 17 (1969) 751. (C, P) 716a Volatile zonstituerrts of tish protein concentrate

717

718

719

720

E. L. WICK, E- U~DERRISER ASD E. PASER.-\S, 1. Food Sci., 32 (19673 365. (B) Possible interference by chlorinated biphenyls G. WIDMRK, J. Ass. Ofic. Anal. Chem., 50 (1967) 1067, seep. 1069. (C, J) Uber eine Kombination eines Gas-Chromatographen mit einem Massenspektrographen H. WIDMER x"iD T. GAU~N, Hek. Chim. Acra, 45 (1962) 2175. (A) Qnxtrupole mass spectrometry H. Ll. D. W~EX~XSGER, Amer. Lab.. July (1970) 35. Gas chrornatographic and mass spectral analysis of Soybean milk volatiles W. F. WILKENS AND F. xM. LIN, I- .-tgr. Food Chem., IS (1970) 333. (C, P)

IIX J- Mass Specrrom. ion Phys., 8 (1972) I-71

Page 69: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBINATIONS 69

721 VoIatiIe flavor components of deep fat -fried Soybeans W. F. WIJ_~EXS AND F. M. LIN, .l. Agr- Food Chem. 18 (1973) 337. (C, P)

722 Sixth international symposium on gas chromatography and as_qciated techniques F. W. Wrrrvo-rr AND A. B. Lrrrrrwoo~, J. Gas Chromutogr., 4 (1966) 401. (C, P)

723 Volatile compounds from thermally oxidized methyl oleate D. A_ WITI-IYCOMBE, L. M. LIBBEY AND R. C. LIXDSAY, submitted for publication. (A)

724 Eine neue Methode zum Auffangen gas-chromatographischer Mikrofraktionen K. WI- AND 0. DISSINGER, 2. Anal. Chem., 236 (1968) 119.

724a Pyrolysis gas chromatography

725

726

727

728

729

730

731

732

733

734

C. 3. WOLFE, R. J. LEVY AND J. R. WALKER, Znd. Res., 13 (197i) 40. Use of dicyanomethyiene (DCM) derivatives in structural studies of long chain aliphatic acids by mass spectrometry R- E. WOLFF. J. F. WATX~N em B. J. SWEETSIAN, Tefruhedron Lett., (1970) 2719. (C, J) Characterization of unsaturated hydrocarbons by mass spectrometry R. WOLFF, G. WOLFF AND J. MCCLOS~Y, Terrailedron, (1966) 3093. (C, J) An improved technique for transferring fractions from a gas chromatograph to a mass spectrometer W. D. WOOL.~~Y, Analyst, 94 (1969) 121. Investigation of voIatile compounds in codfish by gas chromatography and mass spectrometry N. P_ WOBG. P. SALWIN AND J. N. DA~~IICO, J_ Ass. Ofjic. Anal. Chem., 50 (1967) 8. (C, Unk.) Chemical reactions involved in the deep fat frying of foods. IV. Identification of acidic volatile decomposition products of hydrogenated cottonseed oil K. YASUDX, B. R. REDDY AND S. S. CH_.XNG, J. Amer. OZ Ciiem. Sot., 45 (1968) 625. (C, Unk.) I-Pyrroline: the odor component of Strecker-degraded proline and ornithine K. YOSHIUWA, L. M. LIBBEY, W. Y. COBB AND E. A. DAY, J. Food Sci., 30 (1965) 991. (B) Identification of amines. IL Capilfary GC+ls of trifluoroacetyl derivatives (TFA-amines) A. HUE; AND 1. P. G. WmoTAhfA, Z. Anal. Chem., 247 (1969) 158. (C, P) Mulheim computer system for analytical instrumentation E. ZLEGLER, D. HE~‘NEBERG AND G. SCHOMBERG, Anal. Chem., 42 No.9 (1970) 51A. (C, J) BiIe acids. XXV. AIIochenodeoxychoIic acid, a metabolite of Sz-cholestan-3B-ol in the hyper- thyroid rat S. A. ZILLER, E. A. Dorsy AND W. H. ELLIOT, J. Bioi. Chem., 243 (1968) 5280. (C, J) cc-hs research on isomers of mono-unsatured fatty acids of vegetable oils C. M. ZORZUT AND P- CAPELLA, Ric. Ital. Sostanze Grasse, 2 (1969) 66. (C. 3)

_

SUPPLEMENT TO BlBLIOGRAPHY

IS.

2s

3s

4s

5s

6s

Location of olefinic links in long-chain esters by methoxy-mercuratior;aemercuration followed by GC--MS

P_ ABLEY, F. J. MCQUILLIN, D. E. MINNIKIN, K. KUS~~~RAN, K. IMAXENS AND N. POLGAR, J. CXem. Sot., D, (1970) 348. (Unk.) LMeasurement of oestrogens in biological systems H. ADLERCREUTZ, A. SALOKANGA~ AND T. LL’UKUIMN, &Zem. Sot. Endocrinol., 16.(1967) 89. (C, J) Cc-?& investigations of sodium pregnanediol glucuroniciate H. ADLERCRE~, T’. LUUKKAINEE~ AND W. TAYLOR, Eur. J. Steroids, 1 (1966) 117. (C, J) Identification of the drug Darvon and its metabolites in the urine of a comatose patient using a tic-nfs computer system J. R. &wus, K. BIEDUNN, J. BILLER, P. F. DONAGHL’E, D. A. EVANS, et al., Experientiu, 26 (1970) 714_ (C, P) GC-MS of the trimethylsilyl derivatives of various *&amine metabolites W. H. Avos AND R. A. NEAL, Anal. Biochem., 36 (1970) 332. (C, J) Warburgin. a new sesquiterpenoid of the eremophilane group C. J. W. BRCKX~ ohm G. H. D~FAN, Chem. Commun., 393 (1966). (C, J)

inr. 1. Mass Spectrum. Ion Phys-, 8 (1972) l-71

Page 70: 1972 JUNK (GC-MS Combinations and Applications)

70

7s

8s

9s

10s

11s

13s

14s

IS

16s

17s

18s

19s

20s

21s

22s

23

24s

2%

27s

G. A. JUNK

Comparison of vazious alkylboronic acids for the characterization of corticosteroids by c;c--?ds C_ J. W. BR&XS AND D. 3. K+RVEY, 1. Biocbem., 114 (1969) 15P. (C, J) GLC separation and spectrometric identification of nitrogen bases in hydrocracked shale oil naphtha D. BROW, D. G. ERSSHAW, F. R. _MCDOSAL.D a%~ H. B. JEX~, Anal. Chem., 42 (1970) 146- (B) Minor c+nstituents of human milk_ Identification of cyclohe_xaneundecanoic acid and phytanic acid in human milk H. EGGE, U_ MLTRA~SKI, P. GYORGY ASD F. ZILLIKM, FEBS, 2 (1969) 255. (C, J) Identilication of dodecadienoic-, tetradecadienoic- and he.xadecadienoic acid in human milk fat H. EGGE, U. MLXA~SKI, R. RYHAGE, P. GYORGY ATID F. ZILLIKEN, FEBSLerr., 11 (1970) 113. (C. J) Biosynthesis of diterpenoid alkaloids in Deiphinium ajacis G. M. FROST, R. L. HALE, G. R. WALLJZR, L. H. ZALKOW AND N. N. GIROTRA, Chem. Ind., (London), (1967) 320_ [C, J) Combined GLC--IS in the study of barbiturate metabolism J. N. T. GXLB~T, B. J. ?&rrruu, ~pc?) J. W. Pow~u, J. Pharm. Pharmacol., 22 (1970) 397. (C, J+P) GC-MS of synthetic ceramides containing phytosphingosine s. H.%%!X4R.slX OX. J_ Lipid Res., 11 (1970) 175. (C, J) On the biosynthesl; of cerebrosides from 2-hydroxy acid ceramides: use of deuterium labeled substrate and multiple ion detection S. H_~~LM~RSTROM ,wv B. SXMJEESO?~, Biochem. Biophys. Res. Commun., 41 (1970) 1027. (C, r) The use of GC--MS in biochemical pharmacoiogy H. R. H_~Tox~ I’_ Jo~sso~ .&SD B_ C. WEAT- Y, Brit_ J_ Pharmacol., 39 (i970) 236P.

(Unk-1 Kleine _Massenspektrometer als flexible substanzspezifische Detektoren fiir Gaschromato- graphic, Differential-thcrmonalyse and Therrnogravimetrie G. UMpF, Mesrechnik, 78 (1970) 215. (C, J) Analysis of disaccharides as permethylated disaccharide aiditols by GLC-.3S

J_ KARKKAIS~, Curbohyd_ Res_. 14 (1970) 27. (C, J) A comparison of tke types of sterol found in species of the Saproiegniales and Leptomitales with those found in some other Phycomycetes N. J. McCORKI?~~~,LE, S. A. HUTCHIXSQN, B. A. PURSEY, W. T. Scorr &XD R. WHEELEP,

Phyrochemistry, 8 (1969) 861. (C. J) Determination of trace impurities in industrial products by GC--.sIS

J. MITER+, V. K~ES_K.A et al., Chem. Prum., 20 (1970) 438. (Unk) A simple device for coupling GLC capilhuy coiumns to a mass spectrometer G. NOTA, G. MARLXO AND A. M.XLORXI, Chem. Zmi. (London), (1970) 1294. High temperature pyroIy& of poly(viny1 chloride)_ GC-hfs analysis Of the PyrOlySiS prOa::CtS

from PVC resin and plastisols M. M. O’MARA, J. Pofym. Sci., 8 (1970) 1887. (C, P) VolatiIe compcmen*fi of raw peanuts. Analysis by cx-w H. E PATTEE, J. A. SINGLEXOX MD W. J. COBB, J. Food Sci., 34 (1969) 625. (C, Unk.) Kcmbtierte Verwendung von GC--MS zur Untersuchung der Zusamm ensetzung von Koke- reigas V. H. PICKER, A. HER-AN AXI H. SCHULTZ, BrennsbChem., 43 (1962) 269. @) A review of GC-MS methods or’ analysis F- E. Sm. Ntzcal Research LX&. Report 6525, (1967). Determination of deroid hormones in body fluids by GC-m using a muitiple ion detector L. SI=AXN, H. 0. HOPPM ,xxp H. BREUER, 2. Anal. Chem., 252 (1970) 294. (C, J) Esterification, ideascation, and gas chromatographic analysis of Krebs cycle keto acids P. G. SIXXO%~ B. C. PE-mrr A,“~E A. ZZATKIS, Anal. Cl;em., 39 (1967) 163. (C J)

inr. I_ Mars S’ctrom iron Phpx, 8 (1972) l-71

Page 71: 1972 JUNK (GC-MS Combinations and Applications)

GAS CHROMATOGRAPH-MASS SPECTROMETER COMBiNATiONS 71

28s

29s

30s

31s

32s

33s

The separation,. identification and estimation of prostagIandins in nanogram quantities by GC-Ms C-J_ -ikOMPsoN,kf_~OSAND E. W-HORTON, Life .%.,9 ('1970) 98% (c,p)

Gaschromatographische Bestkndsaufnahme von Bananen-Aromastoffen R T-L, F. DRAWERT, W. HEIZUNX AKD R. EW~~RGER, 2. Nutwforsch., 24b (1969) 781. (C, w CC-MS Bes~dsaafnahmevon Erdbeer-Aromastoffen R. Tmr, F. D~WERT AND W. HEXMANN, Z. Nurwf~rscZz, 24b (1969) I201 - (C, f) Uber die Biogenese van Aromastoffen bei Pffanren und Fruchten. Einbau van ‘“C-Leucin und -V&in in Bananenaromastoffe R. TRESSL, R. E?~Gw, F.. DRAU~ERI AND W. HEIMGN, 2. Narurjksch., 25b (1970) 704. K, PI IsoIation and identification of the pyrjnidine moiety of thiamin in rat urine using GC-MS

W. W. \V~ITE, W. H. A!!os AND R. A. NEAL, J. Nurr-, 100 (1970) 1053- (C, 3) GC-MS of trimethylsiIy1 sugar phosphates hl. ZINBO AF-SP W. R. SHERMAN, J. Amer. Chem. Sot., 92 (1970) 2105. (C, 3)

It& J. Mass Specirom. fen P&s., 8 (1972) l-71