18 chw pd2 template si

42
S1 Supporting Information Templating Metastable Pd2 Carboxylate Aggregates Chen-Hao Wang, a Wen-Yang Gao, a Qing Ma, b and David C. Powers, a, * a Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States. b DND CAT – Synchrotron Research Center, Northwestern University, Evanston, Illinois 60208, United States Email: [email protected] Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 16-May-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 18 CHW Pd2 template SI

S1

SupportingInformation

TemplatingMetastablePd2CarboxylateAggregatesChen-HaoWang,aWen-YangGao,aQingMa,bandDavidC.Powers,a,*

aDepartmentofChemistry,TexasA&MUniversity,CollegeStation,Texas77843,UnitedStates.bDNDCAT –SynchrotronResearchCenter,NorthwesternUniversity,Evanston,Illinois60208,

UnitedStates

Email:[email protected]

Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2018

Page 2: 18 CHW Pd2 template SI

S2

TableofContents

A.GeneralConsiderations S3B.SynthesisandCharacterization S5C.SupportingData S15 C.1.CoordinatesofOptimizedStructures S15 C.2.OptimizationofTransmetalationChemistry S20 C.3.CharacterizationofExchangedMaterials S22 C.4.Single-CrystalX-RayDiffraction S28 C.5EXAFSAnalysis S30 C.6.AdditionalData S38D.References S42

Page 3: 18 CHW Pd2 template SI

S3

A. GeneralConsiderationsMaterials Solvents were obtained as ACS reagent grade. Unless otherwise noted, allchemicals and solvents were used as received. Ethyl acetate, magnesium sulfate, anddimethylsulfoxidewereobtainedfromEMDMillipore.Thionylchloride,potassiumiodide,triphenylphosphine, triethylamine, hydrazine monohydrate, dimethyl-5-hydroxyisophthalate,and5-aminoisophthalicacidwereobtainedfromAlfaAesar.Diethylether (Et2O), bis(triphenylphosphine)palladium(II) dichloride, 5-nitroisophthalic acid,1,3,5-benzenetricarbonyl trichloride, copper(II) nitrate trihydrate, tetrafluoroboric acidsolution (48%w/w), glucose, methanol, tetrahydrofuran (THF),N-methyl-2-pyrrolidone(NMP),peraceticacidsolution(39%inaceticacid)andhexaneswereobtainedfromSigmaAldrich.Silicagel(0.060–0.200mm,60Åforcolumnchromatography),benzene,andN,N-dimethylformamide (DMF) were obtained from Acros Organics. Palladium(II) acetate,palladium(II)chloride,zincnitratehexahydrate,andcopper(I)iodidewereobtainedfromStrem Chemicals. (Trimethylsilyl)acetylene was obtained from Chem Impex.Diisopropylamine, glacial acetic acid, cesium fluoride, 1,3,5-tris(bromomethyl)benzene,andtribromobenzenewereobtainedfromBeantownChemical.Dichloromethane(CH2Cl2),acetonitrile (MeCN), potassium carbonate, and chloroform (CHCl3) were obtained fromFisher Scientific. Ethanol was obtained from Koptec. Potassium hydroxide and sodiumhydroxidewere obtained fromBDHAnalytical Chemicals.N,N-dimethylacetamide (DMA)wasobtainedfromTCI.SodiumnitriteandhydrochloricacidwereobtainedfromMacronChemicals.SodiumbicarbonatewasobtainedfromAquaSolutions.Pd(PPh3)41and2-tert-butylsulfonyliodosylbenzene(S11)werepreparedaccordingtoliteraturemethods.2NMRsolventswaspurchasedfromCambridgeIsotopeLaboratoriesandwereusedasreceived.UHP-grade N2, CO2, Ar, and He, used in gas adsorption and thermogravimetricmeasurements,wereobtainedfromAirgas.Allreactionswerecarriedoutunderambientatmosphereunlessotherwisenoted.CharacterizationDetailsNMRspectrawererecordedonMercury300at299.92MHzfor1Handat74.98MHzfor13Cacquisitionsandwerereferencedagainstsolventsignals:CDCl3(7.26ppm,1H;77.16ppm,13C)andDMSO-d6(2.50ppm,1H).31HNMRdataarereportedasfollows: chemical shift (δ, ppm), (multiplicity: s (singlet), d (doublet), t (triplet), m(multiplet), br (broad), integration). IR spectra were recorded on ATI Mattson GenesisSeriesFTIRwithATRspectrometer.Spectrawereblankedagainstairandweredeterminedas the average of 64 scans. IR data are reported as follows: wavenumber (cm-1), (peakintensity:s,strong;m,medium;w,weak).Elementalanalyseswere�performedbyAtlanticMicrolab (Norcross,GA).TGA-MSanalyseswereperformedat a temperature rampof20°C/minonMettler-ToledoTGA/DSC1withanattachedPfeifferVacuumThermoStarMassSpectrometerunderArflow.X-rayAbsorptionDetailsX-rayabsorptionspectroscopy(XAS)datawerecollectedatthePdK-edge(∼24.3keV)usingthebendingmagnetbeamlineoftheDuPont-Northwestern-DowCollaborative Access Team (5-BM-D) at the Advanced Photon Source of Argonne NationalLaboratory.X-rayenergyscanswereperformedusingaSi(111)double-crystalmonochromatordetunedto65%ofthemaximumintensitytorejectharmonics.Duringthesemeasurements,theAPSstorageringwasruninthetop-upmodewiththeelectronbeamcurrentat102mA.The

Page 4: 18 CHW Pd2 template SI

S4

vertical size of the beam entering the monochromator was 0.3 mm for maximum energyresolution.Theverticalbeamsizethatirradiatedthesampleswas0.6mmduetonaturalbeamdivergence. The horizontal beam size was set to 10mm. Samples were prepared by finelydispersing powderedmaterial on Scotch® tape.The XAS datawere collected in fluorescencemode using three identical ionization chambers (Oxford Danfysik) operating in their linearregimes.Thefirstionchamber(I0)isusedtomonitortheincidentbeamintensity.Thesamplesofinterestwereplacedinbetweenthefirstandsecondionchambers(IT).ARumetalfoilwasplaced in between the second and third ion chambers (IT2) for energy verification. Eachionizationchamberwasfilledwithgasmixturesthatabsorbedgivenpercentagesoftheincidentbeam in order to optimize signal-to-noise ratio, i.e., 10% and 25% absorption in I0 and ITrespectively(94%N2/6%Arinbothchambers),and65%absorptioninIT2(100%Ar).XASdatawereanalyzedusingDemeter0.9.26.PowderX-rayDiffractionDetailsPowderX-raydiffraction(PXRD)measurementswerecarriedoutonaBrukerD8AdvanceEcoX-raydiffractometer(CuKα,1.5418Å;40kV,25mA) fittedwith LynxEye detector. The angular rangewasmeasured from5.00 to40.00°(2θ)withstepsof0.020°andameasurementtimeof0.5secondperstep.SimulatedPXRDpatternswerecalculatedwithMercury3.9.Gas Adsorption DetailsGas adsorption isotherms for pressures in the range 0−1.0 barweremeasuredvolumetricallyusingaMicromeriticsASAP2020instrument.Samplesweretransferred under an N2 atmosphere to pre-weighed analysis tubes. The samples wereevacuated at room temperature until the outgas rate was <10 μbar/min and furthermaintained for16h.Then the tubewasweighed todetermine themassof theactivatedsample. The tube was transferred to the analysis port of the instrument. UHP-grade(99.999%purity)N2andHewereusedforalladsorptionmeasurements.Forallisotherms,both warm and cold free-space measurements were carried out with He; N2 isothermsweremeasuredat77K.Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Details ICP-MSmeasurementswerecarriedoutonaPerkinElmerNexION300DQuadrupleinpulsemodewithASX-520AutoSampler.ThecollecteddatawereanalyzedbyNexIonsoftwareVersion1.3.108Pd,64Znand63Cuconcentrationsweremeasuredfivetimestoyieldtheaveragewith103Rh as the internal standard. Calibration curves were made by five differentconcentrationsbetween10and200ppbor5and100ppb(forleachingexperiment)withR2 > 0.9995; standardswere prepared by dilution of analytical standards obtained fromBDHChemicals.Analysisof ion-metathesissampleswasaccomplishedbywashingM3btei(2.0mg)withMeCN(1.0mL×3)andCHCl3(1.0mL×3).Thesolidsweredigestedinconc.HNO3bysonicationanddilutedwithultrapurewatertomake2%HNO3solution.

Page 5: 18 CHW Pd2 template SI

S5

B. SynthesisandCharacterizationSynthesisofDiethyl5-Aminoisophthalate(S1)

CompoundS1waspreparedaccordingtothefollowingmodificationofliteraturemethods.4A 500-mL round-bottom flask was charged with 5-aminoisophthalic acid (10.0 g, 55.2mmol,1.00equiv)andEtOH(100mL).Thereactionmixturewascooledto0°CandSOCl2(12.0mL,165mmol,3.00equiv)wasaddeddropwisetothereactionvessel.Theresultingmixturewasheatedatrefluxfor5h.VolatileswereremovedinvacuoandEtOAc(100mL)wasadded to the residue.A saturatedaqueous solutionofNaHCO3 (100mL)wasaddedandtheresultingsuspensionwasstirreduntiltheprecipitatedissolved.TheorganiclayerwasseparatedandtheaqueouslayerwasextractedwithEtOAc(30mL×3).Thecombinedorganic layersweredriedoverNa2SO4. Solventwasremoved invacuo toafford12.0goftitlecompoundasawhitesolid(92%yield).1HNMR(δ,23°C,CDCl3):8.06(t,J=1.4Hz,1H),7.52(d,J=1.4Hz,2H),4.37(q,J=7.1Hz,4H),3.91(bs,2H),1.40(t,J=7.1Hz,6H).IR(cm-1):3053(w),2918(w),1639(w),1599(m),1464(s),1395(s),1175(m),1070(m),1026(m),845(m),685(s). Recorded1HNMRdatawas identical to thatreportedintheliterature.4SynthesisofDiethyl5-Iodoisophthalate(S2)

CompoundS2waspreparedaccordingtothefollowingmodificationofliteraturemethods.4A 500-mL round-bottom flaskwas chargedwith compoundS1 (10.0 g, 42.2mmol, 1.00equiv)and2MHCl(45.0mL,90.0mmol,2.14equiv).Sodiumnitrite(3.50g,50.7mmol,1.20equiv)inH2O(30mL)wasaddeddropwiseat0°C.Afterstirringat0°Cfor45min,asolutionofpotassiumiodide(10.5g,63.3mmol,1.50equiv) inH2O(100mL)wasaddeddropwise.Dichloromethane(150mL)wasaddedtothedark-redmixtureandtheresultingmixturewas stirred at 23 °C for 4 h. The layerswere separated, the aqueous layerwasextractedwithdichloromethane(30mL×4),andthecombinedorganiclayersweredriedoverMgSO4. Solventwas removed invacuoand the orange residuewaspurified by SiO2chromatography (hexanes/ethyl acetate = 9/1) to afford 10.2 g of title compound as awhitesolid(70%yield).1HNMR(δ,23°C,CDCl3):8.63(t,J=1.4Hz,1H),8.53(d,J=1.4Hz,2H),4.41(q,J=7.1Hz,4H),1.41(t,J=7.1Hz,6H).Recorded1HNMRdatawasidenticaltothatreportedintheliterature.4

NH2

CO2EtEtO2C

NH2

CO2HHO2C

SOCl2EtOH

reflux, 92%

S1

I

CO2EtEtO2C

NH2

CO2EtEtO2C

1) 2 M HCl, NaNO20 °C

2) KI, CH2Cl223 °C

70% (two steps)S2S1

Page 6: 18 CHW Pd2 template SI

S6

SynthesisofDiethyl5-((Trimethylsilyl)ethynyl)isophthalate(S3)

CompoundS3waspreparedaccordingtothefollowingmodificationofliteraturemethods.5�A250-mLSchlenk flaskwas chargedwith compoundS2 (9.00g,25.9mmol,1.00equiv),tetrakis(triphenylphosphine)palladium(0)(0.900g,0.779mmol,0.0301equiv),copper(I)iodide(0.300g,1.58mmol,0.0610equiv),THF(45.0mL),anddiisopropylamine(45.0mL).The resulting mixture was degassed by three freeze-pump-thaw cycles and was thencooledto0°C.A25-mLSchlenkflaskwaschargedwith(trimethylsilyl)acetylene(9.90mL,71.5mmol,2.76equiv).The(trimethylsilyl)acetylenewasdegassedbythreefreeze-pump-thawcyclesandwas transferred to the reactionmixture (0 °C)via cannula.Thereactionmixturewasallowedtowarmto23°Catwhichtemperatureitwasstirredfor15h.Atthistime, solids were removed by filtration and were washed with hexanes (90 mL). Thefiltrate was concentrated to give dark-yellow oil, which was purified by SiO2chromatography(hexanes/ethylacetate=8/2)toafford7.01goftitlecompoundasalight-yellowsolid(85%yield).1HNMR(δ,23°C,CDCl3):8.60(t,J=1.7Hz,1H),8.28(d,J=1.7Hz,2H),4.41(q,J=7.1Hz,4H),1.42(t,J=7.1Hz,6H),0.27(s,9H).Recorded1HNMRdatawasidenticaltothatreportedintheliterature.4Synthesis of Hexaethyl 5,5',5''-(Benzene-1,3,5-triyltris(ethyne-2,1-diyl))-triisophthalate(S4)

Compound S4 was prepared according to the following modification of literaturemethods.5-6�A 100-mL round-bottom flaskwas chargedwith compoundS3 (2.07 g, 6.52mmol,1.00equiv),THF(25mL),andEtOH(12.5mL).Cesiumfluoride(1.00g,6.58mmol,1.01equiv)wasaddedtothereactionmixtureandthereactionwasstirredat23°Cfor1h.At the time, the solidswere removedby filtrationandwashedwithCH2Cl2 (10mL).Thefiltratewas concentrated invacuo in a100-mLSchlenk flask.To thisreactionvesselwasadded tribromobenzene (0.430 g, 1.37 mmol, 0.208 equiv),

CO2EtEtO2C

I

CO2EtEtO2C Pd(PPh3)4 (3.0 mol%) CuI (6.1 mol%)

THF, DIPA85%

Si(Me)3

TMS H

S2 S3

CO2EtEtO2C

S3

Si(Me)3

1) CsF, THF, EtOH23 °C, 1 h

2) tribromobenzenePd(PPh3)2Cl2, PPh3CuI, triethylamine

80 °C, 16 h77% (two steps)

CO2EtEtO2C

EtO2C

CO2Et CO2Et

CO2Et

S4

Page 7: 18 CHW Pd2 template SI

S7

bis(triphenylphosphine)palladium(II) dichloride (0.100 g, 0.142 mmol, 0.0216 equiv),triphenylphosphine(0.0765g,0.292mmol,0.0448equiv),andtriethylamine(50mL).Theresultingmixturewas degassed by three freeze-pump-thaw cycles before CuI (0.0550 g,0.289 mmol, 0.0443 equiv) was added. The reaction vessel was sealed under an N2atmosphereandheatedtorefluxfor16h.Atthistime,volatileswereremovedinvacuo,thedark-yellowresiduewastakenupinchloroform(100mL)andwashedwithwater(75mL).Thelayerswereseparated,theaqueouslayerwasextractedwithchloroform(30mL×4),the combinedorganic layerwasdriedoverMgSO4, and solventwasremoved invacuotoafford dark-yellow solids. The crude solids were purified by SiO2 chromatography(hexanes/ethyl acetate=8/2) toafford0.851gof title compoundasa light-yellowsolid(77%yieldbasedontribromobenzene).1HNMR(δ,23°C,CDCl3):8.66(t, J=1.6Hz,3H),8.38 (d, J = 1.6Hz, 6H), 7.74 (s, 3H), 4.44 (q, J = 7.1Hz, 12H), 1.44 (t, J = 7.1Hz, 18H).Recorded1HNMRdatawasidenticaltothatreportedintheliterature.4Synthesis of 5,5',5''-(Benzene-1,3,5-triyltris(ethyne-2,1-diyl))triisophthalic Acid(H6btei)

H6bteiwaspreparedaccordingtothefollowingmodificationofliteraturemethods.6A100-mLround-bottomflaskwaschargedwithcompoundS4(0.600g,0.740mmol,1.00equiv),THF(12mL),and1MKOHsolution(18mL).Theresultingsolutionwasheatedtorefluxfor4h.Afterthistime,12MHClwasaddeduntilpH=1andthereactionmixturewasstirredat 23 °C for 16 h. Solidswere collected andwashedwith H2O to afford 0.418 g of titlecompoundasanambersolid(88%yield).1HNMR(δ,23°C,d6-DMSO):13.64(bs,6H),8.48(t,J=1.6Hz,3H),8.32(d,J=1.6Hz,6H),8.01(s,3H).Recorded1HNMRdatawasidenticaltothatreportedintheliterature.6

CO2EtEtO2C

EtO2C

CO2Et CO2Et

CO2Et

1) KOH, THF, H2O86 °C, 4 h

2) HCl, 23 °C, 16 h88% (two steps)

CO2HHO2C

HO2C

CO2H CO2H

CO2H

H6bteiS4

Page 8: 18 CHW Pd2 template SI

S8

SynthesisofH4abtc(S5)

CompoundS5 (H4abtc)waspreparedaccordingto literaturemethods.7A250-mLround-bottom flask was charged with 5-nitroisophthalic acid (4.75 g, 22.5 mmol, 1.00 equiv),NaOH(12.5g,313mmol,13.9equiv),andH2O(63mL).Thereactionmixturewasstirredat60 °C for 1 h. A solution of glucose (25.0 g, 139mol, 6.18 equiv) in H2O (37 mL) waspreparedat60°Candwasslowlyaddedtothereactionmixture.Thebrownmixturewascooledto23°Candairwasbubbledthroughthereactionmixturefor16h.Atthistime,thereactionmixturewascooledto0°C,andsolidswereisolatedbyfiltration.ThesolidsweredissolvedinH2O(50mL)andtheaqueoussolutionwasacidifiedwithconc.HCltopH<1.The resultingsolidswere isolatedby filtration,washedwithH2O, anddriedat120 °C toafford3.09goftitlecompoundasanorangesolid(77%yield).1HNMR(δ,23°C,d6-DMSO):8.64 (s, 2H), 8.63 (s, 4H). Recorded 1H NMR data was identical to that reported in theliterature.8Synthesis of 5,5',5''-((Benzene-1,3,5-tricarbonyl)tris(azanediyl))triisophthalic Acid(S6)

CompoundS6waspreparedaccordingtothefollowingmodificationofliteraturemethods.9A 250-mL round-bottom flask was charged with 5-aminoisophthalic acid (2.08 g, 11.5mmol, 3.05 equiv), triethylamine (1.68 mL, 12.1 mmol, 3.21 equiv), and DMA (25 mL)under an N2 atmosphere. 1,3,5-Benzenetricarbonyl trichloride (1.00 g, 3.77 mmol, 1.00equiv)wasaddeddropwiseandthereactionmixturewasstirredat23°Cfor16h.Atthistime,H2O(150mL)wasaddedandthesolidswerecollectedbyfiltrationandwashedwithacetone,H2O,MeOH,andEt2O to afford2.42gof title compoundasayellowsolid (92%yield).1HNMR(δ,23°C,d6-DMSO):13.33(bs,6H),8.84(s,3H),8.73(d,J=1.4Hz,6H),8.26(t,J=1.4Hz,3H).Recorded1HNMRdatawasidenticaltothatreportedintheliterature.9

NO2

CO2HHO2CN

N

CO2H

CO2H

HO2C

HO2C

NaOHglucose, H2O

23 °C, 16 h77%

H4abtc (S5)

O Cl

O

Cl

Cl

O

NEt3, DMA

23 °C, 16 h92%

NH2

CO2HHO2C

O

HN

O

HN

O

NH

CO2H

CO2H

CO2HHO2C

CO2H

HO2C

S6

Page 9: 18 CHW Pd2 template SI

S9

Synthesis of 5,5',5''-((Benzene-1,3,5-triyltris(methylene))tris(oxy))triisophthalicAcid(S7)

Compound S7 was prepared according to the following modification of literaturemethods.10 A 1-L round-bottom flask was charged with dimethyl-5-hydroxyisophthalate(6.35g,30.2mmol,7.49equiv),potassiumcarbonate(13.0g,94.1mmol,23.4equiv),andDMF(125mL)andthereactionmixturewasheatedat100°C for1h.Atthis time,1,3,5-tris(bromomethyl)benzene(1.44g,4.03mmol,1.00equiv)andDMF(5mL)wasaddedandthereactionmixturewasheatedto100°Cfor1h.Atthistime,H2O(400mL)wasaddedtothereactionmixtureandtheresultingwhitesolidswereisolatedbyfiltrationandwashedwithcoldwater.ThesolidsweretakenupinMeOH(125mL)andasodiumhydroxidewasaddedasa2.0Maqueoussolution(30.0mL,60.0mmol,14.9equiv).Thereactionmixturewasheatedto50°Cfor12h.Thereactionmixturewascooledtothemixturewasacidifiedbyconc.HCluntilpH<1.ThesolidswerefilteredandwashedwithcoldH2Otoafford2.25gofthetitlecompound(85%yield).1HNMR(δ,23°C,d6-DMSO):8.10(s,3H),7.75(s,6H),7.60 (s, 3H), 5.28 (s, 6H). Recorded 1H NMR data was identical to that reported in theliterature.10SynthesisofPdZn(OAc)4·H2O

PdZn(OAc)4·H2Owaspreparedaccording to literaturemethods.11A10-mLround-bottomflask was charged with Pd(OAc)2 (0.100 g, 0.445 mmol, 1.00 equiv), zinc acetatehexahydrate(0.135g,0.454mmol,1.02equiv),andglacialaceticacid(3mL).Theresultingmixturewasheatedtorefluxfor1h.Afterthistime,thereactionmixturewasallowedtostandat23°Cfor16handbrowncrystalsformed.Solidswerecollectedandwashedwithcold benzene and hexanes to afford 0.087 g of title compound as yellow crystals (46%yield).ThePXRDpatternobtainedforPdZn(OAc)4·H2Omatchedthepatternsimulatedforsingle-crystalX-raydiffraction(FigureS13).

OH

OMeO

OOMe

1) K2CO3, DMF, 100 °C, 1 h2) 1,3,5-tris(bromomethyl)benzene

DMF, 100 °C, 1 h

3) 2.5 M NaOH, MeOH 50 °C, 12 h

85% (three steps)

O

O

O

CO2HHO2C

CO2H

CO2H

CO2H

HO2C

S7

Pd(OAc)2

Zn(NO3)2独6H2O

AcOHreflux, 1h, 46%

O

OO

O

Zn

Pd

O

OO

O

MeMe

Me

Me

OH2

Page 10: 18 CHW Pd2 template SI

S10

SynthesisofCu3btc2

Cu3btc2waspreparedaccordingtoliteraturemethods.12A150-mLthick-walledvesselwaschargedwithH3btc (1.50g,7.14mmol,1.00equiv), copper(II)nitrate trihydrate (3.00g,12.4mmol, 1.74 equiv), DMF (25mL), EtOH (25mL), andwater (25mL). The resultingmixture was sonicated until a homogeneous solution was obtained and the reactionsolutionwas allowed to stand at 85 °C for 1 d. At this time, the hotmother liquorwasdecanted and the obtained crystalline solids were washed with DMF (20 mL × 2) anddichloromethane(20mL×2).Thesolidsweresoakedindichloromethanefor6dandthesolventwasrefreshedtwotimesperday.Solventwasremovedinvacuotoafford2.53gofthe title compound as a purple solid. The PXRD pattern of synthesized Cu3btc2 wasconsistentwithreporteddata.12SynthesisofZn3btc2

Zn3btc2waspreparedaccordingtoliteraturemethods.13A48-mLthick-walledvesselwaschargedwith H3btc (0.316 g, 1.50mmol, 1.00 equiv), zinc nitrate hexahydrate (0.682 g,2.29mmol, 1.53 equiv), and DMF (40mL). The resultingmixturewas sonicated until ahomogeneoussolutionwasobtainedandthereactionsolutionwasallowedtostandat85°C for16h.At this time, thereactionwascooledto23°Candsolventwasdecanted.ThecrystallinesolidswerewashedwithDMF(20mL×2)toafford74.0mgoftitlecompoundas awhite solid. The PXRDpattern of synthesized Zn3btc2was consistentwith reporteddata.13SynthesisofCu3btei

Cu3bteiwas prepared according to literaturemethods.6 A 1-dramvialwas chargedwithH6btei (10.0mg,0.0156mmol,1.00equiv), copper(II)nitrate trihydrate (30.0mg,0.124mmol,7.95equiv),onedropofHBF4solution(48%w/w),andDMF(1.5mL).Thereactionmixture was sonicated until a homogeneous solution was obtained and the reactionsolutionwasallowedtostandat75°Cfor3d.Atthistime,thereactionwascooledto23°Candsolventwasdecanted.The crystallinesolidswerewashedwithDMF (0.5mL×3) toafford19.2mgoftitlecompoundasabluesolid.ThePXRDpatternofsynthesizedCu3bteiwasconsistentwithreportedliteraturedata.6

Cu(NO3)2 3H2O

CO2H

CO2HHO2C

H3btc

Cu3btc2DMF/EtOH/H2O85 °C, 1 d

Zn(NO3)2 6H2O

CO2H

CO2HHO2C

H3btc

Zn3btc2DMF, 85 °C, 16 h

Cu(NO3)2 3H2OH6btei Cu3btei

HBF4, DMF75 °C, 3 d

Page 11: 18 CHW Pd2 template SI

S11

SynthesisofZn2abtc(S8)

Zn2abtcwas prepared according to the followingmodification of literaturemethods.14 AvialwaschargedwithH4abtc(35.8mg,0.100mmol,1.00equiv),zincnitratehexahydrate(89.2mg,0.300mmol,3.00equiv),andDMF(2.5mL).Thereactionmixturewassonicateduntilahomogeneoussolutionwasobtainedandthereactionsolutionwasallowedtostandat100°Cfor1d.Atthistime,thereactionwascooledto23°Candsolventwasdecanted.ThecrystallinesolidswerewashedwithDMF(1.0mL×3)toaffordtitlecompoundasanorange solid. The PXRD pattern of synthesized Zn2abtc was consistent with reportedliteraturedata.14SynthesisofZn3(S6)(S9)

CompoundS9 was prepared according to literaturemethods.15 A vial was chargedwithcompoundS6(50.0mg,0.0715mmol,1.00equiv),zincnitratehexahydrate(170mg,0.571mmol, 7.99 equiv), and DMA (3.5 mL). The reaction mixture was sonicated until ahomogeneoussolutionwasobtainedandthereactionsolutionwasallowedtostandat85°C for3d.At this time, the reactionwas cooled to23 °Candsolventwasdecanted.Thecrystalline solids were washed with DMA (1.0 mL × 3) to afford title compound as acolorlesssolid.ThePXRDpatternofsynthesizedS9wasconsistentwithreportedliteraturedata.15SynthesisofZn3(S7)(S10)

Compound S10 was prepared according to the following modification of literaturemethods.10AvialwaschargedwithcompoundS7(18.0mg,0.0273mmol,1.00equiv),zincnitratehexahydrate(12.0mg,0.0403mmol,1.48equiv),NMP(1.0mL),andDMF(1.0mL).The reactionmixturewas sonicateduntil a homogeneous solutionwas obtained and thereactionsolutionwasallowedtostandat85°Cfor12handthen105°Cfor24h.Atthistime, the reactionwas cooled to 23 °C and solventwas decanted. The crystalline solidswerewashedwithDMF(1.0mL×3)toaffordtitlecompoundasacolorlesssolid.ThePXRDpatternofsynthesizedS10wasconsistentwithreportedliteraturedata.10

Zn(NO3)2 6H2OH4abtc Zn2abtc

DMF, 100 °C, 1 dS8

Zn(NO3)2 6H2OS6 S9

DMA, 85 °C, 3 d

Zn(NO3)2 6H2OS7 S10

DMF, NMP85 °C, 12 h

105 °C, 24 h

Page 12: 18 CHW Pd2 template SI

S12

SynthesisofZn3btei

MicrocrystallineZn3bteiwaspreparedaccordingtothefollowingmodificationofliteraturemethods.17A1-dramvialwaschargedwithH6btei(8.00mg,0.0125mmol,1.00equiv),zincnitratehexahydrate(12.0mg,0.0403mmol,3.22equiv),andDMF(0.5mL).Thereactionmixture was sonicated until a homogeneous solution was obtained and the reactionsolutionwasallowedtostandat75°Cfor2d.Atthistime,thereactionwascooledto23°Candsolventwasdecanted.The crystallinesolidswerewashedwithDMF (0.5mL×3) toafford 7.90 mg of title compound as an amber solid. The PXRD pattern of synthesizedZn3bteiwasconsistentwithreportedliteraturedata.16

Crystalline Zn3btei was prepared according to literature methods.6 A 2-dram vial wascharged with H6btei (10.0mg, 0.0156mmol, 1.00 equiv), zinc bromide (30.0 mg, 0.133mmol, 8.53 equiv), and DMF (1.5 mL). The reaction mixture was sonicated until ahomogeneoussolutionwasobtainedandthereactionsolutionwasallowedtostandat75°C for3d.At this time, the reactionwas cooled to23 °Candsolventwasdecanted.ThecrystallinesolidswerewashedwithDMF(1.5mL×3)toafford7.40mgoftitlecompoundasambersolids.ElementalAnalysis(EA)for[Zn3(btei)(H2O)9(C3H7NO)1.7(CHCl3)1.35]:calcd.C,39.83;H,3.41;N,1.86;Cl,11.22; foundC,39.25;H,2.78;N,1.86;Cl,11.14.ThePXRDpatternofsynthesizedZn3bteiwasconsistentwithreportedliteraturedata.6TransmetalationofZn3btei

Zn3bteiwassoakedinCHCl3for3dor28dandthesolventwasrefreshedthreetimesperday.Pd(OAc)2waspurifiedpriortouse.Pd(OAc)2wasdissolvedinCHCl3,filteredthroughCelite, andCHCl3was removedundervacuum.A0.5-dramvialwas chargedwithZn3btei(7.4mg), Pd(OAc)2 (2mg), and chloroform (0.5mL) and the Pd solutionwas refreshedweekly.ElementalAnalysis(EA) for[Pd2.25Zn0.75(btei)(H2O)13(C3H7NO)0.6(CHCl3)0.4]:calcd.C,38.18;H,3.57;N,0.70;Cl,3.57;foundC,37.03;H,2.64;N,0.71;Cl,3.47.Transmetalation reactions between other MOFs and Pd(OAc)2 were conducted usingsimilarprocedures.

CO2HHO2C

HO2C

CO2H CO2H

CO2H

H6btei

Zn(NO3)2 • 6H2O, DMF, 75 °C

ORZnBr2, DMF, 75 °C

Zn3btei

Zn3btei Pd3bteiPd(OAc)2

CHCl3, 23 °C

Page 13: 18 CHW Pd2 template SI

S13

Back-ExchangeofPd3bteiwithZn(II)

A 0.5-dramvialwas chargedwith Pd3btei (7.40mg), zincnitrate hexahydrate (50.0mg)andMeCN(0.5mL)andthemixturewasallowedtostandfor7d.DigestionofPd3bteiwithAcOHA1-dramvialwaschargedwithPd3btei(5.0mg)andAcOH(1.0mL).Aftersonicationat23°Cfor3min,thesolutionwasdiscarded.ThesolidswerewashedwithMeOH(0.5mLx3)and the volatiles were removedin vacuo.1H NMR of the solids corresponded to that ofH6btei.TreatmentofPd3bteiwithBnOH

An NMR tube was charged with Pd3btei (6.30 mg, 0.00677 mmol, 1.00 equiv), benzylalcohol(2.00μL,0.0192mmol,2.84equiv),mesitylene(2.00μL,0.0145mmol,2.14equiv),andCDCl3(0.45mL).Thereactionmixturewasagitatedusingamechanicalshakerfor24hat23°C.Atthistime,benzaldehydewasdetectedby1HNMRandtheyieldwasdeterminedtobe21%byintegrationagainsttheresonancesofmesitylene.GeneralProcedureforOxidationwithPeraceticAcid

Aone-dramvialwaschargedwithPd3btei(0.00445mmol,1.00equiv),peraceticacid(39%inaceticacid,8.08μL,0.0472mmol,10.6equiv),andCH2Cl2(0.30mL).Afterstirringat23°Cfor16h,solutionturnedlightyellowandmostofthesolidsdissolved.Water(0.30mL)was added and the aqueous layerwas collected and filtered. [C9H5O6]⁻was observed bymass spectrometry (ESI negative, calc: 209.0081; expt m/z: 209.0087). Similarexperimentswere conductedwithZn3btei andH6bteiusingperacetic acid. [C9H5O6]⁻wasobservedbymassspectrometryineachoftheseexperiments.

Pd3btei Zn3bteiZn(NO3)2 • 6H2O,

MeCN, 23 °C

Pd3btei

CDCl3, 23 °C, 24 h21%

OH H

O

CH3COOOH

CH2Cl2, 23 °C, 16 h

M3btei (M = Zn, Pd) or

H6btei

COOH

COOHHOOC

Page 14: 18 CHW Pd2 template SI

S14

GeneralProcedureforOxidationwith2-Tert-butylsulfonylIodosylbenzene(S11)

Aone-dramvialwaschargedwithPd3btei(0.00445mmol,1.00equiv),hypervalentiodinereagentS11(15.0mg,0.0441mmol,9.90equiv),andCH2Cl2(0.30mL).Afterstirringat23°Cfor16h,solutionturnedlightyellowandsomeofthesolidsremainedundissolved.DCMwasdecantedandwater(0.30mL)wasaddedandthesolutionwasfiltered.[C9H5O6]⁻wasobservedbymassspectrometry(ESInegative,calc:209.0085;exptm/z:209.0087).Similarexperimentswere conductedwithZn3btei andH6bteiusingS11. [C9H5O6]⁻wasobservedbymassspectrometryineachoftheseexperiments.GeneralProcedureforCS2ExperimentAone-dramvialwas chargedwithPd3btei (2.0mg),CS2 (0.01mL), andCH2Cl2 (0.5mL).Thereactionmixturewasallowedtositfor1hat23°C.Atthistime,thereactionsolventwasdecantedandIRspectrawererecordedfortheremainingsolids.Similarexperimentswere conducted with Zn3btei and Pd(OAc)2 using CS2. For Pd(OAc)2, the reaction wasallowedtoairdrypriortoacquisitionoftheIRspectrum.AttempttoDirectlySynthesizePd3bteiunderCationExchangeConditions

A20-mLvialwas chargedwithPd(OAc)2 (60.0mg,0.267mmol,4.01equiv),H3btc (14.0mg, 0.0666mmol, 1.00 equiv), and CHCl3 (15.0 mL). After standing at 23 °C for 24 h,solventwasremovedinvacuotoaffordwhiteandorangesolids.PXRDanalysisofthesolidsdidnotdisplayanyofthesignalsattributabletoM3bteiframeworks.

CH2Cl2, 23 °C, 16 h

M3btei (M = Zn, Pd) or

H6btei

COOH

COOHHOOC

IO

SO2tBu(S11)

COOH

COOHHOOCno reaction

Pd(OAc)2

CHCl3, 23 °C

Page 15: 18 CHW Pd2 template SI

S15

C.SupportingDataC.1CoordinatesofOptimizedStructuresTableS1.CoordinatesforoptimizedgeometryofPd(OAc)2.

Atom X Y ZO 1.756794 1.087321 0.019089O –1.756708 –1.087420 –0.019125C 2.430258 –0.000395 0.018232C –2.430303 0.000161 –0.018173O 1.756668 –1.087876 0.019087O –1.756838 1.087754 –0.019085C 3.926593 0.000022 –0.014726H 4.261525 0.020976 –1.058672H 4.313085 0.889949 0.487586H 4.313509 –0.907879 0.453627C –3.926666 –0.000140 0.014902H –4.261542 –0.005236 1.059062H –4.313646 0.901003 –0.466402H –4.313223 –0.897111 –0.474553Pd 0.000036 0.000047 –0.000039

Page 16: 18 CHW Pd2 template SI

S16

TableS2.CoordinatesforoptimizedgeometryofPd2(OAc)4.

Atom X Y ZO –1.456793 1.432494 –1.147017O 1.455459 –1.447963 –1.142675O –1.438447 –1.463812 –1.144355O 1.442007 1.448162 –1.144394C –1.853951 1.828375 –0.002515C –1.834874 –1.859626 0.000712C 1.856609 –1.838020 0.002689C 1.832426 1.850038 0.000600O –1.458304 1.432559 1.142832O –1.438991 –1.463457 1.145610O 1.455278 –1.446397 1.147295O 1.440523 1.449852 1.145462C –2.930161 –2.905455 –0.001983H –3.898581 –2.398783 –0.087877H –2.816829 –3.568131 –0.862644H –2.917012 –3.473802 0.929734C –2.901375 2.922323 0.000154H –2.398032 3.890144 0.108973H –3.456259 2.922075 –0.939658H –3.576293 2.795439 0.849480C 2.965438 –2.869471 0.001071H 3.927498 –2.349662 –0.077670H 2.955336 –3.441608 0.930524H 2.865164 –3.530128 –0.862725C 2.864652 2.958321 –0.001990H 2.345843 3.920708 –0.083297H 3.435762 2.949774 0.928117H 3.526140 2.856121 –0.864943Pd –0.000448 –0.006211 1.309424Pd 0.000640 –0.007323 –1.309043

Page 17: 18 CHW Pd2 template SI

S17

TableS3.CoordinatesforoptimizedgeometryofPd3(OAc)6.

Atom X Y ZPd 1.619339 –0.929252 0.014006C –0.063527 –2.607519 1.868932O 1.046467 –2.409266 1.293111O –1.174028 –2.047058 1.620059C –2.270779 1.267057 –1.892147O –1.528187 2.119232 –1.320660O –2.364702 0.027496 –1.640214C –3.178158 1.797375 –2.984445H –3.445016 0.997916 –3.678150H –4.097632 2.174483 –2.521305H –2.696088 2.623911 –3.510415C –0.077932 –3.658332 2.961265H 0.912599 –3.758400 3.408479H –0.821832 –3.403082 3.719043H –0.361423 –4.620238 2.518104Pd –0.000013 1.867439 –0.000017C –2.277021 1.349145 1.834966O –2.651907 0.290927 1.246865O –1.243670 2.042684 1.594708C 0.063702 –2.607749 –1.868759O 1.174224 –2.047313 –1.619923O –1.046320 –2.409312 –1.293058C 0.078015 –3.658857 –2.960809H –0.911720 –3.756345 –3.410385H 0.824469 –3.405920 –3.716824H 0.357531 –4.621458 –2.516624C –3.159641 1.823424 2.972363H –2.972965 1.191910 3.848399H –2.939589 2.861650 3.225049H –4.211469 1.708379 2.698582Pd –1.619309 –0.929275 –0.014030C 2.276994 1.349213 –1.835011O 2.651813 0.290911 –1.247027O 1.243674 2.042783 –1.594697C 3.159490 1.823504 –2.972499H 2.970243 1.194055 –3.849485H 2.941442 2.862654 –3.223146H 4.211357 1.705552 –2.700179C 2.270730 1.267241 1.892075O 2.364612 0.027680 1.640159O 1.528161 2.119436 1.320574C 3.178091 1.797565 2.984386H 4.097347 2.175156 2.521209H 2.695803 2.623787 3.510655H 3.445334 0.998013 3.677832

Page 18: 18 CHW Pd2 template SI

S18

TableS4.CoordinatesforoptimizedgeometryofPd4(OAc)8.

Atom X Y ZPd 1.643894 –0.726051 0.128975Pd –0.725647 –1.642710 –0.128703Pd –1.643790 0.726026 0.128793Pd 0.725698 1.642585 –0.129296O 2.199496 –2.944158 0.075640O 0.092868 –3.525427 –0.532630C 1.340545 –3.761549 –0.336568C 1.782990 –5.173964 –0.677347O 1.339982 –0.922483 2.127993O –0.598143 –2.046739 1.846620C 0.375170 –1.633647 2.549387C 0.395146 –2.040605 4.001783O –2.943249 –2.199346 –0.073016O –3.526350 –0.092614 0.532529C –3.761316 –1.340595 0.337805C –5.173848 –1.784247 0.676451O –0.923277 –1.339405 –2.127671O –2.048761 0.597931 –1.846353C –1.635613 –0.375424 –2.548849C –2.043237 –0.396502 –4.001006O –2.198990 2.944228 0.075132O –0.092521 3.525349 –0.533871C –1.339934 3.761728 –0.337071C –1.783936 5.173694 –0.677711O –1.339834 0.923139 2.127728O 0.598198 2.047376 1.845869C –0.375115 1.634578 2.548758C –0.394969 2.041926 4.001035O 2.943264 2.199337 –0.073843O 3.526381 0.092845 0.532471C 3.761353 1.340724 0.337106C 5.173617 1.784709 0.676411O 0.923190 1.338644 –2.128160O 2.048909 –0.598401 –1.846209C 1.635827 0.374746 –2.548964C 2.042833 0.395228 –4.001298H 2.648444 –5.451693 –0.071525H 0.965270 –5.883195 –0.531376H 2.077761 –5.199939 –1.732946H –0.623503 –2.155149 4.377749H 0.906786 –3.006735 4.082960H 0.950199 –1.309207 4.592756H –5.459815 –2.632143 0.049787H –5.193613 –2.108635 1.723475H –5.880214 –0.959918 0.557107H –2.165488 0.621470 –4.376231

Page 19: 18 CHW Pd2 template SI

S19

H –1.308548 –0.946286 –4.592853H –3.005486 –0.915541 –4.081841H –0.956626 5.878793 –0.572620H –2.123464 5.188501 –1.719946H –2.622415 5.465116 –0.040828H 0.623681 2.157116 4.376798H –0.906954 3.007916 4.081828H –0.949578 1.310536 4.592420H 5.880258 0.960555 0.557465H 5.459727 2.632630 0.049840H 5.192710 2.109167 1.723420H 1.304457 0.939098 –4.594051H 3.001797 0.920093 –4.083542H 2.171058 –0.622701 –4.374589

Page 20: 18 CHW Pd2 template SI

S20

C.2OptimizationofTransmetalationChemistryTableS5.Examinationofcationmetathesisinbtc-supportednetworks.TemplateNetwork PdSource Temp/°C Solvent Result

Zn3btc2 Pd(O2CCF3)2 23 CHCl3 Pdblackafter5dZn3btc2 Pd(OAc)2 55 CHCl3 Pdblackafter2dZn3btc2 Pd(OAc)2 80 MeCN Pdblackafter1dZn3btc2 PdCl2 80 MeCN Pdblackafter1dZn3btc2 Pd(O2CCF3)2(DMSO)2 23 CHCl3 Pdblackafter3dZn3btc2 [Pd(MeCN)4][(BF4)2] 23 CHCl3 Pdblackafter4d

Zn3btc2 Pd(OAc)2 23 CHCl335%exchangeafter20d

Cu3btc2 Pd(OAc)2 23 CHCl3<1%exchangeafter150d

Cu3btc2 Pd(OAc)2 23 MeOH Pdblackafter3hCu3btc2 Pd(OAc)2 23 EtOH Pdblackafter3hCu3btc2 Pd(OAc)2 23 DMF Pdblackafter5hCu3btc2 Pd(OAc)2 75 DMF Pdblackafter1hCu3btc2 Pd(OAc)2 80 MeCN Pdblackafter2dCu3btc2 PdCl2 23 MeOH Pdblackafter5hCu3btc2 PdCl2 23 EtOH Pdblackafter7hCu3btc2 PdCl2 23 DMF Pdblackafter7hCu3btc2 PdCl2 75 DMF Pdblackafter1hCu3btc2 Pd(O2CCF3)2 23 CHCl3 Pdblackafter5dCu3btc2 Pd(OAc)2 55 CHCl3 Pdblackafter2dCu3btc2 Pd(OAc)2 80 MeCN Pdblackafter1dCu3btc2 PdCl2 80 MeCN Pdblackafter1dCu3btc2 Pd(O2CCF3)2(DMSO)2 23 CHCl3 Pdblackafter3dCu3btc2 [Pd(MeCN)4][(BF4)2] 23 CHCl3 Pdblackafter4d

Page 21: 18 CHW Pd2 template SI

S21

TableS6.Examinationofcationmetathesisinbtei-supportednetworks.

TemplateNetwork PdSource Temp/°C Solvent Result

Zn3btei(crystalline)

Pd(O2CCF3)2 23 CHCl3 Pdblackafter5d

Zn3btei(microcrystalline) Pd(O2CCF3)2 23 CHCl3 Pdblackafter5d

Cu3btei Pd(OAc)2 23 CHCl320%exchangeafter

56dTableS7.Examinationofcationmetathesisinothernetworks.

TemplateNetwork PdSource Temp/°C Solvent Result

Zn3abtc(S8) Pd(OAc)2 23 CHCl3 54%161dS9 Pd(OAc)2 23 CHCl3 46%161dS10 Pd(OAc)2 23 CHCl3 29%161d

Page 22: 18 CHW Pd2 template SI

S22

C.3.CharacterizationofExchangedMaterials

Figure S1. (a) PXRD patterns for Zn3btc2 (—) and for Pd-exchanged material (—). (b)Simulated PXRD of Pd substitutedMIL-101 structure (trigonal prismatic Pd3 nodes,—),simulatedPXRDofMIL-100(Cr3(btc)2,—),simulatedPXRDofCu3(btc)2(—),andsimulatedPXRDofZn3(btc)2(—).

Page 23: 18 CHW Pd2 template SI

S23

Figure S2. IR spectraofZn3btei inDMF (—), Zn3btei inCHCl3 for1hour (—), Zn3btei inCHCl3for1day(—),andZn3bteiinCHCl3for3days(—).

Page 24: 18 CHW Pd2 template SI

S24

FigureS3.TGA-MSspectra(—)ofZn3bteiexchangedinCHCl3for(a)1h;(b)1d;and(c)28d.MasslosswasattributedtoCHCl3(—),DMF(—),andCO2(—).

Page 25: 18 CHW Pd2 template SI

S25

Figures S4a and S4b. (a)PlotofPd(OAc)2exchange intoZn3btei thatwaspre-soaked inCHCl3for28d.(b)PlotofPd(NO3)2exchangeintoZn3bteithatwaspre-soakedinCHCl3for28d.

Page 26: 18 CHW Pd2 template SI

S26

FigureS4c.PXRDpatternofmaterialobtainedfollowingPd(NO3)2exchangewithZn3btei.

Page 27: 18 CHW Pd2 template SI

S27

Figure S5. N2 adsorption isotherms for Zn3btei and Pd3btei at different conditions.SupercriticalCO2activationandheating(45°C)wereincapableofaccesshighergasuptakecapacity.N2 adsorption isotherms collected at 77K (a) forZn3btei thatwas activated byvacuum twice at 23 °C (adsorption (l;l), desorption (¡;¡)) and by supercritical CO2(adsorption (l), desorption (¡)); (b) for Pd3btei that was activated at 45 °C for 16 h(absorption(l),desorption(¡));and, forPd3btei thatwasactivatedbysupercriticalCO2(absorption(l),desorption(¡)).

Samples BETsurfacearea(m2/g) Langmuirsurfacearea(m2/g) Zn3btei/23℃-1 348 386 Zn3btei/23℃-2 N/A 175

Zn3btei/supercriticalCO2 290 325 Pd3btei/45℃ 741 858

Pd3btei/supercriticalCO2 425 493

Page 28: 18 CHW Pd2 template SI

S28

C.4.Single-CrystalX-RayDiffractionThesinglecrystalX-raydiffractionexperimentwasconductedusingsynchrotronradiation(λ=0.41328Å)equippedwithaPilatus3XCdTe1MdetectorandanOxfordcryostreamcoolingdeviceoperatingat100KatNSF’sChemMatCARSSector15ofAdvancedPhotonSource(APS)housedatArgonneNationalLaboratory(ANL).Datawerecollectedasaseriesofphiscans.IndexingwasperformedusingBrukerAPEX3.Dataintegrationandreductionwere performed using SaintPlus. Absorption correction was performed by multi-scanmethodimplementedinSADABS.SpacegroupwasdeterminedusingXPREPimplementedin APEX3. Structures were solved using SHELXT and refined using SHELXL-2017 (full-matrix least-squaresonF2)withOLEX2interfaceprogram.Allnon-hydrogenatomswererefined anisotropically. Hydrogen atoms were placed at idealized positions and refinedusing a riding model. Despite using synchrotron radiation, the best crystal samplediffracted only up to 1.12Å resolution aftermany attempts. EXYZ andEADP commandswereusedtorefinethepartiallyexchangedZnsite.Consideringthatlargeaccessiblevoidswith this structure accommodate heavily disordered solventmolecules, solventmask inOLOEX2 was thus employed to process the refinement. Crystal data and structurerefinementconditionsareshowninTableS8.

Page 29: 18 CHW Pd2 template SI

S29

TableS8.CrystaldataandstructurerefinementforPd3btei.

CrystaldataChemicalformula 0.02(C1152H384O460.8Pd19.41Zn76.59)Fw(g/mol) 597.24Temperature(K) 100(2)Crystalsystem,spacegroup Cubic,Fm-3ma,b,c(Å) 43.149(5),43.149(5),43.149(5)α,β,γ(°) 90,90,90V(Å3) 80337(27)Z 48Radiationtype Synchrotron,λ=0.41328Åμ(mm-1) 0.268Crystalsize(mm) 0.02×0.02×0.02DatacollectionDiffractometer Pilatus3XCdTe1MAbsorptioncorrection Multi-scan,SADABSNo.ofmeasured,independentandobserved[I>2σ(I)]reflections

139206,1544,1121

Rint 0.128sin(θ/λ)max(Å-1) 1.12RefinementR[F2>2σ(F2)],wR(F2),S 0.043,0.134,1.06No.ofreflections 1544No.ofparameters 99

H-atomtreatmentH-atomparametersconstrainedw=1/[σ2(Fo2)+(0.0638P)2+222.7243P]whereP=(Fo2+2Fc2)/3

rmax,rmin(eÅ-3) 0.26,–0.19

Page 30: 18 CHW Pd2 template SI

S30

C.5.EXAFSAnalysis

FigureS6.EXAFSPdK-edgedata(windowrange1.0Å–3.3Å)forPd3btei;experimentaldata(—)andfit(—)usingtheFEFF9code.Fouriertransforms(FT)ofthePdK-edgeEXAFSdatameasuredonthesample following86%Pdexchange.Left: theFTmoduli;right:realpartsoftheFTs.Themetal–metalinteractionaroundPdisdominatedbythePd–Pdonesat2.72±0.03Å.TableS9.EXAFSdataanalysisofPd3btei.N,coordinationnumber.S02,amplitudereductionfactor.R,thedistancebetweenabsorberandscatterer;s2,theDebye-Wallerfactor;DE0,theenergyshift.R-factoris0.008.

Path N S02 R/Å s2/Å2 DE0/eVPd–O 4.00 1.018 2.01±0.01 0.0051 8.45±1.25Pd–Pd 1.00 1.018 2.72±0.03 0.0103 8.45±1.25Pd–C 4.00 1.018 2.94±0.03 0.0034 8.45±1.25Pd–O 4.00 1.018 3.14±0.04 0.0088 8.45±1.25

Page 31: 18 CHW Pd2 template SI

S31

Figure S7. EXAFS Pd K-edge data (window range 1.0 Å – 3.0 Å) for PdZn(OAc)4(H2O);experimentdata(—)andfit(—)usingtheFEFF9code.Left:theFTmoduli;right:realpartsoftheFTs.Table S10. EXAFS data analysis of PdZn(OAc)4 · H2O. N, coordination number. S02,amplitudereductionfactor.R,thedistancebetweenabsorberandscatterer;s2,theDebye-Wallerfactor;DE0,theenergyshift.R-factoris0.005.

Path N S02 R/Å s2/Å2 DE0/eVPd–O 4.00 1.022 2.01±0.01 0.0024 9.21±1.27Pd–Zn 1.00 1.022 2.61±0.05 0.0107 9.21±1.27Pd–C 2.00 1.022 2.92±0.03 0.0015 9.21±1.27Pd–C 2.00 1.022 2.98±0.03 0.0015 9.21±1.27Pd–O 2.00 1.022 3.07±0.04 0.0086 9.21±1.27Pd–O 2.00 1.022 3.13±0.04 0.0086 9.21±1.27

Page 32: 18 CHW Pd2 template SI

S32

Figure S8. EXAFS Zn K-edge data (window range 1.0 Å – 3.3 Å) for PdZn(OAc)4 · H2O;experimentdata(—)andfit(—)usingtheFEFF9code.Left:theFTmoduli;right:realpartsoftheFTs.

Table S11. EXAFS data analysis of PdZn(OAc)4 · H2O. N, coordination number. S02,amplitudereductionfactor.R,thedistancebetweenabsorberandscatterer;s2,theDebye-Wallerfactor;DE0,theenergyshift.R-factoris0.014.

Path N S02 R/Å s2/Å2 DE0/eVZn–O 2.00 0.976 2.05±0.03 0.0074 8.97±2.38Zn–O 2.00 0.976 2.08±0.03 0.0074 8.97±2.38Zn–Pd 1.00 0.976 2.61±0.07 0.0055 8.97±2.38Zn–C 4.00 0.976 3.03±0.09 0.0032 8.97±2.38Zn–O 4.00 0.976 3.23±0.08 0.0035 8.97±2.38

Page 33: 18 CHW Pd2 template SI

S33

Figure S9. EXAFS Pd K-edge data (window range 1.0 Å – 3.3 Å) for (PdZn)1.5btei;experimentdata(—)andfit(—)usingtheFEFF9code.Fouriertransforms(FT)ofthePdK-edgeEXAFSdatameasuredonthesamplefollowing50%Pdexchange.Left:theFTmoduli;right:realpartsoftheFTs.Table S12. EXAFS data analysisof (PdZn)1.5btei. N, coordination number. S02, amplitudereduction factor. R, the distance between absorber and scatterer; s2, the Debye-Wallerfactor;DE0,theenergyshift.R-factoris0.016.

Path N S02 R/Å s2/Å2 DE0/eVPd–O 4.00 1.037 2.01±0.01 0.0034 6.11±1.50Pd–Zn 0.50 1.037 2.65±0.07 0.0097 6.11±1.50Pd–Pd 0.50 1.037 2.70±0.07 0.0097 6.11±1.50Pd–C 4.00 1.037 2.96±0.03 0.0052 6.11±1.50Pd–O 4.00 1.037 3.16±0.07 0.0149 6.11±1.50

Page 34: 18 CHW Pd2 template SI

S34

Figure S10. EXAFS Zn K-edge data (window range 1.0 Å – 3.8 Å) for (PdZn)1.5btei;experimentdata(—)andfit(—)usingtheFEFF9code.Fouriertransforms(FT)ofthePdK-edgeEXAFSdatameasuredonthesamplefollowing50%Pdexchange.Left:theFTmoduli;right:realpartsoftheFTs.

Table S13. EXAFS data analysisof (PdZn)1.5btei. N, coordination number. S02, amplitudereduction factor. R, the distance between absorber and scatterer; s2, the Debye-Wallerfactor;DE0,theenergyshift.R-factoris0.020.

Path N S02 R/Å s2/Å2 DE0/eVZn–O 4.00 1.019 2.01±0.01 0.0063 8.05±1.14Zn–O 1.00 1.019 2.18±0.01 0.0063 8.05±1.14Zn–Pd 0.50 1.019 2.60±0.06 0.0072 8.05±1.14Zn–Zn 0.50 1.019 2.90±0.06 0.0051 8.05±1.14Zn–C 4.00 1.019 3.11±0.06 0.0228 8.05±1.14

Page 35: 18 CHW Pd2 template SI

S35

FigureS11.XANESspectraofPd3btei(—),Pd(OAc)2(—),PdZn(OAc)4·H2O(—),andPd(0)(—).Theedgeenergy inPd(II)species ishigherthanthat inPd(0),whichis inconsistentwithreductionofthePd2sitesupontransmetalation.

Page 36: 18 CHW Pd2 template SI

S36

FiguresS12aandS12b.IRspectraof(a)CS2(—),Pd3btei(—),andPd3bteitreatedwithCS2(—);(b)CS2(—),Zn3btei(—),andZn3bteitreatedwithCS2(—).

Page 37: 18 CHW Pd2 template SI

S37

FigureS12c.IRspectraofCS2(—),Pd(OAc)2(—),andPd(OAc)2treatedwithCS2(—).

Page 38: 18 CHW Pd2 template SI

S38

C.6.AdditionalData

FigureS13.Calculated(—)andExperimental(—)PXRDpatternofPdZn(OAc)4·H2O.

Page 39: 18 CHW Pd2 template SI

S39

FigureS14.PXRDpatternsofcalculatedS8(—),as-synthesizedS8(—),andPd-exchangedS8(—).

Page 40: 18 CHW Pd2 template SI

S40

FigureS15.PXRDpatternofcalculatedS9(—),as-synthesizedS9(—),andPd-exchangedS9(—).

Page 41: 18 CHW Pd2 template SI

S41

Figure S16. PXRD pattern of calculated S10 (—), as-synthesized S10 (—), and Pd-exchangedS10(—).

Page 42: 18 CHW Pd2 template SI

S42

E.References1. Malpass,J.R.;Hemmings,D.A.;Wallis,A.L.;Fletcher,S.R.;Patel,S.J.Chem.Soc.,Perkin

Trans.12001,1044–1050.2. Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am. Chem. Soc.1999, 121,

7164–7165.3. Fulmer,G.R.;Miller,A.J.M.;Sherden,N.H.;Gottlieb,H.E.;Nudelman,A.;Stoltz,B.M.;

Bercaw,J.E.;Goldberg,K.I.Organometallics2010,29,2176–2179.4. Aujard,I.;Baltaze,J.-P.;Baudin,J.-B.;Cogné,E.;Ferrage,F.;Jullien,L.;Perez,É.;Prévost,

V.;Qian,L.M.;Ruel,O.J.Am.Chem.Soc.2001,123,8177–8188.5. Farha,O.K.;ÖzgürYazaydın,A.;Eryazici,I.;Malliakas,C.D.;Hauser,B.G.;Kanatzidis,M.

G.;Nguyen,S.T.;Snurr,R.Q.;Hupp,J.T.Nat.Chem.2010,2,944–948.6. Zhao,D.;Yuan,D.;Sun,D.;Zhou,H.-C.J.Am.Chem.Soc.2009,131,9186–9188.7. Dhakshinamoorthy, A.; Alvaro, M.; Chevreau, H.; Horcajada, P.; Devic, T.; Serre, C.;

Garcia,H.Catal.Sci.Technol.2012,2,324–330.8. Goel,N.;Kumar,N.RSCAdvances2018,8,10746–10755.9. Hu,D.;Kluger,R.Org.Biomol.Chem.2008,6,151–156.10.Eubank, J. F.; Nouar, F.; Luebke, R.; Cairns, A. J.;Wojtas, L.; Alkordi,M.; Bousquet, T.;

Hight,M.R.;Eckert, J.;Embs, J.P.;Georgiev, P.A.;Eddaoudi,M.Angew.Chem. Int.Ed.2012,51,10099–10103.

11.Akhmadullina, N. S.; Cherkashina, N. V.; Kozitsyna, N. Y.; Stolarov, I. P.; Perova, E. V.;Gekhman,A.E.;Nefedov,S.E.;Vargaftik,M.N.;Moiseev,I.I.Inorg.Chim.Acta2009,362,1943–1951.

12.Liu,J.;Wang,Y.;Benin,A.I.;Jakubczak,P.;Willis,R.R.;LeVan,M.D.Langmuir2010,26,14301–14307.

13.Bhunia,M. K.; Hughes, J. T.; Fettinger, J. C.; Navrotsky, A. Langmuir2013, 29, 8140–8145.

14.Zhang,S.;Ma,J.;Zhang,X.;Duan,E.;Cheng,P.Inorg.Chem.2015,54,586–595.15.Zou,Y.;Park,M.;Hong,S.;Lah,M.S.Chem.Commun.2008,2340–2342.16.Hong, S.; Oh, M.; Park, M.; Yoon, J. W.; Chang, J.-S.; Lah, M. S. Chem. Commun.2009,

5397–5399.