18th european symposium on radiopharmacy and

125
18th European Symposium on Radiopharmacy and Radiopharmaceuticals FINAL PROGRAMME April 07-10, 2016 Salzburg, Austria

Upload: others

Post on 18-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

FINAL PROGRAMME April 07-10, 2016 � Salzburg, Austria

Page 2: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 2

TABLEOFCONTENTS

WelcomeAddress......................................................................................................................................3

ScientificCommittee.................................................................................................................................4

LocalOrganisingCommittee.....................................................................................................................4

OrganisingSecretariat...............................................................................................................................4

CongressVenue..........................................................................................................................................4

Exhibitors&Sponsors................................................................................................................................5

GeneralInformation(A-Z)..........................................................................................................................6

ProgrammeOverview.................................................................................................................................9

Highlights.................................................................................................................................................10

InvitedLectures..................................................................................................................................10

ScientificProgramme...............................................................................................................................10

Thursday,April07,2016......................................................................................................................10

Friday,April08,2016...........................................................................................................................11

Saturday,April09,2016......................................................................................................................12

Sunday,April10,2016.........................................................................................................................13

VenueOverview......................................................................................................................................15

*CoverpicturesfromTourismusSalzburg

Page 3: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 3

WELCOMEADDRESS

Dearcolleagues,

It is our great pleasure to welcome you to the 18th Symposium on Radiopharmacy and Radio-

pharmaceuticalsinSalzburg,Austria,locatedinequaldistancefromthemajorAustrianUniversitiesGraz,

InnsbruckandVienna.ThesymposiumisjointlyorganizedbytheAustriancommunityofPharmacistsand

ChemistsbeinginvolvedinRadiopharmacy,MedicinalRadiochemistryandRadiopharmaceuticalResearch

also representing different aspects of our field from CNS applications to therapeutic radio-

pharmaceuticals,11Cand18F-chemistry to radiometalsaswell as fromresearchanddevelopment to

dailyradiopharmacypractice.

Salzburgisasmallcitywithalongculturalhistory,beingstronglyconnectedwithMozart,the“Soundof

Music”andtheannualMusicFestival.ThefamousFortress,thebaroqueCathedralandchurchmakesita

UNESCOWorldHeritageSite,itsattractionsbeingmostfamousintheworld.

TheSymposiumVenueisrightinthecentreofSalzburgandallowsyoutostayatthesamelocationwith

yourcolleaguesfordiscussionandexchange.Itisinwalkingdistancetoallimportantsightsofthecity,

thetrainstationandthelocalairport.ExcellenttrainconnectionstoMunichandViennaairportallowyou

toreachoursymposiumeasilyfromallovertheworld.Besidesaninterestingscientificprogrammewe

willalsosurpriseyouwithsomenicesocialeventsgivingyouaflavourofAustrianhistory,cultureand

food.

WeinviteyoutocometoSalzburgforthisneweditionofESRRin2016andarereallylookingforwardto

welcomeyou.

ClemensDecristoforo

HerbertKvaternik

MarkusMitterhauser

WolfgangWadsak

Page 4: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 4

SCIENTIFICCOMMITTEE

MartinBehe SwitzerlandPetraKolenc-Peitl SloveniaValentinaFerrari UnitedKingdom

AntonyGee UnitedKingdom

LOCALORGANISINGCOMMITTEE

ClemensDecristoforo MedicalUniversityInnsbruck,AustriaHerbertKvaternik MedicalUniversityGraz,AustriaMarkusMitterhauser MedicalUniversityVienna,AustriaWolfgangWadsak MedicalUniversityVienna,Austria

ORGANISINGSECRETARIAT

EANMExecutiveSecretariat

AndreasFelser

PetraNeubauer

Schmalzhofgasse26

1060Vienna,AUSTRIA

Tel.: +43-(0)8904427

Fax: +43-(0)8904427-9

Email: [email protected]

URL: www.esrr.info

CONGRESSVENUE

WyndhamGrandSalzburgConferenceCenter

Fanny-von-Lehnert-Str.7

5020Salzburg

Salzburg(Austria)

Tel.: +43(0)6624688-0

URL: http://www.wyndhamgrandsalzburg.com/

TheESRRisorganizedincooperationwiththe

InternationalAtomicEnergyAgency

Page 5: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 5

EXHIBITORS&SPONSORS

WewouldliketothankallexhibitorsandsponsoroftheESRR2016fortheirsupport!

ABXadvancedbiochemicalcompounds

BiomedizinischeForschungsreagenzienGmbH

BayerHealthcare

DSDPharma

Eckert&ZieglerEuropeGmbH

ElysiaGermanyGmbH

GEHealthcare

IASONGmbH

IBASA(IONBEAMAPPLICATION)

IREELIT

ITGIsotopeTechnologiesGarchingGmbH

JiangsuHuayiTechnologyCo,Ltd.

RidgeviewInstrumentsAB

RotemGmbH

ScintomicsGmbH

SiemensHealthcareGmbH

TrasisSA

VonGahlenNederlandB.V.

Page 6: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 6

GENERALINFORMATION(A-Z)

Airport&ArrivalInformation

TheairportofSalzburgislocatedaboutfourkilometersfromthecitycenter.Ittakes15minutes

toreachthehistoriccitycenterbytaxiorpublicbus.SalzburgAirportisthearrivalairportfor

many internationalairlinesand low-cost carriers.Direct flights toSalzburgareavailable from

Berlin, Düsseldorf, Hannover, Hamburg, Cologne/Bonn, Frankfurt, Leipzig-Halle, Amsterdam,

Vienna,London,Manchester,Stockholm,Zurichandothercities.Aconvenientairportshuttlealso

takespassengersfromMunichAirporttoSalzburg.SalzburgTrainStationisa15minutes'walk

fromthehistoriccitycenter.Hereyoucantransfertoatrolleybus,regionalbus,localtrainor

suburbantrain.AsaborderstationtoGermany,SalzburghasoutstandingEurocity,Intercityand

ICEconnections.Salzburg'snewsuburbanrailroadconnectsthecitywiththesurroundingtowns.

SalzburgisatthehuboftheEuropeanhighwaynetwork:theA1Vienna-Salzburg,theA8Munich–

SalzburgandtheA10Villach–SalzburgconvergeinSalzburg.Pleaseremembertopurchaseatoll

stickerifyouaredrivingtoSalzburg.

CertificateofAttendance

Uponarrivalallregistereddelegateswillreceiveacertificateofattendance.

Climate

ThedaytimetemperaturesinAprillingerbetween4°-14°Celsius.

Creditcards

All major credit cards, including Eurocard, Diners, VISA and Mastercard are accepted in

restaurants,hotels,shoppingcentersandstores.Travelchequescanbecashedinmostbanks

andexchangeoffices.

Currency

TheofficialcurrencyinAustriaisEUR(€).Youcanexchangeyourcurrencywithoutanylimitsfor

totalamountatallbanksandexchangeofficesinVienna.Whenexchangingyourcurrency,you

willneedyourpassportorofficialID-card.Ifyoudonothaveitwithyou,thebankmayrefuse

toexchangeyourcurrency

Electricity

The power supply in Austria is 220/240 Volt-current. Most electric outlets adhere to the

continentalstandard(Schuko).AppliancesfromNorthAmericarequireatransformerandBritish

appliancesrequireanadaptorforthetwo-pinsocketsinuseinAustria.

Page 7: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 7

Museums

ThereisalargevarietyofmuseumsinSalzburg.Forpricesandopeninghourspleaserefertothe

hotel reception or any tourist information. Museums and exhibitions are usually closed on

Monday.

Restaurants&Nightlife

ThereisalargechoiceofrestaurantsinSalzburg,offeringvariouskindsoflocalorinternational

dishes.ManyoffinediningestablishmentsarelocatedinthecityofSalzburg.Salzburgisalsoa

trendsetterwhenitcomestoorganicfood:nearly38%oftheagriculturalenterprisesareorganic

farmers. Even the simpler restaurants serve fine delicacies from the Salzburg region.Four

extraordinarybreweriesinthecityofSalzburginvitegueststoenjoyaheartysnackinaconvivial

atmosphere.FavoriteplacestogrababiteinbetweenarethedelicatessenshopsinSalzburg's

OldCity, the standsat theGreenMarketoroneof theweekly farmers'marketsonMirabell

SquareorPapagenoSquare.

Secretariat&Registrationdesk

Theregistrationdeskwillbeopen:

Thursday,April07,2016 14:00-20:00

Friday,April08,2016 08:30-18:00

Saturday,April09,2016 08:00-17:30

Sunday,April10,2016 08:30-13:30

Shopping

Salzburgisanidealdestinationtoshopforawidevarietyofitemscateringtoeverybody’stastes

andwishes.AuniqueshoppingexperienceawaitsyouinSalzburg.Avarietyofshopscanbefound

intheOldCity–onGetreidegasse,Judengasseandinthetraditionalpassageways– including

long-established shops, international chains and small boutiques. Salzburg also has themost

modernandattractiveshoppingcenterintheworld:theaward-winningEuroparkhas130stores

forendlessshopping.StoresinSalzburgareusuallyopenfromMondaytoFridayfrom10:00a.m.

to6:00p.m.andSaturdaysfrom10:00a.m.to5:00p.m.Somealreadyopenat8:00a.m.orclose

fora1or2-hourlunchbreak.Afewshops,suchassouvenirshops,arealsoopenonSundays

andholidays.TheshopsattheEuroparkareopenfromMondaytoThursdayfrom9:00a.m.to

7:30p.m.,onFridayfrom9:00a.m.to9:00p.m.andonSaturdayfrom9:00a.m.to6:00p.m.

Taxes&Tipping

Thestandardtaxrateis20%,however,someservicessuchashotel,foodandtransporthavea

reduced rate of 10%. Most services do not include tipping. In higher class restaurants it is

Page 8: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 8

commontogiveupto10%ofthetotal.Foranyotherservices(taxi,restaurants,hotel)itisupto

youhowmuchyouwantgive.

Timezone

Salzburgis6hoursaheadofUS–EasternStandardTimeand1houraheadofGreenwichMean

Time(GMT).

Visa

AllvisitorsenteringAustriamustpossessvalidpassports.ForcitizensfromtheEuropeanUnion

Membercountriesavalididentitycardissufficient.

PLEASE CHECK THE CURRENT VISA REQUIREMENTS WITH THE NEAREST AUSTRIAN

CONSULATE/EMBASSYINYOURCOUNTRYBEFOREYOURDEPARTURETOAUSTRIA!

DelegateRegistrationFeesinclude:

• Accesstoallscientificsession

• Accesstoposterexhibition

• Accesstoindustryexhibition

• Freecopyofallcongressdocumentation

• Certificateofattendance

• Meals-April08,09&10,2016

• Coffeebreaks

• Invitationtotheopeningceremonyandwelcomereception–April07,2016

• Invitationtotheclosingceremony–April10,2016

Page 9: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 9

PROGRAMMEOVERVIEW

THURSDAY,APRIL07,2016

19:30-19:50 OpeningCeremony&WelcomeMeeting

19:50-20:25 WelcomeLecture–“CSIMozart”

20:30-22:00 WelcomeReception

FRIDAY,APRIL08,2016

08:30-10:15 SessionI–METs&PEPs

10:15-10:45 PosterViewingSession

CoffeeBreak

10:45-12:45 SessionII–1+8=9189F

12:45-14:15 LunchBreak

14:15-15:50 SessionIII–TheNeedtoTreat

15:50–16:30 PosterViewingSession

CoffeeBreak

16:30-18:00 SessionIV–SmallPioneers

SATURDAY,APRIL09,2016

08:30-10:15 SessionV–PET–Prostate&EndocrinologyTargeting

10:15-10:45 PosterViewingSession

CoffeeBreak

10:45-12:45 SessionVI–BrainD/Train

12:45-13:50 LunchBreak

13:50-14:15 Thehostspecial:Radiolabelledflies

14:15-15:50 SessionVII–IncredibleArtefacts–ExcellentActivities(IAEA)

15:50-16:30 PosterViewingSession

CoffeeBreak

16:30-17:30 SessionVIII–InsideStrasbourg

SUNDAY,APRIL10,2016

08:30-10:05 SessionIX–Geem.p.

10:30-11:00 PosterViewingSession

CoffeeBreak

11:00-12:35 SessionX–Gal-Pals

12:35-12:45 SymposiumOverview&ClosingRemarks

12:45 FarewellLunch

Page 10: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 10

HIGHLIGHTS

InvitedLectures

“CSIMozart” W.Parson,AustriaTheisotoperevolutionthatcanchangeimagingandtherapy M.Jensen,DenmarkSpeedmatters!ShorteningtimefromEOBtoproductrelease W.Wadsak,AustriaRadionuclidetherapy:doweunderstandwhatwearedoing?-

Aradiobiologyperspective J-P.Pouget,FranceGoodorbad?Whyethicsinanimalstudiesmatter? S.Heskamp,TheNetherlandsPitfallsinanimalstudies M.Martic-Kehl,SwitzerlandPSMA-targetedlow-molecularweightradioligands:

Theirdesignfordiagnosisandtherapyofprostatecancer K.Kopka,GermanyMolecularfutureinpsychiatry R.Lanzenberger,AustriaWhatyouseeisnotwhatyoushouldtreat:Imageartifacts–Thedon´ts T.Beyer,AustriaMolecularfutureinpsychiatry R.Lanzenberger,AustriaHowtousetheEur.Pharmacopoeiaandhowtocontribute E.Pel,FranceNewmonographsandchaptersintheEur.Pharmacopoeia T.Kroon,TheNetherlandsValidation&Qualification:aGMPburdenoranopportunity? S.Todde,ItalyExtemporaneousPreparationofRadiopharmaceuticals C.Decristoforo,AustriaWhyareinvestorsnotinterestedinmyradiotracers? R.Zimmermann,France

InvitedLecturesaremarkedwithinthescientificprogrammeinlightblue.

SCIENTIFICPROGRAMME

Thursday,April07,2016

19:30OpeningCeremony&WelcomeMeeting M.Behe,Switzerland/M.Mitterhauser,Austria19:40 OP01 WelcomeLecture C.Decristoforo,Austria19:50 OP01 “CSIMozart” W.Parson,Austria

20:30WelcomeReceptionandcocktail

Page 11: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 11

Friday,April08,2016

08:30 SessionI–METs&PEPs E.vonGuggenberg,Austria/R.Mikolajczak,Poland08:30 OP02 Theisotoperevolutionthatcanchangeimagingandtherapy M.Jensen,Denmark09:15 OP03 SelectiveExtractionofMedically-RelatedRadionuclidesfromProton-

IrradiatedThoriumTargets V.Radchenko,USA09:27 OP04 Comparisonof[68Ga]FSC(succ-RGD)3and[68Ga]NODAGA-RGDfor

PETimagingofαvβ3integrinexpression C.Zhai,Austria09:39 OP05 AnewNPY-Y1RtargetingpeptideforbreastcancerPETimaging B.Guérin,Canada09:51 OP06 TheinfluenceofmultivalencyonCCK2receptortargeting D.Summer,Austria10:03 OP07 SPECTImagingofαvβ3Expressionby[99mTc(N)PNP43]-

BifunctionalChimericRGDPeptidenotCross-Reactingwithαvβ5 C.Bolzati,Italy

10:15 CoffeeBreak&PosterViewing

10:45 SessionII–1+8=9

189F M.Jensen,Denmark/T.Mindt,Switzerland

10:45 OP08 Speedmatters!ShorteningtimefromEOBtoproductrelease W.Wadsak,Austria11:30 OP09 Newdienophilesfortheinverse-electron-demandDiels-Alder

reactionandforpretargetedPETimaging. E.Billaud,Belgium

11:42 OP10 NewcomplexingagentforAl18F-labellingofheat-sensitivebiomolecules:

SynthesisandpreclinicalevaluationofAl18F-RESCA1-HSA F.Cleeren,Belgium11:54 OP11 AnovelversatileprecursorefficientforF-18radiolabellingviaclick-chemistry B.Lugatoa,Italy12:06 OP12 AgeneralapplicablemethodtoquantifyunidentifiedUVimpurities

inradiopharmaceuticals R.Klok,TheNetherlands12:18 OP13 Developmentof[18F]Fluoro-C-glycosidestoradiolabelpeptides

forPETapplication C.Collet,France12:30 OP14 AMicrofluidicApproachforthe68Ga-labelingof

PSMAHBED-CCandNODAGA-RGD S.Pfaff,Austria

12:45 LunchBreak

14:15 SessionIII–TheNeedtoTreat M.Mitterhauser,Austria/K.Kopka,Germany14:15 OP15 Radionuclidetherapy:doweunderstandwhatwearedoing?

Aradiobiologyperspective J-P.Pouget,France15:00 OP16 Surprisingreactivityofastatineinthenucleophilicsubstitution

ofaryliodoniumsalts:applicationtotheradiolabelingofantibodies F.Guérard,France15:12 OP17 64Cu-NOTA-pertuzumabF(ab')2fragments,asecond-generationprobe

forPETimagingoftheresponseofHER2-positivebreastcancerto

trastuzumab(Herceptin) K.Lam,Canada15:24 OP18 Developmentofradiohalogenatedanaloguesofaavb6-specificpeptide

forhighLETparticleemittertargetedradionuclidetherapyofcancer. S.Paillas,UK15:36 OP19 LigandSpecificEfficiency(LSE)asaguideintraceroptimization E.Briard,Switzerland

15:50 CoffeeBreak&PosterViewingSession

16:30 SessionIV–SmallPioneers M.Behe,Switzerland/P.KolencPeitl,Slovenia17:00 OP20 Goodorbad?Whyethicsinanimalstudiesmatter? S.Heskamp,TheNetherlands

17:15 OP21 Pitfallsinanimalstudies M.Martic-Kehl,Switzerland

Page 12: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 12

Saturday,April09,2016

08:30 SessionV–PET–Prostate&EndocrinologyTargeting P.Elsinga/P.Laverman,TheNetherlands08:30 OP22 PSMA-targetedlow-molecularweightradioligands:

Theirdesignfordiagnosisandtherapyofprostatecancer K.Kopka,Germany09:15 OP23 Theradiosynthesisofan18F-labeledtriglyceride,developed

tovisualizeandquantifybrownadiposetissueactivity M.Bauwens,TheNetherlands09:27 OP24 Influenceofthefluorescentdyeonthetumortargeting

propertiesofdual-labeledHBED-CCbasedPSMAinhibitors A-C.Baranski,Germany09:39 OP25 [18F]MEL050asamelaninPETtracer:fullyautomated

radiosynthesisandevaluationforthedetectionofpigmented

melanomainmicepulmonarymetastases N.Rizzo-Padoin,France09:51 OP26 DesignandPreclinicalEvaluationofNovelRadiofluorinated

PSMATargetingLigandsBasedonPSMA-617 J.Cardinale,Germany10:03 OP27 ANovelRadiolabeledPeptideforPET

ImagingofProstateCancer:64Cu-DOTHA2-PEG-RM26 B.Guérin,Canada10:15 CoffeeBreak&PosterViewingSession

10:45 SessionVI–BrainD/Train A.D.Windhorst,TheNetherlands10:45 OP28 Molecularfutureinpsychiatry R.Lanzenberger,Austria11:30 OP29 Biodistributionof[18F]Amylovis®,anewradiotracer

PETimagingofβ-amyloidplaques L.FernándezMaza,Spain11:42 OP30 Synthesisandpreclinicalevaluationof[11C]-BA1PET

tracerfortheimagingofCSF-1R B:Attili,Belgium11:54 OP31 InvivoimagingoftheMCHR1intheventricularsystemvia[18F]FE@SNAP C.Philippe,Austria12:06 OP32 Synthesisofthefirstcarbon-11labelledP2Y12receptorantagonistfor

imagingtheanti-inflammatoryphenotypeofactivatedmicroglia B.Janssen,TheNetherlands12:18 OP33 RadiosynthesisofaselectiveHDAC6inhibitor

[11C]KB631andinvitroandexvivoevaluation. K.Vermeulen,Belgium

12:30 OP34 Improvingmetabolicstabilityoffluorine-18labelled

verapamilanalogues R.Raaphorst,TheNetherlands

12:45 LunchBreak

13:50 Thehostspecial:Radiolabelledflies C.Decristoforo/H.Kvaternik,Austria

14:15 SessionVII–IncredibleArtefacts–

ExcellentActivities(IAEA) J.OssoJunior,Austria/S.Rubow,SouthAfrica14:15 OP35 Whatyouseeisnotwhatyoushouldtreat:Imageartifacts–Thedon´ts T.Beyer,Germany15:00 OP36 DevelopmentofanovelPETtracerforthe

activinreceptor-likekinase5 L.Rotteveel,TheNetherlands15:12 OP37 SPECTImagingandBiodistributionStudiesof111In-EGF-Au-PEGNanoparticlesInVivo L.Song,UK15:24 OP38 Melanomatargetingwith[99mTc(N)(PNP3)]-labeled

NAPamidederivatives:preliminarypharmacologicalstudies C.Bolzati,Italy15:36 OP39 [68Ga]NODAGA-RGD:cGMPsynthesisanddatafromaphaseIclinicalstudy R.Haubner,Austria

15:50 CoffeeBreak&PosterViewing

16:30 SessionVIII–InsideStrasbourg P.Bremer,Norway/R.Pickett,UK16:30 OP40 HowtousetheEur.Pharmacopoeiaandhowtocontribute E.Pel,France16:40 OP41 NewmonographsandchaptersintheEur.Pharmacopoeia T.Kroon,TheNetherlands

Page 13: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 13

Sunday,April10,2016

08:30 SessionIX–Geem.p. A.Gee,UK/P.KolencPeitl,Slovenia08:30 OP42 Validation&Qualification:aGMPburdenoranopportunity? S.Todde,Italy09:00 OP43 ValidationQuiz A.Gee,UK&P.KolencPeitl,Slovenia09.40 OP44 ImplementationofaGMP-graderadiopharmacyfacilityinMaastricht M.Bauwens,TheNetherlands09.52 OP45 SettingupaGMPproductionofanewradiopharmaceutical S.Forsback,Finland10:05 OP46 ExtemporaneousPreparationofRadiopharmaceuticals C.Decristoforo&H.Kvaternik,Austria

10:30 CoffeeBreak&PosterViewing

11:00 SessionX–Gal-Pals E.Janevik,RepublicofMacedonia/J.Sosabowski,UK11:00 OP47 Whyareinvestorsnotinterestedinmyradiotracers? R.Zimmermann,France11:45 OP48 InVitroandInVivoEvaluationof68-GalliumLabeledFe3O4-DPD

NanoparticlesasPotentialPET/MRIImagingAgents. M.Karageorgou,Greece11:57 OP49 FastPETimagingofinflammationusing68Ga-citratewith

Fe-containingsaltsofhydroxyacids A.S.Lunev,Russia12:09 OP50 68GalabelledsiderophorefordetectionofPseudomonasinfections M.Petrik,CzechRepublic

12:35 SymposiumOverview&ClosingRemarks

12:45 FarewellLunch Congressvenue

Page 14: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 14

Page 15: 18th European Symposium on Radiopharmacy and

18th European Symposium on Radiopharmacy and Radiopharmaceuticals April 07-10, 2016 � Salzburg, Austria

Page 15

VENUEOVERVIEW

ABX

ESRR REGISTRATION

Rotem

E&Z

Elysia

DSD Pharm

a

Siemens

GE

IBA SA IRE ELIT

Jiangsu Huayi Techn.

Richview

Instrum.

Scintomics

Trasis

= Bar table

= Catering Area

= Poster Wall

= Direc�onal Sign of Poster Area

Von Gahlen

Page 16: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 16

OP03SelectiveExtractionofMedically-RelatedRadionuclidesfromProton-IrradiatedThoriumTargetsV. Radchenko1, J.W. Engle1, C. Roy2, J. Griswold2, M.F. Nortier1, E.R. Birnbaum1, M. Brugh1, S.Mirzadeh2,K.D.John1,M.E.Fassbender11LosAlamosNationalLaboratory,LosAlamos,NewMexico,USA2OakRidgeNationalLaboratory,OakRidge,Tennessee,USABackground:Cliniciansrelyonnuclearmedicineforthetreatmentofnumerousdiseases[1,2]impactingmillionsofpatientsannually.Recently,TargetedRadiotherapy(TR)hasbeensuccessfullyadvancedwiththe US FDA approval of several radionuclide based drugs [3]. Combinations of several types ofradionuclideemissionsfortherapy(i.e.,α-therapeuticagentcombinedwithβ-therapeutic)couldleadtoevenmoreeffectivetreatmentoptions[4].OneofthelimitingfactorsinthedevelopmentofTRasawidelyadopted treatmentoption is theavailabilityof select radionuclideswithoptimumemissionproperties(both in volume and periodicity of delivery), which poses a challenge due to the fact that differentradionuclides typically require different target materials and/or nuclear reaction pathways for theirformation.Materials&Methods:Wealreadypublishedasuccessfulstrategyfortheisolationof225/227Acfrom irradiated thorium targets [5]. We also published the recovery of Pa isotopes [6] from protonirradiatedthorium.Inthiswork,weproposetheisolationofseveralothermedicallyrelatedradionuclidesnamely 103Ru, 223/225Ra, 111Ag from the same target material. Results: Several methods based on ionexchangechromatographyandsolidphaseextractionshowpromisefortheco-extractionof103RuandRaisotopesfromthoriumirradiatedtargets.AnionexchangeinHClmediaprovedtobeanefficientmethodfortheisolationof103Ru,whileacombinationofcationexchangeresin/citrateandDGAresin/HNO3issuitable for Ra isotopes separation. Discussion/Conclusion: Production yields for the proposedradionuclideswereevaluatedbycomparisonofactualproductyieldswithcalculated(predicted)yields.Radiochemicalstrategiesforco-extractionof103Ruand223/225Raisotopesbasedonionexchangeandsolidphaseextractionchromatographywillbediscussed.References:1.Stigbrand,T.etal.Springer2008,ISBN978-1-4020-8696-0.,2.Fahey,F.etal.J.NuclMed.201455(2):337.3.www.fda.gov4.DashA.,etal.,CurrRadiopharm.20136(3):152.5.RadchenkoV.etal.,ChromatographyA,20141380:55.6.RadchenkoV.etal.acceptedRadiochimicaActa,Oct2015

Page 17: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 17

OP04Comparison of [68Ga]FSC(succ-RGD)3 and [68Ga]NODAGA-RGD for PET imaging of αvβ3 integrinexpressionChuangyanZhai,1GerbenM.Franssen,2MilosPetrik,3PeterLaverman,2ClemensDecristoforo11DepartmentofNuclearMedicine,MedicalUniversityInnsbruck,Innsbruck,Austria2 Department of Radiology & Nuclear Medicine, Radboud University Medical Center, Nijmegen, TheNetherlands3InstituteofMolecularandTranslationalMedicine,FacultyofMedicineandDentistry,PalackyUniversity,Olomouc,CzechRepublicBackground:Thearginine-glycine-aspartic(RGD)peptidesequenceservesasahigh-affinityantagonistofthe integrin αvβ3 receptor that plays an important role in tumor angiogenesis. Recentlywe reported[68Ga]FSC(succ-RGD)3,atrimericRGDpeptide,exhibitedexcellenttargetingpropertiesforαvβ3 integrinexpressionandsignificantimprovedtumoruptakecomparedtomonomeric[68Ga]NODAGA-RGD.(1)HerewereportthePET imagingpropertiesof [68Ga]FSC(succ-RGD)3 indifferentxenograft tumormodelandcompared them with [68Ga]NODAGA-RGD. Materials & Methods: The PET imaging properties of[68Ga]FSC(succ-RGD)3werestudiedinnudemicebearingM21humanmelanomaxenograftsandhumanglioblastoma U87MG xenograft tumor. A parallel PET imaging of 68GaNODAGA-RGD in samemousebearing U87MG xenograft tumor was performed as a comparison.Results :The static PET image of[68Ga]FSC(succ-RGD)3 in nude mice showed highly visualized tumors of M21 (positive) whereasnonvisualizedtumorofM21-L(negative)tumorxenografts1hpostinjectionconfirmingreceptor-specificactivity accumulation. The dynamic PET images of [68Ga]FSC(succ-RGD)3 showed rapid clearance of[68Ga]FSC(succ-RGD)3fromthecirculationwhilethetumorremainedclearlyvisible.Adirectcomparisonof [68Ga]FSC(succ-RGD)3with [68Ga]NODAGA-RGD innudemicebearingU87MGxenograft tumorusingPET/CTresultedcomparabletarget/backgroundratio(tumor/kidneysratio=1.3and1.6,tumor/muscleratio=4.9,5,respectively,90minpostinjection).ThetimeactivitycurvesfromdynamicPETdatashowedanincreaseoftheactivityconcentrationof[68Ga]FSC(succ-RGD)3intumorfirstly,thenremainedalmostconstantwhereasthatof[68Ga]NODAGA-RGDdecreasedquickly.Thesignificantenhancedtumoruptake(3.8vs.1.6%ID/g)inadditiontotheslowerwashoutratefromtumorfor[68Ga]FSC(succ-RGD)3notonlyallowsthePETimagingatlatetimepoints,butalsoprovidesthepossibilitytoachievethesameimagecontrastusing lessradioactivityaswellasdetect low-level integrinexpression.Discussion/Conclusion:[68Ga]FSC(succ-RGD)3showstheadvantagesintherespectofdelayedimaging,reducedradiationdoseaswell as monitoring low-level integrin expression in tissues in comparison to [68Ga]NODAGA-RGD,thereforeitisapromisingagentforintegrinαvβ3receptorimaging.References:1-KnetschPA,ZhaiC,RanggerC,etal.[2015]NuclMedBiol,42:115-122.

Page 18: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 18

OP05AnewNPY-Y1RtargetingpeptideforbreastcancerPETimagingAit-MohandSamia1,Dumulon-PerreaultVéronique2,GuérinBrigitte1,2

1Départementdemédecinenucléaireetradiobiologie,Facultédemédecineetsciencesdelasanté,UniversitédeSherbrooke,QC,CanadaJ1H5N4and2Centred’ImagerieMoléculairedeSherbrooke(CIMS),CR-CHUS,Sherbrooke,QC,CanadaJ1H5N4

Background:NPY-Y1receptor(NPY-Y1R)isapromisingtargetforbreastcancerimaging.Previously,ourgroup prepared and tested a series of truncated NPY analogs derived from BVD-15 (; [Pro30, Tyr32,Leu34]NPY(28-36)-NH2)for64Cu-labeling).Unfortunatelythebiologicalhalf-liveofthemostpotenttracer,[Lys(64Cu/DOTA)4]BVD15,wheninjectedinmouseplasmawasshorterthan15minutes.Inthisstudy,weimprovedthedesignofBVD15inordertoincreaseitsstabilityinvitroandinvivoandmaintainitstargetingcapability.Materials&Methods:Modificationsofthepeptidebackbone,thechelatorandtheuseofD-andnon-naturelaminoacidswereproposedtoimprovethepeptidetracerstability.ThepeptidesweresynthesizedonsolidphaseandconjugatedtoNOTAchelator.BindingstudiesonMCF-7humanbreastcancercells(2)wereperformedaftereachstructuralmodificationtomakesurethatthepotencyandtheselectivityofthenewNOTA-peptideconjugatestoNPY-Y1Rweremaintained.Onceactivecompoundswere identified, they were radiolabeled with 64Cu for performing plasma stability, cellular uptake,internalization,andblockingstudiesonMCF-7cellsinordertorapidlyidentifythepromisingcandidatesforinvivostudies.Results:A64Cu/NOTA-BVD15derivativepresentingaverylowKi(9nM)andshowingaveryhighstabilityinplasmaupto20handinvivofor30minuteshasbeenidentified.Cellassaysshowedaconstantuptakeandinternalizationoverthewholeexperiment(Fig.1A).Theinternalizedfractionafter2hwas~20%.Theradiopeptideuptakewasblockedinpresenceofanexcessofunlabeledpeptide(Fig.1B).

Figure1: Specific celluptakeand internalization rateafter incubationofMCF-7cellswith 64Cu/NOTA-BVD15derivativeat37ºC.(A)Celluptakecalculatedascellsurface-bound(•)andinternalizedfraction(▪).(B)Uptakeat1and2hinabsence(lightgray)andinpresenceofanexcessofunlabeledpeptide(darkgray).Discussion/Conclusion:Wehaveidentifiedanew64Cu-labeledpeptidepresentingagoodstabilityandanexcellentaffinitytoNPY-Y1R.Onthebasisofthecellularresults,the64Cu/NOTA-BVD15derivativeappearstohaveapotentialforthetargetingofNPY-Y1Rpositivetumors.References:1BalasubramaniamA,DhawanVC,MullinsDE,ChanceWT,SheriffS,GuzziM,PrabhakaranM,ParkerEM,[2001],JMedChem44:1479-1482.2GuérinB,Dumulon-PerreaultV,DubucC,AuthierS,BénardF,[2010]Bioorg.Med.Chem.Lett.20:950-953.

Page 19: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 19

OP06TheinfluenceofmultivalencyonCCK2receptortargetingD.Summer1,A.Kroess1,C.Rangger1,H.Haas2,P.Laverman3,F.Gerben3,E.vonGuggenberg1,C.Decristoforo11DepartmentofNuclearMedicine,MedicalUniversityInnsbruck2DivisionofMolecularBiology/Biocenter,MedicalUniversityInnsbruck3DepartmentofNuclearMedicine,RadboudUniversityMedicalCenter,Nijmegen,TheNetherlands

Background: Multivalency has shown to enhance accumulation of receptor targetedradiopharmaceuticals, due to the avidity effect and increased apparent tracer concentration. Formetabolicallyunstablepeptidesmultimerisationmayalsodelaymetabolicprocesseslikeoxidationandenzymaticcleavageleadingtolossofbindingaffinity.Theaimofthisstudywastoshowthebenefitofmultimeristation on the targeting behaviour using a CCK2-receptor targeting, metabolically unstableMinigastrinpeptide(MG11).Materials&Methods:FusarinineC,acyclicsiderophorebearingthreeaminoresidues,waschosenaschelatingagentanduptothreepeptidesequences(MG11=D-Glu1,desGlu2-6]-minigastrin)wereconjugatedbyusingmaleimidechemistry.Radiotracerswerelabelledwith68Gaaswellaswith 89Zr following standard radiolabeling protocols. For in vitro characterisation stability studies,determinationofthepartitioncoefficientandcelluptakestudieswereperformed.Invivoexperimentsincludedbiodistributionstudies(1hp.i)andstaticmicroPET/CTimagingandwerecarriedoutintumourxenograftbearingbalb/cnudemice.Results:Peptideconjugatescouldbelabelledwith68Ga(5-15minRT,pH4-5)and89Zr(60min,RT,pH7)achievingradiochemicalyieldsofmorethan98%.Allcomplexesshowed excellent stabilities in the presence of EDTA, DTPA, FeCl3 and in human serum after certaintimepoints.Partitioncoefficient(logP)valuesrangingfrom-1to-3revealedahydrophiliccharacteroftheradiotracers.Asexpectedadecreaseofhydrophilicitycorrelatedwithincreasinggradeofmultimerisation.Thecelluptakerangedfrom10to15%permgproteinandcouldbereducedsignificantlybyblockingwithhumanminigastrinindicatingspecificreceptorbindingofallconjugates.Biodistributionstudiesshowedatumour uptake ranging from 5% (monomer) to approximately 10% ID/g (multimer) one hour postinjection.Tumourtoorganratiowasdecreasedbymultimerisationandespeciallythekidneyretentionwasincreasedsignificantlybythedi-andtrimericradiotracers.Staticanimalimagingoneandtwohoursafter injectionof68Ga labeledconjugatesconfirmed theoutcomeof thebiodistributionstudies.89Zrlabeled counterparts showed very similar results but after 24 hours post injection the trimericbioconjugate showedmuch better tumour imaging ability than the correspondingmono- and dimer.Discussion/Conclusion: Though these results are preliminarymultimerisation seems to correlatewithhighertumouruptakeleadingtobetterlatetimepointimagingbuthighkidneyretentionseemstobeamajorlimitation.Stabilitystudiesareongoing.

Page 20: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 20

OP07SPECTImagingofαvβ3Expressionby[99mTc(N)PNP43]-BifunctionalChimericRGDPeptidenotCross-Reactingwithαvβ5CristinaBolzati1,NicolaSalvarese1,2,FiorenzoRefosco1,LauraMeléndez-Alafort2,DeboraCarpanese2,AntonioRosato2,3,MicheleSaviano4,AnnaritaDelGatto5,DanielaComegna5LauraZaccaro51IENI-CNR,Padua,Italy;2DiSCOG-UniversityofPadua,Italy;3IOVPadua,Italy;4IC-CNR,Bari,Italy;5IBB-CNR,Naples,ItalyBackground:RecentlyanewbifunctionalchimericRGDpeptide(RGDechi),comprisingacyclicArg-Gly-Asp pentapeptide covalently bound to an echistatin domain, has been reported1. In vitro and in vivobiologicalstudiesevidencedthatthischimericpeptideselectivelybindstoαvβ3 integrinanddoesnotcross-reactwithαvβ52.InordertoobtainanoptimalSPECTradiotracer,aseriesof[99mTc(N)PNP]labelledpeptides has been prepared and their pharmacological properties investigate.Materials &Methods:RGDechi-hCit (1) and three truncated peptide derivatives [RGDechi1_17 (2), RGDechi1_16 (3) andRGDechi1_14(4)]lackingthetwo,threeandfiveC-terminalaminoacids,weresynthetizedinsolidphasebyFmocchemistryandconjugatedwithacysteinelinkedtotheLys1sidechaintoallowthelabelingwith[99mTc(N)PNP43]-synthon (PNP43 = (CH3)2P(CH2)2N(C2H4OCH3)(CH2)2P(CH3)2). In vitro stability andpharmacologicalparametersofthecorrespondingcompounds,99mTc1-4,wereassessed.ChallengeswithanexcessofglutathioneandcysteineandLogPvalueswerealsoinvestigated.Furthermore,radiolabeledpeptides (99mTc1-4)were applied to study in vivo stability and thepharmacokinetic profiles on tumorbearingmice.Results:All99mTc-compoundswereobtainedwithRCY>90%.LogPvaluesdemonstratethehydrophilicnatureoftheradiolabeledpeptidesrangingfrom-2.96to-2.12.NosignificantvariationsinRCPsofthecomplexesweredetectedinchallengeexperimentswithanexcess(10mM)ofglutathioneandcysteine.Ingeneral,ahighinvitrostabilitywasobservedafterincubationinhumanandmiceseraaswellasinmiceliverhomogenate;aslightdegradationof99mTc1-4wasfoundinkidneyshomogenate.Celluptake assays showed that, excluding 99mTc4 compound, 99mTc1-3 radiolabeled peptides accumulateselectivelyincellsexpressingαvβ3integrinanddoesnotaccumulateincellexpressingmoderatelevelsofαvβ5andundetectablelevelsofαvβ3integrins.Inagreementwithinvitrofindings,biodistributionstudiesshowed that the 99mTc1-3 radiolabeled chimeric peptide selectively localizes in tumor xenograftsexpressingαvβ3andfailstoaccumulateinthoseexpressingαvβ5integrin.Discussion/Conclusion:99mTc-labeled RGDechi, RGDechi1_17 and RGDechi1_16 chimeric peptides can be used for highly selectiveαvβ3expression imagingbySPECT technology.Among the testedcompounds, 99mTc2possess thebestdistributionprofileandhighest localization in tumorexpressingαvβ3.This researchwassupportedbyMIURthroughPRIN20097FJHPZ-004andFIRB“RINAME”2010-RBAP114AMK,byProgrammaOperativoNazionaleRicercaeCompetitivitaPON01_02388andbyItalianAssociationforCancerResearchAIRCIG13121.References:1.DelGattoA,[2006]JMedChem49:3416–20.2.ZannettiA,[2009]ClinCancerRes15;5224-5233.

Page 21: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 21

OP09New dienophiles for the inverse-electron-demand Diels-Alder reaction and for pretargeted PETimaging.Emilie Billaud1, Muneer Ahamed1, Frederik Cleeren1, Elnaz Shahbazali2, Tim Noël2, Volker Hessel2,AlfonsVerbruggen1andGuyBormans11LaboratoryofRadiopharmacy,KULeuven,Leuven,Belgium2Micro Flow Chemistry& Process Technology, Chemical Engineering and Chemistry Department, TUEindhoven,TheNetherlandsIntroduction: In cancer research,pretargetedPETimaginghasemergedasaneffectivetwo-stepapproachthatcombinestheaffinityandselectivityofantibodies with the rapidpharmacokinetics and favorabledosimetry of smaller moleculeradiolabeled with short-livedradionuclides. This approach can bebased on the bioorthogonal inverse-electron-demand Diels-Alder (IEDDA)“click” reaction between tetrazinesand trans-cyclooctene (TCO)derivatives. Our project aims to develop new [18F]TCO-dienophileswith high reactivity for the IEDDAreaction,improvedinvivostabilityandfavorablepharmacokinetics.Newdienophilesweresynthesizedusing an innovative continuous-flowmicro-photochemistry process, and their reaction kineticswith atetrazineweredetermined.Invivostabilitystudiesofthemostpromising18F-radiolabeled-TCO-derivative([18F]trans-EB-70)wasinvestigated,anditspotentialforpretargetedPETimagingwasassessed.Materialsand Methods: Organic chemistry Fluoro-cis-cyclooctene derivatives and mesylate precursors forradiofluorinationweresynthesizedin5-8steps.StructuresofintermediatesandfinalcompoundswereconfirmedbyNMRandmassspectrometry.PhotochemistryTrans-for-cis isomerizationwasperformedusingamicrofluidicsetup.

KineticsReactionsbetweendienophilesand3,6-di(pyridin-2-yl)-1,2,4,5-tetrazineinMeOHat25°CweremonitoredbyUVspectrophotometryat290nm(pseudo-firstorderconditions).18F-radiolabeling(semi-automated)Nucleophilicsubstitutionofmesylatetrans-EB-77using[18F]KF,K222wasachievedinMeCNat90°Cfor15min.[18F]trans-EB-70waspurifiedbyHPLC.Invivostability[18F]trans-EB-70wasevaluatedinhealthyNMRImice,byexvivobiodistribution(2,10,30,60minp.i.).InvitropretargetingProstatetumorslices (LNCaP and PC-3 cells)were successively incubatedwith a prostate-specificmembrane antigen(PSMA) inhibitormodifiedwith3-(4-(trifluoromethyl)phenyl)-6-phenyl-1,2,4,5-tetrazine,and [18F]trans-

Page 22: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 22

EB-70.Directincubationwith[18F]click-PSMAi,andblockingexperiments(2-(phosphonomethyl)pentane-1,5-dioicacid)wereperformed.

ResultsFluoro-cis-cyclooctenederivatives andmesylate precursorswere synthesized in 3-35%overallyields.The trans-for-cismicro-photoisomerizationreachedyieldsof48%.Reactionkineticsof thenewdienophilesarefast,withk2rangingfrom475.6±32.8to1913.0±195.9M-1.s-1.Radiosynthesisof[18F]trans-EB-70wasachieved in60min,with12%radiochemicalyield (decay-corrected),aradiochemicalpurity>99%(foratleast2h),and70-188GBq.µmol-1specificactivity.Biodistributionof[18F]trans-EB-70inmicedemonstratedabsenceofinvivodefluorinationandafastclearanceviaurinaryandhepatobiliarysystems.Regardinginvitroexperiment,thebindingonLNCaPtumorslices(expressingPSMAreceptors)subjectedtopretargetingwasPSMA-specificandslightlyinferiortothebindingof[18F]click-PSMAi.Nosignificantbindingwas observed in PC-3 cells (negative control).Discussion/Conclusion:We demonstrated that[18F]trans-EB-70isasuitabledienophilefortheIEDDA“click”reactionandforpretargetingapplications.Therefore, [18F]trans-EB-70 will be investigated further in pretargeted µPET experiments. Researchsupport:SBOMIRIAD(IWTFlanders)

Page 23: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 23

OP10New complexing agent for Al18F-labelling of heat-sensitive biomolecules: Synthesis and preclinicalevaluationofAl18F-RESCA1-HASCleerenF1,LecinaJ1,KooleM2,VerbruggenA1andBormansG11LaboratoryforRadiopharmacy,UniversityofLeuven,Belgium2DepartmentofNuclearMedicineandMolecularImaging,UniversityofLeuven,Belgium

Introduction: The Al18F-labelling strategy involves formation of aluminium mono[18F]fluoride({Al18F}2+) which is trapped by a suitable chelator –mostly bound to a biomolecule- in aqueousmedium.1Atthismomenthowever,theneedforelevatedtemperatures(100-120°C)limitsitswidespreaduse. Therefore, we designed new restrained complexing agents (RESCAs) for use of this strategy atmoderatetemperature.RESCA1 isanacyclicpentadentate ligandwithaN2O3coordinativesetthat isabletocomplex{Al18F}2+efficientlyat25°C.Toevaluatethestabilityandkineticinertnessofthechelateinvivo,RESCA1wasconjugated tohumanserumalbumin (HSA)and labelledwith {Al18F}.TheAl18F-labelledconjugatewasmonitoredinvivofor6hp.i..

Figure1:Al18F-labellingofRESCA1-HSA,invivobiodistribution(%ID/g)inhealthyratsandwhole-bodyPETimageofahealthyrat180minafterintravenousinjection

Materials&Methods:HSAwas reactedwithRESCA1-TFP. RESCA1-HSA (7.5mg,110nmol) in750μlsodiumacetatebuffer(0.1M,pH4.5)wasaddedtoafreshlyprepared{Al18F}2+solution(1.4GBq,50nmolAlCl3,12min,RT).TheproductwaspurifiedusingaPD-10caolumnandRCPwasdeterminedwithSEC-HPLC.Toteststabilityinserum,Al18F-RESCA1-HSAin100µlPBSwasaddedtoratserum(900µl),

Page 24: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 24

keptat37°Candmonitoredupto4h.Exvivobiodistributionwasstudiedat1h,3hand6hp.i.ofAl18F-RESCA1-HSA(2-7.5MBq) inhealthyfemalerats.Small-animalwhole-bodyPETimagingwasperformedusingaFOCUS220tomograph.Results:RESCA1-HSAwasobtainedwithachelator-to-proteinratioof3,estimated by ESI-TOF-HRMS analysis. Al18F-RESCA-HSA was prepared in high RCY (>70%) and purity(>95%)in<30min.91%ofproductwasstillintactinratserumafter4hincubation.Distributioninrats(figure1)showedhighretentioninbloodwith5.42±0.23%ID/g,4.93±0.22%ID/gand3.66±0.06%ID/gat1h,3hand6hrespectively fromwhichthebloodbiologicalhalf-lifewascalculatedtobe8.6h.Nosignificantincreaseinboneuptakewasobserved,indicatingexcellentinvivostabilityoftheAl18F-labelledconstruct.Discussion/Conclusion:Wesuccessfullylabelledforthefirsttimeaheat-sensitivebiomoleculevia the Al18F-method in one radiolabelling step. Al18F- RESCA1-HSA showed excellent stability andfavourablepropertiesforPETbloodpoolimagingapplications.References:1.McBride,W.J.,Sharkey,R.M.,andGoldenberg,D.M.[2013],EJNMMIRes.3,36.

Page 25: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 25

OP11AnovelversatileprecursorefficientforF-18radiolabellingviaclick-chemistryB.Lugatoa,S.Stucchia,E.A.Turollaa,L.Giulianoa,S.Toddea,P.FerraboschibaUniversityofMilano-Bicocca,DepartmentofMedicineandSurgery,TecnomedFoundation;bUniversitàdegliStudidiMilano,DipartimentodiBiotecnologieMedicheeMedicinaTraslazionale.

IntroductionInthelastyears,theCu(I)-catalyzedHuisgen[3+2]cycloadditionbetweenterminalalkynesandazidesemergedasapowerful tool inF-18 labellingbiomoleculessuchaspeptides,becauseof itsregioselectivity,mild aqueousorganic conditions, reduced reaction times, andhigh yields.(1) Aweakpointofthemethodisthelackofsuitablecommerciallyavailable,stableprecursors.(1)InthispaperwereportthesynthesisandF-18radiolabellingofanew,versatile,easytohandle,andstableazideprecursorusefulforclick-chemistry.Materialsandmethods:ReagentsandsolventswerepurchasedfromSigma-Aldrich. [18F]Fluoride was produced with an IBA Cyclone 18/9 cyclotron. Radioactive syntheses werecarried out on a fully automated radiosynthesis module (GE TracerLab FX-FN Pro), and analyzed byanalytical RP-HPLC with UV and radiochemical detectors. Non-radioactive compounds were fullycharacterized by NMR, ESI-MS and IR.Results:A series of bifunctional precursors, bearing the azidemoietyanddifferentleavinggroups(e.g.tosylate,mesylate,iodo),coupledtoashortpolyetyleneglycolchain,withtheaimtoimprovetheirstabilityandhydrophilicity,weredesignedandsuccessfullypreparedfollowingaten-stepsyntheticpathway.Aprotection-deprotectionstrategyoffunctionalgroupsachievedthedesiredprecursorswithgoodyieldandpurity.Fluorinatedreferencestandardswerealsopreparedandpurified. Precursorswere radiolabelledwith F-18 and then coupled topropargylglycine as alkynecounterpart.[18F]Fluoridewaspurifiedfollowingstandardprocedure,andnucleophilicdisplacementoftheiodoleavinggrouptookplaceat100°C,in20min.TheresultinglabelledazidewasthensuccessfullypurifiedusingaSep-PaktC18cartridge,giving51%radiochemicalyield(notdecaycorrected)and93%radiochemical purity. The purified azide was then conjugated to propargylglycine, showing 52%conversionwithin30minatroomtemperature.Purificationandformulationhavestilltobeoptimized.Discussion/Conclusion:AnewoptimizedprecursorusefulforF-18radiolabellingandclick-chemistrywasprepared, and it demonstrated to be effective in radiolabelling non-protected alkynyl modifiedaminoacids,byafullyautomatedsyntheticprocedure.Goodresults,intermsofradiochemicalyieldandpurity,wereobtainedwithiodo-derivativeprecursor.Purificationandformulationofthefinalconjugationproductareinprogress.References(1)RoedaD,DolleF,[2015]ChemistryofMolecularImaging,55-77(2)PretzeM,PietzschD,MamatC,[2013]Molecules,18:8618-8665

Page 26: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 26

OP12AgeneralapplicablemethodtoquantifyunidentifiedUVimpuritiesinradiopharmaceuticalsR.P.Klok1,M.P.J.Mooijer1,N.H.Hendrikse1,2,A.D.Windhorst11DepartmentofRadiology&NuclearMedicine,VUUniversityMedicalCenter,Amsterdam,TheNetherlands2DepartmentofClinicalPharmacology&Pharmacy,VUUniversityMedicalCenter,Amsterdam,TheNetherlandsIntroduction: Radiopharmaceuticals are released for administration by a quality control procedureagainst pre-set specifications. One of these release specifications is the chemical purity of the drugproduct, determined with High Pressure Liquid Chromatography (HPLC) and UV detection. In theEuropean Pharmacopeia (EP) hardly any specifications are given for the chemical purity of aradiopharmaceutical.Whenunknown impuritiesarepresent in the chromatogram, thedecision if theradiopharmaceuticalcanbereleased,isveryfrequentlybasedonunclearparameterslike‘nounidentifiedUVsignalspresent’.There isaneedforanobjectivespecification inorder tohaveasaveandreliablerelease.Aim:Thepurposeof thepresentedwork is todefineagenerallyapplicablemethodtodefinetolerances for unidentified impurities in radiopharmaceuticals.Materials&Methods:A retrospectiveanalysis was performed on HPLC analysis results of [11C]Flumazenil, [11C]PIB, [11C]Erlotinib,[11C]DPA713,[18F]PK209and[18F]FES.QuantificationofthecarriersignalintheUVchromatogramwasdeterminedbyuseofcalibrationcurves,utilizingChromeleon®6.8.Unidentifiedimpuritiesweresemi-quantified utilizing the surface area in theUV chromatogram relative to the quantified carrier signal.Based on the EP.monography of [11C]Flumazenil and [18F]FET, the specification for unidentifiedUVimpuritieswasdeterminedtobe0.22pmol/injectionvolumeforasingleunidentifiedimpurityand0.88pmol/injectionvolumeforthetotalofunidentifiedimpurities.Thisspecificationwastestedforover500batchesof theradiopharmaceuticalsandcomparedtothe lessspecificparameter ‘nounidentifiedUVsignalspresent’.Results:Inapilotassessmentweencounteredin5-10%casesunidentifiedUVimpuritiesleadingtorejectionofthebatch,basedonthespecification‘nounidentifiedUVsignalspresent’.Oftheserejected batches 25%was also rejectedwith the new defined specification. Reason for this reducednumber of rejections is that with the new specification the presence of unidentified impurities isevaluatedobjectively.Theanalysisofthefulldatabaseiscurrentlyon-going.Discussion/Conclusion:Withthismethodtheamountofunidentified impuritiescanbeestimated inanoptimalandobjectiveway,utilizingEP limitsof [11C]Flumazenil and [18F]FET,withoutoperator variability.References: EuropeanPharmacopeia8.0-8.6.

Page 27: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 27

OP13Developmentof[18F]Fluoro-C-glycosidestoradiolabelpeptidesColletC.1,2,PetryN.1,3,ChrétienF.1,3,KarcherG.1,2,4,Pellegrini-MoïseN.1,3,Lamandé-LangleS.1,31UniversitédeLorraine,F-54500VandoeuvrelesNancy-France2NancycloTEP,Plateformed’imagerieexpérimentale,54500VandoeuvrelesNancy-France3CNRS,UMR7565SRSMC,F-54506VandoeuvrelesNancy-France4CHUdeNancy-Brabois,F-54511VandoeuvrelesNancy–FranceIntroduction:The18F-labelingofpeptidesforPETapplicationshasbeenusedformanyyears.1However,thesensitivityofthesepeptidesdoesnotallowtheirdirectradiolabellingunderharshconditions,exceptfew recent examples. A solution is to use a prosthetic group, an easily radiolabeled small molecule,subsequently coupled in mild condition to the peptide. In continuation of our previous work,2 wetherefore propose to develop and use new C-glycoside-based prosthetic groups. The use of sugarderivativesasprostheticgroupwouldimprovebioavailabilityandpharmacokineticpropertiesofpeptides.Materials&Methods:TheseC-glycosidederivativesshouldhaveagoodleavinggroupthusallowingeasysubstitutionbyfluorine-18,i.e.triflate.Acoppercatalyzedazidealkynecycloaddition(CuAAC)wasthenusedforcouplingthesecarbohydrateswithapeptide.SomemodelpeptidescontainingacysteineresidueasRGDCandc(RGDfC)areused.Thehighnucleophilicityofthethiolfunctioncanthusbeexploitedtoprepare S-propargylated derivatives. The fully automated radiosynthesis of these [18F]fluoro-glycopeptideswasperformedonanAllInOne®(Trasis)synthesizer.Results:TriflatedprecursorsoftheseC-glucosidesprostheticgroupsandthenon-radioactivereferencesweresynthesized inalphaandbetaconfiguration.Fluoride-18radiolabelingwasoptimizedandtheautomatedradiosynthesisof[18F]fluoro-glycopeptideswithsomemodelpeptides(RGDC,c(RGDfC))waspresented.

OHOHO N

NN

OH

18FOHO

HO N3OH

18FOAcO

AcO N3OAc

TfO18F-radiolabeling

deprotection

S

CuAAC

peptide

Speptide

Discussion/Conclusion: The synthesis and radiosynthesis of 6-[19F/18F]fluoro-C-glycosides displaying athreecarbonarmterminatedwithanazidegroupwereoptimized.CuAACoffluoro-C-glycosideswithRGDderivativepeptidesgave[19F/18F]fluoro-glycopeptidesingoodyields.References:[1]a)OkarviS.M.[2011]Eur.J.Nucl.Med.,28:929-938.b)KuhnastB.,DolléF.[2010]CurrRadiopharm.,3:174-201.[2]a)ColletC.,MaskaliF.,ClémentA.,ChrétienF.,PoussierS.,KarcherG.,MarieP.-Y.,ChapleurY.,Lamandé-LangleS., [2016], J. Label. Compd. Radiopharm. DOI: 10.1002/jlcr.3362. b) Lamandé-Langle S., Collet C.HensienneR.,ValaC.,ChrétienF.,ChapleurY.,MohamadiA.,LacolleyP.,RegnaultV.,[2014],Bioorg.Med.Chem.22:6672-6683.c)Lamandé-LangleS.,ChapleurY.,ChrétienF.,ColletC.[2014],WO2014006022A120140109.d)ChapleurY.,ValaC.,ChrétienF.,Lamandé-LangleS.[2013]Towardimagingglycotoolsbyclickcoupling;Witczak

Page 28: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 28

OP14AMicrofluidicApproachforthe68Ga-labelingofPSMAHBED-CCandNODAGA-RGDSarahPfaff1,2,CecilePhilippe1,MarkusMitterhauser1,3,MarcusHacker1,WolfgangWadsak1,21DepartmentofBiomedicalImagingandImage-guidedTherapy,DivisionofNuclearMedicine,MedicalUniversityofVienna,Austria2DepartmentofInorganicChemistry,UniversityofVienna,Austria3LBIforAppliedDiagnostics,Vienna,AustriaIntroduction:Innuclearmedicinearemarkablyhighdemandof68Ga-radiotracershasemergedduringthelastdecade.Foravarietyofnon-68Ga-containingradiotracersamicrofluidicapproachfortheirsynthesescouldbeestablished,enablinganenhancementofyieldsduetohighsurface-to-volumeratios1,2.Inthisproof-of-principle study, the 68Ga-radiolabeling of PSMAHBED-CC and NODAGA-RGD using a microfluidicapproachwasevaluated.Furthermore,addingTWEEN20(asurfactantsuitableforinvivoapplications)anditsimpactontheradiochemicalyieldwasexplored.MaterialsandMethods:Thesynthesesof68Ga-PSMAHBED-CC and 68Ga-NODAGA-RGD (both precursors from ABX) were performed using an AdvionNanoTekLFmicrofluidicdevice.Thesystemincorporatesaflow-throughreactorthatconsistsofasilicacapillary(l=2m,Ø100µm,V=15.6µL).68Ga3+wasobtainedfroma68Ge/68Ga-generator(3.7GBq;Obninsk)according to a fractionized protocol. The precursor and 68Ga3+were loaded in two storage loops anddistinctvolumesthereofwerepushedthroughthereactorwithdifferentflowrates(30,50,80µL/min)atdifferent temperatures (25, 50, 80, 100, 120, 150°C) using NaOAc and HEPES for pH adjustment,respectively.Additionally,theinfluenceofTWEEN20asasurfactant,toreduceknownadsorptioneffectsinmicrofluidictubing,wasinvestigated.Results:Accomplishedexperimentsrevealedfeasibilityof68Ga-labeling of PSMAHBED-CCandNODAGA-RGDusing amicrofluidic device. All temperatures and flowratesresulted in mean radiochemical yields in a range of 20-55%. Syntheses at higher temperatures andflowratesprovedtobemoreefficient.Forinstance,HEPESbufferedsynthesesat100°Candflowrateof80µL/minyielded68Ga-PSMAHBED-CCin42.6±22.1%(n=10)and68Ga-NODAGA-RGDin49.7±32.5%(n=7).Applyingthesameparameters,TWEEN20couldstrikinglyimprovetheyieldof68Ga-PSMAHBED-CCto70.8±16.8% (n=13).Discussion/Conclusion:This study provides the proof-of-principle of 68Ga-labeling in amicrofluidic“flow-through”system.TheapplicationofTWEEN20 led todrastically increasedyieldsof68Ga-PSMAHBED-CCdueto itssurfactantnature.Asaresult,thismicrofluidicapproachwillbepursuedtoincrease availability of 68Ga-radiopharmaceuticals according to the dose-on-demand principle.References:1LeeC,SuiG,ElizarovA,ShuJ,ShinY,DooleyA,HuangJ,DaridonA,WyattP,StoutD,KolbH,WitteO, SatyamurthyN,Heath J, PhelpsM,Quake S, TsengH, [2005] Science; 310: 1793─1796 2UngersboeckJ,PhilippeC,MienL,HäuslerD,ShanabK,LanzenbergerR,SpreitzerH,KepplerB,DudczakR,KletterK,MitterhauserM,WadsakW,[2011],NucMedBio;39:1087─1092

Page 29: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 29

OP16Surprisingreactivityofastatineinthenucleophilicsubstitutionofaryliodoniumsalts:applicationtotheradiolabelingofantibodiesFrançois Guérard1, Yong-Sok Lee2, Sébastien Gouard1, Kwamena Baidoo3, Cyrille Alliot1,4, MichelChérel1,MartinW.Brechbiel3andJean-FrançoisGestin1.1CentredeRechercheenCancérologieNantes-Angers(CRCNA),UnitéINSERM892-CNRS6299,Nantes44007(France).2 Center for Molecular Modeling, Division of Computational Bioscience, Center for InformationTechnology,NationalInstitutesofHealth,Bethesda,Maryland20892(USA).3Radioimmune& InorganicChemistry Section,RadiationOncologyBranch,NationalCancer Institute,NationalInstitutesofHealth,Bethesda,Maryland20892(USA).4ArronaxGIP,Nantes44817(France)Introduction:Aryliodoniumsaltshaverecentlyemergedasversatileprecursorsforthesynthesisof18F-radiolabeled compounds for PET imaging.1,2 However, little is known about the applicability of thesereagentsforlabelingwiththeheaviestradiohalogensiodineandastatine,bothusefulfornuclearimagingand/ortherapy.3Inthisstudy,weaimedatprobingthereactivityofradio-iodide(125I)andastatide(211At)towardsdiaryliodoniumsaltsinordertoassesstheirusefulnessforradiolabelingbiomoleculesofinterestinnuclearmedicine.Materials&Methods:First,parametersofradio-iodinationandastatinationreaction(solvent, temperature, duration and counter-ion of iodonium) were studied on model compounds.Bifunctionaliodoniumsaltswerethendesigned,allowingthesynthesisof[125I]-SIBand[211At]-SAB,twoprostheticgroupswidelyusedforradio-iodinationandastatinationofbiomolecules.Both[125I]-SIBand[211At]-SABwere conjugated to themultiplemyeloma targetingmAb 9E7.4 (anti-CD138). Conjugationyields and resulting immunoreactivity were compared with the conventional arylstannane chemistryapproach(Figure1).

Figure1:Radio-iodinationandastatinationof9E7.4IgGfromiodoniumsaltsprecursors.

Results:Initialreactionparametersstudieshighlightedastrikingdifferenceofreactivitybetweenradio-iodideandastatidethatcouldnotbeanticipatedfromthetrendsobservedwithinthehalogenseries.Notonly the astatination reactionwas highly efficient atmuch lower temperature than iodination, but itappearedsolventandcounter-ionindependent(not iodination).ThermochemicalstudieshighlightedalargedifferenceofactivationenergybetweenbothhalogenswithEa=23.5kcal/moland17.2kcal/molforradio-iodinationandastatination,respectively.Quantumchemicalcalculationssupportthehypothesisthatastatinationoccursviaamonomericiodoniumcomplexwhereasiodideoccursviaadimericcomplexwhich requiresmore energy for the reaction to proceed. This explains the large reactivity differenceobserved. Radiolabeling of an antibody with specifically designed iodonium salts outperformed

-OTf

I+

Ar O

O

N

O

O

125I- or

211At

-OO N

O

O

X

1) Sep-pak purification

2) conjugation to 9E7.4 IgG 9E7.4-SIB (75%)

or

9E7.4-SAB (78%)

Ar =S

orO

X = 125

I, SIB (RCY = 87%)

X = 211

At, SAB (RCY = 93%)

Page 30: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 30

conventionalarylstannanechemistryapproachesintermsofglobalefficiency(radiochemicalyields>90%,conjugation yields ≈ 75%, and simpler purification: no HPLC needed) with excellent preservation ofimmunoreactivityoftheIgGwithbothradionuclidesandlessconcernsregardingthetoxicityofprecursorsandsideproducts.Discussion/Conclusion:Incomparisonwiththeconventionalarylstannaneapproach,aryliodoniumsaltsappearasmoreefficientprecursorsforpreparationofradio-iodinatedandastatinatedcompounds.Furthermore,theyallowsimplerpurificationprocedures(easytransfertoautomation),withtheadditionaladvantageofamuchlowertoxicity,whichisofprimaryimportanceforhumanuse.Mostofall,theunexpectedreactivityofastatineweunveiledhighlightsthatalotisstilltobediscoveredaboutthechemistryofthisradioelementwhichremainstodatelargelyunexplored.4References:1.TeluS,ChunJ-H,SiméonFG,LuS&PikeVW[2011]Org.Biomol.Chem.9:6629–6638,2.MoonBSetal.[2011]Org.Biomol. Chem. 9: 8346–8355 (2011) 3. AdamMJ &Wilbur DS [2005] Chem. Soc. Rev. 34: 153–1634.Wilbur,DS[2013].Nat.Chem.5:246–246

Page 31: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 31

OP1764Cu-NOTA-pertuzumabF(ab')2fragments,asecond-generationprobeforPETimagingoftheresponseofHER2-positivebreastcancertotrastuzumab(Herceptin)LamK1,ChanC1,ReillyRM1,2,31DepartmentofPharmaceuticalSciences,UniversityofToronto,Canada;2DepartmentofMedicalImaging,UniversityofToronto,Canada;3TorontoGeneralResearchInstitute,UniversityHealthNetwork,Toronto,Canada

Introduction: SPECT/CT imaging with 111In-BzDTPA-pertuzumab detected trastuzumab (Herceptin)-mediatedHER2downregulationinhumanbreastcancerxenograftsinmiceandwascorrelatedwithagoodresponse to treatment.Thisagent isnowbeing studied inaPhase I/II clinical trial sponsoredbyOICR(PETRA; ClinicalTrials.gov identifier: NCT01805908). Our objective was to develop and characterize asecond-generation positron-emitting analogue for PET/CT imaging, 64Cu-NOTA-pertuzumab F(ab')2, toprovidegreatersensitivity,moreaccurateradiotracerquantitationandalowerradiationabsorbeddose.Materials&Methods: To determine the optimal dose,micewith subcutaneous HER2-overexpressingtumourswereinjectedwith5,50,100or200µgof64Cu-NOTA-F(ab')2(2.2±0.6MBq)andsacrificedat24hp.i. for biodistribution. Todetermine thenormal tissuedistribution, pharmacokinetics and radiationdosimetryof64Cu-NOTA-F(ab')2,non-tumourbearingBalb/cmicewereadministered50µgof64Cu-NOTA-F(ab')2 (2.9±0.3 MBq) and sacrificed at select time points. Three groups of mice bearing HER2-overexpressing tumourswere injectedwith 64Cu-NOTA-F(ab')2 (50 µg; 10.6±0.4MBq)with orwithoutadministrationofpertuzumab(1mg)24hbefore,orwith64Cu-NOTA-F(ab')2preparedfromnonspecifichumanIgG(50µg;8.2±1.9MBq)todemonstratespecificity.MicewereimagedwithPET/CTat24and48hp.i.andsacrificedforbiodistribution.Results:The50µgdoseof64Cu-NOTA-F(ab')2showedthehighesttumour to blood ratio, followed by the 100, 5, and 200 µg doses (18.2±7.2, 15.4±0.8, 14.0±5.0, and10.9±1.8, respectively). In non-tumour bearing mice, only the kidney retained significant radiotraceruptakeat24hp.i.(49.1±5.9%ID/g).Initialestimatesfort½αandt½βwere1.2hand6.0h,respectively.Theprojectedtotalbodyradiationabsorbeddosetohumanswas0.02mSv/MBq,halfthatestimatedfor111In-BzDTPA-pertuzumab.TumourtonormaltissuecontrastofPET/CTimagesappearedsimilarbetweenthe 24 and 48 h p.i. imaging timepoints. Tumour accumulationof 64Cu-NOTA-F(ab')2was significantlyhigherinmiceadministered64Cu-NOTA-F(ab')2withoutpertuzumabblocking(8.4±3.4%ID/g)relativetomicepre-injectedwith1mgofpertuzumab(3.9±0.5%ID/g;P<0.05),andmiceadministered64Cu-NOTA-F(ab')2prepared fromnon-specific human IgG (2.7±0.5%ID/g;P < 0.05).Discussion/Conclusion: 64Cu-NOTA-F(ab')2isHER2specificandcanvisualizeHER2-overexpressingtumoursat24or48hp.i.withPET/CTimaging.Thelowerprojectedradiationabsorbeddosesfor64Cu-NOTA-F(ab')2comparedto111In-BzDTPA-pertuzumab may make this a more attractive imaging agent to detect trastuzumab-mediated HER2downregulationinbreastcancer.SupportedbygrantsfromtheOICRSmarterImagingandHighImpactClinicalTrials(HICT)Programs.

Page 32: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 32

OP18Developmentofradiohalogenatedanaloguesofaavb6-specificpeptideforhighLETparticleemittertargetedradionuclidetherapyofcancer.SaloméPaillasa,,JohnMarshallb,Jean-PierrePougetcandJaneSosabowskiaaCentreforMolecularOncology,BartsCancerInstitute,CharterhouseSquare,QueenMaryUniversityofLondon,bCentreforTumourBiology,BartsCancerInstitute,CharterhouseSquare,QueenMaryUniversityofLondon,UK,cInstitutdeRechercheenCancérologiedeMontpellier,InsermU1194,Montpellier,France.Introduction:Targetedradionuclidetherapy(TRT)ofsolidtumorshasalimitedefficacymainlybecausethesetumourshavehighradioresistanceandtakeuplimitedamountsofradiolabeledvectors.Strategiestoovercomethisincludetheuseofsmallpeptidescombinedwithradionuclidesthatemithighlycytotoxicparticles,namelyhighlinearenergytransfer(LET)particlessuchasalphaparticlesandAugerelectrons.Wehavechosentotargettheepithelial-specificintegrinαvβ6,whichisweakorabsentonnormaltissuesbutisupregulatedonmanycancerswhereitisstronglyassociatedwithreducedsurvival.Onetargetingvectorisa20merpeptide,A20FMDV2whichwehavepreviouslyusedtoimageαvβ6-positivetumourswithSPECT (In-111)orPET (F-18,Ga-68). Thepeptide showedextremelyhighkidney retentionwhenradiolabelledwithradiometals,butthiswasnotseenwiththeF-18analogue.Duetoanticipateddose-limiting toxicity in kidney for radiometal-based TRT, we have developed a peptide suitable forradiohalogenationwiththeAugerelectronemitterI-125andthealphaparticleemitterAt-211.Materialsandmethods:The20merhighaffinityαvβ6-targetingpeptide,A20FMDV2used inpreviousworkhasbeenderivatisedtocontainatrimethylstannylbenzamidemoietysothatitcanberadiolabelledwithI-125andAt-211.Thepeptidehasbeen radiolabelledwith I-125and radioligandbindingand internalizationassayshavebeencarriedoutincellsthatoverexpressαvβ6andcomparedwiththatofthe111In-DTPA-A20FMDV2studiedpreviously.Clonogenicassayshavebeencarriedoutonboththenon-radiolabelledpeptideandtheradiolabelledanalogueinbothαvβ6-positiveandnegativecellstodeterminetheeffectofhighLETirradiation.Results:RadiolabellingefficiencywithI-125was>91%andtheanalogueshowedhighbindingaffinityandrapidinternalisation.Clonogenicassaysshowedthatthenon-labelledpeptidealonewasabletoinhibitcellgrowthandthatthiseffectwasnotseenonαvβ6-negativecells.Thiseffectwas enhancedwhen radiolabelledwith a high LETparticle emitter.Discussion/Conclusion:Theαvβ6-specific peptide when radiolabelled with a high-LET particle emitter shows promise as an agent fortargetedradionuclidetherapy.

Page 33: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 33

OP19LigandSpecificEfficiency(LSE)asaguideintraceroptimizationEmmanuelleBriard1,YvesP.Auberson1,JohnReilly2,MarkHealy2,DavidSykes31NovartisInstitutesforBiomedicalResearch,Basel,CH,2NovartisInstitutesforBiomedicalResearch,Cambridge,USA,3UniversityofNottingham,UK

Introduction: Successful radiotracers results from a favorable combination of target density, ligandaffinity,nonspecificbindingandpermeation.Alltheseparameterscanbemeasuredindependentlyandthe interplaybetweensomeofthemiswellknown:for instance,therequiredaffinitydependsonthetargetdensity,aconditionoftendescribedasBmax/Kd>10.Importantly,therequiredaffinityofatracerisalsocorrelatedtononspecificbinding:Anincreasedaffinityisbeneficialonlyifthenonspecificbindingremainsconstant.Thisworkaimedatidentifyinganindextakingintoaccounttherelationshipbetweenthesetwoparameters,toguideoptimizationattheearlystageofatracerdevelopmentproject.Materials&Methods:SimilarlytotheLigandEfficiency(LE)index,whichrelatestheaffinityofadrugtothenumberofitsnon-hydrogenatoms,weexploredtheusefulnessoftheLigandSpecificEfficiencyindex(LSE),whichwedefinedastheratiobetweenaffinity(expressedasthelogofitsaffinityforaspecifictarget,e.g.pIC50

orpKd),andthelogarithmicvalueoftheexperimentalnon-specificbindingmeasurement,CHI(IAM).[Jiang]LSEprovidesameasureofaffinity,normalizedtonon-specificbinding.Itshowshowefficienttheligandisatbindingtothedesiredtarget,comparedtoallothernon-specificbindingpartners.

LSE=pKd/log(CHI(IAM))

Ro1138452Results:AseriesofwelldescribedPETtracerswasevaluatedtosettheLSEthreshold.ThisanalysisshowedthatanLSE>5andpreferablyLSE>5.4isrequiredforasuccessfultracer.Thisconceptwasappliedtothedevelopment of a prostacyclin receptor (IPR) tracer.Our chemical starting pointwas Ro1138452,[Clark]whichweselectedbasedonencouragingoverallproperties,includingahighaffinityforIPR(Ki=0.23nM).Incontrast, itsCHI(IAM)valueof58clearly indicatedahightendencyfornon-specificbinding.Despitesuchhighnon-specificbinding,Ro1138452hasaLSEvalueof5.1,whichisclosetotheminimumvaluewhatwouldbeexpectedforasuccessfulPETtracer.Thisraisedhopethatsomeimprovementinbindingspecificitywouldallowtheuseofaclosederivativeforimagingpurposes.TheuseofLSEduringtheIPRtraceroptimizationwillbepresented.Discussion/Conclusion:LSEisbasedonaratherintuitiveconcept,inthesensethatagoodPETtracercandidateshouldhavetheoptimumbalanceofaffinityandbindingspecificity.Itisaconvenientindextoevaluateandcomparemoleculesbasedonmeasured,ratherthanin silico values, and is applicable independently of target and chemotype. It is a useful index at thebeginningofaproject,andfacilitatestheselectionofthemostpromisingscaffoldforfurtheroptimization.References: JiangZ,Reilly J,EverattB,BriardE, [2011], JPharmBiomedAnal54:722–729,ClarkRD,JahangirA,SeveranceD,SalazarR,ChangT,ChangD,JettMF,SmithS,BleyK,[2004],BioorgMedChemLett14:1053-1056

Page 34: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 34

OP23Theradiosynthesisofan18F-labeledtriglyceride,developedtovisualizeandquantifybrownadiposetissueactivityAndreasPaulus1,WoutervanMarkenLichtenbelt1,FelixMottaghy2,3,MatthiasBauwens1,31ResearchSchoolNUTRIM,MaastrichtUniversity,Maastricht,Netherlands2DivisionofNuclearMedicine,UniklinikumAachen,Aachen,Germany3DepartmentofMedicalImaging,DivisionofNuclearMedicine,MUMC,Maastricht,NetherlandsIntroduction:Brownadiposetissue(BAT)isaninterestingtypeoftissuethatreceivesmajorinterestasatargettocombatobesity.Itwas(re-)discoveredin2009,whenPET-CTstudieswith[18F]-FDGshoweditspresenceandmetabolicactivityeveninadulthumans[1].Itishoweverdifficulttoquantitativelyassessthismetabolicactivityusing[18F]-FDG,asBATmainlyuseslipidsasanenergysource.Radiolabeledfattyacids,suchas[18F]-FTHA,canprovideusefulinformation,butarenotoptimalconsideringthelipiduptakemechanismBATisnotbasedonsingularfattyacids,butinsteadtriglycerides(inlipoproteins).Assuch,weaimtodeveloparadiolabeledtriglyceride,hopingthiswillshedmorelightonthelipidburningofBAT,thusallowingtocalculatetheimpactofBATonthetotalmetabolismofthehumanbody.Methods:Afattyacid(C16)BODIPY-FldyeisradiolabeledwithF-18usinganF-18/F-19exchangereactionoftheboron-fluoridecoreoftheBODIPYdyetoyieldabimodalPET/fluorescentimagingtool.BODIPY-C16isesterifiedwith1,3–Dioleinandassistanceofthionylchlorideyieldingtheresultingfluorescenttriglyceride(TG).Invitro experiments with BODIPY-C16 are conducted to investigate the applicability the dual-modalityimagingprobe.Results:BODIPY-C16couldberadio-labeledinaLewisAcidassistedF-18/F-19exchangereaction in a reasonable yield (66%, not corrected for decay) and a final purity after C18 Sep-Pakpurificationofmorethan97%.EsterificationofBODIPY-C16resultedinaBODIPY-TGwithayieldofmorethan90%within30minutes.FirstinvitroexperimentsshowedspecificuptakeofBODIPY-C16inBATandWATasthecompoundwaslocatedwithinthelipiddropletsofthecell.DirectradiolabelingoftheBODIPY-TGL was also successful (60% yield, >97% purity). Discussion/Conclusion: First experiments impliedradiolabeled BODIPY-C16 is a promising BAT PET tracer with the opportunity to resolve its metaboliccharacteronasub-cellularlevelduetoitsdual-modality.InvivoimagingofradiolabeledBODIPY-C16and

BODIPY-TGL,incorporationintomicellesaswellasfurtherinvitroexperimentswillbeconductedinthenearfuturetoinvestigatetheapplicabilityofthistracerinlipidmetabolismimagingofBAT.References:[1]vanMarkenLichtenbeltWD,etal,2009,NEnglJMed,360(15):1500-8

Page 35: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 35

OP24Influence of the fluorescent dye on the tumor targeting properties of dual-labeled HBED-CC basedPSMAinhibitorsBaranski, Ann-Christin1, Schäfer,Martin1, Bauder-Wüst, Ulrike1, Haberkorn, Uwe2, Eder,Matthias1,Kopka,Klaus11Div.ofRadiopharmaceuticalChemistry,GermanCancerResearchCenter(dkfz),Heidelberg,Germany2DepartmentofNuclearMedicine,UniversityofHeidelberg,Heidelberg,GermanyIntroduction: Image-guided cancer surgery using fluorescence imaging has high clinical impact andalreadyshowspotentialtoimprovetheoutcomeofoncologicalsurgery(1).Asfirstclinicalexperienceswiththe68Ga-labeledPSMA-targetinginhibitorGlu-urea-Lys-Ahx-HBED-CC(PSMA-11)demonstratedhighand specific tracer uptake in prostate cancer lesions a fluorescence dye conjugate of PSMA-11mightrepresentapromisingbimodaltracer.ThecombinationofpreoperativestagingbymeansofPET/CTandPET/MRI,followedbyimage-guidedsurgerywillfurtherimprovetheaccuracyofdetectingPSMA-positivetumor lesionsbymerging the strengthsofboth techniques. Therefore, various fluorescentdyeswereconjugatedtotheinhibitorPSMA-11todeterminetheimpactofthedyeconjugationontheligand’sinvitroand invivocharacteristics.Materials&Methods:Theoptical-dye labeledtracerPSMA-HBED-CC-FITC,PSMA-HBED-CC-AlexaFluor488andPSMA-HBED-CC-IRDye800CWweresynthesizedbasedonPSMA-11.Thebindingpropertieswereanalyzedinacompetitivecellbindingassayfollowedbyinternalizationexperiments inhumanPSMAexpressingLNCaPcells.Biodistributionstudieswereperformed inLNCaPtumor-bearingmice(BALB/cnu/nu)todeterminespecifictumoruptakeandpharmacokineticproperties.Results:ComparativecellbindingexperimentsrevealedahighaffinitytoPSMAexpressingcelllinesforall conjugates, which is in line with the values obtained with the reference 68Ga-PSMA-11. Theradiolabeledfluorescent-dyeconjugatesshowedspecificcelluptakeandwereeffectivelyinternalizedintothe PSMA expressing cell line LNCaP. First in vivo results indicated slightly varying pharmacokineticpropertiesdependingonthefluorescentdye.TheFITC-andAlexaFluor488-conjugatesrevealedahighertumoruptakecomparedto68Ga-PSMA-11,whileaminor,butstillsatisfyinguptakewasdetectedfortheIRDye800CW-conjugate.Discussion/Conclusion:Conjugationofafluorescentdyetothewell-establishedimagingagentPSMA-11showedratherminordye-dependentimpactoncellbindingproperties,tumoruptakeandthepharmacokineticcharacteristics.InordertofurtherimprovethebiodistributionprofileoftheIRDye800CW-conjugate,structuraloptimizationwillbedone.Thesefirstpreclinicalresultsemphasizethepotentialofadual-labeledPSMAinhibitortoserveasamultimodalimagingagent,enablingsensitivepre-, intra- and post-therapeutic identification of metastases with one and the same molecule.References:(1)BrouwerO.R.,etal.[2014],EurUrol65:600-609

Page 36: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 36

OP25[18F]MEL050asamelaninPETtracer:fullyautomatedradiosynthesisandevaluationforthedetectionofpigmentedmelanomainmicepulmonarymetastases1,2ChaussardM, 1,2,4Hosten B, 1,2,4Vignal N, 1,2Tsoupko-Sitnikov V, 1,5Hernio N, 1,5Hontonnou F,1,2,5MerletP,3,5PoyetJL,1,2,5Sarda-MantelL,1,2,4Rizzo-PadoinN.1UnitéClaudeKellershohn,IUH,HôpitalSaint-Louis,Paris,F-75010,France.2GHSaint-LouisLariboisièreF.WidalAP-HP,Paris,F-75010,France.3InsermU1160,HôpitalSaint-Louis,Paris,F-75010France.4UniversitéParisDescartes,FacultédePharmacie,Paris,F-75006,France.5UniversitéParisDiderot,Facultédemédecine,Paris,F-75010France.Introduction: Melanoma is a highly malignant cutaneous tumor of melanin-producing cells. Earlydetectionofmelanomaisthebestwaytoreducemortality.Severalradiolabeled imagingprobeshavebeen evaluated for melanoma imaging. MEL050 is a synthetic benzamide-derived molecule thatspecificallybindstomelaninwithhighaffinity.Ouraimwastoimplementafullyautomatedradiosynthesisof [18F]MEL050, including HPLC purification and formulation, using for the first time, the AllInOneradiosynthesis platform (Trasis,Ans,Belgium), and to validate this PET radiotracer in vivo in amousemodelofmelanoma.Materials&Methods:[18F]MEL050wassynthesizedusingaone-stepbromine-for-fluorine nucleophilic heteroaromatic substitution. Briefly, [18F]MEL050 was prepared from a bromo-precursor,usingno-carrier-added18F-KF-Kryptofix222(dimethylformamide,150°C,6min),followedbypreparativeHPLCpurification(C18column(300x7.8mm,7μm),isocraticelutionwithacetonitrile/20mMammonium bicarbonate (20:80, v/v), 3.0 ml/min) and cartridge-reformulation (Sep-Pak® Plus C18environmental)ofthecollectedfraction.Radiochemicalandchemicalpurity,stabilityandspecificactivitymeasurements were monitored using analytical HPLC. Chemical identity of the labeled compound[18F]MEL050wasassessedbyco-injectionwithnon-radioactivestandardMEL050.ExperimentalmodelofpulmonarymetastaticmelanomawasobtainedbyIVinjectionofB16-F10cellsinNMRImice.Mice(n=8)wereimaged15daysafterinoculation,usingINVEONmicroPET/CTdevice(Siemens),afterIVinjectionof0.36±0.04MBq/gof[18F]MEL050.Dynamicandstaticacquisitionswereacquiredfromtimeofinjectionto2hafter tracer injection. Themaximumpercentageof [18F]MEL050 InjectedDoseper gof lung tissue(%ID/gMax)wasdeterminedusingROIsmanuallydrawnon1h-postinjectionPETimages,andcorrelatedto ex-vivo findings. Results: The fully automated radiosynthesis of [18F]MEL050 required an overallradiosynthesistimeof60min,withanend-of-synthesisyieldof20-26%(n=12).Isocraticsemi-preparativeHPLC allowed efficient separation of [18F]MEL050 from the reaction mixture. The radiotracer wasconsistentlyproducedwithradiochemicalpurityhigherthan99%.Thespecificactivitywasintherangeof177-325GBq/µmol and the product stability was maintained at RCP>98% over 6 h. PET/CT imagesretrievedknownbiodistributionof [18F]MEL050 inmice,andallowedclearvisualizationof<1mm lungtumours with [18F]MEL050 %/ID/g Max of 4.7±2.6%. Discussion/Conclusion: We successfullyimplemented the radiosynthesisof [18F]MEL050using theAllInOne radiosynthesisplatform , includingHPLCseparationandformulation.InvivoPET/CTvalidationoftheradiotracerwasobtainedinamousemodelofmetastaticpigmentedmelanoma,showinghighspecific[18F]MEL050uptakeinsub-millimetriclungtumours.

Page 37: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 37

OP26DesignandPreclinicalEvaluationofNovelRadiofluorinatedPSMATargetingLigandsBasedonPSMA-617J.Cardinale1,M.Schäfer1,M.Benešová1,U.Bauder-Wüst1,O.Seibert2,F.Giesel2,U.Haberkorn2,M.Eder1,K.Kopka11DKFZ, Division of Radiopharmaceutical Chemistry, Heidelberg, Germany; 2DKFZ, Clinical CooperationUnitNuclearMedicine,Heidelberg,GermanyIntroduction:Urea-basedinhibitorsoftheprostate-specificmembraneantigen(PSMA)arewellknownandpromisingcandidatesforthediagnosis(1,2)andtherapyofprostatecancer.TheaimoftheprojectwasthedevelopmentofF-18labeledPSMAligandsbasedonthetheranosticcompoundPSMA-617.Thecompoundsevaluatedduring thepreliminaryexperimentsshowedahighuptake innon-targetorganscausedbytheirrelativelyhighlipophilicity.ThereforewecurrentlyreducethislipophilicitybytheadditionofchargedaminoacidstothelinkerregionofourPSMAinhibitors(3).Materials&Methods:ThePSMAbindingmotif Glu-NH-CO-NH-Lyswas synthesized by awell-establishedmethod (4) using solid phasechemistryandsubsequentlyanaminoacidlinkerwasbuiltupbyfmoc-basedsolidphasepeptidesynthesis(SPPS). The non-radioactive reference compounds were also prepared analogically and eventuallyconjugated by 6-fluoronicotinic acid. After separation from the resin and deprotection thepeptidomimeticswerelabeledusingtheTFP-esterof6-[18F]fluoronicotinicacidasprostheticgroup.TheKivaluesofallcompoundsweredeterminedbycompetitivebindingassaysonPSMA-positiveLNCaPcellsagainst 68Ga-PSMA-10 (5) using the respective cold reference compounds. Additionally, the cellularinternalizationoftheradiofluorinatedligandswasdetermined.Results:All18F-labeledPSMA-inhibitorspresented in this study showed low nanomolar affinities towards PSMA, usually paired with highinternalization ratios of more than 15 %, shown in vitro. Among those PSMA-1007 showed anoutstandinglyhighinternalizationratioofabout70%whiletheKiwasinthetypicalrange(6nM).HencePSMA-1007wasfurtherevaluatedinvivo.Theorgandistributionshowedahighandspecifictumoruptakeof 8.0±2.4 %ID/g. Finally, the PSMA-targeting potential of PSMA-1007 was further demonstrated bydynamic µPET experiments. Discussion/Conclusion: Based on our experience with PSMA-617 andpreliminary resultswedevelopeda seriesof radiofluorinatedPSMA inhibitorswithhighaffinities andinternalizationratios.Amongthoseapromisingcandidateforfurthertranslationintotheclinichasalreadybeen found. This candidate – namely PSMA-1007 – is currently transferred into first-in-man studies.Neverthelessfurtheroptimizationoftheleadcompoundisstillongoing.References:(1)Afshar-OromiehA.etal.,[2013],Eur.J.Nucl.Med.Mol.Imaging40,486-495.(2)SzaboZ.etal.,[2015],Mol.ImagingBiol.17,565-574.(3)CardinaleJ.etal.,EP15002800.9.(4)EderM.etal.,[2012],BioconjugateChem.23,688-697.(5)SchäferM.etal.,[2012],EJNMMIRes.2,23.

Page 38: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 38

OP27ANovelRadiolabeledPeptideforPETImagingofProstateCancer:64Cu-DOTHA2-PEG-RM26Mansour Nematallah, Paquette Michel, Ait-Mohand Samia, Dumulon-Perreault Véronique, LecomteRoger,GuérinBrigitte.

Introduction: The Gastrin-Releasing Peptide Receptor (GRPR) is overexpressed in a wide variety ofprostate cancers, hence its interest as a potential biomarker. As such, previous work used differentradiolabeledGRPR-bindingpeptidestospecificallytargettumorsinvivo(1,2).Recently,wesynthesizedanovel bifunctional chelator bearing hydroxamic acid arms, called DOTHA2, for which our groupdemonstrated fastandstablecomplexation to 64Cu (3).Thegoalof this studywas todevelopaGRPRantagonist,D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2(RM26),conjugatedtothenovel[64Cu]-DOTHA2tovisualizeprostatetumorbyPETimaging.Material&Methods:DOTHA2-PEG-RM26wasconvenientlyandefficientlyassembledonsolidsupportwithgoodyield.Theinhibitionconstant(Ki)wasmeasuredonPC3cellsaspreviouslydescribed(1).DynamicPETimageswereacquiredduring60minutesonnu/numalemicebearingPC3tumors.Biodistributionstudieswereperformedusingbalb/cmalemiceandnu/numalemicebearingPC3tumorsattimepointsof30,60and120minutes.Toassessspecificbinding,acohortreceived500nmol/kgofunlabeledpeptide15minutespriortracerinjectionforbothPETanddissectionstudies. Results: DOTHA2-PEG-RM26 complexed 64Cu with fast kinetics at room temperature. Theradiopeptideshowedhighstability, lowresidualactivityinvarioustissuesandfastclearanceinnormalmice.TheKiofCu-DOTHA2-PEG-RM26wasinthelownanomolarrange(0.68±0.19nM).[64Cu]-DOTHA2-PEG-RM26invivopharmacokineticsdemonstratedrapidbloodandrenalclearance.Smallanimalblockingexperimentsshowedasignificantuptakedropcomparedtotraceralone(p<0.05from20to60min)inPETimagingandbybiodistributionintheGRPR-richpancreasforbothbalb/candnu/numice(respectivelyp< 0.05 and p < 0.01 at 30 min). Discussion / Conclusion: The use of [64Cu]-DOTHA2-PEG-RM26 ispromisingforvisualizingprostatetumors.ThesepreliminarydatasuggestthatDOTHA2canbeusedtodevelop many other peptide- and protein-derived PET tracers. References: 1. Fournier P, Dumulon-PerreaultV,Ait-MohandS,TremblayS,BénardF, LecomteR,GuérinB, [2012].Bioconjug.Chem.23 :1687-1693,2.FournierP,Dumulon-PerreaultV,Ait-MohandS,LangloisR,BénardF,LecomteR,GuérinB,[2012]EurJNuclMedMolImagingResearch,2:1-15,3.Ait-MohandS,DenisC,TremblayG,PaquetteM,GuérinB,[2014]OrgLett16:4512-4515

Page 39: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 39

OP29Biodistributionof[18F]Amylovis®,anewradiotracerPETimagingofβ-amyloidplaquesFernandez-Maza L1, Rivera-Marrero S2, Prats Capote A3, Parrado-Gallego A1, Fernandez-Gomez I1,Balcerzyk M1, Sablon-Carrazana M2, Perera-Pintado A3, Merceron-Martinez D2, Acosta-Medina E4,Rodriguez-TantyC2.1.CentroNacionaldeAceleradores.UniversidaddeSevilla,CSIC,JuntadeAndalucia.Spain.2.CentrodeNeurociencias(CNEURO),LaHabana.Cuba.3.CentrodeIsótopos(CENTIS),Mayabeque.Cuba.4.CentrodeEstudiosAvanzadosdeCuba(CEAC),LaHabana.Cuba.Aim:[18F]-2-(3-fluoropropyl)-6-methoxynaphtalene([18F]Amylovis®)isanewnaphthalene-derivativefordetectingβ-amyloidplaquesinAlzheimer’sdisease.Theaimofthestudyistheassessmentoftheanimalbiodistribution of this new radiotracer. Material and methods: [18F]Amylovis® was synthesized bynucleophilicsubstitutionofthetosylgroupoftheprecursor.ThirtyfivehealthymaleBalb/Cmiceof10-12weeksweredividedinto6groupsof5animalseachandinjectedwithsimilardosesof[18F]Amylovis®throughalateraltailvein.Bloodsampleswerecollectedandtheanimalsweresacrificedat5,15,30,45,70and180minutes.Organsof interestwereremovedandwashedwithsaline.Radioactivityofblood,plasma,urine,faeces,brain,cerebellum,heart,liver,stomach,spleen,bowel,colon,leftkidney,muscle,boneandtailwasmeasuredinawellcounter.Toassessproteinbinding,plasmasamplesweredilutedwithacetonitrileandcentrifugedat4000g.Pelletsofproteinsandsupernatantswereseparatedandtheirradioactivitymeasured in a well counter. RadioTLC analysis of plasmawere performed for the samepurpose in silicagel 60 andmobile phase of acetonitrile/water (95/5). 20µL of each supernatantwasanalysed by HPLC-RP using a C18 column and acetonitrile/water (75/25) asmobile phase to identifyplasmametabolites. Pharmacokinetic parameters (AUC, t1/2, Cmax, Cl, Vss) were calculated using non-compartmentalanalysis(NCA).DynamicPET/CTimagesofhealthyandtransgenicAPPSwe/PS1dE9micewereacquiredfor2.5hafteri.v.administration.Immunohistochemistryofcontrolandtransgenicmicebrainswereperformedtoidentifyβ-amyloidplaques.Results:[18F]Amylovis®crossedbloodbrainbarrier.Renalandhepaticpathwayswerethemainexcretionroutes.

Page 40: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 40

OP30Synthesisandpreclinicalevaluationof[11C]-BA1PETtracerfortheimagingofCSF-1RBalaAttili,MuneerAhamedandGuyBormans,LaboratoryforRadiopharmacy,DepartmentofPharmaceuticalandPharmacologicalSciences,KULeuven,Leuven,Belgium.

Introduction:Colonystimulatingfactor-1R(CSF-1R)alsocalledFelineMcDonoughSarcoma(FMS),isatype-IIIkinasereceptor.FMSiswidelyexpressedandconsideredtoregulatedevelopment,maintenanceandfunctioningofmononuclearphagocytelineagesuchasmonocytes,macrophages,dendriticcells,langerhanscells,microgliaandosteoclasts1.OverexpressionofFMShasbeenimplicatedinanumberofdiseasestatesincludingcancer,rheumatoidarthritis,Crohn’sdiseaseandbonedisorders.FMSisalsoknowntoplayakeyroleinmicrogliadifferentiationandactivationanditisassumedtobeakeymediatorinneuroinflammation2.

Figure 1. Radiochemical synthesis followed by biodistribution baseline and blocking and time activitycurvesofmicroPETscansinrats.

Materials and Methods: Synthesis of 5-cyano-N-(4-(4-methylpiperazine-1-yl)-2-(4-methylpiperidin-1-yl)phenyl)furan-2-carboxamide and 5-cyano-N-(2-(4-methylpiperidine-1-yl)-4-(piperazine-1-yl)phenyl)furan-2-carboxamidewere done according to literaturemethodswith slightmodifications3.[11C]-methyltriflatereactswiththeprecursorinpresenceofabaseatroomtemperaturefor2minutesprovidingcarbon-11radiolabeled[11C]BA-1(Figure1)whichwaspurifiedbyusingreversed-phasehighpressure liquid chromatography (RP-HPLC). The peak corresponding the reference compound wascollectedandcheckedforpurityusinganalyticalRP-HPLC.Baselinebiodistributionstudywasperformedat2,10,30and60min.respectively.Blockingexperiment(10mg/kgcoldcompound)wasperformedat30mintimepoint inhealthyfemaleadultmicen=3andcomparedwithvehicletreatedbatch. Invitro

Page 41: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 41

autoradiographyexperimentswere carriedouton rat brain slicesby incubating tracer in presenceorabsenceofcoldreferencecompound(40µM/ml).MicroPETimagingstudieswereperformedonaFocus™220microPETscannerwithfemalerats.Results:Referenceandprecursormoleculesweresynthesizedwithcomparablepuritiesandyieldsreportedintheliterature,thealkylationyield(relativeto[11C]CH3Iactivity)was60%andradiochemicalpuritywas98%withaveragespecificactivity(n=5)of250GBq/µmol.Biodistribution study shows high tracer uptake in brain (4 % ID 4 at 2 min), with both renal andhepatobiliaryexcretion.Highlunguptakewasobservedwith(14%IDat2minp.i.).Blockingwithcoldcompounddidnotresultinanyblockingeffectinbrainbutweobservedblockinginperipheralorganslikeliver and spleen, and also observed slight blocking in pancreas and kidneys.We did not observe anyblockingwithinvitroautoradiographyexperimentsonratbrainslices.BaselinemicroPETscanssuggestsgooduptakeoftracerintobrainwith(SUV1.2at3minpi)andblockingresultedinahigherbrainuptake(SUV2).Discussion/Conclusion:Wesuccessfullysynthesized,[11C]-BA1.Inpreclinicalevaluationwedidnotobserveanysignificantblockingeffect inthebrain,wearecurrently lookingforotherhighaffinitymoleculesforCSF-1R.References:1.Y.Nakamichietal.,(2013),JBoneMinerMetab31,486–495.2.M.I.El-Gamaletal.FMSKinaseInhibitors:CurrentStatusandFutureProspects,(2013),MedicinalResearchReviews, 33, No. 3, 599-636. 3. C. R Illig et al, Discovery of novel FMS Kinase inhibitors as anti-inflammatoryagents(2008),Bioorganic&MedicinalChemistryLetters,18,1642-1648.

Page 42: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 42

OP31InvivoimagingoftheMCHR1intheventricularsystemvia[18F][email protected],M.Zeilinger1,T.Scherer2,C.Fürnsinn2,M.Dumanic1,W.Wadsak1,M.Hacker1,M.Mitterhauser1,31DeptofBiomedicalImagingandImage-guidedTherapy,DivisionofNuclearMedicine,RadiopharmacyandExperimentalNuclearMedicine,MedicalUniversityofVienna,Austria2DeptofMedicineIII,DivisionofEndocrinologyandMetabolism,MedicalUniversityofVienna,Austria3LudwigBoltzmannInstituteforAppliedDiagnostics,Vienna,AustriaIntroduction:Themelaninconcentratinghormonereceptor1(MCHR1)ispredominatelyexpressedinthelateralhypothalamusandisplayingakeyroleinenergyhomeostasisandobesity.Recently,ithasbeenshownthattheMCHR1isexpressedintheependymalcellsofthe3rdventriclewhereitisinvolvedintheregulationofciliabeatfrequency[1].Thisbeatingfacilitatescerebrospinalfluidcirculation,whichiscrucialforbrainfunction,asdefectsinventricularciliaresultinhydrocephalus.OuraimwastoinvestigatethepotentialoftheMCHR1ligand[18F]FE@SNAP[2]forPET-imagingoftheMCHR1intheventricularsystem.Materials&Methods:InvivoexperimentswereconductedinnaïvemaleSpragueDawleyrats.Forsmall-animal PET/CT/MR experiments, rats were anesthetized by isoflurane. 25min after [18F]FE@SNAP ivinjection (47.8±1MBq; SA: 19.7±6GBq/µmol), vehicle (baseline group, n=3) or 15mg/kg SNAP-7941(blockinggroup,n=3)wereadministeredthroughthetailvein.75minaftertracerinjection,theratsweresacrificed.RadioactivityconcentrationsinbrainwerecalculatedandexpressedasSUVs.Inanothersetofexperiments,[18F]FE@SNAP(51.3±26MBq;SA:36.1±28GBq/µmol)aswellasvehicle(baselinegroup,n=3)or 15mg/kg SNAP-7941 (blocking group, n=3) were injected into conscious freely moving rats via apermanentcatheterimplantedintothejugularvein,thusexcludinganinfluenceofanaesthesia.45minaftertracerapplication,ratsweresacrificed,thebrainwasremovedandcutforexvivoautoradiography.Subsequently,brainsliceswereputonPhosphorImagerplatesforexposureandanalyzedwithaCyclonePhosphorImagerthefollowingday.Regionsofinterest(ROIs)weredrawnforthehypothalamicregion,theventricleandanon-targetregion.ROIsresulted innormalizedDLU/mm2);ratiosofventricle/non-targetwerecalculated.Results:PET/CT/MRexperiments:theSUVintheventricularsystemwas0.73±0.11forthebaselinegroupand0.34±0.07fortheblockinggroup,whichrepresentsasignificantreduction.Exvivoautoradiographyshowedadistinctuptakeintheventricular,whichwassignificantlyreducedintheblockinggroup(Table1).

RATIO Baseline Blocking P-valuesventricle/non-target 2.20±0.4 1.38±0.2* <0.0001

Table1.CalculatedratiosoftheROIs(DLU/mm2).*indicatessignificantblocking.Conclusion:[18F]FE@SNAPevincedspecificuptakeintheventricularsystemofnaïveratsregardlesstheirstateofconsciousnessandisthereforeasuitableimagingagentforciliabeatfunction.References:[1]ConductierG,MartinAO,RisoldP-Y,etal.[2013],Front.Endocrinol.4:182[2]PhilippeC,NicsL,ZeilingerM,etal.[2013],Sci.Parm.81:625-639

Page 43: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 43

OP32Synthesisofthefirstcarbon-11labelledP2Y12receptorantagonistforimagingtheanti-inflammatoryphenotypeofactivatedmicrogliaB. Janssen1, D.J. Vugts1, G.T. Molenaar1,2, U. Funke1,2, P.S. Kruijer2, F. Dollé3, G. Bormans4, A.A.Lammertsma1,A.D.Windhorst11DepartmentofRadiology&NuclearMedicine,NeuroscienceCampusAmsterdam,VUUniversityMedicalCenter,Amsterdam,TheNetherlands;2BVCyclotronVU,Amsterdam,TheNetherlands;3CEA, Institutd’Imagerie BioMédicale, Service Hospitalier Frédéric Joliot, Orsay, France; 4Laboratory forRadiopharmacy,Dept.ofPharmaceuticalandPharmacologicalSciences,KULeuven,Leuven,BelgiumIntroduction:Activatedmicrogliaareahallmarkofneuroinflammation(NI),whichinturnisassociatedwithneurodegenerativediseases[1].TheP2Y12receptor(P2Y12R)isupregulatedintheanti-inflammatoryphenotype of activated microglia, and is not expressed on macrophages and other brain cells [2].Therefore, P2Y12R could be an interesting new target for PET imaging of microglial activation in NI.Recently,aseriesofP2Y12Rantagonistswithhighbindingaffinitywasreported[3].Basedonthisseries,thepurposeofthepresentstudywastolabelureaderivative5(IC50=6nM)withcarbon-11.Materials&Methods:Thesynthesisof5,asreference,andcompounds3and6,asprecursorsfortheradiosynthesisof [11C]-5, is depicted below. Carbon-11-labelling was performed via a rhodium(I)-mediated [11C]COcarbonylationreaction[4,5].[11C]5wasevaluatedusinginvitroautoradiographyofhealthymousebrainsandexvivobiodistributionandradiometaboliteanalysesinhealthymaleWistarrats.

Results:Compound5 andprecursors3and6were successfully synthesised. [11C]5wasobtained in aradiochemical yield of 10±2 % (corrected for decay, calculated from [11C]CO2 (n=6)), and high(radio)chemicalpurity(≥98%)andspecificactivity(79±32GBq·µmol-1(n=6)).Ininvitroautoradiographystudies of the healthymouse brain, [11C]5 could be blocked (81%)with ticagrelor, indicating specificbindingtoP2Y12R.However,rapidmetabolisminratplasmawasobservedwithonly30±4%(n=3)of[11C]5left at45minp.i.. Inaddition,exvivo biodistribution revealed that [11C]5 didnotenter the ratbrain.Discussion/Conclusion:[11C]5isnotsuitableforinvivostudies,butcanstillbeusedinvitrotovalidateP2Y12Rasatargetforimagingtheanti-inflammatoryphenotypeofactivatedmicroglia.

Acknowledgement:ThisresearchhasreceivedfundingfromtheEuropeanUnion'sSeventhFrameworkProgramme(FP7/2007-2013)undergrantagreementn°HEALTH-F2-2011-278850(INMiND).References:1.JacobsAH&TavitianB,[2012],J.Cereb.BloodFlowMetab.32:1393.2.HickmanSEetal.[2013],Nat.Neurosci.16: 1896; ButovskyOet al. [2014],Nat.Neurosci. 17: 131;MooreCSet al. [2015],Neurol.Neuroimmunol.Neuroinflamm.2:e80.3.BachPetal.[2013],Eur.J.Med.Chem.65:360.4.ErikssonJetal.[2012],J.LabelledCompd.Radiopharm.55:223.5.ÅbergO&LångströmB[2011],J.LabelledCompd.Radiopharm.54:38.

Page 44: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 44

OP33RadiosynthesisofaselectiveHDAC6inhibitor[11C]KB631andinvitroandexvivoevaluationKoenVermeulen,aMuneerAhamed,aMichaelSchnekenburger,bMathyFroeyen,cDagErlendOlberg,dMarcDiederich,eGuyBormansaaLabofRadiopharmacy,KULeuven,Leuven,BelgiumbLaboratoiredeBiologieMoléculaireetCellulaireduCancer,,Luxembourg,GrandDuchyofluxembourgcLaboratoryforMedicinalChemistry,RegaInstituteofMedicalResearch,KULeuven,Leuven,BelgiumdSchoolofPharmacy,UniversityofOsloandNorwegianMedicalCyclotronCentre,Oslo,NorwayIntroduction:HDAC6hasbeenreportedasaregulatorinnumerousdiseasesrangingfromdifferentkindsof cancers (ovarian, breast, prostate,..) toneurological deficiencies (Alzheimer’s disease,Huntington’sdisease, amyotrophic sclerosis,..) [1,2]. Still many characteristics and functions of HDAC6 in thesepathologies are unrevealed. Hence,we aim to develop a selective HDAC6 PET tracer to visualize thedynamicsofHDAC6innormalanddiseasestates.Recently,Luandcoworkerssynthesized[11C]KB631,ahighly potent (IC50=1.4 nM) and selective (3700-fold selectivity against HDAC1) PET tracer for HDAC6imaging in the brain,which showed similar pharmacokinetic properties as tubastatinA [3]. However,[11C]KB631 showed low brain bioavailability [4]. In this regardwe opted to use this tracer as amoreperipheralimagingagent.Theradiosynthesiswasredesignedandpreliminaryresultswereobtainedwithabiodistributionstudyandautoradiographyexperimentsinbrainandtumorslices.Materials&Methods:[11C]KB631wassynthesizedthroughmethylationofthecorrespondingprecursor(300µg)with[11C]-MeIinanhydrousDMSO(250µL)at100°Cfor4min(Fig.1).ThebiodistributionwasstudiedinNMRI-miceat2,10,30and60min (n=3 / timepoint)post injection (p.i.).Organsand tissueswereharvestedandradioactivitywascountedinagamma-counter.Autoradiographystudieswerecarriedoutwith[11C]KB631onwild-typeWistarratbraintissueandPC3/LNCaPprostatetumorslices.Sliceswereincubatedwith18.5MBq/400µL (brain) or 18.5 MBq/250 µL (tumor) of tracer with/without 100 µM of cold authenticreferencecompound(KB631)ornon-structuralrelatedpan-HDACinhibitorSuberoylanilidehydroxamicacid(SAHA)[5].

N NH

O

HNOH

N N

O

HNOH

11CH311CH3I, DMSO

4 min 100 °C

Results:BasedonprepHPLCintegration,themethylationyieldwas55%witharadiochemicalpurityof97%andaspecificactivityof48GBq/µmol.Biodistributionstudiesindicatedlowbrainuptake(<0.1%IDat 2, 10, 30 and 60min) and renal and hepatobiliary excretion (Fig 2). Autoradiography experimentsshowedregionalbinding.Bindinginbrain/tumorsliceswashighlydisplaceableinthepresenceof100µMnon-labeledreferenceKB631(upto90%forbrain,PC3andLNCaP)or100µMSAHA(73%brain,39%PC3and59%LNCaP)(Fig3).

Fig.1Radiosynthesisof[11C]KB631

Page 45: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 45

Discussion/Conclusion: We successfully radiolabeled and evaluated a potential carbon-11 labeledradiotracerforinvitroandexvivovisualizationofHDAC6.However,biodistributionstudiesindicatedlowbrainuptake,peripheralpotency still needs tobe furtherexamined.Autoradiography studies showedregional and displaceable binding. Furthermore, radiometabolite studies followed by µPET on amicetumormodelwillbeperformed.References:1.SakamotoKM,Aldana-MasangkayGI,[2011],JBB.2011:875824,2.HelleputteL,BenoyV,BoschL,[2014],RRB,5:1–13.3.ButlerKV,KalinJ,BrochierC,VistoliG,LangleyB,KozikowskiAP,[2011],JACS,132:10842–6.4.LuS,ZhangYi,KalinJ,LiowJS,Gladding,RL,InnisRB,Kozikowski,AP,PikeVW,[2013],JLCR,56:S1-S492.5.WagnerFF,WeїwerM,LewisMC,HolsonEB.[2013],NT,10:589–604.

urine kidneys liver stomach

intestines brain blood carcass lungs spleen heart bone pancre

as muscle

2minp.i. 0,53 17,4 30,1 1,2 8,9 0,08 7,9 31,5 2,54 0,74 1,24 4,51 1,23 27,53

10minp.i. 5,0 7,2 25,8 1,2 15,4 0,12 4,9 38,2 1,74 0,46 0,60 5,07 0,93 25,29

30minp.i. 9,3 5,6 20,2 2,2 31,1 0,08 4,0 26,6 1,04 0,23 0,37 3,10 0,76 15,20

60minp.i. 15,09 2,03 13,13 1,2 48,6 0,09 2,6 17,0 0,66 0,13 0,12 1,82 0,37 6,76

0

10

20

30

40

50

60

%ID

2minp.i. 10minp.i. 30minp.i. 60minp.i.

Fig.2BiodistributionstudyinNMRI-mice[11C]KB631at2,10,30and60minp.i.

A B C A B C A B C

Page 46: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 46

OP34Improvingmetabolicstabilityoffluorine-18labelledverapamilanaloguesRaaphorstRM1,LuurtsemaG2,LammertsmaAA1,ElsingaPH2,WindhorstAD1,1 Department of Radiology & Nuclear Medicine, Neuroscience Campus Amsterdam, VU UniversityMedicalCenter,Amsterdam,TheNetherlands,2DepartmentofNuclearMedicineandMolecularImaging,UniversityMedicalCenterGroningen,UniversityofGroningen,Groningen,TheNetherlandsIntroduction: (R)-[11C]verapamil is widely used as a PET tracer for investigating P-glycoprotein (P-gp)function in patients with epilepsy, Alzheimer´s disease and other neurodegenerative diseases [1].Recently,we have developed the fluorine-18 analogues (R)-N-[18F]fluoroethylverapamil (1) and (R)-O-[18F]fluoroethylnorverapamil(2),potentiallyenablingP-gpstudiesincentreswithoutanon-sitecyclotron.TheseanaloguesshowedspecificP-gpsubstratebehaviour,butmetabolicstabilitywaspoor(Fig1b).Thepurposeofthepresentstudywastoassesswhetherdeuteratedanalogueswouldhavebettermetabolicstability.Materials&Methods:Toadried18F/K2.2.2/K2CO3complex,2-bromoethyl-d4-tosylateinDMFwasaddedandreactedfor10minat90°Ctoobtain2-bromo-[18F]fluoroethane-d4.Thiswasdistilledat100°CthroughanAgOTfcolumnat200°Cintoacooled(0°C)vialcontaining1.5mgof(R)-normethylverapamil(1a)and3mgofK2CO3inACN.Whilestirring,thisreactionmixturewasheatedat120°Cfor15minandpurifiedbyHPLC,resultingin1b.Tracer2b,3band4bwereobtainedbydirectfluorinationofprecursors2a,3aand4aandonly2b required finalBoc-deprotectionwithTFA.1band2bwereadministered toWistarrats,andtheleveloflabelledmetaboliteswasmeasuredinbloodplasmaandbrainsamples.

Fig1.a)LabellingschemeforPETtracers1b,2b,3band4b.Reagentsandconditions:i)[18F]fluoroethyl-d4-triflate,MeCN,120°C,15minii)18F/K2.2.2/K2CO3,MeCN,90°C,15min.Onlyfor2b,TFA;b)resultsofmetaboliteanalysis for1and2 (non-deuteratedanalogues)and1band2b (deuteratedanalogues) inplasmaandbrain.Results:1b,2b,3band4bwereobtainedinaradiochemicalyieldof3,6,5and10%,respectively,apurity>98%andaspecificactivity>80GBq·µmol-1.ResultsofthemetaboliteanalysisarepresentedinFig. 1b. The deuterated analogues showed improved metabolic stability compared with the non-deuteratedcompounds.Discussion/Conclusion:Labellingoftracers1b-4bwassuccessful.Although,both1band2bshowedsignificantlyincreasedmetabolicstability,totalintacttracerlevelsat15minarestilllowerthandesired.TheresultingeffectofincreasedmetabolicstabilityforPETimagingwillbeevaluatedinP-gpKOmice.TodeterminetheeffectofadeuteratedN-methylgroup,tracer3band4bweredesignedandstillneed tobeevaluated formetabolic stability.Reference: [1]RaaphorstRMetal., [2015],ClinPharmacol Ther 97 (4): 362-371Acknowledgements: This project is supported by STW (OTP-project11741)OP36

Page 47: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 47

OP36DevelopmentofanovelPETtracerfortheactivinreceptor-likekinase5LonnekeRotteveel1,UtaFunke1,PetertenDijke3,HarmJanBogaard2,AdriaanA.Lammertsma1,AlbertD.Windhorst1

Departmentsof1Radiology&Nuclearmedicineand2PulmonaryMedicine,InstituteforCardiovascularResearch,VUUniversityMedicalCenter,Amsterdam,TheNetherlands,and3DepartmentofMolecularCellBiology,LeidenUniversityMedicalCenter,Leiden,TheNetherlandsIntroduction:Pulmonaryarterialhypertension(PAH)isadiseaseinwhichpulmonaryarterialobstructionincreasesvascularresistance,leadingtorightventricularfailure[1].Inhibitionoftransforminggrowthfactor-β(TGF-β)signallingviaactivin-receptor-likekinase5(ALK5)preventsprogressionanddevelopmentofpulmonaryhypertension[2].TofurtherunderstandtheroleofALK5inPAH,thepurposeofthisstudywastosynthesize[11C]2(IC50=5.5nM)[3]andtoassessitspotentialasapositronemissiontomography(PET)ligandformeasuringALK5expressionandactivityinvivo.Materials&Methods:[11C]2wassynthesizedaccordingtoscheme1.[11C]2wasevaluatedusingbiodistributionandmetabolitestudiesinWistarrats(n=4pertimepointat15and60min).Inaddition,specificbindingwasassessedusingautoradiographyonALK5expressingMDA-MB-231tumorsections.

Scheme1:synthesisof[11C]2a

b

Intacttracer 15min 60min[11C]2 74±5% 46±2%

cA:[11C]2B(Blocking):[11C]2+EW-7197C(Blocking):[11C]2+SB-431542D(Blocking):[11C]2+2

ABCD

Figure1:a)Exvivobiodistributionof[11C]2inWistarrats.b)Parentfractionsof[11C]2inWistarratsat2

Page 48: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 48

differenttimepoints.c)AutoradiogramsofMDA-MB-231tumorsectionsusing[11C]2 in5mMTris-HClbuffer.

Results:[11C]2wassynthesizedusinga[11C]carboxylationreactionwithayieldof18±6%,aspecificactivityof116±31GBq·μmol-1andapurityof>95%.Thetracershowedanormalbiodistributionexvivo(Figure1a)andamoderatestability invivo(Figure1b).Theautoradiogramspresentedbindingof[11C]2tothetumorsections.PretreatmentofthetumorsectionswithALK5blockingagents(EW-7197,SB-431542and2)decreasedthebindingof[11C]2significantly(Figure1c).Conclusion:[11C]2wassynthesizedsuccessfully,andinitialinvitroandexvivostudiesindicateitspotentialasaputativetracerofALK5,warrantingfurtherin vivo evaluation. Acknowledgment: CVON is acknowledged for funding of this project and the BVCyclotronVUforproviding[11C]CO2.References:[1]ArcherS.etal.,[2010],Circ.121(18):2045-66.[2]HarmsHJetal.,[2013],TRM1(16):1-7[3] AmadaH.etal,[2012]BMC20(24):7128-38.

Page 49: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 49

OP37SPECTImagingandBiodistributionStudiesof111In-EGF-Au-PEGNanoparticlesInVivoLeiSong,SarahAble,NadiaFalzone,VeerleKersemans,KatherineVallisCR-UK/MRCOxfordInstituteforRadiationOncology,DepartmentofOncology,UniversityofOxford,Oxford,UKIntroduction: Radiolabelled antibodies andpeptides holdpromise formolecular radiotherapybut areoftenlimitedbylowpayloadresultingindeliveryofinadequateamountsofradioactivitytotumourtissueand,therefore,modesttherapeuticeffect.WehavedevelopedPEGylatedepidermalgrowthfactor(EGF)-goldnanoparticles(NP)withahighindium-111(111In)payload(111In-EGF-Au-PEGNPs)asaprototypicNP-basedtheranosticradiopharmaceutical.Materialsandmethods:EGF-Au-PEGNPswerepreparedviaaninteractionbetweengoldandthedisulphidebondsofEGFfollowedbyPEGylationbymPEG-thiol(MW:800,2000,6000)andcharacterisedbySEC-HPLC,DLSandzetapotential.ThetargetingpropertyofNPswithvariousPEGMWswasinvestigatedbyconfocalimagingfollowingexposureofMDA-MB-468(1.3x106 EGFR/cell) andMDA-MB-231/H2N (105 EGFR/cell) cells to Cy3-EGF-Au-PEGNPs. 111In-EGF-Au-PEG(MW:6000)and111In-EGF-AuNPswerechosenforSPECTimagingandbiodistributionstudiesusingMDA-MB-468xenograft-bearingmice.Results:SuccessfulPEGylationwasconfirmedbyDLSandzetapotentialmeasurements, showing the hydrodynamic sizes of NPswere 18.5, 19.4, 24.8 and 32.5 nm; the zetapotentialsinwaterwere-24,-15,-14and-9mVforEGF-AuandEGF-Au-PEGwithMWsof800,2000and6000,respectively.SEC-HPLCshowedthattheretentiontimeofEGF-Au-PEGNPswasshorterthanEGF-AuNPsasPEGylationresultedinlargerNPs.ConfocalimagingdemonstratedthatbothEGF-AuandEGF-Au-PEGNPswereefficientlyboundandinternalisedbyMDA-MB-468cells.InvivoSPECTstudiesinmicebearingMDA-MB-468xenograftsrevealedhightumouruptakeinanimalsthatreceived111In-EGF-Au-PEG(MW:6000)comparedto111In-EGF-Au.Thetumour/muscleradioactivityratiosfor111In-EGF-Au-PEGand111In-EGF-Auwere7.2and2.5.Conclusion:An111In-labelledEGF-Au-PEGnanosystemwasdeveloped.Itenabledtargeteddeliveryofahigh111InpayloadtoanEGFR-positivecancermodelthatcanbepotentiallyexploitedformolecularlytargetedradiotherapy.

Page 50: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 50

OP38Melanoma targeting with [99mTc(N)(PNP3)]-labeled NAPamide derivatives: preliminarypharmacologicalstudiesDavideCarta1,NicolaSalvarese2,WiebkeSihver3,FengGao3,HansJürgenPietzsch3,BarbaraBiondi4,PaoloRuzza4,FiorenzoRefosco2,CristinaBolzati21DSF,UniversityofPadua,ViaMarzolo5,35131Padova,Italy2IENI-CNR,CorsoStatiUniti4,35127Padova,Italy3Instituteof Radiopharmaceutical CancerResearch,HZDR,Bautzner Landstrasse 400, 01328Dresden,Germany;4ICB-CNR,ViaMarzolo1,35131Padova,ItalyIntroduction: Malignant melanoma is the most lethal form of skin cancer and the most commonlydiagnosedmalignancyamongyoungadultswithanincreasingincidence.Hence,thedevelopmentofnewmelanoma-specificpharmaceuticalfordiagnosisand/ortherapyisasubjectofgreatinterestandintenseresearch.Thepurposeofthisstudywastoexaminetheeffectofcyclizationonthebiologicalprofileof[99mTc(N)(PNP3)]-labeled α-MSH peptide analogs (PNP3 = N,N-bis(dimethoxypropylphosphinoethyl)methoxyethylamine).Method:Alactambridge-cyclizedH-Cys-Ahx-βAla3-c[Lys4-Glu-His-D-Phe-Arg-Trp-Glu10]-Arg11-Pro-Val-NH2(NAP―NS2)andthecorrespondinglinearH-Cys-Ahx-βAla-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2(NAP-NS1)peptideweresynthetized,characterizedbyESI-MSspectroscopyandtheirMC1RbindingaffinityweredeterminedinB16/F10melanomacells.Invitrostability and pharmacological parameters of [99mTc(N)(NAP―NS1)(PNP3)]+ (1) and[99mTc(N)(NAP―NS2)(PNP3)]+(2)wereassessed.ChallengeswithanexcessofglutathioneandcysteineandLogPvalueswerealsoinvestigated.Furthermore,1and2wereappliedtostudyinvivostabilityandthepharmacokineticprofilesonhealthyrats.Results:1and2wereobtainedinhighyield(RCY>90%).LogPvaluesdemonstratethehydrophilicnatureoftheradiolabelledpeptides:-1.43for1;-2.087for2.NosignificantvariationsinRCPsofboththecomplexeswereobservedinchallengeexperimentswithanexcess(10mM)ofglutathioneandcysteine.Ahigh invitrostabilitywasobservedforbothcomplexesafter incubationinhumanandratseraaswellas inrat liverhomogenate;afastdegradationof2wasdetectedinkidneyshomogenate.1retainsahighreceptoraffinity(Kd=7.1±0.5nM).Biodistributiondataof1displayafavorablepharmacokineticprofilescharacterizedbyafastbloodclearanceandeliminationfrom normal tissues. A rapid excretion via the renal pathway was observed according to the highhydrophiliccharacteroftheradio-conjugate.Theeffectofthecyclizationonthepharmacokineticprofileof2wasreflectedinareductionofthebloodclearanceandoftheeliminationfromtheotherorgans,inparticular,fromexcretoryorganssuchasliverandkidneys.Conclusion:Comparedwiththelinearpeptide,cyclizationnegativelyaffectsthebiologicalpropertiesofNAP-NS2peptidebyreducingitsbindingaffinityforMCR1R(Ki:0.9±0.3nMforNAP_NS1;7.1±2.4nMforNAP_NS2)anddecreasingtheoverallexcretionrateofthecorresponding[99mTc(N)(PNP3)]-labeledpeptidefromthebodyaswellasitsstability.Thusonlythelinear[99mTc(N)(PNP3)-labeledpeptideissuitableforfurtherinvestigationsintumorbearinganimals.This research was supported by MIUR through PRIN 20097FJHPZ-004 and FIRB “RINAME”2010-RBAP114AMK.

Page 51: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 51

OP39[68Ga]NODAGA-RGD:cGMPsynthesisanddatafromaphaseIclinicalstudyRolandHaubner1,ArminFinkensted2,ArminStegmair1,3,ChristineRangger1,ClemensDecristoforo1,HeinzZoller2,IreneJ.Virgolini11Department of NuclearMedicine,Medical University of Innsbruck, Austria; 2Department of InternalMedicine,MedicalUniversityofInnsbruck,Austria;3FHGesundheit/UniversityofAppliedSciencesTyrol,Innsbruck,Austria.

Introduction:Preclinicalstudiesdemonstratedthat[68Ga]NODAGA-RGDallowsimagingofintegrinavb3expression using PET. Here we present all data (quality control, toxicological study, and dosimetryestimation)necessarytoinitializeclinicalstudies,theestablishmentoftheremotecontrolledsynthesis,and data from the phase I clinical study.Methods: Labelling was carried out in a remote controlledsynthesis unit under clean room conditions. Quality control included TLC, HPLC, GC, pH control, Ge-breakthrough,half-life,endotoxincontent,andcontrolofsterility.Storagestabilityafter4hwasstudiedanddoseestimationsbasedonanimaldatawerecarriedoutusingOLINDA.Sprague-Dawleyratswereused for an extended single dose toxicity study. The phase I clinical study included 9 patients withhepatocellularcarcinoma(HCC).Staticscansat5,30,and60minp.i.including5bedpositionseachwereperformedusingtheDiscovery690PET/CT.Bloodwassampled30and60minp.i.andurine60minp.i.and used for stability studies via HPLC. Results: [68Ga]NODAGA-RGD could be produced in highradiochemicalyieldand radiochemicalpurity (HPLCandTLC>99%).ThepH in the final isotonic salineformulation was approx. 6. Ethanol content was between 2.5 and 3.0% v/v. No detectable 68Ge-germaniumwas found. LAL test revealed 0.7 EU/ml. Sterility tests showed that all samples met thespecificationsaccordingtoPh.Eur..Noradiolysisofthetracerwasfoundintheformulatedsolution.Thesingledosetoxicitystudyshowedthatthecompoundwaswelltoleratedinanimals.Thiswasconfirmedby the clinical study where no severe side effects were observed. High metabolic stability of[68Ga]NODAGA-RGDwasfoundbasedontheanalysisofbloodandurinesamples.Thestaticscansshowedrapidtracereliminationfromthebodywithlowbackgroundactivityinalmostallorgans.Thecalculatedeffectivedosewas21.5±5.4µSv/MBq.Unfortunately, the investigated tumorsdidnotshow increasedtraceraccumulationindicatingnoorlowintegrinαvβ3 expression.Conclusion:Thisstudyrevealedthat[68Ga]NODAGA-RGDcanbeeasilyproducedunderGMPconditions andmet the requirements for theclinicaluse.ThephaseIclinicalstudywithpatientsbearingHCCdidnotallowidentificationofthelesionsbutdemonstratedrapideliminationfromthebody,highmetabolicstabilityandlowradiationburden.Thelowtraceraccumulationinthetumormightberelatedtolowreceptorexpression,thusfurtherstudiesareneededtoverifytheintegrinαvβ3 imagingproperties.

Page 52: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 52

OP44ImplementationofaGMP-graderadiopharmacyfacilityinMaastrichtIvoPooters1,MaartjeLotz1,RoelWierts1,FelixMottaghy1,2,MatthiasBauwens1,31DepartmentofRadiologyandNuclearMedicine,MUMC+,Maastricht,TheNetherlands2NuclearMedicine,UniklinikumAachen,Aachen,Germany3ResearchSchoolNUTRIM,MaastrichtUniversity,Maastricht,TheNetherlandsIntroduction:IntheNetherlands,amodified“light”versionoftheEuropeanGMP,i.e.GMP-z,forthe(kit-)productionofregisteredradiopharmaceuticalsforindividualpatientsinhospitalpharmaciesisineffect.However, GMP-z does not allow to synthesize radiopharmaceuticals for clinical trials or therapeuticapplications,inwhichcasetheEuropeanGMPapplies.AttheMUMC,agrowinginterestinperformingin-houseclinicaltrialswithnewradiopharmaceuticalsandinthesynthesisofradiotherapeuticalsledtothedecision of upgrading the current Radiopharmacy facility. Several restrictions applied:radiopharmaceuticalswillnotbesoldtothirdpartiesandthesurfaceareaoftheentirefacilityislimitedto55m2(includingtheproductionlab,QClabandseparatesluicesforpersonnelandgoods).Additionally,the facility had to allow both preparation of routine 99mTc-compounds as well as GMP-graderadiopharmaceuticals.Thisstudyexaminesthetimelineofimplementationforsuchasmallscalefacilityandmayberelevanttootherhospitalsconsideringtocomplywiththisregulation.Materials&Methods:Ateamwasfounded late2012, includingaradiochemist,QAofficer, radiopharmacist, radiationsafetyofficer,clinicalphysicistandaconstructionproject leader(totalingnearly5fulltime-equivalents).Userrequirementsforthefacility,hotcellsandlaboratoryequipmentweredetermined.Preliminarybuildingplansweredrawnupandseveralexpertcompanieschosen,specializedinHVAC,cleanroomconstructionandareaandradiationmonitoring.Results:Forthehotcells,asuccessfulFactoryAcceptanceTestwasperformedinFebruary2015.ConstructionofthenewfacilitystartedendofMay2015,startingwiththeplannedinstallationofthehotcellsforwhichremovalofasectionfromtheouterwallwasnecessary.Thesecond phase of the reconstruction (setting up of aGMP-compliant cleanroom) is scheduled to startJanuary2016, leading to fulloperability inApril2016and,upon inspectionby theDutch Inspectorate(IGZ),GMP-compliantproductionisexpectedbytheendof2016.Discussion/Conclusion:Itisessentialtohaveahighdegreeof in-houseexpertisewhenstartinga radiopharmacybuildingproject.Completelydocumentedconstructionplanning,basedonasolidlistofrequirements,takes2-3yearstobuildupandisanecessitytoallowtimelyandhigh-qualityconstruction.

Page 53: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 53

OP45SettingupaGMPproductionofanewradiopharmaceuticalForsback,Sarita1;BergmanJörgen1;KiveläRiikka21Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland;2TurkuUniversityHospital,HospitalPharmacy,Turku,Finland

Introduction: Good Manufacturing Practice (GMP) sets strict requirements for the manufacturingconditions,synthesisandqualityofradiopharmaceuticals.Robustproductionandqualitycontrolmethodsforradiopharmaceuticalsareessential fordiverseandeffectiveclinicalutilizationofPositronEmissionTomography (PET).Thispresentationdescribes thesetupprocedureofanewradiopharmaceutical inTurku PET Centre (TPC). All issues other than directly related to GMP such as toxicology, labelingchemistry,analyticalmethodsordocumentationfortheauthorities(i.e.IMPD)arenotdiscussedhere.Materials & Methods: Quality standards and product specification are expressed in EU (Annex 15QualificationandValidation,revisionintooperation1Oct2015)andEurop.Pharmacopoeia(8thEdition).

ThesetupofanewradiopharmaceuticalatTPCrequiresexistenceofthefollowing:

• Establishedqualitysystem• Documentationsystem• Competentpersonnel

• Classifiedcleanrooms• Qualifiedequipment• Systemformaterialmanagement

Initially the specifications for critical materials and primary packing materials of the newradiopharmaceuticalmustbedefined.AtTPCspecificationsfornewradiopharmaceuticalare:• Appearance• Identification• Radioactivity• Radionuclidicidentity• Radionuclidicpurity• Radiochemicalpurity• Chemicalpurity

• Residualsolvents• Contentofethanol• pH• Sterility• Bacterialendotoxins• Shelflife

Results:Afterensuringthattheproductionofanewradiopharmaceuticalisrobustandrepeatableandallanalyticalmethodsincludingsterilityandendotoxintestsarevalidated,theprocesscanbevalidatedaccording to a written validation plan. In addition bioburden (number of bacteria living on the drugsolution before sterilization) must be determined. The aseptic processing of operators must also beconfirmedbyperformingmedia fills (theperformanceof anasepticmanufacturingprocedureusingasterile microbiological growth medium in place of the drug solution). At TPC the process validationincludes threeconsecutiveprocessvalidationbatcheswhich shall fulfill all specifications for thegivenradiopharmaceutical.Thisalsoqualifiestheoperatorforproduction.Additionalbatchesmustbedoneinorder to qualify more operators. Finally, process validation and documentation is compiled. Processvalidationreport,methoddescriptionforpreparationandqualitycontrolandmasterbatchrecordarewritten. Discussion/Conclusion: After all documentation has been accepted by QA, the newradiopharmaceuticalisreadyforclinicalproductionandallchangestotheprocessmustbeperformedviachangecontrolprocess.

Page 54: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 54

OP48InVitroandInVivoEvaluationof68-GalliumLabeledFe3O4-DPDNanoparticlesasPotentialPET/MRIImagingAgents.M. Karageorgou1, M. Radović2, C. Tsoukalas1, B. Antic2, M. Gazouli3, M. Paravatou-Petsotas1, S.Xanthopouls1,M.Calamiotou4,D.Stamopoulos4,5,S.Vranješ-Durić2,P.Bouziotis1.1.RadiochemicalStudiesLaboratory,INRASTES,NCSR“Demokritos”,Athens,Greece.2.“Vinča”InstituteofNuclearSciences,LaboratoryforRadioisotopes,UniversityofBelgrade,Belgrade,Serbia.3.DepartmentofBasicMedicalScience,LaboratoryofBiology,SchoolofMedicine,NKUA,Athens,Greece4.DepartmentofSolidStatePhysics,NKUA,Athens,Greece.5.INN,NCSR“Demokritos”,Athens,Greece.Introduction:Thecombinationofdifferentimagingmodalitieshasreceivedincreasinginterestoverthepastdecade,asitenablestoovercomethelimitationsofasingleimagingmodalityandensuresenhancedinterpretation of diseases and abnormalities in vivo. Dualmodality PET/MRI imaging agents, such asradiolabeled magnetic nanoparticles, are promising candidates for a number of diagnostic andtherapeuticapplications(i.e.MRI-magnetichyperthermiaandradiotherapy).Theaimofthepresentstudyis toevaluate theefficacyof 68Ga labeled Fe3O4 superparamagnetic ironoxidenanoparticles (SPIONs)coated with DPD phosphonate, as potential PET/MRI imaging agents.Materials &Methods: SPIONscoatedwith biocompatibleDPD-phosphonatewere radiolabeledwith positron-emittingGallium-68 toquantifytheaccumulationofthenanoparticlesinvivo.Invitrostabilitystudies,inPBS,salineandhumanserum,were performed to evaluate their aqueous solubility in vivo. In vivo biodistribution studywasperformedin9healthymiceat30,60and120minpost-injection.Results:68Ga-Fe3O4-DPDSPIONspresentedhighradiolabelingyield(95%)andprovedstableinvitro.The invivostudyexhibitedsignificantliverandspleenuptakeatallexaminedtimepointsinhealthymice,whereasminorfractionsattainedinotherorgans.Asmallfractionofradiolabelednanoparticlespresentedinbonesis indicativeofhighaffinityofphosphonatetobonetissue.Thebiodistributionprofilesbetween 68Ga-Fe3O4-DPD SPIONs and free 68Ga-acetate were also compared, indicating different pharmacokineticbehaviorfor68Ga-acetate,withnotargettissueandexcretionvia thekidneys.Conclusion: 68Ga-Fe3O4-DPD SPIONs demonstrated high radiolabeling efficiency and in vitro stability and satisfactory in vivobehavior. Cytotoxicity studies to explore the potential toxic effects of the nanoparticles, as well asbiodistributionstudiesintumormodels,areinprogress.References:1.BouziotisP,PsimadasD,TsotakosT,StamopoulosD,TsoukalasC,2012,CTMC,12:1-9.2.BurkeB,BaghdadiN,ClementeG,CamusN,ArchibaldS,2014,RSC,175:59-71.

Page 55: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 55

OP49FastPETimagingofinflammationusing68Ga-citratewithFe-containingsaltsofhydroxyacidsA.S.Lunev1,2,A.A.Larenkov1,K.A.Petrosova1,O.E.Klementyeva1,G.E.Kodina11BurnasyanFederalMedicalBiophysicalCenterofFMBARussia,Moscow,Russia,2MoscowStateAcademyofVeterinaryMedicineandBiotechnology,Moscow,RussiaIntroduction:68Ga-citrateisoneoftheradiotracersforPETimagingofinflammation/infection.Gallium(like iron) has high affinity to blood transport proteins (e.g. transferrin) due to their similarphysical/chemicalproperties[1].Oneofthefunctionsoftransportproteinsisdeliveryiron(galliumtoo)toinflammation/infectionfociforinclusioninmetabolicpathwaysrelatedwitheradicationofpathology[2].Butexcessivegalliumbindingswithproteinsarecauseofslowbloodclearance, longaccumulationtimeinfoci(24-72h)andexceptionofapplicationpossibilityoftheshort-lived68Ga(T½=1,13h)unlike67Ga(T½=78,26h).Injectionofadditionalnonradioactivechemicalagents(e.g.Fe3+containingsaltsofhydroxyacids:citrate,tartrate,lactate,etc.)competingwithgalliumtotheproteinjoining(blockingofitsmetalbindingcapacity)isoneofthewaystosolveformulatedproblem.Itcanbeusedforcorrectionof68Ga-citratepharmacokineticsforincreasingofthebloodclearance,accumulationinfociandfastimaging.Materials&methods.68Ga-citratewithout/withextrainjectionofFe3+containingsalts(citrate,tartrate,lactate,malate,andascorbate)wasinjectedmicewithmodeledlunginfection(wasgotusingintralunginjectionof cell suspensionof E. coli; acutephaseof infectionwasevoluted for 3-4days). PET/X-RAYGenisys4(SofieBioscience,USA)wasusedfornoninvasivePETimagingwithsubsequentreconstructionof imaging and their analysis (value of clearance, distribution volume). Scanning time is 10 min.

Page 56: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 56

Figure1–PETimagesofmicewithmodeledlunginfection(arrowindicates)

Results: I.v. injectionofFe3+containingsaltsofhydroxyacidsblockedthemetal-bindingcapabilityoftransferrinserumandothersandalloweddecreasinggallium-68radioactivityinbloodsignificantlyandincreasingaccumulationininflammation(3-5time).ItallowedreceivingmoreinformativePET-imagesofinflammation early (for 30-60 min after injection). Pharmacokinetic parameters proved it.Discussion/Conclusion. There was no statistically significant difference between 68Ga-citrateaccumulation for different inflammation model because PET imaging is indication of pathologicalprocessesandisn'ttheiridentification.References:1.HarrisWR,PecoraroVL,[1983],Biochem.22:292–299.2.GreenMA,WelchMJ,[1989],Int.J.Rad.Appl.Instrum.16:435–438.

Page 57: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 57

POSTERPRESENTATIONS

PP01Installationandvalidationof11C-methioninesynthesisKvernenes,O.H.1;Adamsen,T.C.H.1,21CentreforNuclearMedicine/PET,DepartmentofRadiology,HaukelandUniversityHospital,JonasLiesVei65,5021Bergen,Norway,2DepartmentofChemistry,UniversityofBergen,Allégaten41,5007,Bergen,Norway

Introduction: In the installation of methionine as our latest tracer we chose the Eckert and ZieglerModular-Lab PharmTracer as productionmodule, utilizing the so called «wet-method» for producingmethyliodide.Aftercompleteinstallationinthehotcell,asimplifiedversionofPh.Eur(PhEurmonograph1617)releasecriterionswasused,andtheproductwasfoundtopass.HPLCshowedexcellentradiopurityandtheinstallationwascompleted.Materials&Methods:Homocysteinethiolactone,iodicacid,0.1MlithiumaluminumhydridinTHF,potassiumdihydrogenphosphatewereusedintheC11-Metsynthesis,MethodsusedaredescribedinPh.Eur,withtheexceptionofchiralHPLC,inwhichanAstecChirobioticTcolumnwith 70:30:0.02,MeOH:H2O:HCOOH eluent was employed.Results:During later analyses forresidualsolvents inconnectionwithaGC-PQ,THFwas foundpresent in theproduct,3-4 timesaboverecommendedlevel.TheHPLCmethodinthePh.Eur is10minutes,however,by increasingacquisitiontime,aradiopeakappearedatabout18minutesinthechromatogram.Thispeakwasabout10-15%oftotal radio signal,meaning the required radiopurity limit in Ph.Eurwasnotmet.Whenanalysing forenantiomericpurity,whichwasnotinitiallydone,about12%ofthed-enantiomerwasfound,notmeetingthe Ph.Eur limit. Increasing the flow of helium during the azeotropic distillation decreased residualsolvent,andsubsequentlytheICHresidualsolventlimitswasmet.TheradiopeakintheHPLCwasfoundtobemethyliodide(MeI)whichisadsorbedandco-elutedfromtheC-18Sep-Pakcartridges.EckertandZieglerproposedarearrangementofthemoduletubingandanewsynthesistemplateprogramenablingdirectheliumflushingoftheC-18Sep-Pak.Bytheuseofthisnewconfiguration,removingexcessMeIwasachieved and the radio purity limits described by the Ph.Eur monograph was finally met. Differentprotocols are called for in the initial phase dissolving the precursor in ethanol and NaOH solution,however,tweakingthesehadlittleeffectoftheenantiomericpurity.Differentbatchesofprecursorwaslateranalysedforenantiomericpurity.Largediscrepancieswerefoundbetweenbatcheswhichdirectlyinfluenced theenantiomeric ratioof the final product.Conclusion:Great care shouldbe taken in theinstallmentofnewsynthesissystems,andallavailabletestsshouldberunbeforesysteminstallationisapproved.ThePh.Eur.methodsmaynotalwaysbesufficienttoproveradioorchemicalpurity,evenifamonographexist.

Page 58: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 58

PP02Fullyautomatedsynthesisof68Ga-labelledpeptidesusingtheIBASynthera®andSynthera®ExtensionmodulesRenéMartin*,aSebastianWeidlich,aAnna-MariaZerges,aCristianaGameiro,bNevaLazarova,bMarcoMülleraaABXGmbH,Radeberg,GermanybIBARadioPharmaSolutions,Louvain-La-Neuve,Belgium

Introduction:Theinterest in68Ga-tracershasbeengrowingstronglyoverthelastyears,mainlyduetonew developments in prostate cancer imaging and therapy.1,2 In collaboration with IBA, we haveestablished an automated synthesis of 68Ga-labelled peptides including 68Ga-DOTA-TATE/-NOC,68Ga-PMSA-11and68Ga-PSMA-617onSynthera®.Materials&Methods:Duringthetests,anIBASynthera®andthenewSynthera®Extensionmodulewereused.68GawasobtainedinitiallyfromanoldiGG100generatorin5mCi.The final testswerecarriedout incombinationwithanewGalliaPharm68Ge/68Gageneratorloadedwith50mCi.AmodifiedstandardnucleophilicIFPTM(IFP™FDG)wasdesignedforthesynthesisprocess. Synthera® Extensionwas used for the elution of the generator. The eluatewas loaded on aChromafixPS-H+cartridgeandthehydrochloricacidwaste -whichcontainsmostof the 68GeCl4 -wastransferredintothewastecontainer.Theactivitywaselutedfromthecationexchangecartridgeusingasolutionof5Msodiumchloridein0.1Nhydrochloricacid3andtransferreddirectlyintothereactionvesselwhichwaspre-loadedwithprecursor in 1.5MHEPESbuffer. Labellingwas carriedout at 95 °C for 7minutes.PurificationwasperformedusingaSep-Pak®LightC18cartridge.Theproductwaselutedwitha1:1-mixtureofethanol/wateranddispensedintothefinalvialthroughasterilefilter.Furtherdilutionwasperformedwith0.9%salinebypassingthroughthesterilefilter.ThepeptidesweresynthesizedinaGMP-compliantqualifiedareaatABX.FortheDOTA-peptides,stocksolutionswereprepared(1mg/ml)andfreezed.ForPSMA-11,vialswith10µgofprecursorwereused.Results:With50µgofDOTA-TATE,DOTA-NOCandPSMA-617,thefinalradiolabelledproductswereobtainedin>60%uncorrectedyield.ForPSMA-11,only10µgofprecursorwereused.Theradiochemicalpuritywas>98%inallcases.ThePh.Eur.spottestforHEPESwasperformedandshowedHEPES<200µg/VwithVbeing12to14ml.ThepHofthefinal solutionwas5 to5.5.Ethanol contentwas<10%.Discussion/Conclusion:WehavedevelopedadedicateddisposableIFPcassettefortheIBASynthera®andSynthera®Extensionmodules,whichdeliversall common 68Ga-tracers in high yield. The use of dedicated single -use Gallium-68 IFPTM allows forproductionof18F-FDGonthesamemodulewithnocross-contamination.References:1Afshar-OromiehA,HetzheimH,KratochwilC,BenesovaMetal.,[2015],JNM56:1697-1705.2BenešováM,SchäferM,Bauder-Wüst U, Afshar-Oromieh A et al., [2015], JNM 56: 914-920. 3Mueller D, Klette I, Baum R P,GottschaldtMetal.,[2012],BC23:1712-1717

Page 59: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 59

PP03GMPcompliantproductionof15O-labeledwaterusingIBA18MeVprotoncyclotronGert Luurtsema1,MichèldeVries1,MichelGhyoot2,GinavanderWoude1,Rolf Zijlma1,RudiDierckx1,HendrikusH.Boersma1&PhilipH.Elsinga1.1. Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,UniversityofGroningen,TheNetherlands.2. IBARadioPharmaSolutions,Louvain-la-Neuve,Belgium.

Introduction:Themostcommontracerusedformeasuringbrainperfusionis[15O]H2O.Ingeneral[15O]isproducedusingacyclotron thatacceleratesdeuteronsontoa target filledwith 14N2witha traceofoxygen.Nowadays,cyclotronshavebeendevelopedthatareonlycapableofacceleratingprotons.Thisabstract describes the performance of Cyclone 18 twin from IBA, which accelerate only protons, forproductionandadministrationof [15O]H2O.Methods:TheCyclone18 twin from IBA is a fixedenergycyclotronusing18MeVprotons inwhichH-particlesareacceleratedandconverted intoprotons (H+).Bombardmentwithprotonsofthespecialdesignedtargetfilledto25bartakesplace,initiatingthenuclearreaction: 15N(p,n)15O. [15O]H2Owas produced by conversion of the [15O]O2 using a new designed IBAchemistrymodule and placed in a shielded class A foam hood located in theGMP laboratory.Duringpreparation,15OgasflowsfromthecyclotronintotheIBAchemistrymoduleandismixedwithhydrogengasandpassedthroughapalladiumcolumn.Theproduced[15O]H2Oiscollectedinasterile0.9%salinesolutiontoobtainafinalproductsuitableforpatientadministration.Validationoftheproductionprocessincluded: (1) assessment of practical yields, (2) check on pharmaceutical requirements and (3)reproducibilityofperformanceofbothcyclotronandwatermodule.Results:Accordingtoourknowledge,thisisthefirsttimethatGMP-productionof15OlabeledwaterusingIBA18MeVprotoncyclotronisdescribed.Themethodwasvalidatedandmetallpharmacopeiaspecifications,andwassubsequentlyapprovedforpatientstudies.Thepracticalproductionyieldof15Olabeledwaterusingthismethodwasrangedbetween1300-1700MBqmeasuredinthesyringe.Thismethodissuitableformultiplebatcheswithinatimeframeof8minutes.Aftervalidationmorethan50patientrunswereperformedwithareliabilityof>99%.Conclusion:Anewproductionmethodfor15O-labeledwaterusingCyclone18 anddedicated chemistrymodule from IBAwasdescribedandqualified according toGMPregulations.Itwasdemonstratedtobesuitableforclinicaluse.

Page 60: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 60

PP04InvitroNuclearImagingPotentialofNewSubphthalocyanineandZincPhthalocyanineFatmaYurtLambrechta,OzgeEra,MineInceb,CıgırBirayAvcic,CumhurGunduzc,FatmaAslihanSaridADepartmentofNuclearApplications,InstituteofNuclearScience,EgeUniversity,Bornova,35100,Izmir,Turkey;BDepartmentofEnergySystemsEngineering,FacultyofTechnology,MersinUniversity,TR-33480Tarsus,Mersin,Turkey;CDepartmentofMedicalBiology,FacultyofMedicine,EgeUniversity,Bornova,35100,Izmir,Turkey;DAdvancedTechnologyResearch&ApplicationCenter,MersinUniversity,CiftlikkoyCampus,TR-33343Yenisehir,Mersin,Turkey.Introduction:Cancercausedbyabnormalcellproliferationhasbecomeaverycommondiseaseinrecentyears.Nuclearimaginghasasignificantplaceincancerdiagnosis.Photosensitizers(PS)suchaschlorine,phthalocyanine, porphyrin and tetraprol derivatives are comeupPDTapplications. Furthermore, PSsaccumulate selectively in the tumor tissuecompared tonormal tissue.1,2 Therefore, suchcompoundslabeledwitharadionuclidecanbeusedasaprobefornuclearimaging.Inpresentstudy,wesynthesizeda new Subphthalocyanine (SubPc) and Zinc phthalocyanine [Zn(II)Pc] and determined in vitro nuclearimagingpotential.Materials&Methods:SubPcandZn(II)Pc (Figure1)were synthesizedaccording topublishedmethodsof Inceetal.3-5Theradiolabelingwith131Ivia iodogenmethodwascarriedoutandoptimizationconditions(pH,amountofiodogenandreactiontime)weredetermined.WewilluseEMT6/P(mousemammarycarcinoma),HeLa(humancervixadenocarcinoma)HepG2(humanliverhepatocellularcarcinoma),HT-29(humancoloncolorectaladenocarcinoma),WI38(humannormallungfibroblast)celllines for the intracellular uptake studies. The intracellular uptake efficiency of 131I labeled Pcs aredeterminedaccordingtopublishedstudyofOcakogluetal.inmentionedcelllines.6

N

NN

N

N

NB

O

OOH

N

NN

N

N

N

N

NZn

HO O

O

OO

O

O

O

Figure1:MolecularstructureofSubPcandZn(II)Pc.

Results:Weobserved that the radiolabeling efficiencies of SubPc and Zn(II)Pcwere significantly high(91.9±3.1%and97.2±1.4%, respectively).TheoptimizationconditionsweredeterminedaspH9,1mgamountof iodogenand30minutesofreactiontimeforSubPc;pH7,1mgamountof iodogenand45minutesofreactiontimeforZn(II)Pc.Invitrocelllinestudiesareinprogress.References:1.BrownSB,BrownEA,WalkerI,[2004],LO5:497-508.2.DolmansDE,FukumuraD,JainRK,[2003],NRC3:380-387.3. InceM,MedinaA,YumJH,YellaA,ClaessensCG,Martínez-DíazM,TorresT,[2014],C-AEJ20:2016-2021.4.InceM.,Martinez-DiazMV,BarberaJ,TorresT,[2011],JMC2011:1531-1536.5.InceM,CardinaliF, Yum JH, Martínez-Díaz M, Nazeeruddin MK, Grätzel M, Torres T, [2012] C-AEJ 18: 6343-6348. 6.OcakogluK,ErO,YurtLambrechtF,YılmazSüslüerS,KayabasiC,GündüzC,YılmazO,[2014],JDT18:1-7.*Acknowledge: The authors gratefully acknowledge financial support by The Scientific andTechnologicalResearchCouncilofTurkey,TUBITAK(Grantno:114Z430).

Page 61: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 61

PP05Synthesis,PhotodynamicTherapyEfficacyandNuclearImagingPotentialofZincPhthalocyaninesKasimOcakoglua,b,OzgeErc,OnurAlpErsozc,FatmaYurtLambrechtc,MineInceb,CaglaKayabasid,CumhurGunduzdAAdvancedTechnologyResearch&ApplicationCenter,MersinUniversity,CiftlikkoyCampus,TR-33343Yenisehir,Mersin,Turkey.BDepartmentofEnergySystemsEngineering,FacultyofTechnology,MersinUniversity,TR-33480Tarsus,Mersin,Turkey.CDepartmentofNuclearApplications,InstituteofNuclearScience,EgeUniversity,Bornova,35100,Izmir,TurkeyDDepartmentofMedicalBiology,FacultyofMedicine,EgeUniversity,Bornova,35100,Izmir,Turkey.

Introduction: In recent years, photodynamic therapy (PDT) gained speed in cancer treatment. Thismethodisbasedontwosteps.Firstly,aphotosensitizer(PS)isaccumulatedincancertissuethenflowedbylightirradiation.DuringaphotoreactionTypeII,energytransferoccursbetweenthePSandmolecularoxygen(O2),theexposedphotosensitizersproducehighlytoxicsingletoxygen(1O2).Thesingletoxygenisresponsibleforthecelldamage.1-3Pthalocyanineshavehightumoruptakeefficiencies.Thispropertyallows them to be used as bifunctional agents for PDT and nuclear imaging. In the present study,symmetricalZn(II)Pc1andunsymmetricallysubstitutedZn(II)Pc2weresynthesizedandexaminedasabifunctional agent for nuclear imaging and PDT.Materials & Methods: Zn(II)Pcs were synthesizedaccordingtoapublishedprocedure.4TheZn(II)Pcswereradiolabeledwith131Ibyusingiodogenmethod.Optimizationconditionsofradiolabeling(pH,amountof iodogenandreactiontime)weredetermined.BiodistributionstudieswereperformedwithAlbinoWistarfemalehealthyrats.TheradiolabeledZn(II)Pcswereinjectedintothetailveinofeachratsandthentheratsweresacrificedat30,60and120minpostadministration. Tissue samples were collected and counted using a Cd(Te)-RAD-501 single channelanalyzer.Invitrothephotodynamictherapystudies,EMT6/P(mousemammarycarcinoma),HeLa(humancervixadenocarcinoma)celllineswereused.Zn(II)Pc1andZn(II)Pc2wereexposedtoredlight(650nm)atthedosesof10-30J/cm2.Results:TheZn(II)Pc1andZn(II)Pc2wereradiolabeledwith131Iwithhighefficiency (93.4±1.6% and 91.4±1.6%, respectively). The results of biodistribution study showed thatradiolabeledZn(II)Pc1hashighuptakeonlung,largeintestine,ovaryandpancreas.However,theuptakeofradiolabeledZn(II)Pc2wasdeterminedastobestaticallysignificantinpancreasandlargeintestine.Zn(II)Pc1wasshowednophototoxiceffectinbothcelllinesalthoughPDTactivityofZn(II)Pc2inHeLacelllinewasdetermined.Conclusion:InconclusiontheradiolabeledZn(II)Pc1mightbeapromisingimagingagent for lung, ovary pancreas, and colon tumors. However, the radiolabeled Zn(II)Pc 2 might be apromisingnuclear imagingagentforcolonandpancreastumors,alsopromisingPDTagentforcervicaltumors.References:1.CastanoAP,DemidovaTN,HamblinMR,[2004],PPT1(4):279-293.2.JuarranzA,JaenP, Sanz-RodriguezF,Cuevas J,Gonzalez S [2008],CTO10(3): 148-154.3.PlaetzerK,KrammerB,Berlanda J, Berr F, Kiesslich T, [2009], LMS 24(2): 259-268. 4.Maya EM, Vazquez P, Torres T, [1999],Chemistry5(7):2004-2013.

*Acknowledge:TheauthorsgratefullyacknowledgefinancialsupportbyTheScientificandTechnologicalResearchCouncilofTurkey,TUBITAK(Grantno:112T565).

Page 62: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 62

PP06Radio-U(H)PLC–theSearchontheOptimalFlowCellfortheγ-DetectorTorstenKniess,SebastianMeister,SteffenFischer,JörgSteinbachHelmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research,01314Dresden,GermanyIntroduction:Radio-HPLCisroutinelyusedforanalysisandqualitycontrolofradiopharmaceuticals.TheintroductionofU(H)PLCenableddecreaseddetectionlevels,improvedresolutionandsignificantshorteranalysistimes;crucialparametersforradiotraceranalysis.Despitethesebenefitsonlyafewexamplesofradio-U(H)PLChavebeenreported[1-3];onereasonmaybetheabsenceofasuitableγ-detectorwithaflowcellwhichiscompatibletoUPLCconditions.Weusedacommercialγ-detectorincombinationwithdifferent flow cell inserts and report on their effect on the sensitivity and resolution of the γ-signal.Materials&Methods:AnACQUITYUPLCH-ClassSystem(Waters)wasusedwithaGABIStarγ-detector(Raytest)equippedwitha2”x2”pinholescintillationcrystalincombinationwiththreedifferentflowcells.UPLCwasperformedonanACQUITYHSSC18column(2.1x100mm,1,8µm)withaflowrateof0.65mL/min and a 3 min gradient of 30/70 acetonitrile/0.1% TFA. The sigma-1 receptor imaging probe[18F]fluspidine [4] served as analyte with 2 µL injection volume, containing8–400kBqof[18F]fluspidine.Results:Forbestresolutionandavoidinganexcessiveback-pressuretothePDAcell (<70bar) thecapillarybetweenPDAandγ-detectorshouldbeasshortaspossible.Thiswasrealizedbyplacingtheγ-detectorin30cmdistancetothePDA-detectoronaspecialtable.Threedifferentflowcellswereapplied(Figure1):a) Rayteststandardflowcell(5µL),b) Raytest2”capillaryholderequippedwithaUPLCcapillary0.004”ID(9/5/2nL),c) self-buildleadinsertwitha5mmholeandUPLCcapillary(2nL).By injecting400kBqof [18F]fluspidineandusing thedifferent flowcells,γ-signalshavingapeakwidthbetween0.13and0.20mmandapeakintensity750-4400cpswereobtained.Thecapillaryholder(5nL)and the self-build insert (2 nL) showed a comparable peak width, but differentiated sensitivity. Todetermine theminimumdetectable level samplesbetween170kBqand8kBqof [18F]fluspidinewereinjected;with15kBqof[18F]fluspidineagoodsignaltobackgroundratioof6:1wasachieved.

Figure 1: standard flow cell (left); capillary holder (middle); self-build lead insert (right)Conclusion:Byperformingradio-U(HPLC)withaGABIStarγ-detectorequippedwithaRaytest2”capillaryholder(5nL),γ-signalswithgoodsensitivityandpeakwidthcanbeobtained.Inaddition,theself-buildflowcellinsert(2nL)gavethehighestsensitivityandthebestsignaltobackgroundratio.

References:[1]FranckD,NannH,DaviP,SchubigerPA,AmetameySM,[2009],ApplRadiatIsot67:1068-1070.[2]MaasB,ZijlmaR,BanninkA,Lub-deHoogeM,ElsingaPH,DierckxRAJO,BoersmaHH,LuurtsemaG,[2013],EurJNuclMedMolImaging40(S2):S322-S323.[3]KryzaD,JanierM,[2013],ApplRadiatIsot78:72-76.[4]Maisonial-BessetA,FunkeU,WenzelB,FischerS,HollK,WünschB,SteinbachJ,BrustP,[2015],ApplRadiatIsot84:1-7

Page 63: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 63

PP07Radiolabeling,Characterization&BiodistributionstudyofCysteineanditsderivativeswithTc99m.RabiaAshfaq1&2*,SaeedIqbalDr2,Atiq-ur-Rehman1,IrfanullahKhanDr31. Nuclear Medicine Department, Shaukat Khanum Cancer Hospital and Research Centre, Lahore. 2.FormanChristianCollege,Lahore.3.InstituteofNuclearmedicineandOncology,Lahore,Pakistan

Introduction:Severalstudiesareavailable,whichhighlighttheuseofSchiffbaseligandsforradio-labeling,butvery littleworkhasbeenreportedwhichhasusedMarceptocompounds,although it isdesiredtoincludesuchcompoundsinthedesignofradiopharmaceuticalsduetotheirimportanceinthebiologicalsystem.Materialsandmethods:EquimolarL–cysteineandsalicylaldehydeindistilledwaterandethanolwereheatedat40°C to formawhitecolored ligand.Theproduct formedwasanalyzedusingFT– IR,thermo gravimetric analysis and elemental analysis at Fc College. Radiolabeling of the ligand wasperformedatSKMCH&RCusing99mTcfrom99Mogenerator.SnCl2.H2OwasusedasareducingagentatSTP.RadioTLCwasperformedusingSGplatesand0.9%NaClandacetoneasthemobilephases.GeigerMuller counter detected the counts on the SGplates and radiolabeling efficiency of the productwasachieved.Quality control results of the radiolabeled productwere performed beforemoving further.DuringBiodistributionstudy,productwasinjectedIVintotheanimalear.Scanningwasperformedunderthegammacamera.Results:LigandsynthesiswasverifiedfromIRindicatingthepresenceoftheclosedringstructureThiozolidinering1(Fig.1).IRshowedabsenceofchromophoregrouphencetheligandwascolorless.DSCpeaksindicatedthereactiontypeasendothermic.LigandappearedtobestableinDMSO.After optimizing various parameters effective radiolabeling up to 88 % was achieved at pH 5, usinglyophilized tin chloride pyrophosphate cold kit in NaCl (0.9%). Animal study was carried out for Biodistribution of the radiopharmaceutical. 99mTc – ligand uptake was highlighted in the soft organsimmediatelyafterinjection.Theareasshowinghigherradiotraceruptakewerekidney(20%),liver(35%),bones(15%)andbrain(10%)(Fig.2).Delayedimagesshowedtheradiotracerretentioninthesoftorgansaswellasinthespineoftheanimals(Fig3,4).Comparativestudywasperformedusing99mTc–MDPand99mTc PHYTATE. Conclusion: Salicylaldicysteine is efficiently labeled with 99mTc and is suitable insimultaneousscanningofliver,kidneyandbrain.Inthisstudy,significantuptakeishighlightedinbraininadditiontosofttissuesindynamicflowfollowedwithdelayimages,whichisworthconsideration.Thisindicatestheabilityofdrugincrossingthebloodbrainbarrier.Thisstudyalsohighlightstheimportanceofsulfurcontainingligandsinbrainscanning.

OH

N

H

S

OH

O

Fig. 1

Page 64: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 64

Fig. 2

Fig. 3 Fig. 4

Reference:1.MacDonald,L.G.,Brown,D.H.,Morris,J.H.,&Smith,W.E.(1982).CopperSchiffbasecomplexeswithpolyfunctionalaminoacids.InorganicaChimicaActa,67,7-12.

Page 65: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 65

PP08Radiolabellingofpoly(lactic-co.glycolicacid)(PLGA)nanoparticleswith99mTCR.Iglesias-Jerez1,M.D.Cayero-Otero2,L.Martín-Banderas2,A.Perera-Pintado3,I.Borrego-Dorado11ServiciodeMedicinaNuclear.HospitalUniversitarioVirgendelRocío.AvdaManuelSiurots/n.41013.Seville.Spain2Dpt.FarmaciayTecnologíaFarmacéutica.FacultaddeFarmacia.UniversidaddeSevilla.c/Prof.GracíaGonzáleznº2,41012,Seville,Spain.3DireccióndeInvestigacionesClínicas,CentrodeIsotopos,34No.4501e/45y47,Kohly,Playa,LaHabana,CP11300,Cuba

Introduction:Radiolabelled nanoparticles have gained a widespread application in the diagnosis andtherapy of several diseases (inflammation/infection, cancer, and others). PLGA Nanoparticles (NPs)preparedby solvent emulsionevaporationmethod [1] have shownmore suitable characteristicswithregard to those produced by nanoprecipitation: better size, a higher homogeneity and higherencapsulation efficiency. The combination of 99m Tc + PLGA nanoparticles (platforms with excellentbiodegradabilityandbiocompatibility)couldallowobtainingasuitablenanosystemfortheranosis.TheaimofthepresentworkistooptimizetheradiolabellingofPLGAnanoparticleswith99mTc.MaterialsandMethods:PLGA nanoparticleswere prepared using the nanoprecipitationmethod [1]. Then, 5mg oflyophilizedNPsweredispersed in1mL0.9%NaClandstored inavacuumvials.Differentamountsofstannouschloridedehydrateinaqueoussolution(30,20,4,2,1and0,1μg)wereadded.Then,wasadded≈74MBq(2mCi)of99mTcin1mLof0.9%NaCl.Finally,thesuspensionwasincubatedfor10min.99mTc-NPssuspensionswereanalyzedbythinlayerchromatography(TLC)withsilicagelstrips(10x2,5cm).With0.9%NaClasthemobilephase,freepertechnetateranwiththefront,meanwhileparticlesstayedinthestart. Using a solution of pyridine: acetic acid: water (3: 5: 15), radiocolloids remained at start, NPsmigrated with Rf = 0.3 and free pertechnetate moved with Rf = 0.7-0.8 [2]. Results:Using 1 μg ofSnCl2*2H2Oasareducingagent,PLGAnanoparticles(withoutsurfacemodification)werelabeledwith99mTcwith a yield ≥ 90%.PLGAnanoparticles size ranged from160-180nm in diameterwith an electricsurfaceof-36mV.Afterradiolabelling,particlesincreasedinsizeuptoadiameter≈380nm.Conclusions:Resultsobtained,indicatethattheproceduresofnanoparticlesynthesis,radiolabellingandqualitycontrolwere reproducible and right to design a biodegradable nanosystem suitable for in vivo theranosis.References: [1] Martín-Banderas L, Sáez-Fernández E, Holgado MÁ, Durán-Lobato MM, Prados JC,MelguizoC,AriasJL.IntJPharm.2013Feb25;443(1-2):103-9.[2]SnehalathaM,KolachinaV,SahaRN,BabbarAK,SharmaN,SharmaRK.JPharmBioalliedSci.2013Oct;5(4):290-7.

Page 66: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 67

PP09Developmentof[18F]PD-410asaNon-PeptidicPETRadiotracerforGastrinReleasingPeptideReceptorsInes Farinha-Antunes,b Chantal Kwizera,b Enza Lacivita,a Ermelinda Lucente,aMauroNiso,a PaolaDeGiorgio,aRobertoPerrone,a,cNicolaA.Colabufo,a,cPhilipH.Elsinga,bMarcelloLeopoldoa,caDipartimentodiFarmacia–ScienzedelFarmaco,UniversitàdegliStudidiBari“AldoMoro”,Bari,ItalybDepartment of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,UniversityofGroningen,Groningen,TheNetherlandscBIOFORDRUGs.r.l.,Spin-off,UniversitàdegliStudidiBari“AldoMoro”,Bari,Italy

Introduction:TheGastrinReleasingPeptide(GRP)receptorhashighexpressiononprostatecancercells.Consequently,bombesin,a14-aminoacidpeptidethatbindswithhighaffinitytoGRPreceptors,hasbeenwidely studied for the development of radiopeptides for application in prostate cancer imaging. Toovercome some limitations of radiolabelled peptides, we developed a small molecule non-peptidicradiotracertargetingGRPreceptors.Smallmoleculesoffervariousadvantagesoverpeptidessincetheycanbesuitablydesignedtomodulatepotency,selectivity,lipophilicity,andcellpermeabilityanddonotsufferfrompoortissuepenetration,poorserumstability,andquickelimination.Theaimofthepresentstudyistodevelopanon-peptidicfluorine-18PETradioligandwithantagonistproperties,forvisualizationofGRPreceptors.PD-410((S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]propionamide) was selected as potent compound for 18F-radiolabelling(Kiwas38±2nM).Methods:[18F]PD410wassynthesizedbyreactionof[18F]fluoroethyltosylatewiththecorrespondingphenolprecursorinpresenceofNaHfollowedbyHPLC-purification.CellexperimentswerecarriedoutwithPC3cellstodeterminecelluptake,effluxandinvitrobindingaffinity.

Chemicalstructureof[18F]PD410

Results:Incontrasttoother[18F]fluoroethylationreactions,RCYwaslow(<5%)becauseofsubstantialdefluorination. The uptake of [18F]PD410 in PC3 prostate cancer cells gradually increased within 60minutesofincubation,thereafterreachingaplateau.Themaximumcellularassociatedradioactivitywasfoundtobe70%.Non-specificbindingaccountedfor40%.Theeffluxkineticsof[18F]PD410showedrapiddissociationofthetracer,remainingonly6%ofthetracerwithin120min.Thisradioactivitydecreasedexponentiallywithahalf-lifeof13minutes.Invitrobindingaffinityof[18F]PD410wasplottedassigmoidcurvesforthedisplacementof[18F]PD410asafunctionofincreasingconcentrationsoftheGRPreceptorspecificinhibitorGlu[Aca-BN(7-14)]2.TheIC50valuewas0.10nMforGlu[Aca-BN(7-14)]2.Conclusions:[18F]PD410displayedhighaffinityforGRPreceptorandtheinvitroresultswarrantfurtherinvivoPET-studies.

Page 67: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 68

PP10Animprovednucleophilicsynthesisof2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole([18F]FEDMBT),potentialdiagnosticagentforbreastcancerimagingbyPETV.V.Vaulina1,O.S.Fedorova1,V.V.Orlovskaja1,С.L.Chen2,G.Y.Li2,F.C.Meng2,R.S.Liu2,3,H.E.Wang2,R.N.Krasikova1.1N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint-Petersburg, RussianFederation;2DepartmentofBiomedicalImagingandRadiologicalSciences,NationalYang-MingUniversityTaipei,Taiwan;3NationalPET/CyclotronCenter,VeteransGeneralHospital,Taipei,Taiwan.Introduction:Substitutedbenzotiazoles(BT)areaclassofcompoundswithhighaffinityandselectivitytoarylhydrocarbonreceptor(AhR),areceptoroftenexpressedinbreastcancertissue.Amongthem2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610) exhibited very potent (GI50 < 0.1 nM) antitumorpropertiesinvitroinhumanbreastcancercelllines.Basedonthatscaffoldwerecentlysuggested18F-fluoroethylated analogue of PMX 610, the 2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole([18F]FEDMBT)1.Preliminarystudiesshowedhighaccumulationoftheradiotracer inMCF-7,MDA-MB468andMDA-MB231breastcancercells.Herewereportan improvedsynthesisandpurificationof[18F]FEDMBTforpreclinicaltrials.

Materialsandmethods:Theextentof18F-fluorinationwasfollowedviaradioTLC(EtAc:hexane1:4).TheHPLCpurificationwasperformedusingWatersC18XBridge250x10mmcolumn,0.05MNH4OAc:EtOH,50:50,3ml/min,UV254nm.ForSPEpurification1.2mLofaqueous25%EtOHwasaddedtothereactionmixture(5mgofprecursor,0.6mLofDMF)topreventprecipitateformation.TheresultingsolutionwaspassedthroughtheSep-PaktC18PlusLongcartridge.Thecartridgewasthenrinsedwith2mLof50%aq.EtOH allowing for complete removal of the precursor. The product, [18F]FEDMBT,was recovered bysuccessiveelutionofthecartridgewith2and1mLof55%aq.EtOH.Results Under optimal reaction conditions (see figure) a high 18F-incorporation rate of 80-85% wasachieved.TheHPLCpurificationaffordedtheproductin>99%radiochemicalpurityandRCYof55%(decaycorrected). Isolatedproduct fractionwasmixedwith phosphate buffered saline to adjust the pH andethanolconcentration,withoutfinalre-formulationstep.FractionatedSPEpurificationaffordedproductwith>99%RCPand60%RCY(decaycorrected).WhileSPEtechniqueallowedforcompleteremovalofprecursor,aminorchemical impurity (not identified) remained in the final formulation.Work isbeingundertakennowtoresolvethis issue. Discussion/conclusion:Anoptimizedsynthesisof[18F]FEDMBTaffordedproductwithradiochemicalpurityandhighyield.ItcanbeeasyautomatedusingTracerLabFX-N Pro platform. The suggested “HPLC free” SPE purification can be applied in the production of[18F]FEDMBTforongoinginvitrocelllinesexperimentsandpreclinicaltrials.ThisstudywassupportedbyRFBRgrant15-54-52026/15andMOST104-2923-B-010-001-MY2.1.ChenCLetal,[2015],EJNMMI,42,Suppl.1,S481

Page 68: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 69

PP11InternalRadiationDoseAssessmentofRadiopharmaceuticalsPreparedwithAccelerator-Produced99mTcLauraMeléndez-Alafort1,MohamedAbozeid1,GuillerminaFerro-Flores2,AnnaNegri3,MicheleBello4,NikolayUzunov5,6,MarthaPaiusco3,JuanEsposito6,AntonioRosato1,3,1DiSCOG-University of Padua, Italy; 2ININ, Ocoyoacac,México; 3IOV Padua, Italy; 4DFA-University ofPadua,Italy;5FacultyofNaturalSciences,UniversityofShumen,Bulgaria;6INFN-LNL,Legnaro,Italy.Introduction:99mTcistheradionuclidemostwidelyusedindiagnosticnuclearmedicine.Itisavailablefrom99Mo/99mTcgenerators,where99Moisobtainedbyafissionreactioninnuclearreactors.Directreactionsusingprotonbeams[e.g.100Mo(p,2n)99mTc]areareliableandrelativelycost-effectivemethodtofulfilltheshortageofthisisotopegiventheimminentclosureoftheexistingoldreactors.However,theresultsofLARAMEDprojectfromtheLNL-INFNshowedthattheextractedsolutionof99mTcfromtheproton-bombarded100Mo-enrichedtargetcontainssmallquantitiesofseveraltechnetiumradioisotopes(93Tc,94Tc,95Tc,95mTcand96Tc)[1]. Theaimofthisworkwastoestimatethetotalcontributionoftechnetium radioisotopes to the patient radiation absorbed dose after administration of fourradiopharmaceuticalspreparedwith technetium-99mobtained from the100Mo(p,2n)99mTc reaction.Methods: The internal radiation absorbed doses of pertechnetate, sestamibi,hexamethylpropyleneamine oxime (HMPAO), and disodium etidronate (HEDP) radiopharmaceuticals,wereassessedconsideringbothtechnetium-99mpreparedfromthe100Mo(p,2n)99mTcreactionaswellasfromgenerators.Time-integratedactivityinthemainsourceorgans[Ã(rs,TD)]foreachradioisotopewas calculated using the radiopharmaceutical biokinetic models published by the InternationalCommission on Radiological Protection (Publication 53 and 80, ICRP). OLINDA/EXM 1.1 softwarewasappliedfordosecalculationsusinganadultmalephantomasaprograminputandtheaboveÃ(rs,TD)calculatedvalues.Thetotalabsorbeddoseinthetargetorgans,producedbythemixtureoftechnetiumradioisotopes,wascalculatedfor3timeperiodsafter100Moirradiation.Results:Theamountsofothertechnetiumradioisotopesinthe99mTc-radiopharmaceuticalsproducedalowincreaseofradiationdoses.Bonemarrow is theorgan thatexhibited thehighestdifferencebetween thedoseobtained from thegenerator-produced99mTcandtheaccelerator-producedone.Forexample,HEDPbonemarrowdose(4.41E-03mSv/MBq)showedanincreaseintheof8.5%(4.79E-03mSv/MBq),11.8%(4.93E-03mSv/MBq)and 17.7% (5.19E-03 mSv/MBq) using 99mTc obtained at 9, 14, and 19 h after 100Mo irradiation,respectively.Thecorrespondingdifferencesforsestamibi,pertechnetateandHMPAOwerelessthan8%,10%and14%forthesameirradiationtimes.Conclusion:Theincreaseofradiationdosescausedby93Tc,94Tc,95Tc,95mTcand96Tc,comparedwiththedosefrom99mTcisrelativelylow.However,itsimpactshouldnotbeunderestimated.Administeringthelabeledradiopharmaceuticalsatleastninehoursafterthetargetirradiationisadvisabletoreducetheirradiationcausedbytheothertechnetiumradioisotopes.References:1.UzunovN,BelloM,etal,[2015],INFNLNLReport,ISSN1828-8561,241:52-53.

Page 69: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 70

PP12AspecializedFive-CompartmentalModelSoftwareforPharmacokineticParametersCalculationLauraMeléndez-Alafort1,CristinaBolzati2,GuillerminaFerro-Flores3,NicolaSalvarese1,DeboraCarpanese1,MohamedAbozeid1,AntonioRosato1,4,NikolayUzunov5.1DiSCOG-UniversityofPadua,Italy;2IENI-CNR,Padua,Italy;3ININ,Ocoyoacac,México;4IOVPadua,Italy;5FacultyofNaturalSciences,UniversityofShumen,Bulgaria.Introduction: The use of pharmacokinetics modeling in preclinical nuclear medicine is very limitedalthough it is well known that such models could be valuable tools to study radiopharmaceutical-properties1.Nowadays, thepreclinicalevaluationofnewradiopharmaceuticals is still focusedonlyonbiodistribution studies, mainly because of the lack of currently available user-friendly specializedprogramstoassist researchers incalculatingradiopharmacokineticparameters.Methods:Adedicatedspreadsheetsoftwaretocalculatepharmacokineticparameterssuchastracer-biologicalhalf-life(T1/2),mean residence time (MRT) for each compartment, as well as the fraction of the tracer leaving thecompartments per unit time (transfer rate constant, TRC), has been developed. The menu-drivenspreadsheetsoftwareisbasedonfive-CompartmentKineticModel(CoKiMo).CoKiMowasusedtostudypharmacokineticparametersof1199mTc-nitridocomplexes,reportedaspotentialmyocardialperfusion-imagingagents(MPIAs),ofgeneralformula[99mTcN(DTC-Ln)(PNP)]+(DTC-Ln=alicyclicdithiocarbamates;PNP=diphosphinoamine)2,andtheresultswerecomparedwiththoseof99mTc-Sestamibiand99mTc-Tetrofosmin.BiodistributionstudiesforallMPIAshavebeenperformedinSprague-Dawleyrats(n=312)todetermineorganuptake.Results:MPIAstime-activitycurveshavebeenobtainedusingCoKiMofor5compartments,byinterpolationoforganactivityvaluesmeasuredatdifferenttimepoints.Curveshavebeen integratedtocalculateT1/2andMRT in thestudiedorgansofallMPIAs.Subsequentlysoftwareemploysamodulewith implementedoptimizationprocedure,dedicatedtocalculatethevaluesoftheTRCs.Finally,CoKiMocalculationswerevalidatedbycomparisonwithtwodifferentsoftware:Olinda/Exmand SAAM II. [99mTcN-(PNP)]+-complexes showed a faster blood and liver clearance as compared to99mTc-Sestamibiand99mTc-Tetrofosmin,inagreementwithsomepreviousreportedstudies2.However,it was found that when CoKiMo pharmacokinetic data were used, a wide quantitative comparisonbetweenallMPIAswaspossible,whichinfact,wasnotpossibleusingonlythebiodistributiondata.Theanalysisoftheresultsshowedthat99mTcN-PDTC3turnedouttobethebestcandidatefortranslationinto clinical practice due to its rapid and high heart uptake, and fast liver and lung clearance,whichenabledanearlyvisualizationofmyocardialtissue.Conclusion:CoKiMoprovedtobeaneasytouseandflexiblespecializedsoftwaretostudythekineticofagreatnumberofpharmaceuticalslabeledwithanunlimited number of radionuclides. Therefore, it can be a useful tool for an extensive preclinicalcharacterizationofnewradiopharmaceuticals.References:1.-RescignoA,[2010],AAPSJ12:61-72.2.-BolzatiC,Cavazza-CeccatoM,etal,[2010],BioconjugChem21:928-939

Page 70: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 71

PP13Molecularimagingofthepharmacokineticbehavioroflowmolecularweight18F-labeledPEtOxincomparisonto89Zr-labeledPEtOxPalmieriL1,2.,VerbrugghenT1,GlassnerM3,HoogenboomR2,StaelensS1,wyffelsL1,21MolecularImagingCenterAntwerp,UniversityofAntwerp,Antwerp,Belgium;2DepartmentofNuclearMedicine,AntwerpUniversityHospital,Antwerp,Belgium;3SupramolecularChemistry,GhentUniversity,Ghent,BelgiumIntroduction: PEGylation is a methodology that is commonly used to improve the PK profile ofradiotracers.Inrecentyearsbiocompatiblepoly(2-alkyl-2-oxazoline)s(PAOx)gainedalotofattentionasalternativetoPEGbecauseoftheirmuchhigherchemicalversatility.PAOxcanbeequippedwithside-chainfunctionalities,allowingloadingmultipletargetingmolecules,whilethechain-endcanbeselectivelyradiolabeled.WepreviouslyevaluatedthePKbehaviorof89Zr-labeledpoly(2-ethyl-2-oxazoline)s(89Zr-PEtOx)inamolecularweight(MW)rangeof5-110kDausingµPETimaging.Whilewefoundtheexpectedincrease of circulation time with increasing MW, the 5kDa [89Zr]-PEtOx demonstrated unusual highkidneyretention.Wenowdeveloped[18F]-PEtOx5kDaandcompareditspharmacokineticbehaviorto[89Zr]-PEtOx5kDa.MaterialsandMethods:PEtOxwasradiolabeledwith18FusingSPAAC.Forthis,PEtOxwasfirstderivatizedwithbicyclononyne(BCN).Automated18F-labelingofBCN-PEtOxwasperformedbyreactionofazidoethyltosylatewithazeotropicallydried18F-followedbydistillationoftheformed[18F]-fluorethylazideintoasecondreactorforreactionwithBCN-POX.ThereactionmixturewaspurifiedusingaPD-10cartridgeandQCwasperformedusingaZenix-C80Åcolumn.ToevaluatethePKprofile,C57BL/6mice(n=4)wereintravenouslyinjectedwith[18F]-BCN-PEtOx(16.47±1.68Mbq,~100µg)anddynamicallyscannedoverthefirst2h.Volumesofinterestweredelineatedforheart,liverandkidneystocalculatestandarduptakevalues(SUV).Results:[18F]-BCN-PEtOxwasobtainedwithaRCYof4.30%(n=4,decaycorrectedtoEOB)andaRCPof100%afterPD-10purification.Aswaspreviouslydemonstratedfor[89Zr]-PEtOx 5kDa, µPET imaging revealed rapid and complete blood clearance of [18F]-PEtOx 5kDa(SUV=2.42±0.16 at 10minpi and SUV=0.27±0.08 at 1hpi). Peak liver uptake related toperfusionwasreached within 1min pi (SUV=2.92±0.18) and quickly decreased (SUV=0.50±0.03 at 10min pi andSUV=0.07±0.00at1hpi) indicatingonlyminorcontributionoftheliver intheclearanceof[18F]-PEtOx5kDa. The kidneys displayed a high initial uptake (SUV=5.67±0.87 at 3.75min pi versus 7.58±2.54 at3.75minpifor[89Zr]-Df-PEtOx5kDa)butwhere[89Zr]-Df-PEtOx5kDawasnotclearedfromthekidneys(SUV=2.36±0.84 at 24h pi), [18F]-PEtOx 5kDa showed a fast and almost complete clearance(SUV=0.27±0.08at1hpiandSUV=0.12±0.05at2hpi).Conlusions: [18F]-PEtOx5kDa isquicklyclearedfromthebodyanddoesnotdisplayhighkidney retention.Theunusualkidney retentionof [89Zr]-Df-PEtOx5kDaisthereforemostlikelyrelatedtoendocytosisandlysosomaldegradationoftheradiolabeledpolymerfollowedbytrappingofradiometal89Zrintheproximaltubules.

Page 71: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 72

PP14TowardsNucleophilicSynthesisoftheα-[18F]fluoropropyl-L-dihydroxyphenylalanineV.V.Orlovskaja1,O.F.Kuznetsova1,O.S.Fedorova1,V.I.Maleev2;Yu.N.Belokon2;A.Geolchanyan3;A.S.Saghyan3;L.Mu4,R.Schibli4;S.M.Ametamey4;R.N.Krasikova11N.P.BechterevaInstituteofHumanBrain,RAS,St.-Petersburg,Russia;2A.N.NesmeyanovInstituteofOrganoelementCompounds,RAS,Moscow,Russia;3SPCArmbiotechnologyNAS,Yerevan,RepublicofArmenia;4CenterforRadiopharmaceuticalSciencesofETH,PSIandUSZ,Zurich,SwitzerlandIntroduction:Theinteresttowardsuseof6-[18F]fluoro-L-DOPAasaPETradiotracerfortheevaluationofdopaminergicsystem’sstateandalsoastumordiagnosticagenthasbeensteadilyincreasingduringthelastdecade.Considerableworkisbeingundertakentoovercomethepracticaldifficultiesencounteredinthe production of 6-[18F]fluoro-L-DOPA and other ring-fluorinated amino acids via nucleophilicsubstitutionroute.Aromaticaminoacidscarryingmonofluoromethylgroupintheα-positionhavealsobeenconsideredaspotentialPETradiotracers,withnucleophilcsynthesisofracemicα-[18F]fluoromethylphenylalanineusingcyclicsulfamidateprecursoralreadyreported1.Recentlyourgrouphassuggestedaroutetowardsenantiomericallypureα-[18F]fluoromethyl-p-tyrosineviadirectnucleophilicfluorinationofaNiIIcomplex2.However,18F-fluorinationoftheprecursorbearingα-MeSO3(mesyloxy)leavinggroupwasinefficient,possiblyduetothesterichindranceattheα-carbonofthetyrosinemoiety.Incontinuationof that previousworkwe have investigated the synthesis of the α-[18F]fluoropropyl-L-DOPA via 18F-fluorinationofasimilarprecursor(I,Fig.1).

Materials and methods: Radiofluorination of I was performed in the presence of kryptofix/K2CO3(acetone,10min,85oC,10mgofprecursor).Theextentof18F-fluorinationwasfollowedbyradioTLC(EtAc:CHCl3:CH3COOH4:1:1).Aftersolventremovalthe18F-fluorinatedintermediatewastreatedwith6Maq.HClat140oCfor10min.TheproductwasanalyzedbyradioTLC(EtOH:n-Butanol:CH3COOH4:1:1)andHPLC(Lichrosphere100-RP-18,250x4mm,0.1%CH3COOH).ResultsTheprecursor,NiIIcomplexofSchiffbaseof(2S)-1-benzyl-N-(2-formylphenyl)pyrrolidine-2-carboxamide(BBA)with(S)-2-amino-2-(3,4-bis((methylsulfonyl)oxy)benzyl)-5-((methylsulfonyl)oxy)pentanoic acid (Ni-(S)-BBA-(S)-MsO propyl-DOPA(OMs)2 (I)), was prepared from the corresponding NiII complex of BBA Schiff base with (S)-DOPA.18F-fluorination efficiency of I was 15%, with room for optimization. Acid hydrolysis of theintermediateaffordedprotectedderivativeof(S)-α-[18F]fluoropropyl-L-DOPA,butremovalofthemesylprotectivegroupsprovedproblematic -useof2Mpotassiummethylate inMeOH (60oC,10min)wasineffective. Discussion/conclusionThenucleophilic fluorinationofNiII-based labelingprecursorofferspotential novel route towards a new derivative of DOPAwith 18F-label in the α-fluoropropyl group.Preparationofprecursoremployingmethoxymethoxy(MOM)protectivegroupsinsteadofmesylones,something that should resolve the deprotection problem, is currently in progress. This study wassupportedbySNFgrantIZ73ZO_152360/1.References:1HuangCetal,[2013],NuclMedBiol,40,498-506;2KrasikovaRetal,[2015],EJNMMI,42,Suppl.1,S479-480.

Page 72: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 73

PP15Aconvenientone-potsynthesisof[18F]clofarabineRevunov,Evgeny1;Malmquist, Jonas1;Johnström,Peter1,2;VanValkenburgh,Juno3;Steele,Dalton3;Halldin,Christer1;Schou,Magnus1,21KarolinskaInstitutet,DepartmentofClinicalNeuroscience,CentreforPsychiatricResearch,Stockholm,Sweden; 2 AstraZeneca Translational Science Centre, Stockholm, Sweden; 3 University of California,Department of Medical and Molecular Pharmacology, Ahmanson Translational Imaging Division, LosAngeles,USAIntroduction:[18F]Clofarabine(3,scheme1)hasrecentlyemergedasapromisingradioligandforinvivoimagingofdeoxycytidinekinaseactivityusingPET(1).InthereportedprotocolsbyShuandWu(1,2),3isprepared in a two-step process with an intermediate purification that proceeds with 10-15%radiochemicalyield(RCY).Wehereinreportasimplifiedprocedureforthepreparationof3,inwhichtheintermediatepurificationwaseliminated.Materials&Methods:[18F]FluoridewasproducedusingaGEPETtracecyclotronanddriedazeotropicallywithacetonitrile(MeCN),potassiumcarbonateandkryptofix(K2.2.2).RadiofluorinationwasperformedinMeCNat90oCfor20minutes,afterwhichsolventswereremoved in vacuo and deprotection was performed using 10% trifluoroacetic acid (TFA) indichloromethane(DCM)atroomtermperature(rt) for5min.Followinganadditionalevaporation,thecrudeproductwasdissolvedinmobilephaseandpurifiedusingsemi-preparativeHPLC(ACE,C18,5µm,HIL250×10mm,elutedwithMeCN:aq.NH4OH(0.6%)90.5:9.5(v/v)at6mL/min).3wasisolatedfromtheeluentusingaC-18SepPakcartridge(Waters)andformulatedforintravenousinjectioninasolutionofethanolandphosphatebufferedsaline(10:90).

Scheme1.One-pot,two-stepradiosynthesisof[18F]clofarabine.Results:Theradiochemicalconversion(RCC)of18F-fluorideinto3wasbetween25-30%.HigherreactiontemperaturesorprolongedheatingdidnotimprovetheRCC.RemovalofMeCNfromthereactionmixturepriortodeprotectionwasfoundtobeessentialandmaybeascribedtotheknowninhibitingpropertiesofMeCNontrityl-grouphydrolysis(3).By-productformation,sometimesobservedwhenrefluxing2withaqueousHCl,couldbeeffectivelyeliminatedbyemployingmildconditionsforthedeprotection(10%TFAin DCM, rt, 5min) without compromising the RCY. No intermediate purificationwas required in theprocess,thatproduced>99%radiochemicallypure3in20%RCYwithaspecificactivity>100GBq/µmol.Discussion/Conclusion:Asimplifiedone-pot radiosynthesisof3wasdeveloped inwhich intermediatepurification was eliminated. The RCY is on par with previously reported protocols for 3 synthesis.References:1.ShuCJ,CampbellDO,RaduCG,[2010],JNM51(7),1092-1098.2.WuC,ChanP,ChangW,WangH,Liu,R.[2009],JNMAnnualMeetingAbstracts50(2),1612.3.RussellMA,LawsAP,AthertonJH,PageMI,[2009],OrgBiomolChem7(1),52-57.

Page 73: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 74

PP16BODIPY-estradiolconjugatesasmulti-modalitytumorimagingagentsSamiraOsati,1MichelPaquette,1SimonBeaudoin,1HasratAli,1BrigitteGuerin,1,2JeffreyV.Leyton1,2andJohanE.vanLier1,21Département demédecine nucléaire et radiobiologie, Faculté demédecine et sciences de la santé,UniversitédeSherbrooke,QC,CanadaJ1H5N4and2Centred’ImagerieMoléculairedeSherbrooke(CIMS),CR-CHUS,Sherbrooke,QC,CanadaJ1H5N4Introduction: Invivoimagingofestrogenreceptor(ER)densities inhumanbreastcancerisapotentialtooltostagedisease,guidetreatmentprotocolsandfollow-upontreatmentoutcome.Amongvarioustechniquestodetect ligand–ERinteractionbothpositronemissiontomography(PET)andfluorescenceimaginghavereceivedampleattention.Materials&Methods:Inthisstudyweuse4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as a fluorescent probe and precursor for 18F-labelling to developestradiol-basedligandsforER.ThesynthesisinvolvesattachmentofaBODIPYmoietytotheC17α-positionofestradiolusingSonogashiracrosscouplingreactionofiodo-BODIPYandvarious17α-ethynylestradiol(EE2) derivatives. Confocal laser scanningmicroscopywasused tomonitor cellular uptakeof the EE2conjugatesafter1hoftreatmentwithoutandwithestradioltoblockER.Flowcytometricanalysiswasperformed to determine the relative fluorescence in the nuclei. Results: The Sonogashira couplingreaction of EE2 derivatives with iodo-BODIPY(1:1 molar ratio) in THF/toluene (1/2) and usingPdCl2(PPh3)2 as catalyst, NEt3 as a base and CuI at room temperature gave the desired EE2-BODIPYconjugatesin45-86%yield(afterpurificationbysilicagelcolumnchromatography).ER-mediateduptakeof the basic EE2-BODIPY conjugate by the nuclei of ER-positive MC7-L1 cells was confirmed byfluorescenceimaging.Discussion&Conclusion:ThesynthesisofaseriesofEE2-BODIPYconjugateswasachieved via Sonogashira cross-coupling inmoderate to very good isolated yields. In vitro cell uptakeresults warrant further studies to evaluate the potential of the EE2-BODIPY conjugates forfluorescence/PET imagingofER-positivebreastcancer.Fluor-18 labellingof theBODIPYmoietyof theconjugatesaswellasfluorescenceandPETimagingintumorbearingmicehavebeenprojected.

Page 74: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 75

PP17Easyandhighyieldingsynthesisof68Ga-labelledHBED-PSMAandDOTA-PSMAbyusingaModular-LabEazyautomaticsynthesizer.DiIorioV1,IoriM2,DonatiC1,LanzettaV1,CapponiPC2,RubagottiS2,DregerT3,KunkelF3,AstiM2.(1)RadiopharmacyNuclearMedicineUnit,IRSTIRCCS,Meldola(FC),Italy(2)NuclearMedicineUnit,IRCCS-ArcispedaleSantaMariaNuova,ReggioEmilia,Italy(3)Eckert&ZieglerEurotopeGmbH,Berlin,GermanyIntroduction: 68Ga-labelled PSMA inhibitor analogues are one the most important class of newradiotracersunderclinicalobservationanddevelopmentforthedetectionofprostatecancerlesionsandmetastases. 68Ga- PSMA-11 (68Ga-PSMA-HBED-CC) has already attested its suitability in the clinicalpracticeand68Ga-PSMA-617(68Ga-DOTA-PSMA)hasrecentlydemonstrated itspotential in individualfirst-in-manstudiesgainingimportanceaboveallinviewofitstheranosticapplicationasitcanbelabelledalsowith90-Yttriumand177-Lutetium.Inthisstudythetwo68Ga-labelledradiotracersweresynthesizedusinganautomaticModular-LabEazysynthesizer(Eckert&Ziegler)andthereliabilityofthesystemwasvalidatedtoguaranteepreparationsofpharmaceuticalgrade.MaterialsandMethods:Thesystemwasassembledwithadisposablecassettesandthevialswerefilledwithcommercialprecursorsandreadytousepharmaceuticalgradereagents.Afterclickingthestartbuttonthefollowingstepswereperformed:a1850MBqGalliaPharm68Ge/68Gagenerator(Eckert&Ziegler)waselutedwith0.1MHClbyaperistalticpumpbypassingthroughacationexchangecartridgeintoawastevial.Thecartridgewasdriedandtheblockedactivitywaselutedwith0.55mlofa5.5MHCl/5MNaClsolutionintothereactionvialpre-filledwith40ugofprecursor (PSMA-11orPSMA-617)and2.6mlof SodiumAcetate/HCl/EtOHbuffer. Thereactorwasheatedat110°Cfor4(PSMA-11)or8(PSMA-617)minutes.Themixturewasdilutedwith7mlof0.9%NaClsolutionandtransferredintothefinalproductvialbypassingthroughalightCMcartridgeandasterilizingfilter.Results:Bothradiopharmaceuticalswereproducedinhighyield.Startingfromanactivityof700±20MBqtheradiochemicalyieldwere75.6±10and75.2±7%forPSMA-11andPSMA-617,respectively(n=5)after15minutes.RCPwasassessedbyHPLCandwasalways>98%(for68Ga-PSMA-11thesumofthepeaksofthetwoisomerswasconsidered).Allthepreparationsweresterileandtheendotoxincontentwas<0.5EU/ml.Discussion/Conclusions:TheModular-LabEazysynthesizerworkswithanewtechnologywhichusesapressuredistributionsystemtotransfertheliquidinsteadofsolenoidvalvesorstopcocks.Adisposable,easytoassemblecassetteallowsthesynthesisof68Ga-PSMA-11and68Ga-PSMA-617inhighRCYandquality.

Page 75: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 76

PP18SynthesisandEvaluationofFusarinineC-basedOctadentateBifunctionalChelatorsforZirconium-89LabellingChuangyanZhai,1ChristineRangger,1DominikSummer,1HubertusHaas,2ClemensDecristoforo11DepartmentofNuclearMedicine,MedicalUniversityInnsbruck,Innsbruck,Austria2DivisionofMolecularBiology,MedicalUniversityInnsbruck,Innsbruck,AustriaIntroduction:89Zrhasreceivedconsiderableinterestasapositronemittingradionuclideforimmuno-PETimagingduetotheexcellentnuclearandphysicalproperties.RecentlywereportedthatfusarinineC(FSC)isapromisingalternativechelatorfor89Zr-basedPET imagingagents,exhibitingsuperiorstabilityandkinetic inertness as compared to 89Zr-desferrioxamine B ([89Zr]DFO).[1] Here we designed FSCderivatizedchelatorsfor89Zrlabelingwhichwereexpectedtoontheonehandimprovethestabilityof89Zr-complexes by saturating the 8 coordination sphere of 89Zr and on the other hand, reduce thenumberof functionalitymaking it suitable for the conjugation tomonoclonal antibodies.Materials&Methods FSC(succ)2 and FSC(succ)3 were synthesized by FSC reacting with succinic anhydride, andFSC(succ)2AAwassynthesizedbyFSC(succ)2reactingwithaceticanhydride.ThecomplexationpropertiesofFSC(succ)2AAandFSC(succ)3withZr4+werestudiedbyreactingwithZrCl4.For invitroevaluationpartition coefficient, protein binding property, serum stability as well as acid dissociation andtranschelation studies of 89Zr-complexes were evaluated and compared with [89Zr]DFO and 89Zr-triacetyfusarinineC([89Zr]TAFC).Theinvivopropertiesof[89Zr]FSC(succ)3werefurthercomparedwith[89Zr]TAFCinnudemice.ResultsFSC(succ)2AAandFSC(succ)3weresynthesizedwithsatisfyingyield.The complexation with ZrCl4 was achieved using a simple strategy resulting in high-purity[natZr]FSC(succ)2AA and [natZr]FSC(succ)3 with a 1:1 stoichiometry. Distribution coefficient of 89Zr-complexesrevealedimprovedhydrophiliccharacterscomparedto[89Zr]TAFC.Allradioligandsshowedhigh stability in PBS and human serum and low protein-bound activity over a period of 7 days. Aciddissociationandtranschelationstudiesexhibitedthedifferent invitrostabilitiesfollowingtheorderof[89Zr]FSC(succ)3 > [89Zr]TAFC > [89Zr]FSC(succ)2AA > [89Zr]DFO. Biodistribution study of[89Zr]FSC(succ)3 exhibited a slower excretion compared to [89Zr]TAFC. Conclusion [89Zr]FSC(succ)3showed best stability and inertness and [89Zr]FSC(succ)2AA predicts the potential of FSC(succ)2 as amonovalentchelatorfortheconjugationtotargetedbiomoleculesinparticularmonoclonalantibodies.Reference:1.ZhaiC,SummerD,RanggerC,etal.[2015],Molpharm12:2142–2150

Page 76: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 77

PP19Fullyautomatedproductionof[18F]NaFusingare-configuringFDGsynthesismodule.SuphansaKijprayoon1,AnanyaRuangma2,SuthatipNgokpol3,SamartTuamputsha4OncologyImaging&NuclearMedicineDepartment,WattanosothHospitalBangkokHospitalatHeadquarter,ThailandIntroduction: We modified a fully automated method for [18F]NaF synthesis by re-configuring acommercialFDGsynthesismodule(Singlesynthesismodule,AdvancedCyclotronSystems,Inc.).MaterialsandMethods:TheLookoutprogramwasusedtosequencethestepsforautomatedsynthesisusingexcelspreadsheet. The [18F]fluoride solution is transferred to synthesismodule. The [18F]fluoride ions aretrappedinQMA.TheQMAcartridgeisthenwashedwithsterilewaterforinjectionandelutedwith0.9%NaCl.Thefinalproductwaspassedthrough0.22µmsterilefiltertosterileproductvial.Results:[18F]NaFwassuccessfullyproducedconsistentlywithhighyield.Thenon-decaycorrectedyieldaftersynthesisisatleast85%.Qualitycontrolof[18F]NaFisperformedaccordingtoUSPandEPrequirements.TheQCresultsarepassed.Conclusions:Thismodified fullyautomatedsynthesis showedreproducibleandverygoodradiochemicalyields.Thismodulecouldbeusedfor[18F]NaFproductioninourdepartment.References:C.Colletetal.,[2015],AppliedRadiationandIsotopes102:87-92.

Page 77: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 78

PP20ExtensionoftheCarbon-11SmallLabelingAgentsToolboxandConjugateAdditionUlrikeFilpa,AnnaPeesa,CarlottaTaddeib,AleksandraPekošaka,AntonyD.Geeb,AlexJ.Poota,AlbertD.Windhorstaa,RadiologyandNuclearMedicine,VUUniversityMedicalCenter,Amsterdam,TheNetherlands.b,DivisionofImagingSciencesandBiomedicalEngineering,King’sCollege,London,UK.Introduction: [11C]CO2and [11C]COareundoubtedlyhighly versatile radiolabeling agentswithmanyapplications.Theformationof[11C]COfrom[11C]CO2hasbecomeconvenientanddifficultieshavebeenovercomeforitsfurtherimplementationinradiochemistry.Likewise,manyreactionsarebeingexploredandmanyapplicationsarealreadypossible.[1]However,thereisstillaneedforexpansionofthecarbon-11 chemistry toolbox (Scheme 1). We here present unprecedented Michael addition reactions withcarbon-11labeledsynthons1–3asMichaeldonors.Methods:Thesynthesisof1wasperformedwith[11C]CO2byfixationinaGrignardreactionwithvinylmagnesiumbromide(0.16MinTHF)andsubsequentFisheresterificationunderacidicconditions.Alternatively,apalladium-mediatedcarbonylationreactionwith [11C]CO [2] in the presence of tert-butanol or trityl-amine with vinyl-halides afforded 2 and 3.Michaeladditionreactionswereperformedwith4byaddingthesynthonstothereactionsolutionusingTBAFasabaseinDMSO.Synthon1wasdistilledintothereactionmixture.Synthons2and3werepurifiedby solid-phase extraction and the Michael addition was performed at 100 ºC for 5 min,respectively.Results:Thesynthesisof1wassuccessfulwithover70%radiochemicalconversion(RCC)and>95%radiochemicalpuritydeterminedbyHPLC.Afterscreeningandoptimization2wasobtainedin79±10%and3in73±5%RCC.InScheme1resultsaresummarizedforthesubsequentconjugateaddition.Conclusion:Thesuccessfulsynthesisof1-3hasbeenachievedingoodradiochemicalyields.Furthermore,conjugateadditionto5-7ispossibleandwearecurrentlyworkingonexpandingthevarietyofreactionswiththesesmallsynthons.Acknowledgements:RADIOMIFP7-PEOPLE-2012-ITN;[11C]CO2providedbyBVCyclotron.References:[1]RahmanO[2015]JLCR,58,86-98.[2]ErikssonJetal.[2012]JLCR,55,223-228.

Scheme1.(A)[11C]acrylatesynthesis:(i)Mo,850ºC;(ii)H2SO4/MeOH,dist.90ºC;(iii)[(Cinnamyl)PdCl]2,Xanthpos(7µmol),Tert-butanol(2mmol),THF400µL;(iv)[(Cinnamyl)PdCl]2,Xanthpos(7µmol),Trityl-amine(96µmol),THF400µL;(B)Michaeladditionreactionswith[11C]acrylates1–3:(v)Compound417µmol,TABF100µmol,DMSO200µL.

Page 78: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 79

PP21In Vitro Studies on BBB Penetration of Pramipexole Encapsulated Theranostic Liposomes for theTherapyofParkinson’sDiseaseMineSilindirGunay1,A.YektaOzer1,SunaErdogan1,IpekBaysal3,DenisGuilloteau2,SylvieChalon21DepartmentofRadiopharmacy,FacultyofPharmacy,HacettepeUniversity,06100,Ankara,Turkey.2UMRINSERMU930,UniversitéFrançoisRabelaisdeTours,Tours,France.3DepartmentofBiochemistry,FacultyofPharmacy,Hacettepeuniversity,06100,Ankara,Turkey.Introduction:Brainpenetrationand targeting isharddue tocomplexstructurewithdifferentbarrierssuchasblood–brainbarrier(BBB)withblood–cerebrospinalfluid(CSF)interfaceandCSF–bloodinterface(1,2).Althoughthesetightandrigidbarriersprotectbrain,theyalsopreventpenetrationofmolecules,drugs and radiopharmaceuticals for diagnosis and therapy of many neurodegenerative diseases.Parkinson’sdisease(PD)isassumedtobeoneofthemostfrequentlyobservedneurodegenerativediseaseamong geriatric disorders. PD comprises motor symptoms resulting from the death of dopaminegeneratingcellsinthesubstantianigra.Byusingtheimagingmodalitiessuchassinglephotonemissioncomputedtomography(SPECT),thedeclineintheaccumulationofspecificradiotracerinthestriatumcanbedetected.ForPDtreatment,limitedbrainpenetrationofdrugisamajorconcern.Passivelyoractivelytargeted,nanosizeddrugdeliverysystemssuchasliposomeshavedifferentinterestsforeithertherapyordiagnosis.Recentstudiesgenerallydependonthedevelopmentofnewdeliverysystems,theranostics,inwhichdiagnosiscanbemanagedtogetherwiththerapybyevaluatingtherapeuticeffect.MaterialsandMethods: Theranostic liposomes were formulated by polyethylene glycole (PEG) coated, nanosized,eitherneutralorpositivelycharged,99mTclabeledforSPECTimagingandpramipexoleencapsulatedforPDtherapy.Theircharacterizationand invitroreleasekineticswereevaluated. Invitropenetrationofboth formulationswas evaluated in a BBB cell co-culturemodel.Results: Both neutral and positivelychargedliposomesshowedpropercharacterizationwithabout10%encapsulationefficiencyandaround100nmparticlesizes.Allformulationsfittedtothefirst-orderreleasekinetics(3).BothformulationswerefoundBBBpermeableincellculturestudieswithfluorescentimagesandfluorospectroscopy.Conclusion:Promising characterization and release profiles were obtained with theranostic liposomes for bothdiagnosisandtherapyofPD.BothneutralandpositivelychargedformulationsfoundBBBpermeableinvitro. In vivoanimal studiesare continuing toobtainmoreaccuratedata. (Theauthors thank toAbdiIbrahimIlaçforPramipexole.ThisstudywassupportedbythegrantofTUBITAK,ProjectNo:112S244).References:1.ChoiYK,KimKW,[2008],BMBRep41:345-52.2.SaundersNR,etal.,[2008],TrendsNeurosci31:279-86.3.SilindirM,etal.,IPET[2015],Proceed.Book,IAEA-CN-232/85,IAEA,Vienna.

Page 79: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 80

PP22Factorsaffectingtumoruptakeof99mTc-HYNIC-VEGF165Filippo Galli1, Marco Artico2, Samanta Taurone2, Enrica Bianchi2, Bruce D. Weintraub3, MariuszSkudlinski3,AlbertoSignore11NuclearMedicineUnit,DepartmentofMedical-SurgicalSciencesandofTranslationalMedicine,FacultyofMedicineandPsychology,“Sapienza”UniversityofRome,Rome,Italy.2DepartmentofSensoryOrgans,SapienzaUniversityofRome,Rome,Italy.4TrophogenInc.,Rockville,MD,USAIntroduction:Angiogenesispromotestumorgrowthandmetastatizationanditsprincipaleffectoristhevascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumormicroenvironment.Nowadays,manyanti-angiogenictherapieshavebeendevelopedandradiolabelledVEGFanaloguesmayprovideausefultooltonon-invasivelyevaluatetheefficacyofsuchdrugs.AimofthepresentstudywastoradiolabelthehumanVEGF-A165analoguewith99mTechnetium(99mTc)andevaluatetheexpressionofVEGFRinbothcancerandendothelialcellsinthetumormicroenvironmentbynuclearmedicine imaging and immunohistochemistry.Material andMethods: The human VEGF-A165analogue was radiolabelled with 99mTc using succinimidyl-6-hydrazinonicotinate hydrochloride as abifunctional chelator. In vitro quality controls were performed to assess its retained structure andbiological activity. In vivo studies includedbiodistribution studies and tumor targetingexperiments inathymic nude CD-1 mice bearing xenograft tumors from ARO, K1 and HT29 cell lines.ImmunohistochemistrywasperformedonexcisedtumorstoevaluateVEGFandVEGFreceptor(VEGFR)expression in the lesion and endothelial cells.Results: The analogue was labelled with high labellingefficiency(>95%)andhighspecificactivity,withretainedbiologicalactivityandstructuralintegrity.Tumortargeting experiments revealed a focal uptake of radiolabelled VEGF165 in tumor xenografts withdifferent tumor-to-background ratios. Immunohistochemical analysis tumors revealed an inversecorrelation between VEGF and uptake of the radioactive hormone. A positive correlation betweenradioactiveVEGF165andVEGFR1wasalsoobserved.Conclusion:RadiolabelledhumanVEGF-A165isapromisingradiopharmaceuticaltoimageangiogenesisandevaluatetheefficacyofanti-angiogenicdrugs.However,VEGFR imagingmaysufferfromquenchingeffectsofendogenousVEGFproducedbycancerandothercellsofthemicroenvironment.

Page 80: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 81

PP23Rhenium-188:asuitableradioisotopefortargetedradiotherapyNicolasLepareur1,NicolasNoiret2,FrançoisHindré3,4,FranckLacœuille3,4,EricBenoist5,EtienneGarin11-CentreEugeneMarquis,NuclearMedicineDepartment,INSERMUMR-S991,35042,Rennes,France2-ENSCR,CNRSUMR6226,35708,Rennes,France3-UniversityofAngers,INSERMUMR-S1066MINT,49100,Angers,France4-UniversityofAngers,SFRICAT,PRIMEX,49100,Angers,France5-UniversitéPaulSabatier,SPCMIB,UMRCNRS5068,31062Toulouse,FranceIntroduction:Amongradioisotopesfortargetedtherapeuticapplications,188Reisverypromising,thankstoitssuitableproperties(b-emitter,Emax=2.12MeV,t1/2=17h,γ-emissionof155keV,convenientlyobtained through a generator), and to the fact that it is a homologous element to 99mTc, theradioelement of choice in nuclear medicine. Inside the “Vectorisation & Radiotherapy” Axis of theCanceropole GrandOuest and the IRON Labex, our teams have developed a strong expertise on thechemistryandtargetingofrheniumlabelledradiotracers,frombenchtobedside.Someexamplesofwhatwehavebeendevelopingaregivenbelow.188Re-labelledLipiodol:Wehavedevelopeda stableandefficient labelling of Lipiodol with 188Re as a potential treatment for HCC. A phase 1 clinical trial iscurrently running. 188Re-labelled particles: 188Re has been used to label micro- and nanoparticles.Radiolabelled starch-based microspheres are investigated in HCC, while lipid nanocapsules, alsoinvestigatedinHCCandadenocarcinomamodels,gaveprominentresultsinglioma,forwhichtransfertoclinicisunderway.188Re-labelledpeptides:WearealsodevelopinganewbifunctionalchelatefortheRe(I)tricarbonylcore,abletolinkabiomolecule(peptide,protein…).Conclusions:Formorethan15years,ourteams,workingcloselytogether,havedevelopedaseriesofpotentialtherapeuticradiotracers,someofwhicharenowinvestigatedinman,orabouttobe.

Page 81: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 82

PP24Preparationofabroadpaletteof68GaradiopharmaceuticalsforclinicalapplicationsTrejo-Ballado F, Zamora-Romo E, Manrique-Arias JC, Gama-Romero HM, Contreras-Castañon G,Tecuapetla-ChantesRG,Avila-RodriguezMAUnidad Radiofarmacia-Ciclotrón, Facultad de Medicina, Universidad Nacional Autónoma de México,México,D.F.04510,México.Introduction:PETmolecularimagingandreceptorbindingpeptidesareemergingaspowerfultoolsforimaging.Somatostatinanalogueslabeledwith68Gaarethemostwidelyusedandhaveprovenusefulforthemanagementofpatientswithneuroendocrinetumors.However,withinthepastfewyearsseveralotherreceptorbindingcompoundslabeledwith68GahaveshownpromisingresultswithpotentialclinicalapplicationsinPETcentersthatlackinsitecyclotrons.Theaimofthisstudywastodevelopasinglevialkit solution for the production of 68Ga radiopharmaceuticals for clinical applications.Materials &Methods:ChemicalprecursorsDOTA-NOC,DOTA-RGDfKdimer,DOTA-Ubiquicidin(29-41),andPSMA-11wereacquiredfromABX.Gallium-68wasobtainedfromanITGgeneratorwhilelabelingwasperformedinan iQSmodule (ITGGmbH).Stock solutionsofdifferent concentrations (Table1)werepreparedbydissolvingtheprecursors in0.25MNaOAc.Aliquotsof100µlofthestocksolutionsweredispensed inEppendorfvialsandstoredat-20°C.Forlabeling,thealiquotsweredilutedwith900µlof0.25MNaOAc,mixedwith4mlof68GaCl3,andincubatedfor10min.PurificationwasmadebySPEelutingtheproductwith1ml50%EtOH.Finalproductwasdilutedwithphysiologicalsalineandsterilizedbyfiltration(0.22μm,Millex-GV). Radiochemical purity (RCP) was determined by gradient HPLC using a Nova-Pak C18column(3.9x150mm),2.5ml/minflowrate.EluentswereA=0.1NTFAandB=MeCN.Results:Non-decay-correctedyieldsareshowninTable1.RCPwas>98%forall theradiopharmaceuticals.HPLCretentiontimeswere0.5±0.1minand2.5±0.2minforfree68GaCl3andlabeledcompounds,respectively.No68Gewasdetectedinthefinalproduct.Table1.Productioninformationandsummaryofresults.

Conclusion:Thislabelingmethodusingasinglevialkitsolutionissimple,efficientandreliable,suitableto be used for the production of a variety of 68Ga radiopharmaceuticals for clinical diagnosticapplications.Acknowledgments:ResearchsupportedbyCONACYTGrant179218,andIAEARC16467.

Radiopharmaceutical Concentrationofstocksolution

IncubationTemp

Purificationcartridge

Yield%(n=10)

68Ga-DOTA-NOC 250µg/ml 105°C C8Light 60±1268Ga-DOTA-E-[c(RGDfK)]2 250µg/ml 105°C C18Light 61±6

68Ga-DOTA-UBI 250µg/ml 105°C C18Light 56±1068Ga-PSMA 100µg/ml RoomT C18Light 70±10

Page 82: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 83

PP2568Ga-peptidepreparationwiththeuseoftwo68Ge/68Ga-generatorsH.Kvaternik,D.Hausberger,C.Zink,B.Rumpf,R.M.AignerDivisionofNuclearMedicine,DepartmentofRadiology,MedicalUniversityofGraz,Austria.Introduction: The clinical demand for 68Ga-labelled peptides is constantly rising, but the achievableradioactivityperbatchislimitedbytheinventoryofthe68Ge/68Gagenerator.Onepossibleapproachtoraisingtheradioactiveyieldistomergetheradioactivecontentsoftwo68Ge/68Gageneratorsforonebatch of 68Ga-peptide. The key to thismethod can found in framewith the cationic purification (1)merging two generator eluates. Our aim was to establish this method in the synthesis of 68Ga-DOTANOC.Material&Methods: Theexperimental setupconsidered two1.85GBq (50mCi) iThemba68Ge/68Ga-generatorswithcalibrationFeb/15andOct/15andaScintomicsGRPsynthesismodule.SC-01 peptide cassettes including the reagents were applied in the synthesis of 68Ga-DOTANOC. Theautomaticsynthesissequentwasmodifiedbyusasfollowed:AftertheinitialconditioningoftheC18-SPEwithethanol,waterandsubsequentdryingwithN2the“older”68Ge/68Ga-generatorwaselutedwith7mL1MHClbythemotorsyringe.10mLwaterwasaddedfordilution,andthemixturewastransferredoveraPS-H+SCXcolumn(Machery-Nagel).Thesequentstoppedforthemanualchangeofthegeneratortube.Aftercontinuingthesequent,the“newer”Generatorwaselutedinthesamemannerasdescribedabove.Oncewashinganddryingthevalveseats,68GawasdeliveredfromPS-H+intothereactionvesselwithasolutionof1.4mL5MNaCland0.2mL6MHCl.Thefurtherlabellingwith40µgprecursorinHEPESwere performed as usual. Results: We found in our preliminary experiments more the 98% of thetheoretical68Garadioactivityafter“doubleelution”adsorbedonthePS-H+SCXcartridge.About15%of68Ga retained on the PS-H+ SCX after transfer of the 68GaCl3 into the reaction vessel. The followedlabellingof68Ga-DOTANOCrevealedanuncorrectedyieldof>40%.

68Ga-DOTANOCpreparation

Startingactivity

68Ga-DOTANOC(EOS)

Synthesis-time

Yield(uncorr.)

StandardSinglegenerator

1.73GBq 0.87GBq 32min 50%

ExperimentalDualgenerator

2.56GBq* 1.10GBq 44min 43%

*Theoreticalstartingactivityofboth68Ge/68Ga-generatorcorrectedtoelutionstartofthesecondone.Conclusion:Thepromisingpreliminaryresultswithayieldof1.1GBq68Ga-DOTANOC(EOS)inamergingoperationofan“old”anda“new”68Ge/68Gageneratorindicatesahighpotentialforimprovementinroutinepreparation.Therefore,weextendoursynthesissystemwithanadditionalvalveactuatorunit,whichshouldhandlethe68GaelutionfrombothgeneratorsautomaticallyandunderGMPconditions.References:(1)R.Mueller,etal,[2012],BioconjugateChem,23:1712-1717.

Page 83: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 84

PP26AssayofHEPESin68Ga-peptidesbyHPLCH.Kvaternik,D.Hausberger,B.Rumpf,R.M.AignerDivisionofNuclearMedicine,DepartmentofRadiology,MedicalUniversityofGraz,Austria.Introduction:HEPES (2-[4-N-(2-hydroxyethyl)-1-piperazinyl]-N’-ethanesulfonicacid) iswidelyusedasa“good”reactionbuffer inthelabellingof68Ga-peptides.Thefinal, injectablesolutionof68Ga-peptidemaycontaintracesofHEPESasanimpurity.TheEuropeanPharmacopoeialimitedtheHEPEScontentin68Ga-Edotreotide(68Ga-DOTATOC)with200µgperpatientdose(1).ThislimittestisperformedbyTLCand developed by the exposing to iodine vapour. Alternatively, anHPLCmethod forHEPES has beenpublished(2).Ouraimwastoapprovethismethodofthequalitycontrolof68Ga-peptides.Material&Methods:68Ga-peptides(68Ga-DOTANOC,68Ga-DOTATOC,68Ga-DOTATATE)weresynthesisedwithaScintomicsGRPsynthesismoduleusingSC-01cassettes.ThedeterminationofHEPESwasperformedbyHPLC Agilent 1260 equipped with a DAD detector on an Obelisc N column (4.6 x 150 mm, SielcTechnologies):isocraticeluent20%ACN/80%water/0.05%phosphoricacid;0.8mL/min;UVdetectionat195nm.Results:DuetothepolarcharacteristicoftheObeliscNcolumn,agoodseparationofthesulfonicacidHEPESwasachievedwitharetentiontimeofabout9min.Asystemsuitabilitytestwithasolution of 100 µg/mL HEPES and 1 µg/mL gentisinic acid was introduced. The analysismethodwassuccessfulvalidatedaccordingtoICHinaconcentrationrangeofHEPESfrom10µg/mLto200µg/mL.ThisassayofHEPESwasappliedeffectivelyintherefinementofsynthesissequencetothe68Ga-peptides.The accurate measurement of HEPES did help us to optimise the automatic workup of the reactionmixtureviaC18-SPE,thatwereachanHEPEScontentinthefinalsolutionbelow10µg/mLroutinely.AdisadvantageoftheObeliscNisthattheHPLCcolumnisverysensitivetoalcoholandneutralmedia.Toavoiddamage,fortheObeliscNcolumnanacidmediaofaboutpH2mustusetostore.OtherwiseduetoirreversibledeactivationofgroupsonthecolumnmaterialthesignalsofNaClfromthesamplewillshiftin the retention timeand interferewith the signalofHEPES,whichdisables the interpretationof theanalyseresults.Conclusion:WehavedemonstratedthatHEPESimpuritiesin68Ga-peptidescananalysebyHPLCwithrespecttothelimitoftheEuropeanPharmacopoeia.Wevalidatedthisanalysismethodandused it in the development of the preparation of 68Ga-peptides. The HEPES determination by HPLCreplacesinourlaboratorythetestbyTLCandisintegratedintotheparametricreleaseofourroutinelyprepared68Ga-peptides.References:(1)EuropeanPharmacopeia8.0Monograph01/2013:2482.(2)R.Sasson,etal.,[2010],JRadioanalNuclChem,283:753-756.

Page 84: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 85

PP27Preparation,invitroandinvivoevaluationofa99mTc(I)-DiethylEster(S,S)-Ethylenediamine-N,N´-DI-2-(3-Cyclohexyl)Propionicacidasatarget-specificradiopharmaceuticalDrina Janković1, Mladen Lakić1, Aleksandar Savić2, Slavica Ristić3, Nadežda Nikolić1, AleksandarVukadinović1,TiborJ.Sabo2,SanjaVranješ-Đurić11Laboratoryforradioisotopes,VinčaInstituteofNuclearSciences,UniversityofBelgrade,Serbia2ChairofGeneralandInorganicChemistry,FacultyofChemistry,UniversityofBelgrade,Serbia3BiomedicalResearchCenter,R&DInstitute,Galenikaa.d.,Belgrade,SerbiaIntroduction:The‘‘organometallic’’complexeshavebeenusedinthedevelopmentofnewdiagnosticaswellastherapeuticradiopharmaceuticals.1Theorganometalliclabelingapproachhasledtothecreationofaprecursor[M(H2O)3(CO)3]+(M=Tc,Re),whichexhibitsseveralusefulcharacteristics.Theseincludethesmallsizeofthecore,easypreparationwithaqueous-basedprecursorkitformulations,andreadilysubstituted water molecules of the precursor fac-[99mTc(H2O)3(CO)3]+ by a variety of functionalgroups.2 The aim of this study is to label diethyl ester (S,S)-ethylenediamine-N,N´-di-2-(3-cyclohexyl)propionicacid(L)with99mTc(I)-tricarbonylprecursor.Thestabilityoftheformedcomplexandits in vitro and in vivo properties were investigated.Materials & Methods: 99mTc(I)-L complex wasprepared by a two-step procedure involving the preparation of the precursor [99mTc(CO)3(H2O)3]+,followed by the addition of L. The labelling efficiency and challengewith histidine and cisteineweredeterminedusinggradientHLPC.Theinvitrostabilityoftheradiochemicalcomplexwasdeterminedinsalineandhumanplasma.TCAprecipitationmethodfordeterminingthepercentageofcomplexboundtoproteinswasveryuseful.Lipophilicitymeasurementsweredonebysolventextractionmethodwithn-octanol.Theoverallcomplexchargewasdeterminedbyelectrophoresisonpaperstrips(Whatmanno.1)after exposure to a constant voltage (300V) in phosphatebuffer (pH7.4) for 1 h.Organdistributionstudieswerecarriedoutonnormalandtumor-bearingmice(c57).Results:Radiolabelingyieldwashigherthan98%and remainedhighandpracticallyunchangedat24hpost-labeling.99mTc(I)-L complexwasstableandresistanthistidinechallenges.Thepercentageofproteinbindingwas19.62±2.02%.Itshowedalipophyiliccharacter.Biodistributiondata,5minpostinjection,showedaveryhighuptakeinliverandintestine.Themajorityof theradioactivityof99mTc(I)-Lcomplexwaseliminatedvia the liver intotheintestine. The organ distribution in B16-melanoma-bearing mice showed increase in uptake by thetumor.Discussion/Conclusion: 99mTc(I)-L complex revealed high radiochemical purity and stability invitro, without any measurable decomposition. A significant difference of 99mTc(I)-L complex uptakebetweenmelanomamodelandthenormalmicewasobserved.BiodistributionstudiesshowedhightumoruptakeinB16-melanoma-bearingmice.Thisstudyindicatesthat99mTc(I)-Lcomplexmaybeapotentialagentformelanomadetection.References:1.AlbertoR,SchibliR,EgliA,SchubigerAP,AbramU,KadenTA(1998)Anovelorganometallicaqua-complexoftechnetiumforthelabellingofbiomolecules:synthesisof99mTc(OH2)(CO)3]+from[99mTcO4]-inaqueoussolutionanditsreactionwithbifunctionalligands.JAm Chem Soc. 120:7987-88. 2. Alberto R (2005) New organometallic technetium complexes forradiopharmaceuticalsimaging.Top.Curr.Chem.252:1-44.

Page 85: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 86

PP2890Y-labeledmagnetitenanoparticlesforpossibleapplicationincancertherapyS.Vranješ-Đurić1,M.Radović1,D.Janković1,N.Nikolić1,G.F.Goya2,P.Calatayud2,V.Spasojević1andB.Antić11Laboratoryforradioisotopes,“Vinča”InstituteofNuclearSciences,UniversityofBelgrade,Serbia2InstitutodeNanocienciadeAragón(INA),UniversityofZaragoza,SpainIntroduction:Thesynergistic interactionbetweenhyperthermiaandradiationtherapy isbasedontheheateffectthatmaymakesomecancercellsmoresensitivetoradiationorharmothercancercellsthatradiation cannot damage [1-2]. In the present work two different types of magnetic nanoparticles(MNPs),Fe3O4-Nakedandpolyethyleneglycol600diacid functionalizedFe3O4(Fe3O4-PEG600),weresynthetized inorder tocompare theirefficiencyas radioactivevectors.Theywere90Y-labeled for thepotential use in localized hyperthermia-radionuclide therapy. Materials & Methods: MNPs weresynthesizedby co-precipitationof ferric and ferrous salts in a basic solution [3, 4]. Radiolabelingwasperformedbymixing0.5mLofaqueousFe3O4-NakedandFe3O4-PEG600MNPssuspensionwith37MBq90YCl3(0.001mL)andincubatingatroomtemperatureonashakerforonehour.Radiolabeledparticleswere then separated from free 90Y activity by precipitation with the help of permanent magnet.RadiolabeledMNPswerefurtherusedforinvitrostabilitystudiesinsalineandhumanserum,andinvivobiodistributionstudiesinnormalWistarrats.Results:

Discussion/Conclusion: The Fe3O4-PEG diacid MNPs showed high phase purity and favorablephysicochemical andmagnetic characteristics for in vivo use. The obtained SPA value for Fe3O4-PEGdiacidMNPs(200W/g)indicatesthattheseMNPscouldbeusedasheatingagentsforinsitumagneticfluidhyperthermiaprotocols.Besides,highlabelingyield(97%)andinvitroandinvivostabilityof90Y-labeled-PEGylatedmagnetite nanoparticles create opportunities for their use in the combined radio-hyperthermiacancertreatment.References:1.Yahara K, Ohguri T, Yamaguchi S, [2015], Int JHyperthermia31(6):600-608.2.MüllerA.C,ZipsD,HeinrichV,LamprechtU,VoigtO,BurockS,GhadjarP,[2015],RadOncology10(1):138.3.MassartR,CabuilV,[1987],JChimPhys84:967-973.4.RadovićM,CalatayudMP,GoyaG,IbarraMR,AnticB,SpasojevićV,NikolićN,JankovićD,MirkovićM,Vranješ-ĐurićS,[2015],JBiomedMaterResPartA103A:126–134.

Page 86: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 87

PP29SimplifiedAutomationoftheGMPproductionof68Ga-labelledpeptidesDavidGoblet,CristianaGameiro,NevaLazarovaIBA,Louvain-la-Neuve,BelgiumIntroduction:Optimized automated process for the GMP production of 68Ga-DOTA-NOC and 68Ga-PSMA-11usingacassette-basedsynthesizer(Synthera®,IBA,Louvain-la-Neuve,Belgium)incombinationwitharecentlycommercialized68Ge/68Gagenerator(GalliEoTM,IRE-Elit,Fleurus,Belgium)havebeendevelopedinthiswork.Materials&Methods:ThegeneratoroutletisconnectedtoanunmodifiedFDG-typedisposable cassettewith theappropriate reagent set and loadedonto the synthesizer.Once theautomatedprocessisstarted,vacuumelutiontakesplaceusingonly1.1mLofa0.1MHClsolutionfromthegeneratorintegratedreservoir.Nopurificationbeingrequired,Ga-68activityisdirectlysenttothereactionvessel.DOTA-NOClabelingisconductedasfollows:asolutionof50µgpeptidein1mL250mMacetatebufferatpH5isaddedandthemixtureisheatedat120°Cfor5min.ThereactionbulkisthenloadedonanHLBcartridgeandwashedwith10mLofwater.68Ga-DOTA-NOCisthenelutedwith1mLofEtOH/water65:35v/vmixfollowedby1mLofsaline0.9%andcollectedthrougha0.22µMMillex®-GVfilterintoasterilevialcontaining8mLofsaline0.9%.PSMA-11labelingisconductedasfollows:asolutionof10µgpeptidein1mL1.5MacetatebufferatpH4.5isaddedandthemixtureisheatedat95°Cfor5min.ThereactionbulkisthenloadedonaSep-pak®LightC18cartridgeandwashedwith10mLofwater.68Ga-PSMA-11isthenelutedwith2mLofEtOH/water1:1v/vmixturefollowedby2mLofphosphatebufferedsaline(PBS)andcollectedthrougha0.22µMMillex®-GVfilterintoasterilevialcontaining6mLofPBS.Results:68Ga-DOTA-NOC is produced in r <20minwith81.5±5.2% radiochemical yield (RCY)(decay-corrected-d.c.)and68Ga-PSMA-11 isproduced in13minwith97.4±2.5%RCY (d.c.).Reportedprocess times include generator elution and formulation. In both cases, final products show highradiochemicalpurity(TLC>97%and99%respectively).Discussion/Conclusion:Automatedprocessesforthe production of both 68Ga-DOTA-NOC and 68Ga-PSMA-11 have been successfully achieved using acommercial synthesizeranda68Ge/68Gagenerator. The labelingproceduresare straightforwardandefficient, thanks to the low elution volume and high purity of the generator eluate (no need forfractionationorpost-elutionpurification).

Page 87: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 88

PP30Combining commercial production of multi-products in a GMP environment with Clinical & R&DactivitiesCristianaGameiro1,IanOxley1,AnteroAbrunhosa2,VaskoKramer3,MariaVosjan4,ArnoldSpaans41IBASA,Louvain-La-Neuve/Belgium;2ICNAS,UniversityofCoimbra,Coimbra/Portugal;3PositronPharmaS.A.,Santigo/Chile;4BVCyclotronVU,Amsterdam/TheNetherlands,Introduction:Mono-productfacilitiesareturningtomulti-producttocopewithdecreasingpricesof[18F]-FDG (FDG) and to support R&D programs. The aim is to demonstrate that in the same facility andequipment,abusyresearchprogramcanbesafelyintegratedintocommercialproduction.Materials&Methods:Tobeabletosafelycombinebothactivitiesarisk-assessmentshouldbedesignedtoidentifykeycontrolpoints.Theuseofafullyautomatedplatform(e.g.IBASynthera)anditsdisposablecassettescan prevent human errors, reduce risk of cross-contamination and improve reliability. A productionschedule,trainingandlabelingproceduresshouldalsobeconsidered.Results:PositronpharmainChiledeliversFDGdailytoseveralhospitalsandproduced>1600CiFDGinthelast3years.Inaddition,[18F]-(FCH,NaF,FET,FLT,F-MISO,DMFP),[68Ga]-DOTA-peptidesandPSMA-11havebeenimplementedaswellastwomoreINDs:[18F]-PR04MZandMHMZweretranslatedintoclinicalstudies.ICNASisaresearchunitoftheUniversityofCoimbrathathostsaGMP-compliantPETproductionfacilitywhichsupportsclinicalandpre-clinicalR&DprogramsandsuppliesRPstonearbyhospitals.Theunitisinoperationsince2012andcurrentlyhasfiveradiopharmaceuticalsauthorizedinthemarket(18F-:FDG,FCH,NaF)and68Ga-DOTA-NOC. All are produced on IBA Synthera and together represent >2000 production cycles. AnextensiveR&Dprogramisinplacewithplansforproductionofother[18F]-tracers(F-DOPAnucleophilicroute,FMISO,FLT,FES),[68Ga]-(PSMA,DOTA-TOC)and[64Cu]-(ATSM).BVCyclotronVUinAmsterdamisaprivatecompanywithaGMP-compliantPETproductionfacility.Sincethe90’sFDGisdeliveredfortheDutchhospitals (annualoutputof>7300patientdoses (11TBq)).FCHandFBB(Florbetaben)arealsocommercially produced with annual output >1400 (1.7 TBq) and >340 patient doses (1.1 TBq),respectively.BesidesthecommercialproductionsthereisalsoroomforanR&Dprogram,e.g.,currentlyimprovementof theproductionofFCH isexamined.Discussion/Conclusion:Asaconclusion, thesitesdescribed have been functioning for several years and are able to safely combine commercial dailyproductionwhilekeepingahighlyactiveR&Dprogramwithmorethantendifferenttracersdevelopedforpre-clinicalandclinicalapplications.

Page 88: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 89

PP3199mTc-Anidulafunginapotentialdiagnosticagentforfungalinfectionsbygammascintigraphy.M.E.Cardoso,S.Aparicio,L.Fernández,M.Terán.Introduction:Duringthelastdecades,animportantincreaseinthenumberofpatientswithnosocomialfungalinfections,mainlyduetothehighernumberofimmunocompromisedpatients.Fungalinfectionsinthesepatientsaresevere,rapidlyprogressive,anddifficulttodiagnose.NuclearMedicinemayaidtodiagnosetheseillnessesbyscintigraphicimages.Anidulafunginisanantifungalagentoftheechinocandinclass,whichinhibitsβ-1,3-glucanbiosynthesisthatmayberadiolabelledwithtricarbonylprecursor.Theaimofthisworkwastodevelopandevaluate99mTc-anidulafunginasapotentialradiopharmaceuticalforfungalinfectiondetection.Materialsandmethods:AderivativeofAnidulafunginwassynthesizedwithcarbondisulfideinordertofavouritsconjugationwithtricarbonylprecursor.Chemicalpurityoftheligandand radiochemical purity of the complex were controlled by HPLC in both cases. Stability in time inlabellingmilieuwasevaluatedupto24hourspostlabelling,byHPLC.Lipophilicitywasstudiedthroughtheapparentpartitioncoefficientbetweenn-octanolandsodiumphosphatebuffer.Invitrostabilitywasassessed incubating the complex with human plasma at 37ºC, by protein precipitation method. ThesupernatantwasanalysedbyHPLC.The complex was challenged against competing standard ligands namely hisitidine or cysteine. Thecomplexwasincubatedwithexcessofhistidine/cysteineat37ºCandsampleswereanalysedbyHPLCatdifferenttimes.BiologicalevaluationwasperformedinnormalCD1femalemice(30+2g);thecomplexwasadministeredintravenously inthetailveinandanimalsweresacrificedthreehourspost injection.Results: 99mTc-Tricarbonyl and the anidulafungin complex were obtained with radiochemical purityhigherthan95%inbothcases.Theproductwasstableinlabellingmilieuforatleast24hours,andthechromatogramdidnotshowanydegradationproductsinthatperiod.Partitioncoefficientindicatesthecomplexhas good lipophilicity inorder to insert into the fungusmembrane (LogP=1.5±0.1). In vivostudies showed that the complex presented low thyroid and stomach uptake, indicating no “in vivo”reoxidation. Elimination paths were mainly hepatobiliar (55%) and urinary (25%). Discussion andconclusions:Invitrostudiesshowthatthecomplexhashighradiochemicalpurity,remarkableinmilieuand plasma stability and good lipophilicity. Preliminar in vivo studies indicate that the complex is apotentialagenttodetectfungalinfections,neverthelessfurtherstudieswillbeperformedininfectionandinflammationmodels.References:ReyesA.L,FernándezL,ReyA,TeránM,[2014],CRP7(2):144-150

Page 89: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 90

PP3299mTc(CO)3-labelingandComparativeIn-VivoEvaluationofTwoClickedcRGDfKPeptideDerivativesKusumVats1,DrishtySatpati1,HaladharDSarma2,SharmilaBanerjee11RadiopharmaceuticalsChemistrySection;2RadiationBiologyandHealthScienceDivision,BhabhaAtomicResearchCentre,Trombay,Mumbai400085Introduction:There is a continued interest fordevelopmentof radiolabeledRGDpeptidesas integrinαvβ3 receptor targeted molecular probes possessing favorable pharmacokinetic behavior.1,2 In thisstudy,twoclickchemistrymodifiedcRGDfKpeptideanalogueshavebeensynthesized3andradiolabeledwith[99mTc(CO)3(H2O)3]+precursor.Comparativeinvivoevaluationofthetworadiotracerswascarriedouttodeterminethepharmacokineticsandintegrinαvβ3targetingpotential.Materials andMethods: cRGDfKwas functionalizedwith N3CH2COOH andN3PEG7COOH at ε-aminogroup of lysine. The two azide-modified derivatives (with PEG7and without) were then clicked withpropargyl glycine to introducea tridentate chelatingunit for radiolabelingwith [99mTc(CO)3(H2O)3]+precursor.Theradiotracers,99mTc(CO)3-Pra-Tz-CH2-cRGDfKand99mTc(CO)3-Pra-Tz-PEG7-cRGDfKwereanalyzedbyHPLC.Analogousrheniumcomplexesweresynthesizedforcharacterizationof99mTc(CO)3-labeled radiotracers. Biodistribution study of the two radiotracers was carried out in C57BL/6 micebearingαvβ3-positivemelanoma tumors. The radioactivepreparation (~3.7MBq/animal, 100µL)wasinjectedintravenouslythroughthelateraltailvein.Atdifferenttimeintervalsafterinjection(30,60,and180min),theanimals(n=4/timepoint)weresacrificedandtherelevantorgansexcisedformeasurementofretainedactivity.Results:Thetworadiotracers,99mTc(CO)3-Pra-Tz-CH2-cRGDfKand99mTc(CO)3-Pra-Tz-PEG7-cRGDfKwerepreparedin>90%radiochemicalyieldandexhibitedexcellentstabilityinsalineaswellasinserum.Maximumtumoruptakewasobservedat30minp.i.forthetworadiotracersandwashigherfor99mTc(CO)3-Pra-Tz-PEG7-cRGDfK(4.11± 0.51%ID/g)ascomparedtothatfor99mTc(CO)3-Pra-Tz-CH2-cRGDfK (3.01± 0.77%ID/g). Tumoraccumulationofboth the radiotracers reduced to50-60%duringblockingstudieswithcoldcRGDfKpeptide,suggestingreceptor-mediateduptakeofradiotracers.Conclusion:Thetwoneutral99mTc(CO)3radiotracerspreparedexhibitedreceptormediateduptakeinmelanoma tumor. Increased tumoruptakeon introductionof PEG7unitwas compromisedwith slowclearancefromotherorgans.FurthermodificationofthepeptidewithadifferentspacerorasmallerPEGunitmayleadtomorefavorablepharmacokinetics.

Comparison in the uptake of (a) 99mTc(CO)3-Pra-Tz-CH2-cRGDfK and (b) 99mTc(CO)3-Pra-Tz-PEG7-cRGDfKindifferentorgans/tissueintheabsenceandpresenceofexcesscRGDfKpeptideat180minp.i.References: 1.GaertnerFC,KesslerH,WesterHJetal[2012]EJNMMI39:S126–138.2.HernandezR,CzerwinskiA,ChakravartyRetal[2015]EJNMMI42:1859–1868.3.ZengD,ZeglisBM,LewisJSetal[2013]JNM54:829–832

Page 90: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 91

PP33ApplicationofAnaLigresinfor99mTcseparationfrommolybdenumexcessWojdowskaW.,PawlakD.W.,ParusL.J.,GarnuszekP.,MikołajczakR.Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400Otwock,Poland.Introduction: The shortage of 99Mo (fission) has renewed interest in alternative technetium-99mproductionmethodseitherinnuclearreactorstartingfrom98Moorinacceleratorwith100Moasatargetmaterial.AdsorptionchromatographyonaluminaisnotsufficientforalternativeproductionmethodsduetohighamountofMointhedissolvedtargetsolution.SeveralchromatographicresinsweredescribedfortheseparationofpertechneatefrommolybdateincludingDowexorABEC.Herewefocusedourattentionon application of AnaLigTc-02 resin for efficient recovery of 99mTc from large molybdenum excess.Methods:Tosimulate atargetdissolutionmixture,10mLofsodiummolybdatesolutionand asmallamountofNa99mTcO4inNaOHor(NH4)2CO3wasdeliveredonthecolumncontaining100mgofAnaLigresinusingtheflowrateof0.4mL/min.Before99mTcelution,thecolumnwasfedwith3mLofsodiumhydroxide or ammonium carbonate solution and subsequentlywith 1.5mLofwater. The 99mTcwasrecovered in 5mL ofwater. The eluate and other effluents activities (one after introduction ofMosolution and two after rinsing columns in term with NaOH or (NH4)2CO3 solution and water) weremeasuredwiththedosecalibratorCapintecCRC-55tR.Thesorptionyieldwasstudiedasa functionofNaOHand(NH4)2CO3forconcentrationof1.05,1.4,2.8and4.2Mfortheformerand0.5,1.5and2.5Mforthelatter.Results:Best99mTcrecoverywasobtainedin2.8MNaOHor1.5M(NH4)2CO3solution.Under these conditions, more than 86% adsorption and elution were achieved. Most 99mTc lossesoccurredduringrinsingthecolumnwithwater,evenapproaching10%ofactivityandduetorinsingthecolumnwithNaOHor(NH4)2CO3aftersorptionTc-99monAnaligresin(upto3.5%).Theactivityretainedon the column was around 1% for solution in NaOH and about 3% for (NH4)2CO3, respectively.Acknowledgements:ThisprojectwassupportedbythegrantALTECHPBS1/A9/2/2012awardedbytheNational Centre for Research and Development in Poland within the Applied Science Program.References: Bénard F, Buckley K. R, Ruth T. J, Zeisler S. K, et.al. [2014], J Nucl Med. 55:1017-1022.WojdowskaW,PawlakD,ParusJ,MikołajczakR.[2015],NuclMedRev.18,2:65-69

Page 91: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 92

PP34Constraints for selectionof suitableprecursor forone-stepautomated synthesisof [18F]FECNT, thedopaminetransporterligand.Pijarowska-KruszynaJ1,JaronA1,KachniarzA2,MalkowskiB2,GarnuszekP1,MikolajczakR11RadioisotopeCentrePOLATOM,NationalCentreforNuclearResearch,Otwock,Poland2 Department of NuclearMedicine, Oncology Centre prof. LukaszczykMemorial Hospital, Bydgoszcz,PolandIntroduction:Thefluorine-18labellednortropanederivative2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)-nortropane([18F]FECNT)isaPositronEmissionTomography(PET)radioligandofreferenceforimagingthedopaminetransporter(DAT)[1].Theuseofthisradioligandasaclinicalmarkerishighlydependentontherobustnessoftheradiochemicalprocessusedforitspreparation.[18F]FECNThasbeenpreviouslysynthesizedinatwo-stepchemicalprocesswith16%decay-correctedyieldintotaltimeof150min [2]. Recently, more effective (25-33% decay-corrected yield, 80-90 min) one-step synthesis of[18F]FECNTbydirectnucleophilic[18F]fluorinationfromN-mesyloxyprecursorwasreportedinliterature[3,4].However,theuseofamesylateasaleavinggroupinsuchanucleophilicsubstitutionreactionhassomedrawbacks.MesylatesareratherhardtodetectusingUV-absorption,whichcomplicatesthefinalHPLC purification of the radiotracer and also characterized by higher susceptibility to decomposition.Herein,wereportedafullyautomatedsynthesisof[18F]FECNTfromthechlorinatedprecursor,whichwasearlier found to be themost stable of the studied halo- and sulfonyloxy- analogues [5].Materials&Methods:ThecommerciallyavailableSynChrom[18F]R&Dsynthesismodulewasreadilyconfiguredfortheone-stepsynthesisaccordingtoconditionsachievedforthefluorinationwithnon-radioactivefluoride[5]. The radiolabelling process involved a classical [18F]fluoride nucleophilic substitution from thechlorinated precursor (5mg) was performed at 110°C for 12 min. Crude product was purified usingpreparative HPLC and SPE methods. Results: The obtained yields for a chlorine-for-[18F]fluorinesubstitution of 59±12% (n=5) were higher than those (45-48%) reported for the [18F]FECNT batchespreparedfromtheN-mesyloxyprecursor[3,5].Thetotalsynthesistimewas80-90minand[18F]FECNTbatchesofabout2.0±0.5GBq(n=3)withhighradiochemicalpurityoverthan99%wereobtainedwith32±7%overalldecay-correctedyields.Theseyieldswerecomparablewithpreviouslyreportedresultsforthe one-step synthesis of [18F]FECNT [3] and significantly higher than yields obtained in two-stepsyntheses[2].Thespecificactivityofthefinal[18F]FECNTproductwas55GBq/µmol,whichisconsistentwithliteraturesynthesisresults(38-72GBq/µmol)ofthisradiotracer[1,2,4]andsufficientfortheDATdensitydeterminationinthehumanPETimagingstudies[1].Discussion/Conclusions:Inthisstudy,thenewchlorinatedprecursorwassuccessfullyusedforone-stepautomatedradiosynthesisof[18F]FECNT.Considering thesepromising results aswell as long- term storage stability of this precursor, reportedproceduremayprovideastraightforwardandreliablemethodfortheproductionofradiotracersuitableforhumanuse.References:[1]DavisMRetal.,[2003]J.Nucl.Med.,44:855-861;[2]VollRJetal.,[2005]Appl.Radiat.Isot.,63:353-361;[3]ChenZetal.,[2008]Appl.Rad.Isot.,66:1881-1885;[4]LiangSetal.,[2013] J. Radioanal. Nucl. Chem., 298: 1969-1972; [5] Pijarowska-Kruszyna J, et al., [2014] J LabelledCompd.Radiopharm.,57:148-157;

Page 92: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 93

PP35Gamma Scintigraphy Studies with 99mTc- Amoxicillin Sodium in Bacterially Infected and SterileInflamedRatsDeryaIlem-Ozdemir,OyaCaglayan-Orumlu,MakbuleAsikogluEge University, Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir,Turkey.Introduction: The in-time diagnosis of bacterial infection is extremely significant for the accuratetreatment.Nuclearmedicinescintigraphic imaging isanexcellentnon-invasivemethodofwhole-bodyscanning, allow to determinate infectious foci in all parts of the body, based on pathophysiologicalchangeswhichoccurearlierintheinfectionprocess(1-4).Theaimofthisstudywastoperformgammascintigraphy studies with bacterial infected and sterile inflamed rats with newly developedradiopharmaceutical 99mTc-amoxicillin sodium (99mTc-AMOX). Method: E.coli suspension wasintramuscularlyinjectedintotherightthighmuscleofratstocreateinfectionmodel.Turpentineoilwasintramuscularlyinjectedintotheleftthighmuscleofratstocreatesterileinflammationmodel.Aftertheinfectionandsterile inflammation focuswereallowed todevelop for24hours swellingappearedandgammascintigraphystudieswereperformed.99mTc-AMOX(3.7MBq)wasintravenouslyinjectedviatailvein to the rats. After administration of radiopharmaceuticals, serial static images were acquired atdifferenttimeintervals(5minutes,1,2,3,4and5hourspostinjection).Results:Theuptakeof99mTc-AMOXfollowingintravenousadministrationswasassessedonstaticimages.Theimagesdepictedrapiddistributionthroughoutthebodyanduptakeinthebacterialinfectedandsterileinflamedthighmusclewithinonehourafterinjection.AscanbeseeninFigure1therewasahigheractivityinbothbacterialinfected and sterile inflamed thigh muscle as compared to healthy thigh muscle. For quantitativeevaluation,regionsofinterestweredrawnaroundthetarget(infectedandinflamedthighmuscle)andnon-target(healthythighmuscle)regionsoftherats.The99mTc-AMOXuptakewascalculatedbydividingtheaveragecountsperpixelwithintheregionoftargettotheaveragecountsperpixelwithintheregionof non-target (Table 1). Conclusion:Based on the in vivo studies, 99mTc-AMOXhas higher uptake ininfectedandinflamedthighmusclethanhealthymuscle.Thedatasuggestthat99mTc-AMOXremainedat the infection and inflammation foci during the whole experiments, there being no statisticallysignificantdifferencesintheratiosduringthestudiedperiod(p≥0.05).

Page 93: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 94

Figure1:Thescintigramsof99mTc-AMOXinjectedbacterialinfectedandsterileinflamedratsatdifferenttimeintervals(SI=SterileInflamedFoci,BI=BacterialInfectedFociNT=Non-TargetExtremity,IS=InjectionSite).

Table1:Target/Non-TargetRatiosfromROIAnalysis99mTc-AMOXatdifferenttimeintervalsReferences:1.DasSS,HallAV,WarehamDDW,BrittonKE.Infectionimagingwithradiopharmaceuticalsinthe21stcentury.BrazArchBiolTechnol.2002;45:25–37.2.S.Q.Shah,M.R.Khanb.Radiosynthesisof99mTc-LabeledNovobiocinDithiocarbamate ComplexasaPotential Staphylococcusaureus InfectionRadiotracer.Radiochemistry.2012;54:(3):279–283.3.El-GhanyEA,El-KolalyT,AmineAM,El-SayedAS,Abdel-GelilF.Synthesisof99mTc-pefloxacin:anewtargetingagentforinfectiousfoci.JRadioanalNuclChem.2005;266:131–139.4.PeterH.Nibbering,MickM.Welling,AkkePaulusma-Annema,CarloP.J.M.Brouwer,AntonellaLupettiandErnest,K.J.Pauwels.99mTc-LabeledUBI29-41PeptideforMonitoringtheEfficacyofAntibacterialAgentsinMiceInfectedwithStaphylococcusaureus.JNuclMed.2004;45:321-326

Time After Injection

(h)

Infected Thigh Muscle

(Target/Non-Target)

Inflamed Thigh Muscle

(Target/Non-Target)

0 2,35±0,59 1,94±0,09

1 4,64±1,51 2,94±1,00

2 2,46±0,19 2,61±0,70

3 2,33±0,99 2,41±0,12

4 3,19±1,26 2,73±1,74

5 4,79±2,82 3,51±1,21

Page 94: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 95

PP36Preparationof99mTc-AmoxicillinSodiumLyophilizedKitDeryaIlem-Ozdemir,OyaCaglayan-Orumlu,MakbuleAsikogluEge University, Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir,Turkey.Introduction: Infectiondetectionbynuclearmedicineimagingtechniquesbasedonpathophysiologicalchangeswhichappearmuchearlierthananatomicalchangesintheinfectionprocess(1,2).Todevelopabetter infection imaging which will accumulate efficiently to inflammatory foci, clear rapidly frombackground tissue, discriminate between bacterial infection and sterile inflammation, cost low andprepareeasilywe labeledamoxicillinsodium(AMOX)with99mTc.Theaimof this study is toprepare99mTc-AMOX inasimplemethodwithgood labelingefficiencyandevaluatethereadytousecoldkitformulationthusmakingitavailabletotheothernuclearmedicinecenters.Thestabilityof99mTc-AMOXin human serumwas identified; sterility and pyrogenicity of the radiopharmaceutical was estimated.Method:To investigate theoptimumradiolabeling conditions, radiolabelingwas testedwithdifferentconcentrations of reducing (stannous chloride and stannous tartrate) and antioxidant (ascorbic acid)agent.RadiochemicalanalysiswasperformedwithRadioThinLayerChromatography(RTLC)andRadioHighPerformanceLiquidChromatography(RHPLC)studies.Twodifferentfreezedrykitswereformulatedwith optimum labeling conditions and stability, sterility and pyrogenicity of the kitswere performed.Results: The effect of reducing agent concentration on the radiochemical purity was evaluated andoptimumreducingagentamountfound200µg.Undertheseconditionslabelingefficiencywasaround90%. In the presence of ascorbic acid, stability of the complex was slightly increase while labelingefficiencyforearlyhourswasnotaffectedsignificantly.Accordingtotheexperiments,theformationofthe99mTc-AMOXcomplexwasveryfastandreachedtheradiochemicalpurityover95%in15minafterradiolabeling.WhilekeepingotherreactionconditionsconstantandvariedthepHofthereactionfrom4.8to7.4radiochemicalpuritywasslightlydecreased.99mTc-AMOXwasfoundstableduringto24hoursincubation in salineandhumanserum.Kitswere labeledwith37MBq,185MBqand370MBq99mTc.Slightly decrease in radiochemical purity was observed with increasing of radioactivity. According tosterilitytest,sincetherewasnogrowthinbatches,kitsweresterile.Alsogelclottestshowedthatkitswerepyrogenfree.Thefreezedrykitsdevelopedinthisstudywerefoundtobestablewithashelf–lifeofsixmonthswhenpreservedatbothat+5±3°Cand+25±2°C/60±5%RH.Conclusion:SimplemethodforradiolabelingofAMOXwith99mTchasbeendevelopedandstandardized.Labelingefficiencyof99mTc-AMOXwasassessedbybothRTLCandRHPLCandfoundhigherthan90%.Theresultingcomplexwasquitestableandlabelingof˃90%wasmaintainedforupto6hours.Twodifferentfreezedrykitswasdevelopedandevaluated.Basedonthedataobtainedfromthisstudy,bothproductswasstablefor6monthswithhighlabelingefficiency.References: 1.Kaul A, Hazari PP, Rawat H, Singh B, Kalawat TC, Sharma S, Babbar AK, Mishra AK.Preliminaryevaluationof technetium-99m-labeledceftriaxone: infection imagingagent for theclinicaldiagnosisoforthopedicinfection.IntJInfectDis.2013;17(4):e263-70.2.GemmelF,DumareyN,WellingM.Futurediagnosticagents.SeminNuclMed2009;39:11–26.

Page 95: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 96

PP37OutfitsofTracerlanFXC-PROfor11C-LabelingArponenEveliina,HelinSemi,SaarinenTimo,VauhkalaSimo,KokkomäkiEsaandLehikoinenPerttiRadiopharmaceuticalChemistryLaboratory,TurkuPETCentre,UniversityofTurku,FinlandIntroduction: Commercial synthesis modules for 11C-labeling are not often directly suitable for theproductionofdifferentlabelingagents.ModificationofTracerlabFXC-Prosynthesismoduletoperformboth[11C]methylationand[11C]carboxylation1andtheset-upof[11C]radiopharmaceuticalsforclinicalusearedescribed.Materials&Methods:CommercialGETracerlabFXC-Prosynthesizerwasmodifiedtoenable 11C-methylationwith both [11C]methyl iodide and [11C]methyl triflate aswell as direct 11C-carboxylationwith[11C]CO2.Additionalmagneticvalveswereinstalledtobypassthe[11C]methyliodiderecycling system for direct use of [11C]CO2 and to bypass the [11C]methyl triflate ovenwhen using[11C]methyl iodideassuch.ThevalvesareoperatedbyTracerlabsoftware.TheHPLCoperationsweremodifiedbyinstallingpneumaticcolumnselectorandasyringeoperatedloopinjector.Asterilefiltrationunit(SFU)wascoupledwithsynthesizertoallowonlinefilterintegritytest.FormonitoringpurposesmoreGMtubeswerealsoinstalled.[11C]PK11195waslabeledwith[11C]methyliodidewhile[11C]methionineand[11C]metomidatewerelabeledwith[11C]methyltriflate.[11C]Acetatewassynthesizedusingdirectcarboxylationwith[11C]CO2.Semi-preparativeHPLCwasusedforthepurificationof[11C]PK11195and[11C]methionine.Solidphaseextractioncartridgeswereused for thepurificationof [11C]metomidateand[11C]acetate.Results:Theaveragesynthesistimeswere30minutesfor[11C]methionine,38minutesfor[11C]PK11195,20minutesfor[11C]metomidateand[11C]acetateincludingpurification,formulationandonlinesterilefilter integritytest.[11C]Radiopharmaceuticalswereobtainedingoodradiochemicalyields,sufficientlyforseveralsimultaneousclinicaldoses.Theradiochemicalpurityexceeded95%inallsyntheses.Theuseof columnselectorenableseasychangeofHPLCcolumnsbetweensyntheses.Thefillingoftheinjectorloopwithpneumaticsyringedecreaseslossesoftheinjectionsolutionscomparedtotheinbuiltfluiddetector.DuetothelimitednumberofelectricalconnectionsinTracerlabFXC-Prothecolumnselector,loopsyringeandSFUareremotecontrolledfromexternaltouchscreen.Readingsfromadditional GM tubes are also shown on the touch screen. Conclusion: Reliable and robust routineproceduresfortheproductionof[11C]methionine,[11C]PK11195, [11C]metomidateand[11C]acetateweredevelopedusingamodifiedTracerlabFXC-Promodule.Thesynthesismodulecanbeeasilymodifiedand re-modified for production ofmany different [11C]radiopharmaceuticals.References: 1. Shao X,HoareauR,RunkleAetal.,[2011],J.LabelCompd.Radiopharm54:819-838

Page 96: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 97

PP38Microfluidicsynthesisofω-[18F]fluoro-1-alkynesMariarosariaDeSimone1,GiancarloPascali2,LudovicaCarzoli1,MauroQuaglierini1,MauroTelleschi1,PieroA.Salvadori11.CNRInstituteClinicalPhysiologyPisa,Italy2.Life Sciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road,LucasHeightsNSW2234,AustraliaIntroduction:Cu(I)-catalyzed 1,3-dipolar cycloadditions is widely used in labeling azido-functionalizedpeptidesandsmall-moleculeswith18F-alkynes.Wereportonthemicrofluidic(ADVION)synthesisof5-[18F]fluoro-1-pentyne(5-[18F]-FP)and6-[18F]fluoro-1-hexyne(6-[18F]-FH)andapplicationinlabelinganazide-functionalized Factor-H. Materials & Methods: 5-tosyloxy-1-pentyne (5-TP) and 6-tosyloxy-1-hexyne(6-TH)wereobtainedfromthecorrespondingalcohols[1].[18F]fluoride(0.3GBq)wasproducedbyirradiationof>98%18O-water(nyobiumtarget),trappedonatrap&releasecolumnandelutedwithK222/K2CO3(15mg/3mg) indryacetonitrile (1ml).TheK222/K[18F]Fcomplexwasdriedbyazeotropicdistillation in the Concentratormodule, recovered in the reaction solvent (600ul) and uploaded in astorage loop (P3).5-TPor6-THwasdissolved in1mlof solventanduploaded ina storage loop (P1).BolusesofprecursorandK222/K[18F]Fsolutionswerepushed(totalflow40μL/min;P1=P3)throughthereactor(2mfused-silicacoil-reactori.d.=100µm,15.6µl)at90,110,130,150and170°CExperimentswererepeatedinacetonitrile,dimethylsulfoxide,tert-butanolanddifferentP1:P3ratios(1:1and1:5).Productswerepurifiedbydistillationandanalyzed(radio-TLC,radio-HPLC).Factor-Hwasreactedwithanazido-(PEG)4-carboxylatelinker(azido-PEG)targetingproteinaminogroups.Factor-H(1.6nmolin250µlofpH9PBS buffer), was reacted (4h at RT) with 48nmol of NHS-activated azido-PEG. The azido-protein waspurifiedbyultracentrifugation, suspended inwaterand lyophilized.5-[18F]-FPwasdistilled intoavialcontaining2-6nmolofazidoPEG-Factor-H,1.4µmolofCu(I),1.9µmolofTBTAin150µlofTHF/H2O(2:1)andreactedat45°Cfor10'.Unreacted5-[18F]FPwasremovedundernitrogenflow.5-[18F]-FP-Factor-Hwaspurifiedbygelfiltration(RCP>97%)andtheyield(92±3%d.c.y.,n=5)determinedbyHPLC.Results:Best yield for 5-[18F]-FP and 6-[18F]-FH (91±6% and 83±5% d.c.y, n=3)were obtained in acetonitrile(130°C),P1:P31:1.ReactionyieldwaslowerinDMSOforboth5-[18F]-FPand6-[18F]-FH(68±11%and71±9%,d.c.y,n=3)andworseintert-butanol(33±5%and45±2%,d.c.y,n=3).IncreasingP1:P3ratiodidnotinfluenceyieldandresultedinamorefrequentreactorclogging.Discussion/Conclusion:WedescribeamicrofluidicapproachforthesynthesisofC5andC618F-alkynesandtheon-lineradiolabellingofanazido-functionalizedFactor-Hwith5-[18F]-FP.Theproposedmethod isapplicable toabroadgroupofcompounds(smallmolecules,peptidesandnanoparticles).References:1-Wang,Zheetal.,(2000),J.Org.Chem.65(6):1889-1891

Page 97: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 98

PP39Automated18F-flumazenilproductionusingchemicallyresistantdisposablecassettesPhoebeLam,MartinaAistleitner,ReinhardEichinger,ChristophArtnerIASONGmbH,Feldkirchnerstraße4,A-8054Graz-SeiersbergIntroduction: Production of 18F-flumazenil from 2-nitroflumazenil under GMP conditions is primarilyperformedwithmanipulatorsorcustombuiltradiosynthesismoduleswithfixedcomponents,astheuseofN,N-dimethylformamide(DMF)at160°Cprohibitstheuseofcommonlyavailabledisposablecassettes.Cassettes for the GE TRACERlab MXFDG synthesis modules are commercially available in differentmaterials.ROTEMIndustriesandGEHealthcareusepolysulfoneasthemaincomponent,anditisknownthatthispolymerisnotcompatiblewithDMF.CassettesfromABXarereportedlymorechemicalresistant,withpolypropyleneas itsmainconstituent.Theaimofthisworkwastoestablisharobustautomatedradiosynthesisprocedurefor18F-flumazenilontheGETRACERlabMXFDG,wherestaffpreviouslytrainedonthesameequipmentcaneasilyperformtheradiosynthesis.Materials&Methods:FragmentsoftheABXFDGcassettewereexposedfor1or24htovarioussolventsincludingacetonitrileandDMFatroomtemperature(RT)or60°Ctoassessitschemicalresistance.AnewsynthesissequencewaswrittenfortheGE TRACERlab MXFDG. A non-radioactive test run was performed with the ABX FDG cassette, andradiosynthesiswascarriedoutwiththecassettecomponentsreplacedbychemicallyresistancemanifolds(ABX). Results: Incubation of the PP ABX FDG cassette fragments in acetonitrile at RT showed nomacroscopicinfluenceonthepolymerwhilethefragmentbecamesoftandmouldableat60°C.Visiblechangesoccurredafter1hincubationwithDMF,withthepolymerhavingcompletelydissolvedafter24h,regardlessoftemperature.Toverifytheimplicationoftheseresultsona1hradiosynthesis,atestrunwasperformedusingthesamecassettematerialandsynthesisconditionswithoutradioactivity.Partsofthemanifoldwasfoundtohavecracked,andavalveblockadewasobservedduetopolymermelting.Radiosynthesis was carried out with the manifolds replaced by chemically resistant ones, and 18F-flumazenil was successfully obtained in 4% decay corrected yield.Conclusions:Disposable cassettesassembledwith chemically resistantmanifolds is a requirement for the automated synthesis of 18F-flumazenilfrom2-nitroflumazenilusingtheGETRACERlabMXFDGsynthesismodule.Neitherreagentkitsnorprogramsequencesarehithertocommerciallyavailable,butGMPgradeproductioncannonethelessbesuccessfullycarriedoutwithmodificationsonexistingequipment.

Page 98: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 99

PP40The effect of the eluent solutions (TBAHCO3, Kryptand K2.2.2) on the radiochemical yields of 18F-FluoromethylcholineSurendraNakka,HemanthaKumaraMC,andAl-QahtaniMohammed*Cyclotron andRadiopharmaceuticalsDepartment, King Faisal SpecialistHospital andResearchCenter,Riyadh,SaudiArabiaIntroduction:[18F]Fluoromethylcholine([18F]FCH)provestobeauniqueradiotracerforthedetectionofprostatecanceraswellasbrainandlungtumorswithPositronEmissionTomography(PET).Theaimofthis work was to improve radiochemical yields of 18F-Fluoromethylcholine ([18F]FCH) with highreproducibility.Theusedeluentsolutionplaysanimportantroleinproductionof[18F]FCHradiotracers.[18F]FCH is manufactured under GMP conditions using one of two eluent solutions namelyTetrabutylammoniumBicarbonate (TBAHCO3) andKryptand2.2.2., each time.Method: [18F]FCHwasradiosynthesized using a fully automated synthesis module TRACERlab MX. Hardware cassette andreagents kit purchased from ABX. . [18F]FCH is synthesized by 18F-Fluoroalkylation of N-N-Dimethylaminoethanol (DMAE) in presence of Dimethyl Sulfoxide (DMSO) using 18F-Fluorobromomethane[18F]FBMasanalkylatingagent.Results:[18F]Fluoromethylcholineradiosynthesisassisted by Kryptand 2.2.2 shown irregular or poor distillation of 18F-Fluorobromomethane,which isobserved by pressure trendingwindow on TRACERlabMX during distillation step very poor gas flowthroughthefoursilicacartridgesbeenobservedwhichinturnleadstoproductionofverylessamountsof [18F]FCH. TetrabutylammoniumBicarbonate (TBAHCO3) assisted18F-FCH radiosynthesis observedwithregularandcontinuousdistillationof18F-Fluorobromomethanethroughthefoursilicacartridges.[18F]FCH solution proved high radiochemical purities (>99%), Residual solvents analyzed using GasChromatography (GC), DBM & DMAE is not identified. Conclusion: Choice of TetrabutylammoniumBicarbonate (TBAHCO3) as eluent solution shown very consistent and improved radiochemical yieldsdecaycorrected20-25%overKryptand2.2.2aseluentsolution.

Page 99: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 100

PP41[68Ga]RadiolabelingofshortpeptidethathasaPETimagingpotentialsAl-Qahtani,Mohammed*,Al-Malki,YousifCyclotron andRadiopharmaceuticalsDepartment, King Faisal SpecialistHospital andResearchCenter,Riyadh,SaudiArabia.Introduction:Targetingshortpeptidesaregaininginterestsinthemolecularimagingfield.Choosingtheradioisotopetolabelthosepeptidesisachallengingstageintheprocessofidentifyingtherightimagingmodality.Method:Allneededreagentsandsolventswereusedwithnofurtherpurificationsunlessit’snecessary.PeptideusedwaspurchasedfromGenScriptandusedwithoutfurtherpurifications.Reactionprogress was monitored using both radio-analytical thin-layer chromatography (Radio-TLC) and highpressureliquidchromatographic(Radio-HPLC).Radio-HPLCanalyseswerecarriedoutonsemi-preparativePhenomenexC-18(250mmx10mm).Radiolabeledpeptidewasdetectedwiththeelutingof0.065%TFAinwaterand0.05%TFAinMeCNat2ml/minapplyinggradientelutionmode.RadiochemicalyieldswerecalculatedbasedontheRadio-HPLCcollections.SodiumCitrateBuffer(PH=7.5)watheRadio-TLCmobilephase.SynthesisofDOTA-PeptideConjugate:9.97E-7moloftheintendedpeptidedissolvedinDMSOreactswith1.18E-6molof(DOTA-NHS-ester)thatwaspreparedinMeCN.ThereactionwasdoneinaphosphatebufferwithPH=8andheatingat90ºCfor30min.68G-labelingofDOTA-Peptide:68Gsolutionwasaddedto60μgofconjugatedDOTA-Peptidein100μlofHEPESbuffer(PH=4)andthemixtureallowedtoreactfor30minat80°C.Result:[68G-DOTA-Peptide]wasanalyzedonRadio-HPLC;therationtimeoftheproductwas8.4minandRadio-TLCchecksforthecollectedproductconfirmthehighradiochemicalpurity.

Discussions:Thelabeledpeptideisproduceingoodradiochemicalyieldsandhighradiochemicalpurity.Initialbiologicalworksareongoingtoevaluateitsimagingpotentialmainlyonamelanomacellline.Thefindingswillbepresented.

0

50

100

150

0

50

100

150

200

Position (mm)

C

ount

s

Research Section - COLLECT001.R001

Product

Page 100: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 101

PP42Isvalidationofradiochemicalpurityanalysisinapublichospitalinadevelopingcountrypossible?NMambilima, SMRubow,University TeachingHospital, Lusaka, Zambia, and StellenboschUniversity,SouthAfricaIntroduction:Pharmacopoeial ormanufacturer’s radiochemical purity (RCP) analysismethods are notalwayspracticalinahospitalsetting,leadingtomodificationsorsubstitutionwithquicker,simplified,orcost effective analytical procedures. This study aimed to determine whether appropriate validationproceduresbasedonICHQ2AandQ2Bguidelinesarefeasibleinaresourcelimitedenvironment,suchasmosthospitalradiopharmacysettingsinSouthernAfrica.MaterialsandMethods:AlternativeRCPtestmethodsforTc-99msestamibiinvolvingtheuseofWhatman31ET(Wh)andSchleicherandSchuell(SS)chromatographypaperwereused.LocallyprocuredMacherey-Nagel (MN)aluminiumoxideTLCstripswereintendedascontrolmethod,asstripsdescribedinthemanufacturer’sinstructionswereunavailable.Allanalyseswereperformedonthe3differentstripsinparallel,andintriplicate.In-housepreparedTc-99msestamibi,colloidandpertechnetatewereassumedtobe100%pure.Samplescontainingmixturesofvaryingconcentrationsoftheradiochemicalcomponentswereanalysed.Resultsfromtestsperformedbydifferentoperatorswereusedtojudgeintermediateprecision,andtimedelaybetweenspottinganddevelopingwasused toevaluate robustness.Results:RCPof sestamibiwithoutadded impuritieswas99.8%±0.0%MN,99.5%±0.1%forWhand99.3%±0.2%forSSstrips.AdditionofpertechnetateandcolloidtoTc-99mSestamibiaftercompletionofkitreconstitution,resultedinvaluesforsestamibihigherthanthecalculatedRCPforall3methods.Theradiochromatogramscanner’s limitofdetectionand limitofquantitationweredetermined.DiscussionandConclusion:DuetotheunexpectedhighRCPvaluesafteradditionofimpuritiestosestamibi,alltheanalyticalmethodslackedspecificityandaccuracy.TheMNtestmethodshowedexceptionallyhighvaluesforsestamibiduetoco-elutionofthefreepertechnetatewithsestamibi. TheMN RCP testmethod could therefore not be used as a reference standard. All threemethodsmettheacceptancecriteriaforrepeatability,intermediateprecision,androbustness.Validatingananalyticalprocedureinahospitalsettingisonlypossibleoncesomeimportantprerequisitesaremet,suchasavailabilityofspecifiedmaterialsforthereferenceprocedure,reliablereferencestandards,andavailabilityofHPLCforradiopharmaceuticalsthathaveimpuritiesotherthanpertechnetateandcolloid.AtemplatevalidationprotocolforTLCandpaperchromatographywasdeveloped.

Page 101: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 102

PP43Improvedautomatedradiosynthesisof[18F]FEPPAN.Berroterán-Infante1,2,M.Hacker1,M.Mitterhauser1,3,W.Wadsak1,21DivisionofNuclearMedicine,DepartmentofBiomedicalImagingandImage-GuidedTherapy,MedicalUniversityofVienna2DepartmentofInorganicChemistry,UniversityofVienna3LBIforAppliedDiagnostics,ViennaIntroduction:Thetranslocatorprotein(TSPO)hasbeenproposedasabiomarkerforseveralconditions,includingneurodegenerativedisorders,cancerandnon-alcoholicfattyliverdisease.Hence,anumberofPET ligands have been developed to image the TSPO, including the aryloxyacetanilide derivative[18F]FEPPA,whichiscurrentlyinclinicaluse[1].Thesynthesisof[18F]FEPPAwasfirstreportedbyWilsonetal.[2]andsuccessivelyfullyautomated[3].NeverthelessthepurificationofthecrudeproductbymeansofsemipreparativeHPLCisunsatisfactorilytimeconsuming(retentiontimetR≈23min).Therefore,theaimofthisstudywastoestablishanewsetofconditions,whichcanreducetheretentiontimeoftheproductandconsequentlyreducethetotaltimeofthesynthesis.Methods:[18F]FEPPAwassynthesizedasdescribedelsewhere[3]withminormodificationsinaNuclearInterfacesynthesizer(GEHealthcare,Sweden).Briefly,thetosylateprecursordissolvedinacetonitrilewasaddedtotheazeotropicallydried[18F]fluorideandthereactorwasheatedat90°Cfor10minutes;aftercooling,thereactionwasquenchedwith a solution 50:50 acetate buffer:acetonitrile (pH=3,6) and automatically injected onto asemipreparative HPLC Column (Merck Chromolith® RP-18e, 100×10 mm). The product fraction wascollectedinwaterandthenewaqueoussolutionwaspassedthroughapre-conditionedC-18plusSepPakcartridge.Finally,theproductwaselutedwithethanolandformulatedwithsalineandphosphatebuffer.Results:Thenewprocedureyielded3.2±0.3GBqof [18F]FEPPA(27%±3%,notcorrectedfordecay)within17minaftertheazeotropicdryingofthe[18F]fluoride.Specificactivityrangedfrom430to600GBq/μmol. Radiochemical purity exceeded 98%. Conclusions: A fast and reliable procedure for theproduction of [18F]FEPPA was successfully implemented, drastically reducing the total time of theradiosynthesiscomparedtothepreviouspublishedmethod(17mincomparedto36min)[3].References:[1]Zhang J, [2015], J. Neuroinflammation 12:108. [2]Wilson A, García A, Parkes J, McCormick P,StephensonK,HouleS,VasdevN, [2008],NuclMedBiol35:305-314. [3]VasdevN,GreenD,VinesD,McLartyK,McCormickP,MoranM,HouleS,WilsonA,ReillyR,[2013],CancerBiotherRadiopharm28:254-259.

Page 102: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 103

PP44SynthesisandinitialevaluationofAl18F-RESCA1-TATEforsomatostatinreceptorimagingwithPETUtaFunke1,FrederikCleeren1,JoanLecina1,RodrigoGallardo2,AlfonsM.Verbruggen1,GuyBormans11LaboratoryforRadiopharmacy,DepartmentofPharmaceuticalandPharmacologicalSciences,KULeuven,Leuven,Belgium2VIBSwitchLaboratory,KULeuven,Leuven,BelgiumIntroduction:Indium-111andgallium-68labelledoctreotidederivatives[1]arewidelyusedinSPECTandPETimagingofsomatostatinreceptorexpressingtumoursandpancreaticdysfunction.Inperspectiveofadvantagesoffluorine-18(favourablehalf-life,highproductioncapacity, lowb-energy),morerecently,derivatives based on [18F]aluminium fluoride complexation have been developed.[2] To achieve highlabellingefficiencyatbiomoleculecompatibleconditionsandimproveradiotracerpropertiesinvivo,wesynthesizedanoctreotateconjugatewithanacyclictrans-cyclohexanespannedpentadentatechelator:Restrainedcomplexingagent1,RESCA1(Fig.1,1).Afterlow-temperatureAl18F-complexation,invitroandin vivo characteristicsof thenew radiotracerwere studied.Materials&Methods:Radiolabellingwasachievedmanuallystartingfrom50-860MBqof[18F]sodiumfluoride(Fig.1).[Al18F]2waspurifiedbySPEandanalysedwithiTLC,LC-MSandRP-HPLC.Stabilityoftheradiotracerwasinvestigatedinvitrooveraperiodof3hinEtOH/Saline1:9(RT),PBS(37oC)andratplasma(37oC).Exvivobiodistributiondatawereacquiredat10and60minp.i.of1.8MBq[Al18F]2inhealthymalemice(Fig.2,n=4pertimepoint),andcomparedwiththoseof68Ga-DOTA-TATE.

Results:Complexationof{Al18F}2+with1succeededwith54-77%ofproductformationwithin15minatroomtemperatureandwith85-96%after12minat40oC.28-298MBqof[Al18F]2wereobtainedwith94-98%RCPafterSPE.After3hofincubation,thecontentofparentcompoundwas99%informulation,95%inPBSand91%inplasma.Distributionof[Al18F]2 inmiceshowednegligibleboneuptake,but incomparisonwith68Ga-DOTA-TATElessbindinginendocrinetissues,4timeshigheruptakeinkidneys,andlowerexcretionvia theurinarypathway:33.2%IDat10minand62.2%IDat60minp.i,, compared to44.1%IDat10minand77.9%IDat60min.p.i.,respectively.

Page 103: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 104

Discussion/Conclusion: RESCA1-TATE easily forms a chemically and biologically stable complex with{Al18F}2+. The radiotracer, however, showed lower uptake in organs known for high somatostatineexpression in comparison with the clinical standard. This could be caused either by in vivo bindingcompetition with non-labelled RESCA1 conjugate, accelerated clearance or lower binding affinity of[Al18F]2.FutureexperimentswithHPLCpurifiedradiotracerincompetitionbindingstudiesinvitroandinvivo, and investigation in a high somatostatin receptor expressing tumourmousemodelwill have toclarify,whether specificactivity, receptoraffinityand/or invivokineticsof [Al18F]2canexplain theseresults.Researchsupport:This researchhas receivedsupportwithin theSBOprojectMIRIAD, fundedfromtheIWTFlanders.References:[1]BreemannWAP,deBloisE,ChanHSetal.[2011],SNM41:314-321.[2]LavermanP,McBrideWJ,SharkeyRMetal.[2014],JLCR57:219–223

Page 104: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 105

PP45Radiolabeling and SPECT/CT imaging of different polymer-decorated zein nanoparticles for oraladministrationRocíoRamos-Membrive1,AnaBrotons2,GemmaQuincoces1,LauraInchaurraga2,InésLuisdeRedín2,VerónicaMorán3,BertaGarcía-García3,JuanManuelIrache2,IvánPeñuelas1.1RadiopharmacyUnit,DepartmentofNuclearMedicine,UniversityClinicofNavarra,Pamplona,SPAIN,2DepartmentofPharmaceuticsandPharmaceuticalTechnology,UniversityofNavarra,Pamplona,SPAIN,3DepartmentofNuclearMedicine,UniversityClinicofNavarra,Pamplona,SPAIN.Introduction&Aims:Zeinisthemajorstorageproteinofmaize,witha“GRAS”status,thatcanbeeasilyprocessed to form nanoparticles. Due to its amphiphilic character, mucoadhesive properties and arelatively high resistance to the effect of digestive enzymes, the resulting nanocarriers offer greatpotentialfororaldrugdeliverypurposes.Theaimisoptimizationof99mTcradiolabellingofdifferentkindofzeinnanoparticles(ZNP)andthestudybymolecularimagingoftheirbiodistributioninWistarratsafteroral gavage. The evaluated nanoparticles were bare zein nanoparticles (ZPN) and decorated with 3different slippery polymers (ZNP-A, ZNP-B and ZNP-C).Materials &Methods:All nanoparticles wereprepared by a desolvation technique. For this purpose, zeinwere first dissolved in an ethanol:watersolution,obtainedbytheadditionofanaqueoussolutionandspray-dried.NPwerepre-tinnedwithSnCl2andlabelledwith99mTcO4-.DifferentSnCl2concentrationsrangingfrom0.005to1.0mg/mLwereusedforradiolabellingoptimization.RCPwasanalysedbyradio-TLC.Forbiodistributionstudies4MBq(0.33mgNP)of99mTc-nanoparticleswereusedperanimal(n=12).SPECT/CTstudieswereperformed1,2,4,6and8h post-administration. SPECT acquisition protocol was set to account for radionuclide decay. Forquantitative analysis data setswere exported to PMOD software andVOIs drawnover CT images onstomachand intestine,count ratioscalculated in respect to totalanimalcountsandmaximumcountsnormalizedtothelastimage(8h)foreachnanoparticletype.Results:Radiochemicalpuritywas>95%forZNP-AandNPZusing[SnCl2]=0.5mg/mL,while1.0mg/mLwasneededforZNP-BandZNP-Ctogetsimilarresults.SPECT/CT imagesshowedthatunmodifiedNPZhadabiodistribution instomachand intestinealmostconstantduringthefirst4hours.99mTc-NPZ-Bhadahigherstomachmucoadhesionwhile99mTc-NPZ-Ashowedasimilarbehaviourbutwithfastergastricdrainageand99mTc-NPZ-Cquicklymovedtointestine.AlltheseresultswereconfirmedbytheratiosobtainedfromPMODprocessedimages,asshowninFigure1.Conclusions:AllZeinnanoparticlescouldbeeasilyradiolabelledwith99mTcwith>95%RCP.Theresultsshowaclearrelationshipbetweenthebiodistributionandthesuperficialpropertieswhichthecoatingmaterialgivestothenanoparticle.

Page 105: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 106

Figure1.Percentageactivity(mean+SEM)forbothstomach(blackbars)andintestine(greybars)VOIsascomparedwiththeactivitypresentinthewholeanimalatdifferenttimes.References:PeñalvaR,EsparzaI,LarrañetaE,González-NavarroCJ,GamazoC,IracheJM.[2015],JAgricFoodChem.;63(23):5603-11

Page 106: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 107

PP46Ananalysisofthequalityof68Ga-DOTANOCradiolabellingovera3yearperiodTrabelsi,M.andCooperM.S.,RadiopharmacyDepartment,RoyalLiverpoolUniversityHospital,PrescotStreet,Liverpool,L78XP,UK.Introduction:68Ga-DOTANOCisanexcellentradiopharmaceuticalforimagingneuroendocrinetumoursandgivessuperiorqualityimagestoequivalentpeptideslabelledwith111In.Forthatreason,wehavebeendevelopingour68Ga-DOTANOCradiolabellingserviceoverthepast3years.Itisessentialthatweprovide a highquality product and that theproduction is robust, reproducible and in linewithGMP.Therefore,wehavereviewedourqualitydatafromtheproductionof68Ga-DOTANOCMaterialsandMethods:68Ga-DOTANOChasbeenpreparedusinganiTG68Ge/68GageneratorandiQSfluidiclabellingmodule.DOTANOC(ABX)50-100mgwasdissolvedin0.25Msodiumacetateandheatedfor5minat110°Cbeforeelutionofthegeneratorin4mL0.05MHCl.Thereactionwasallowedtoproceedfor10minbeforepurificationoveraSep-PakC8Pluscartridgeelutedwith50%ethanolandwashedwith0.9%NaCl.Thegeneratorwasflushedeachdaywith5ml0.05MHClwhennotusedforradiolabellingandwith20ml0.05MHClonMondaymornings.The68Ga-DOTANOCproductwastestedforfree68GaandcolloidsbyTLCandanalysedbyHPLC,pHwasmeasured,endotoxincontentassessedandradioactivity,volumeandthepresenceofparticleswerecheckedpriortoreleaseoftheproduct.68Gecontentandsterilitywereassessedretrospectively.Results:Atotalof746elutionswerecarriedoutbetweenMay2013andDecember2015,theaverageelutionyieldwas85.5%.Theaverageproductionyield(decayandgeneratoryieldcorrected)was66.5%.Theaverage68Gebreakthroughwas0.0028%forthe68Gaelutionbut68Gewasnotseeninthe68Ga-DOTANOCproduct.296productionbatchesweremadewith7failures(2.4%)andthesecouldallbeputdowntohumanerror(leaksinthefluidicpath, incorrectpurificationmethodetc.)andsohavebeenminimisedwithtraining.Noproducthasfailedqualitycontroltestsforanyreason.499patientshavebeenimagedwiththeaveragenumberofpatient’sperproductionrunbeing1.7.Discussion/Conclusion:Thepreparationof68Ga-DOTANOC is a very robustprocess givingahighqualityproductinaveryreliablemanner.Inspiteofhigh68Gecontentinthe68GaelutionwiththeiTGgenerator,theproducthasnegligible68Gecontent.Theproducthasverylowlevelsof68Gacolloidsandnegligibleamountsof free68Gaandgivesa very cleanHPLC trace.Weconclude that thismethodofproductiongivesasafe,highqualityproduct.

Page 107: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 108

PP47In vivo biodistribution of adult human mesenchymal stem cells I (MSCS-ah) labeled with 99MTC-HMPAOadministeredviaintravenousandintra-articularinanimalmodel.Preliminaryresults.AlejandraAbella1,TeodomiroFuente1,AntonioJesúsMontellano2,TeresaMartínez1,RubenRabadan§yLuisMeseguer-Olmo3,§(1)UnidaddeRadiofarmaciaHospitalClínicoUniversitarioVirgendelaArrixaca,(2)ServiciodeMedicinaNuclear.ClínicaBelén.Murcia(3)ServiciodeTraumatología.HospitalClínicoUniversitarioVirgendelaArrixaca.Murcia(§)UCAMUniversidadCatólicaSanAntoniodeMurcia.Introduction:Theapplicationofadulthumanmesenchymalstemcellsfrombonemarrow(MSCs-ah)isbeing considered a promising treatment of musculoeskeletal injuries, however, their trafficking andhoming are still controversial issues with further studies needed. Our work is focused on in vivobiodistributionof99mTc-HMPAOlabelledMSCs-ahafterbothintravenousandintra-articularinjectioninananimalmodel.Materials&Methods:2x106MSCs-ahisolatedfrombonemarrowofhealthysubjectsusingSEPAXsystemweresuspendedin1mlofPBSandlabeledwithupto9.3Bq/celof99mTc-HMPAO.Radiolabeled cell suspensions were administered to 8 adult male New Zealand rabbits (3.5-4 k)randomizedintwogroups.IngroupA(n=4),cellsuspensionswereadministeredviaintravenous(marginalearvein)andingroupB(n=4)byintra-articularinjection.Afterdynamicacquisitionofimagesevery30sfor25min,wholebodystaticimagesinanteriorprojectionat1,6and24hourswereacquired,previoussedation. No immunosuppressive agents were administered. Results: Early immune response toxenogenic MSCs-ah was not detected during the study. Neither adverse reaction nor technicalcomplicationswere registered, soanyandeveryanimalwas recruited for the study. In groupA,highretentionoftheactivitywasobservedinlungparenchyma,withkidneyandbladdervisualizationfromthestart,andbiliaryandabdominaluptakefrom1h,maintainingthepatternofdistributionat24h,withnosignificantactivityinliverandspleen.GroupBshowactivityinheart,spleen,liver,kidneysandbladderfromthestarttothelateacquisitionof24h,withbiliaryandintestinaluptakefrom6h.Noactivitywasobservedinthelungparenchymainthisgroup.Discussion/conclusion:ExogenousMSCs-ahadministeredvia intravenousaretrappedmainly in lungs,withslightposteriorretraffickingtootherorgans.Ontheotherhand,nolungtrappingisobservedafterintra-articularinjection,pointingoutthesuitabilityofthisrouteofadministrationforthetherapeuticpotencialofMSCs-ahinmusculoskeletalpathology.

Page 108: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 109

PP48Synthesisof[18F]F-exendin-4withhighspecificactivityLehtiniemiP1,YimC2,MikkolaK1,NuutilaP1,SolinO1,21TurkuPETCentre,UniversityofTurku,Kiinamyllynkatu4-8,FI-20500Turku,Finland2TurkuPETCentre,ÅboAkademiUniversity,Porthansgatan3,FI-20500Turku,FinlandIntroduction: A reliable method for non-invasive in vivo quantification of beta-cell mass in humanpancreasisneededtounderstandthepathophysiologyoftype1and2diabetes.Basedonanimalstudies,the[18F]F-exendin-4-peptidelookspromisingforimagingpancreaticbetacellsbutfurtherdevelopmentofthetracersynthesisisneededtoobtainhighspecificactivity(SA)andsynthesisproceduresamendableforGMPproduction[1].Aproof-of-conceptstudyintype1diabeticpatientsandhealthysubjectsshowedacorrelationbetweenbetacellmassanduptakeof111In-exendin-4,whichcouldleadtofurtherinsightintothepathophysiologyofdiabetes [2].Recentresultswith[18F]F-exendin-4analoguesdemonstrateenhanced pharmacokinetic properties, as compared to radiometal-labelled counterparts [1]. Herewedescribeasynthesisof[18F]F-exendin-4(Fig.1)aimingathighSAfortheproduct.

Figure1.Synthesisschemeof[18F]F-exendin-4.Materials &methods:We have investigated several conditions and solvents for synthesizing [18F]F-exendin-4.Alkynetosylateanda[18F]fluoride-Kryptofixcomplexwereallowedtoreact inDMSOfor5min at 80 °C. 18F-labelled tosylate precursor ([18F]FP) was isolated by semi-preparative HPLC andconcentratedwithaHLBcartridge,followedbyelutionwithTHFfromthecartridge.Exendin-4-azidewasallowedtoreactwith[18F]FPinpresenceofCuSO4/Na-ascorbatefor5minatroomtemperatureusingvigorousmixing.[18F]F-exendin-4wasisolatedbysemi-preparativeHPLCandconcentratedwithaSep-PakC8cartridge.[18F]F-exendin-4waselutedwithethanolandPBS.Radio-TLCandradio-HPLCwasusedfor radiochemical analysis and SA determination of the [18F]FP and [18F]F-exendin-4. Results: 18F-labellingof [18F]FPproceeded in an 50% radiochemical yield (RCY). Isolationof [18F]FPbyHPLCwasefficientandtheradiochemicalpuritywas>99%.TheRCYof[18F]F-exendin-4rangedbetween25-60%(calculatedfrom[18F]FP,uncorrected)andtheradiochemicalpuritywas>96%.TheSAwasupto350GBq/µmol at EOS. Discussion/conclusion:We now can produce [18F]F-exendin-4 with a SA of 350GBq/µmolforsynthesisbatchesof>500MBq.OurfurtheraimistoautomateallsynthesisproceduresinordertohaveaGMP-levelproductionofthetracer,suitableforclinicalevaluationof[18F]F-exendin-4.References:[1]MikkolaK,etal.,[2013],Diabetologia56:211-212[2]BromM,etal.,[2014],Diabetologia57:950-959

Page 109: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 110

PP49Experimentalradionuclidetherapywith177Lu-labelledcyclicminigastrinandhumandosimetryestimationsvonGuggenbergE1,RanggerC1,MairC1,BaloghL3,PöstényiZ3,PawlakD2,MikołajczakR21DepartmentofNuclearMedicine,InnsbruckMedicalUniversity,Austria2RadioisotopeCentrePOLATOM,NationalCentreforNuclearResearch,Otwock,Poland3"FrédéricJoliot-Curie"NationalResearchInstituteforRadiobiologyandRadiohygiene(NRIRR),Budapest,HungaryIntroduction: Radiolabelledcyclicminigastrin-analoguesarepromisingcandidates forpossibleclinicalapplicationindiagnosisandtherapyofcholecystokinin-2receptor(CCK2R)expressingtumours,suchasmedullarythyroidcancer(MTC)andSCLC.WithinaninternationalcollaborationoftheIAEAweperformedbiodistribution studies and an experimental radionuclide therapy in a CCK2R-specific mouse tumourmodel using two 177Lu-labelled cyclic minigastrin-analogues: DOTA-cyclo[γ-D-Glu-Ala-Tyr-D-Lys]-Trp-Met-Asp-Phe-NH2 (DOTA-cyclo-MG1) and DOTA-cyclo[γ-D-Glu-Ala-Tyr-D-Lys]-Trp-Nle-Asp-Phe-NH2(DOTA-cyclo-MG2).Basedonresultsofbiodistributionstudiesdosimetricconsiderationsforhumanswereextrapolated to evaluate the possible injected activity in first applications in patients. Materials &Methods:ForbiodistributionstudiesBALB/cnudemicewerexenograftedwithA431humanepidermoidcarcinomacellstransfectedwiththehumanCCK2R(A431-CCK2R)andtransfectedwiththeemptyvectoralone(A431-mock)inbothflanks.Tumourswereallowedtogrowfor2weeks.Biodistributionstudieswith177Lu-DOTA-cyclo-MG1and177Lu-DOTA-cyclo-MG2wereperformedataninjecteddoseof1MBq(0.02nmolDOTA-peptide)at30min,4h,24h,48h,72hand168hp.i.(5animals/group).DoseextrapolationtohumanswasbasedonlinearscalingofinjectedactivitypergramtissuebetweenanimalsandhumansandcomputedusingOLINDAsoftware.Forexperimentalradionuclidetherapytheanimalswereinjectedwithboth177Lu-labelledDOTA-peptidesattwodifferentdoselevelsof15and30MBqcorrespondingto0.6and1.2nmolpeptide(6animals/group).Foruptofiveweeksaftertreatmenttumourvolumeandbodyweightwasevaluated incomparisonwithacontrolgroup injectedwithphysiologicalsaline.Results&Conclusion:Biodistributionstudiesintumour-bearingmicerevealedanuptakeof>3.5%ID/gforboth177Lu-labelledDOTA-peptidesintheA431-CCK2R-tumour30minp.i..Thisuptakeremainedstablefor4hp.i.anddeclinedto>2%ID/gat24hp.i..AmuchloweruptakewasobservedintheA431-mocktumour.Thetumour-to-kidneyratioresultedtobeintheorderof3.Intheexperimentalradionuclidetherapyacleartherapeuticeffectcouldbeobserved.IncomparisontothecontrolgroupthemeantumourvolumedoublingtimeofA431-CCK2R-tumourswas increasedbyafactorof1.8and2.6 inthe15and30MBqgroup, respectively. For the A431-mock-tumours lower factors of 1.2 and 1.7were observed in bothtreatmentgroupsprovingareceptor-specificeffect.Onthebasisofdosimetricextrapolationtohumansfirsttherapeuticapplicationsinpatientsshouldstartwith4repeatedadministrationsof3-5GBqtolimitthe cumulative kidney dose to <27Gy. Based on patient individual dosimetry accompanying the firsttherapytheinjectedactivitymaybeadaptedaccordingly.

Page 110: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 111

PP50SYNTHESIS OF RADIOPHARMACEUTICALS FOR CELL RADIOLABELLING USING ANION EXCHANGECOLUMNSocanA1,KolencPeitlP1,KrošeljM1,RanggerC2,DecristoforoC21DepartmentofNuclearMedicine,UniversityMedicalCentreLjubljana2UniversityClinicforNuclearMedicine,UniversityforMedicine,InnsbruckIntroduction:111Inlabelledradiopharmaceuticalsareextensivelyusedforcelllabellinginroutineclinicalpractice.Beingmembersofcoordinatingradiometalsgroup68Gaand89Zraresuitablecandidatesforsynthesis of radiopharmaceuticals used for cell labelling. Due to its half life (78,4h) 89Zr labelledradiopharmaceuticals, could possibly enable long-term “in vivo” cell tracking with several attractiveclinical applications (imaging of infection and inflammation, stem cell therapy). Aim of study was todevelopanovel,versatileapproachtopreparetracers(oxine,tropolone)usingconcentrationonananionexchangecolumn.Materials&Methods: Thecolumn (SepPAKQME)waswashedwith2mlofwater.Samplesof68Ga,111In,89Zr-HEPES(0,5M,1M)solutions,samplesvaryinginpH(3-9)andvolumewerepreparedandappliedoncolumn.Activityretainedon,activitywashedfromcolumnandpHofthesolutionweremeasured.Samplesof0.3mlligandsolution(tropolone:1mg/ml,water;oxine:1mg/ml,20%,50%EtOH)wereappliedonthecolumnand incubated.Thecolumncontentwaswashedwith2mlofPBS.ActivityandpHmeasurementswereperformedasdescribedabove.Complexformationswereanalyzedusingextractionmethodintooctanol.Results:With68Ga-HEPES(1M)yieldofactivityretainedonthecolumnwasabove89%andwasnotpH(3.7-7.3)andvolumedependent(0.5-2.5ml).Yieldof68Ga-oxinesolution (20%EtOH)wasbetween43-77%withpHbetween6.1-7.4andextraction intooctanolabove96%.Yieldofactivityretainedoncolumnwith111In-HEPES(1M)varied31–98%andwaspHandvolumedependent.Yielddecreasedwithvolumesappliedgreaterthan0.5mlandpHbellow4.Yieldof111In-tropolonesolutionwasbetween41-61%withpHbetween6-6.7andextractionintooctanolabove82%.Yieldof111In-oxinesolution(20%EtOH)wasbetween41-96%andextraction intooctanolabove92%.89Zr-HEPES(0.5M)yieldofactivityretainedoncolumnwasabove96%andwasnotpH(5.5-9)andvolumedependent (0.3-1.5ml). Yield of 89Zr-tropolone solutionwas above 85%with pH between 7-7.5 andextractionintooctanolabove94%.Yieldof89Zr-oxinesolution(50%EtOH)wasbetween25-71%withpHbetween 7-9 and extraction into octanol above 86%. Conclusion: Concentration of coordinatingradiometals111In,68Gaand89ZronananionexchangecolumninHEPESallowson-columnformationoftracers(oxine,tropolone) inverysmallvolumessuitableforcell labellingwithgoodyieldsandquality.This is a versatile and promising tool to prepare tracers on automated systems further used for celllabellingandpotentiallysuitableforclinicalpractice.

Page 111: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 112

PP51[68Ga]peptideproductiononcommercialsynthesisermAIOColletC.1,2,RemyS.1,2,DidierR1,2.,VergoteT.4.KarcherG.1,2,3,VéranN.1,31Nancyclotep,Plateformed’imageriemoléculaire54500VandoeuvrelesNancy-France2UniversitédeLorraine,F-54500VandoeuvrelesNancy-France3CHRUdeNancy-Brabois,F-54511VandoeuvrelesNancy-France4TrasisSA,B-4430Ans-BelgiumIntroduction:Gallium-68isametallicpositronemitterwithahalf-lifeof68minthatisidealforlabellingsmall peptides as radiopharmaceuticals thanks to the use of a chelating agent with several clinicalapplications.Numerousgallium-68labelledpeptides(eg.[68Ga]DOTA-TOC/-NOC,[68Ga]HBED-PSMA-11,[68Ga]NODAGA-RGD)haveshowntheirinterest[1,2].Developinganeasy,rapidandperformantlabellingmethod is important. Different methods for the pre-purification of the generator eluate have beenexplored in the literature, although recent improvement on some generator brands (i.e. low 68Gebreakthrough and low metallic impurities content), makes this pre-purification unnecessary.Development of a labelling process, GMP-compatible and reproducible, using a commercial synthesismoduleforeverypeptidelabellingisarealchallengeforthenuclearmedicine.Themethodpresentedhereinusesacassette-basedapproachandaMiniAIO(mAIO,Trasis®)moduleandhasbeentestedwiththe IGG10068Ge/68Gagenerators.Materials&Methods:Preclinical IGG100wasusedas68Ge/68Gagenerator.PrecursorsofradiolabellingwereboughtfromABX.Automated68Ga-labellingwasperformedwithout pre-purification inmAIOmodule. Optimal experimental conditions (concentration of sodiumacetate,quantityofprecursor,temperatureandduration)weredeterminedforeachpeptide.LabellingefficiencywasdeterminedonWatersHPLCsystem.Results:DOTANOC,DOTATOC,HBED-PSMA-11andNODAGA-RGD were tested for 68Ga-labelling without pre-purification. Optimal and reproducibleconditionswerefoundforeachpeptide.68Ga-peptidesweresynthesisedwithexcellent incorporationyields, (90-99%) and good synthesis yields > 60% in less than 15 min. Discussion/Conclusion:Wedeveloped an efficient automated strategy for peptide labelling with gallium-68. [68Ga]DOTANOC,DOTATOC,[68Ga]HBED-PSMA-11,[68Ga]NODAGA-RGDwereobtainedingoodradiochemicalyield.Theirpreparationcouldbeperformedwiththisautomationandtheiruseinhumancouldbedoneunderclinicaltrial.References:[1]BreemanW,deBloisE,ChanHS,etal. [2011],SeminNuclMed,41:314-321.[2]Velikyan[2014],Theranostic,4(1):47-80

Page 112: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 113

PP52Drykitformulationforefficientradiolabelingof68Ga-PSMAD.Pawlak,M.Maurin,P.Garnuszek,U.Karczmarczyk,R.Mikołajczak.NationalCentreforNuclearResearchRadioisotopeCentrePOLATOMSołtana7,05-400Otwock,PolandIntroduction:Thedevelopmentofdrykitscontainingtheactiveingredientandsuitableexcipientspermitsmore efficient use of 68Ge/68Ga radionuclide generators, despite the limitations in the variety ofgenerator eluent’s composition and pH. Our aim was to develop a dry kit formulation for 68Garadiolabeling of the PSMA inhibitor, PSMA-11 (Glu-CO-Lys(Ahx)-HBED-CC). Methods: A series ofexperimentson“wet”labellinginthepresenceofvariousamountsofsodiumacetateandascorbicacidwereperformedtakingintoconsiderationthechallengetofindthecompositionofbufferingagentsreadytomaintainpHvaluebetween4and5afteradditionofvariousvolumesof68Gaeluate(volumesof1-4mL0.1MHCl). For quality control of the 68Ga–PSMA-11 theRP-RadioHPLC (Kinetex C18 150mm;A:0.1%TFA/H2O, B: 0.1%TFA/CAN) was used with gradient conditions (according to M. Eder et al.Pharmaceuticals2014,7,779-796)aswellasinisocraticelution(optimallysetto17%B)whichvisualizedthe radiolabelled and non-labelled PSMA-11 inUV chromatogram. The radiochemical purity alsowastestedbyTLC(ITLCSG;1:0.9%NaCl/MeOH80/20v/v;2:0.9%NaCl/MeOH/25%NH3,80/20/5v/v/v;3:1MNH4OAc/MeOH50/50v/v).Resultsanddiscussion:Ascorbicacid(25mg/mL)addedtothe“wet”labellingmixtureincreasedtheradiolabelingyield(98.8%)comparedtothelabellingperformedinacetatebufferonly(95.0%).Italsoincreasedthebufferingcapacityoftheformulation.Theseresultswerefurtherusedtoformulatethedrykitcompositionusing 30µgofPSMA-11,60mgofsodiumacetateand12,5mgofascorbic acid. The yield of 68Ga labelling of PSMA-11 from the freeze-dried kit was > 95%. Thebiodistributionof suchprepared 68Ga-PSMA-11 was investigated in healthyBalb/cmice (n=5) afterintravenousinjectionof0.1mL(38MBq/mL)(at15,30,60and120min).Comparisonofuptakeinmainorgansandurineof68Ga-PSMA-11,andthe68Gaeluateinthepresenceofacetatebufferandinpresenceofmixtureofsodiumacetate/ascorbicacid(t=1hp.i.)ispresentedinthegraphbelow.

68Ga-PSMA-11 was rapidly cleared from the blood and excreted by kidney route with >70% urineeliminationat1hp.i.Theseresultsconfirmedhighstabilityofthe68Ga-PSMA-11complexinvivo,withlowcontributionoffreegallium-68,whichcirculateslongerinbloodstream.Itisworthnotingthattheadditionofascorbicacidchangesthebiodistributionoffreegalliumandfavorsitsbloodclearance.Thisis probablydue to the formationofweekGa complexwith ascorbic acidwhichblocks Gaaccess toferritin,henceresultinginlowerliverandspleenaccumulation.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

%ID/g

68Ga-PSMA

68Ga-acetate

68Ga-ascorbic/acetate

Page 113: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 114

PP53DevelopmentofanexperimentalmethodusingCs-131toevaluateradiobiologicaleffectsofinternalizedAuger-electronemitters.PilFredericia,GregorySeverin,TorstenGroesser,UlliKöster*andMikaelJensenHevesyLaboratory,DTU-Nutech,TechnicalUniversityofDenmark,Roskilde,Denmarkand*InstitutLaue-Langevin,Grenoble,FranceIntroduction:ThelowenergyelectronsemittedintheAugercascadeofcertainisotopesareexpectedtohaveadisproportionatelyhigh radiobiological effect. This is seenas theeffectof themultiplicity andpredominanceofvery lowenergyelectrons indosedelivery.Despitemanyyearsofresearch inAugeremitters,onlyfewdirectmeasurementsoftheradiobiologicaleffectofsuchAugercascadeshavebeenpublished. Oneproblem inmakingsuch fundamentaldose-effectexperiments is themethodtobringAuger-emittingisotopesinsidethecellandclosetothenucleusinapredictableandquantifiablemanner.Onlywhenthelocation,activity,andtime-activityprofileareknownitispossibletocomparetheobserveddamagewithdamage inducedbythesamedoseanddoserategivenbyexternal irradiation.WehaveusedthebiologicaluptakeoftheAuger-emittingpotassiumanalogueCs-131(9.7d)intomammaliancellsincultureasatestsystemformeasuringthedose-effectofAugerelectrons.MaterialsandMethods:Cs-131wasrepeatedlyextractedfromBa-131(11.5d)madebyhighfluxneutronirradiationatILL(6to10daysat(1.1-1.3)1015n.cm-2s-1)ofeithernaturalBa(17mgascarbonate)or49%enrichedBa-130(0.15mg as nitrate). Such targetswere dissolved in hydrochloric acid, and re-precipitatedwith ammoniumcarbonate.Thesupernatantwasspikedwithsodiumhydroxide,thendriedandfired,leavingcesium-131asachloridesaltwithNaClcarrier.There-precipitatedtargetswerestoredfor1-2weeksforbuildupofCs-131,andthentheprocesscanberepeated.Wehavemilkedupto4batchesofusefulCs-131activityfromasingleactivatedbariumbatchfromILL.Theharvested,131Cs/NaClsaltwasdissolvedinwatertoreachisotonicity,andwasofferedtoV-79andHeLacellsinnormalgrowthmedia.Thecellsinvariantlyup-concentratedthecesiumactivity,reachingaplateauafter8-10hours.Results:UsingenrichedBa-130,higheractivity isobtained,butevenwithnaturalbariumactivitiesup to80MBqhavebeenavailablerepeatedly for the uptake experiments. Under optimal conditions, the cells in culture can reachintracellularactivitiesover1Bq/cellduring4hoursincubation.Thealkali-metalnatureofcesiumgivesusreasonstoassumeahomogeneousintracellulardistribution,allowingafirst-principlescalculationoftheabsorbeddose.Withthismethodanduniqueisotope,wecancomparetheeffectofequivalentabsorbeddosesofexternalgammaandinternal,predominantlyAugerdelivereddose.

Page 114: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 115

PP54PreclinicalcomparativeevaluationofNOTA/NODAGA/DOTACYCLO-RGDpeptideslabelledwithGa-68R.Leonte1,2,F.D.Puicea1,2,A.Raicu1,E.A.Min1,R.Serban1,G.Manda3andD.Niculae11HoriaHulubeiNationalInstituteforPhysicsandNuclearEngineering,RadiopharmaceuticalsResearchCentre,Magurele,Romania,e-mail:[email protected],Bucharest,Romania3NationalInstituteofPatologyVictorBabes,Bucharest,RomaniaIntroduction: Theαvβ3 integrin receptors, expressed on tumor cellmembranes can be preferentiallytargeted by peptides containing the RGD sequence. NOTA-SCN-Bn-E-[c(RGDyK)2], NODAGA-RGDfK,DOTA-E-[c(RGDfK)2],andDOTA-RGDfKwerelabelledwithGa-68andtestedforradiolabellingyield,purity,stability, in vitro binding, ex vivo biodistribution, and in vivo imaging.Materials and Methods: Theradiolabellingwasperformedusinganautomatedsystemwithinlinequalitycontrol.Fractionof68GaCl3eluate fromanorganicmatrix based 68Ge/68Ga generator, 400-700MBq in 2mL,was used to labelNOTA/NODAGA/DOTA-derivatised cRGD peptides. Elution, labeling and purification procedures wereperformedin20-25min.Thebiodistributionwastestedintumorbearinganimalmodels(U87MG,Walker256,B21andAR42J).Theaffinityofcyclo-RGDpeptidestotumorcell-surfacereceptorswasdeterminedbyreal-timequantificationusingLigandTracer.�Results:Nanomolesofpeptideswerelabeledwithhighyields. NOTA-SCN-Bn-E-[c(RGDyK)2] and NODAGA-cRGDfK was labelled at room temperature, whileDOTA-cRGDfK,bothmonomeranddimer,werelabeledat95°C,withover90%yield.Thebiodistributionpatternof68Ga-NOTA/NODAGA/DOTA-cRGDpeptidesshowshightumoruptake,fastbloodclearance,hightumortobackgroundratiosandrenalelimination.Upto5.3%ID/gof68Ga-DOTA-E-[c(RGDfK)2]wasfoundonU87MGtumor;thebiologicalbehaviorofthefourtracerswillbediscussedindetail.Bindingtoreceptorswasachievedinthefirst3minofincubationofalltracers,howevertheretention68Ga-DOTA-E-[c(RGDfK)2] on both AR42J and U87MG was the highest, up to 58% from activity in the cells.Discussion/Conclusions:TheradiolabellingwithGa-68ofverypromisingcandidatesforimagingtargetsofinterestincancerdiagnosisandtherapyfollow-upsuchasαvβ3receptors,weresuccessfullyadaptedontheautomatedmodule,reducingthereactiontimeandoperatorexposure.Thepreclinicalbiologicalevaluationofproposedtracersshowthattheuptakeandretentionondifferenttumorcellsdependsontumortype,receptorsexpressionanddimerization.Verygooduptake-retentionprofileof68Ga-DOTA-E-[c(RGDfK)2] makes it our option for further investigations as therapeutic agent. Research contractsCRP16500IAEAandMENUEFISCDI,PNII228/2014areacknowledgedforfinancialsupport.

Page 115: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 116

PP55Synthesizer-andKit-basedpreparationofprostatecancerimagingagent68Ga-RM2MarionZerna,HannoSchieferstein,AndreMüller,MathiasBerndtPiramalImaging,Berlin,Germany.Introduction:Prostatecancer(PCa)isthemostcommoncancerinmenandthesecondmostcommoncauseincancer-relateddeaths.68Ga-RM2isanona-peptidewithoptimizedbindingsequenceforGastrinReleasing Peptide receptor (GRPr) which is overexpressed in PCa.1 In clinical studies 68Ga-RM2 hasdemonstrateditsabilityfordetectionofprimaryprostatecancerwithhighspecificityduetoitslowuptakeinnormalprostateandinbenignhyperplasia.2Recentstudiesshowedfurtherpotentialof68Ga-RM2fordetectionofrecurrentPCaandforimagingofestrogenreceptorpositivebreastcancer.3,4.Toprovide68Ga-RM2 for further clinical research, robust methods for preparation of this promising tracer areneeded.Hereinwedescribetheresultsofautomatedsynthesizerbased68Ga-radiolabelingsofRM2aswellasofsimplified“shake-and-bake”kit-preparations.MaterialsandMethods:Theautomated68Ga-radiolabeling was optimized on a PharmTracer module (Eckert&Ziegler). The influence of severalscavengerswas investigated,aswell asaprocesseswithandwithout subsequentpurificationviaC18cartridge. Optimized conditions were used on further synthesizers (Scintomics, ITG). In a secondapproach,asimplifiedkitpreparationwasestablished.The68Ga-generatoreluatewasaddeddirectlyintoavial containingRM2-precursor,bufferandscavenger.Thevialwasheatedandoptionallybufferwasadded forpH-adjustment.Results:Automatedproceduresonvarioussynthesizersprovidedupto850MBq of 68Ga-RM2 in >70% uncorrected yield in 20 min including purification and formulation. Theradiochemicalpuritywas>97%(HPLCandTLC) ifascorbicacidwasusedasscavenger.Thesimpleandeasytousekitpreparationapproachprovided68Ga-RM2in90%uncorrectedyieldandpurityof>95%.Discussion/Conclusion:68Ga-RM2canbereliablyobtainedonautomatedsynthesizersaswellasbyasimple“shake-and-bake”kitpreparationstrategy.Bothmethodsprovided68Ga-RM2inhighyieldsandhighradiochemicalpurity.References:1)MansiR,WangX,ForrerF,etal., [2011],EurJNuclMedMolImaging38:97-107.2)KähkönenE,JamborI,KemppainenJ,etal.,[2013],ClinCancerRes.19:5434-5443.3)MinamimotoR,HancockS,SchneiderB,etal.,JNuclMed:inpress.4)StoykowC,ErbesT,BullaS,etal.,[2015],EurJNuclMedMolImaging42:S11-924.

Page 116: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 117

PP56Synthesis of pancreatic beta cell-specific [18F]fluoro-exendin-4 via strain-promoted aza-dibenzocyclooctyne/azidecycloadditionCheng-BinYim,KirsiMikkola,PirjoNuutila,OlofSolinTurkuPETCentre,UniversityofTurkuandÅboAkademiUniversity,Turku,FINLANDIntroduction:Diabeteshasdictatedmanylives,anditslifetimetreatmenthasaccumulatedintooneofthemostcostlymedicalconditions,andyet,itspathophysicologyisstillundisclosed.However,effortstodevelopsensitivenoninvasivemethodstoquantifybetacellmass,whichunderliesthedevelopmentofdiabetes,havebeenchallengedbythe lowabundance(1-2%)andhighdispersionofbetacells inthepancreas [1]. Recent preclinical studies using 18F-labelled exendin-4 showed specific targeting ofpancreaticisletsandinsulinomaswithfavourableclearancekineticsthatwouldpotentiateclinicalutility[2].Thefocusofthepresentstudyistheradiosynthesisofanovel18F-labelledexendin-4analoguewithaclearclinicalprospectiveforimagingpancreaticbetacellmass.Materials&Methods:Thesynthesisof[18F]fluoro-exendin-4 isdepicted inScheme1.Thedried [18F]fluoride-Kryptofix complexwas reactedwithtosylatedprostheticcompound1indimethylsulfoxideat80°C.Afterchromatographicisolation,the18F-labelledazide2wasallowedtoreactwithcyclooctyne-derivatisedexendin-4inethanol/waterat60°C for30min. Isolationandradiochemicalanalysisof [18F]fluoro-exendin-4wasperformedusinghighperformance liquid chromatography (HPLC) with radiodetector. Results: Preliminary results showedefficientreactionbetweenprostheticreagent[18F]2andexendin-4precursorwitharadiochemicalyieldof30%.Theabsenceofmajorradioactiveby-productsassuredneatpurificationusingHPLC.Theaverageisolated yield of [18F]exendin-4 after HPLC purificationwas 180MBq starting from 3.5GBq aqueous[18F]fluoride. Discussion: Currently, the scope of this reaction is being explored and its labellingconditionsoptimized.Preclinicalstudieswith[18F]fluoro-exendin-4will includeinvivostability, invivodistributionkinetics,anddosimetrycalculationsinhealthyanddiabeticanimalmodels.References:[1]AndralojcK,SrinivasM,BromM,etal.2012,Diabetologia,55,1247.[2]MikkolaK,YimCB,LehtiniemiP,etal.2013,Diabetologia,56,S211.

Scheme 1: Synthesis of [18F]fluoro-exendin-4 via strain-promoted aza-dibenzocyclooctyne/azidecycloaddition.

Exendin-4

Exendin-4

Page 117: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 118

PP57AutomatedsystemsforradiopharmacyD.Seifert,J.Ráliš,O.LebedaNuclearPhysicsInstituteoftheCAS,v.v.i.,Husinec-Řež130,25068Řež,CzechRepublicIntroduction: Automated processing modules for target processing and production ofradiopharmaceuticals become to be a more and more required in both R&D and routine practice.However,itturnsoutthatavailablesystemsforprocessingoftargetsforradiometalproductionandforlabeling performed via microfluidic approach are still rather limited. Our aim was to develop amultipurposeautomatedsystemforprocessingsolidstate targetsandamicrofluidic systembasedonPMMAchip.Materials&Methods:Stingray–Automatedmicrofluidic system. The device is versatile automatedsystem thatallows for controlofwide rangeofprocessesperformed on a microfluidic chip. The system makespossible operations like precise mixing, separation,extraction or nanoparticle formation in small-scale. Thesystem consists of 3 independent inlets for 3 differentmobile phases with an in-built degasser, 4 peek solenoidvalves,2independentnanopistonpumps,2selectors(6/7),2manualinjectvalveswith100μlloopvolume(adjustable),2/10valve,3checkvalvesanduniqueautomatedmanifoldforinsertingmicrofluidicchip.Thisplatformoffersenoughvariabilityofreactionparametersandallowsfor a repeated return of a sample to themicrofluidicchipwhatmayenhancedramaticallytheyield.CRAB–versatile platform for separation, formulation andsimplelabellingprocessesThemainpartsofthesystemare two reactors, two selectors, peristaltic pump, 3/2wayvalves,andthecolumn.PrimereactorR1allowsfortransportsolidtargetmaterialfromshieldingcontainertoprocesspositionand forhandling liquidor solutiontargetcontent.Itisleak-prooffor5bars.Thereisanin-builtsolidphaseextraction(SPE)columnforseparationprocessesdrivenbyperistalticpumpandsolvents.Fourpositions are available for uploading the solvents intothe reactor R1 or on the SPE column. Splitting theseparatedradionuclidefromthetargetmatrix,includingenrichedmaterial,isenabledthankstothesmartsoftwarecheckingtheactivitycomingoutfromthecolumnandguardingtherightpositionofthesplittingvalves.FinalactivityconcentrationcanbecontrolledviathecasesoftwarethatdrivesvolumeofeluentandallowsforsettingthefinalvolumewithoutlossesonthewallsofreactorR2.Thereare3positionsforuploadingthesolventstothereactorR2forformulationorforsimplelabellingstepslikechelation.ResultsandConclusion:Bothautomatedplatformsareversatile,reliabletoolsthatofferuser-friendlysettingsforwiderangeofprocesses.Stingrayisoperableupto200barbackpressureallowingthustheflowrateof20ml/min.Crabwastestedonseparationof61Cuand64CufromNitargetsin99%separationyieldofcopperradionuclidesandalmostquantitativerecoveryoftargetmatrix.

Page 118: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 119

PP58Simple, suitable for everyday routine use quality control method to assess radionuclidic purity ofcyclotron-produced99mTcSvetlanaV.Selivanova,HelenaSenta,ÉricLavallée,LyneCaouette,ÉricTurcotte,RogerLecomteMolecularImagingCentre,CRCHUS,UniversitédeSherbrooke,Sherbrooke,QC,CanadaIntroduction: Formulations of cyclotron-produced 99mTc contain trace amounts of other Tc isotopesdependingontheisotopiccompositionofstarting100Mo.Presenceofothernuclidesmayaffectimagequality and patient dosimetry. Therefore, quantification of radioisotopic impurities is very important.Currently,radioisotopicpurityofcyclotron-produced99mTcismeasuredusinggamma-rayspectrometryandistime-consuming.Wesoughttoidentifyanotherapproachbettersuitableforqualitycontrolduringroutineproductions.Materialsandmethods:100Motargets(99.815%enrichment)wereirradiatedinacyclotronat24MeVfor2h.Thetargetswereprocessedandradioisotopicpurityofresulted99mTcwasevaluatedusingthreedifferentprocedures.Method1,“Dilution”:Analiquotofdiluted99mTcsolutionwas measured using gamma-ray spectrometry. Percentage of each radioactive contaminant wascalculateddividingactivityofeachisotopebytotalactivityinthesample.Method2,“Shielding”:Avialcontainingformulated99mTcwasmeasuredinacalibratedionizationchamber.Then,itwasinsertedintoa 6 mm thick lead canister, used in nuclear medicine for 99Mo breakthrough determination, andmeasuredusinggamma-rayspectrometry.Theactivityofeachradioactivecontaminantwascalculatedand divided by total activity in the vial asmeasured in ionization chamber.Method 3, “High-energybreakthrough”:Avialcontainingformulated99mTcwasmeasuredinacalibratedionizationchamberasisandinsidetheleadcanister.Theratiooftwomeasurementsgaverelativeproportionofhigh-energygamma-rays.Results:Therewasatendencytoslightlyoverestimatetheradioisotopicpurityofcyclotron-produced 99mTc with “dilution” method (99.983±0.007%) compared to “shielding” method(99.979±0.009%).Sincebothmethodsrequiremeasurementsbygamma-rayspectrometry,theyaretime-consuming,involveelaboratecalculations,anddemandspecificexpertise.“High-energybreakthrough”measurements showed good correlationwith the results of gamma-spectrometry.Conclusions:With“shielding”method, leadcanisterattenuatedlow-energygamma-emission(includingfrom99mTc)andallowed detecting impurities present in trace amounts with better sensitivity. While “high-energybreakthrough” measured in ionization chamber does not give true radioactivity values for eachcontaminant,itofferssufficientinformationaboutrelativeamountofhigh-energyradioactiveimpuritiesintheproduct.Thiscouldserveasasurrogatetestduringroutineproductionswhencross-calibratedwithgamma-spectrometrydataforgivenisotopiccompositionof100Motargets.

Page 119: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 120

PP59EffectiveDoseEstimationUsingMonteCarloSimulationforPatientsUndergoingRadioiodineTherapyMarinaZdraveskaKochovska1,EmilijaJanjevikIvanovska2,VesnaSpasicJokic31. Instituteofpathophysiologyandnuclearmedicine,Medicalfaculty,Skopje,Macedonia2.FacultyofMedicalSciences,Universityof“GoceDelcev”,Stip,Macedonia,3.FacultyofTechnicalSciences,UniverstyofNoviSad,NoviSad,Serbia.Introduction:TherapeuticordiagnosticradiopharmaceuticalcapsulecontainingNa131Istaysinstomachforabout15minutesbeforetheabsorptionstarts,longenoughtomakepossibleriskyexposure.Materialandmethods:InvestigationswereperformedatNuclearmedicinedepartment,Medicalfaculty,Skopje.Eightysevenpatientswerereviewed,agebetween21and73.Patientsweredividedin20groupsreceivingaveragedoseper group1813MBq to6105MBq. For this purposeweusedMonteCarlo4b code fornominalactivityof6105MBq.ThenewMIRDphantom[1-3]modelwasused forcalculationofdosesabsorbedinspecificorgansduetothepresenceofthesourceinsomeotherorgan.Thestomachwallisrepresentedbythevolumebetweentwoconcentricellipsoidsandthecontentswithintheinnerellipsoid.The composition of each tissue type is given in ICRP reports 70 and 89 and ICRU 46 [4-5]. Results:Calculatedresultsaregivenforimpartedenergypertransformationdoseequivalentandeffectivedosesfor different organs. The effective doses were between 9,17nSv for bone surface to 122.4 mSv forstomach.Asthetotaldoseisestimatedtobe126.73mSvitisobviousthatthehighestpartisreceivedbystomach. Discussion /Conclusion: Capsules containing Na131I are widely used as they are morecomfortableforadministrationandthereislesspossibilityforlocalcontaminationofpatientandmedicalstaff.Duringthetimebeforeabsorptionstartsalargeamountofradioactivityneedlesslyexposeapartofstomachandseveralsurroundingorgans.Obtainedresultsindicatethatvaluesoflocaldosesinstomachwallcouldnotbeignored.Asit isnotpossibletomeasurethesedosedirectlyMonteCarlocalculationseemstobegoodsolutionforthisproblem.References:1.SnyderWS,FordMR,WarnerGG,WatsonSB,[1975].MIRDPamphletNo.11S”Absorbeddoseperunitcumulatedactivityforselectedradionuclide’sandorgans”.OakRidge:OakRidgeNationalLaboratory.2.BolchW,BouchetL,RobertsonJ,WesselsB,SiegelJ,HowellR,ErdiA,AydoganB,CostesS,WatsonE,[1999].MIRDPamphletNo.17,ThedosimetryofNonuniformActivityDistributions“RadionuclideSValuesattheVoxelLevel.JournalofNucl.Med.,40,118-368.3.BreismeisterJF,[1997].AGeneralMonteCarloN-ParticleTransportCode,Version4B.LA-12625-M report, LosAlamos,NM: LosAlamosNational Laboratory. 4. Zubal IG,Harrell CR, Smith EO,Rattner Z,GindiG,Hoffer PB, [1994]. Computerized 3-dimensional segmented human anatomy,MedPhys,21.299-302.5.EckermanKF,CristyM,RaymanJC,TheORNLMathematicalPhantomSeries,OakRidgeNationalLaboratoryReport.[1996].http://homer.hsr.ornl.gov/Vlab/VLabPhan.html.

Page 120: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 121

PP60Chemical analysisof the rituximab radioimmunoconjugates in lyophilized formulations intended foroncologicalapplicationsDarinka Gjorgieva Ackova1, Katarina Smilkov1, Petre Makreski2, Trajče Stafilov2, Emilija Janevik-Ivanovska11DepartmentofPharmacy,FacultyofMedicalSciences,UniversityGoceDelčev–Štip,R.Macedonia2Department of Chemistry, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril andMethodius”-Skopje,R.MacedoniaIntroduction: Therapeutic and diagnostic antibodies have become the fastest growing class ofbiopharmaceuticaldrugswithmorethan100antibodiesindifferentphasesofclinicaltrialstoday.Forthetreatment and diagnosis of malignancies, various radiolabeled immunoconjugates have also beeninvestigated.Forefficacyofthesedrugs,itisimportanttoachieveanactiveconformationandstability,evenunderunfavorableconditionsthatmayoccurduringprocessesofconjugation,purification,labeling,andalsotransportandstorage.Foraproteinbaseddrug,astructuralcharacterizationismandatorybeforeanypossiblestartofaclinicaltrial.Vibrationalspectroscopictechniques,asFouriertransforminfrared(FTIR) spectroscopy and Raman spectroscopy are one of the biophysical methods for structuralcharacterizationofproteinsbecauseoftheirsensitivitytothecompositionandarchitectureofmolecules.Here we used vibrational spectroscopy to characterize the physico-chemical stability and structuralchanges of three immunoconjugates of rituximab, intended for labeling with radioisotope of choice(177Lu, 90Y and/or 68Ga), relevant for the stability of therapeutic/diagnostic antibodies duringpreparation, storage and/or transport. Materials and Methods: Rituximab, conjugated with threedifferent bifunctional chelating agents (BFCAs), p-SCN-Bn-DOTA, p-SCN-Bn-DTPA and 1B4M-DTPA in aformoflyophilizedpreparationsnon-radioactivelabeledwithabovementionedradioisotopeanalogues,was subjected to characterization and determination of secondary structure and quality parameters(purity, integrity, fragmentation and aggregation of the antibody) by FT-IR and Ramanspectroscopy.Results: Based on the frequencies assigned for amide I, II and III bands, the studiedformulations contain highest percentage of β-sheet conformation (antiparallel and parallel) in thestructure, followedbyα-helices. Significant changesuponprocesses of conjugation and lyophilizationwerenotobservedincomparisonwithspectraofnativeantibody(Fig.1).Vibrationalspectroscopicdataallow detection of alterations in investigated protein models as well as rapid assessment ofconformational changes resulting from ligand binding, aggregation or macromolecular interactions.Appearanceof strong absorptionbandsbelow1620 cm–1 canbe correlatedwith aggregation-usuallyassociatedwiththeformationofnewstrongβ-sheetstructures.Accordingtotheobtainedspectra,itisimportantthatweobservedretainingofnativestructureoftheantibodyandnoobviousaggregation(thelowest band frequency detected was 1620 cm–1 with weak intensity) in all samples of lyophilizatedconjugates.

Page 121: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 122

Fig.1.ATR-IRspectraofrituximabandp-SCN-Bn-DOTA-rituximabinaformoflyophilizedpreparations.Conclusion:Weinvestigatedtheapplicationofvibrationalspectroscopyinassessmentofconformationalchanges during stress conditions, as lyophilization and non-radioactive labeling are, using differentrituximab-conjugates.Theresultsareagoodfoundationforfurtherradiolabelingstudiesofthelyophilizedformulationsforpossibletherapeuticapplication.

Page 122: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 123

PP61Serum determination of 99m Technetium radiolabeled Tirofiban using high performance liquidchromatographyintheanimalratmodelofintroducedacutedeepvenousthrombosisMarijaDarkovskaSerafimovska,1EmilijaJanevik-Ivanovska,1IckoDjorgoski,2ZoricaArsova-Sarafinovska,3,1TrajanBalkanov5,NenadUgresic31GoceDelcevUniversity,FacultyofMedicalSciences,Stip,RepublicofMacedonia,2UniversitySt.CyrilandMethodius,FacultyofNaturalScienceandMathematics,Skopje,RepublicofMacedonia,3InstituteforPublicHealthoftheRepublicofMacedonia,Skopje,RepublicofMacedonia,4UniversityofBelgrade,FacultyofPharmacy,Belgrade,Serbia5UniversitySt.CyrilandMethodius,FacultyofMedicine,Skopje,RepublicofMacedoniaIntroduction: The development of radiolabeled small peptide or peptidomimetic ligands can bindplateletsandtheirspecificexpressedreceptorhavebeensuggestedasanewapproachtodetecttheclotlocationand,moreessentially,todeterminetheageandmorphologyoftheevolvingthrombus.Thisnewapproach is focused on the use of a series of radiolabeled platelet GPIIb/IIIa receptor antagonists.TirofibanN-(butylsulfonyl)-4-O-(4-(4-piperidyl)-L-tyrosineisanon-peptidetyrosinederivate.Theaimofthestudywastointroduceradioactive-labeledtirofibanasaspecificimagingagentforacuteDVTandtodetermine the serum concentrations in normotensivemaleWister ratswith andwithout deep acutevenous thrombosis in order to confirm the animalmodel of acute venous thrombosis.Material andMethods:Venousthrombosiswasinducedbyligatureofthefemoralveininratswhosebloodwasmadehypercoagulableby intravenousadministrationof tissue thrombin. Thedeterminationof Tirofiban inserum was performed using validated HPL method with UV detection. Results: The labeling wasperformedwith technetium-99 in thepresenceofa stannous reducingagentand biodistributionandvisualizationofthelabeledmoleculewascarriedoutusingthesameexperimentalmodelofDVT. TheserumconcentrationsofTirofibanmeasuredafter5,15,30,45and60mininthegroupofratswithDVTwerelowerascomparedtotheserumconcentrationsofTirofibaninthecontrolgroupofrats.Duringthedetermination of the serum concentration planar imaging was performed at 30 and 60 min afterapplication.Sensitivityandspecificityweredeterminedusingtheratioof‘leftlegpositiveforDVT’to‘rightlegnegativeforDVT’.Theobtainedratiowas1.54after30minand5.04after60min.Thesevalueswereconsidered positive in the detection of acute DVT and corresponding to values of serum applicationobtainedfromthenormalratandexperimentalmodel.Conclusion:ThehighDVTuptakeandlowerserumconcentrationsofTirofibanmeasuredinthegroupofratswithDVTshowsthatradiolabeledtirofibanintheintroducedratmodelcanbeapromisingagentforimagingthedeepvenousthrombosis.

Page 123: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 124

PP62TheneedandbenefitsofestablishedradiopharmacyindevelopingAfricancountriesAschalewAlemu1,3,JoelMuneneMuchira2,3,DavidMwanzaWanjeh2,3,EmilijaJanevik-Ivanovska1FacultyofMedicine,AddisAbaba;Ethiopia2MinistryofHealth,Kenya3FacultyofMedicalSciences,GocedelcevUniversity,RepublicofMacedoniawellIntroduction:Theaimofourworkistopresentthecurrentstatus,andinthesametimetheneedandbenefitofestablishmentofRadiopharmacypracticeinEasternAfricausingtheperspectiveofKenyaandEthiopia.TheexactinformationonthestatusandsizeofRadiopharmacyunits,regionally,isstillnotclearlydocumented, as well human resources, education, suitable training and local demand for theRadiopharmacyandNuclearMedicineservices.TheRadiopharmacyPracticerequireswell-definedandcontrolledconditionstoavoidtheriskcontaminationwithmicrobes,pyrogensandparticulatematteraswell as cross contamination with other radiopharmaceuticals. Corresponding to the expectedimprovement,theprinciplesofGoodPracticesinalllevelsshouldbeplanned,introducedbytheplannedpriorityandstrictlyobservedintheproduction,preparation,testingandthepackagingofthefinalproductreadyforuse.Becausenon-communicablediseases(NCDs)areachallengeofepidemicproportionandthattheywillbethecommonestcauseofmortalityinAfricaby2030,earlydetectionandtreatmentcansignificantlyimprovepatientoutcomes.Radiopharmaceuticalsshouldhavebecomeofinvaluablebenefitbecausetheyofferthemostsensitivetoolsinthedetection,diagnosisandtargetedtherapyofNCDsandalso infectiousdiseases. In lightoftheforegoing,therefore,radiopharmacyhasahugeroletoplay inresponding to the unfolding new disease trends in sub-Saharan Africa. The preparation ofradiopharmaceuticals for human use requires that it is carried out in well-defined and controlledconditionstoavoidtheriskcontaminationwithmicrobes,pyrogensandparticulatematteraswellascrosscontaminationwithotherradiopharmaceuticals.Accordingly,principlesofGoodManufacturingPracticesandGoodLaboratoryPracticesshouldstrictlybeobservedintheproduction,preparation,testingandthepackagingofthefinalproductreadyforuse.Mostradiopharmaceuticalsareparenterallyadministeredand must therefore be prepared in such condition, and using such techniques and procedure, thatguaranteesterilityoftheproduct.Everyprocedureundertakenshouldbedoneaccordingtotheclearlydefinedprotocolandundertherightconditionssoastobuildqualityintotheproduct.Radiopharmacyprofessionalsshouldhaveadequatetraininginallaspectsofsterileproduction,qualitycontrol,GMP,GLP, radiation safety and radiochemistry to ensure that they are competent to handle radioactivematerialsandthattheycantakeresponsibilityfortheirlevelofpractice.Conclusions:WeareexpectingthatthegoodeducationandcontinuingtrainingofallprofessionalsworkinginRadiopharmacywillbethekeypointhowtocreatethenetworkofallprofessionalsandstateauthoritiesforestablishinganddevelopGoodRadiopharmacyPractice,qualifiedpersonnelandappropriateregulationaccordingtothelocalandinternationalparameterswillbestepforwardtohaveadvancedhealthcaresystemandconfidenceofthepatients.

Page 124: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 125

PP63UniversityMasterProgramofRadiopharmacy–stepforwardforGoodRadiopharmacyEducationEmilijaJanevik-Ivanovska1,ZoranZdravev2,UdayBhonsle3,OssoJúniorJoãoAlberto3,AdrianoDuatti4,BistraAngelovska1,ZdenkaStojanovska1,ZoricaArsovaSarafinovska1,DarkoBosnakovski1,DarinkaGorgieva-Ackova1,KatarinaSmilkov1,ElenaDrakalska1,MeeraVenkatesh3,RubinGulaboski11FacultyofMedicalSciences,GoceDelcevUniversity,Stip,RepublicofMacedonia,2FacultyofInformatics,GoceDelcevUniversity,Stip,RepublicofMacedonia,3RadioisotopeProductsandRadiationTechnologySection,DivisionofPhysicalandChemicalSciences,IAEA,Vienna,Austria4LaboratoryofRadiopharmaceuticalChemistry,DepartmentofChemicalandPharmaceuticalSciences,UniversityofFerrara,ItalyPurpose:Theimportanceofwell-establishedandrecognizededucationinRadiopharmacybecameaneedallaroundtheworldasresultofdifferentnationalregulation,differentsystemofeducationandmostlyofthelevelofneed,developmentandinvestmentinclinicalandresearchusageofradiopharmaceuticals.The substantial confusion and challenge in the same time is to define the appropriate and sufficientknowledge,understandingandcompetencescorrespondingtopositionofprofessionals intheworkingplace, including the type and level of formal education.Methods: The goal of the AcademicMasterprogramforRadiopharmacyinEnglish,withtherecognizedaccreditationfromtheNationalBodyin2014and recommendedby theMinistryofEducationandScience inour countryaccording to theBolognasystem with 120 ECTS credits is to give the opportunity for all students with finished academicundergraduate program (at least 240 ECTS) to follow it and to receive academic title Master ofRadiopharmacy.TheRadiopharmacyEducationProgramisorganizedaccordingtotheUniversitymodelincludingObligatoryandOptionalTheoreticalCourses,ObligatoryPracticesandMasterThesisontheendofthesecondyearusingtheUniversitylaboratoryofRadiopharmacy,thatisunderISOaccreditation,newPET facilities and all other corresponding facilities available in the university and in the country. Theprogramusee-learningplatformfromtheUniversityandIAEAcontributionandcollaborationrelatedtotheeducationandtrainingofthestudentsfromdevelopingcountries.TheresultofthatcollaborationisalreadyinscribedstudentsfromKenyaandEthyopia.Results:Thesyllabusincludeknowledgeandskillsinthree categories:1. Specific knowledgeand skills:DesignofRadiopharmacy facilitiesandQAprogram,Production and synthesis of radionuclides and radiopharmaceuticals, Quality control ofradiopharmaceuticals 2. Basic knowledge and skills: Leadership and collaboration, Communication,Negotiations, Analytical and critical thinking skills including creativity and ethical considerations,Pharmaceuticalandchemistryknowledge 3.FundamentalsofRadiopharmacy:Generalmodelsof thearea,Keyspecializationswithinthefield,EvaluationofperformancewithintheareaConclusions:TheprogramcreatesacademicstaffabletoworkinallspheresofthemodernRadiopharmacy,conventionalhospitalRadiopharmacyandwith theoptionofcontinuing theireducation insomePhDprogram.TheprogramcanbealsoabasicplatformforthemoreadvancedcoursesavailablefortheprofessionalsfromtheEuropeanandworldrecognizedassociations.

Page 125: 18th European Symposium on Radiopharmacy and

18th European Symposium

on Radiopharmacy and Radiopharmaceuticals

April 07-10, 2016 � Salzburg, Austria

Page 126

PP64Synthesisandpreclinicalvalidationsofanovel18F-labelledRGDpeptidepreparedbyligationofa2-cyanobenzothiazolewith1,2-aminothioltoimageangiogenesis.DidierJ.Colin1,JamesA.H.Inkster2,StéphaneGermain1andYannSeimbille3.1MicroPET/SPECT/CTImagingLaboratory,CentreforBioMedicalImaging(CIBM),UniversityHospitalofGeneva,Geneva,Switzerland.2CyclotonUnit,UniversityHospitalofGeneva,Geneva,Switzerland.3LifeSciencesDivision,TRIUMF,Vancouver,Canada.Introduction: The RGD-recognising αVβ3, αVβ5 and α5β1 integrins are known to be involved incarcinogenesisandareoverexpressedinmanytypesoftumourscomparedtohealthytissues;therebythey have been selected as promising therapeutic targets. Positron emission tomography (PET) isprovidingauniquenon-invasivescreeningassaytodiscriminatewhichpatientismorepronetobenefitfrom antiangiogenic therapies, and extensive research has been carried out to develop a clinicalradiopharmaceutical that bind specifically to integrin receptors. However, despite promising clinicalresults,onestillneedstoidentifyanintegrinradioligandthatcouldbeeasilydeployed.Wehereinreportthesynthesisofa18F-labelledRGDpeptide,namely[18F]FPyPEGCBT-c(RGDfK),bycondensationofa2-cyanobenzothiazoleprostheticgrouptoacysteine-modifiedcyclicRGDpeptideandthecharacterisationof its preclinical biologic properties. Materials & Methods: A novel bifunctional synthon([18F]FPyPEGCBT)hasbeendevelopedtoaccommodate:i)anefficient[18F]F-incorporationandii)amildconjugationtobiomolecules.Then,[18F]FPyPEGCBThasbeenconjugatedtoacyclicRGDpeptideknownfor its high binding affinity and selectivity for integrin αVβ3. The in vitro binding characteristics ofFPyPEGCBT-c(RGDfK)wereanalysedbystandardbindingassay inU-87MGandSKOV-3cancermodelsand its selectivity towards integrins by siRNA depletions. Its preclinical potentialwas studied inmicebearing subcutaneous tumours by ex vivo biodistribution studies and in vivo microPET/CT imaging.Results:[18F]FPyPEGCBTwaspreparedfromitscorresponding2-trimethylammoniumtriflateprecursorandpurifiedbysolid-phaseextraction.Ligationof[18F]FPyPEGCBTtothecysteine-modifiedcyclo-(RGDfK)peptidewas carriedout inDMFat 43oC. The18F-peptidewasobtained, afterHPLCpurification andreformulation,in124–132minfromtheendofbombardmentwithafinaldecay-correctedyieldof7%±1.Invitro,FPyPEGCBT-c(RGDfK)boundefficientlytoRGD-recognisingintegrinsascomparedtoacontrolc(RGDfV)peptide(IC50=30.8×10-7Mvs.6.0×10-7M).Invivo,thisnewtracerdemonstratedspecifictumouruptakewith%ID/gof2.9and2.4inU-87MGandSKOV-3tumours1hafterinjection.Tumour-to-muscleratiosof4after1hofuptakeallowedgoodvisualisationofthetumours.However,unfavourablebackground accumulation and high hepatobiliary excretion were noticed. Discussion/Conclusion:[18F]FPyPEGCBT-c(RGDfK)specificallydetectstumoursexpressingRGD-recognisingintegrinreceptorsinpreclinicalstudies.Furtheroptimisationofthisradioligandmayyieldcandidateswithimprovedimagingpropertiesandwouldwarrantthefurtheruseofthisefficientlabellingtechniqueforalternativetargetingvectors.References :1.Jeon J, Shen B, Xiong L,Miao Z, Lee KH, Rao J, Chin FT, [2012], BioconjugateChemistry23:1902–1908.2.SuX,ChengK,JeonJ,ShenB,VenturinGT,HuX,RaoJ,ChinFT,WuH,ChengZ,[2014],MolecularPharmaceutics11:3947-3956.�3.InksterJAH,ColinDJ,SeimbilleY,[2015],Organic&BiomolecularChemistry,13:3667-3676.