16430 machining groover

45
 ©2007 John Wiley & Sons, Inc. M P Groover , Fundamentals of Modern Manufacturing 3/e THEORY OF METAL MACHINING 1. Overview of Machining Technology 2. Theory of Chip Formation in Metal Machining 3. Force Relationships and the Merchant Equation 4. Power and Energy Relationships in Machining 5. Cutting Temperature

Upload: shivek-saini

Post on 06-Apr-2018

238 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 1/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

THEORY OF METAL MACHINING

1. Overview of Machining Technology

2. Theory of Chip Formation in Metal Machining

3. Force Relationships and the MerchantEquation

4. Power and Energy Relationships in Machining

5. Cutting Temperature

Page 2: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 2/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Material Removal Processes

A family of shaping operations, the commonfeature of which is removal of material from astarting workpart so the remaining part has thedesired geometry

Machining –

material removal by a sharpcutting tool, e.g., turning, milling, drilling

Abrasive processes  – material removal byhard, abrasive particles, e.g., grinding

Nontraditional processes - various energyforms other than sharp cutting tool to removematerial

Page 3: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 3/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting action involves shear deformation of workmaterial to form a chip

As chip is removed, new surface is exposed

Figure 21.2 (a) A cross-sectional view of the machining process, (b)tool with negative rake angle; compare with positive rake angle in (a). 

Machining 

Page 4: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 4/45

Page 5: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 5/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Disadvantages with Machining

Wasteful of material

Chips generated in machining are wastedmaterial, at least in the unit operation

Time consuming

A machining operation generally takes moretime to shape a given part than alternativeshaping processes, such as casting, powdermetallurgy, or forming

Page 6: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 6/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Machining in Manufacturing Sequence

Generally performed after other manufacturingprocesses, such as casting, forging, and bardrawing

Other processes create the general shape

of the starting workpart Machining provides the final shape,

dimensions, finish, and special geometricdetails that other processes cannot create

Page 7: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 7/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Machining Operations

Most important machining operations:

Turning

Drilling

Milling

Other machining operations:

Shaping and planing

Broaching

Sawing

Page 8: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 8/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Single point cutting tool removes material from arotating workpiece to form a cylindrical shape 

Figure 21.3 Three most common machining processes: (a) turning,

Turning

Page 9: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 9/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Used to create a round hole, usually by means ofa rotating tool (drill bit) with two cutting edges

Figure 21.3 (b) drilling,

Drilling

Page 10: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 10/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Rotating multiple-cutting-edge tool is movedacross work to cut a plane or straight surface

Two forms: peripheral milling and face milling

Figure 21.3 (c) peripheral milling, and (d) face milling.

Milling 

Page 11: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 11/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting Tool Classification

1. Single-Point Tools

One dominant cutting edge

Point is usually rounded to form a noseradius

Turning uses single point tools

2. Multiple Cutting Edge Tools

More than one cutting edge

Motion relative to work achieved by rotating Drilling and milling use rotating multiple

cutting edge tools

Page 12: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 12/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Figure 21.4 (a) A single-point tool showing rake face, flank, and toolpoint; and (b) a helical milling cutter, representative of tools withmultiple cutting edges. 

Cutting Tools

Page 13: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 13/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting Conditions in Machining

Three dimensions of a machining process:  Cutting speed v   – primary motion

Feed f   – secondary motion

Depth of cut d   – penetration of tool

below original work surface

For certain operations, material removalrate can be computed as

R MR = v f d  

where v = cutting speed; f = feed; d =depth of cut

Page 14: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 14/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting Conditions for Turning

Figure 21.5 Speed, feed, and depth of cut in turning.

Page 15: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 15/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Roughing vs. Finishing

In production, several roughing cuts are usuallytaken on the part, followed by one or twofinishing cuts

Roughing - removes large amounts of materialfrom starting workpart

Creates shape close to desired geometry,but leaves some material for finish cutting

High feeds and depths, low speeds

Finishing - completes part geometry

Final dimensions, tolerances, and finish

Low feeds and depths, high cutting speeds

Page 16: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 16/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Machine Tools A power-driven machine that performs a

machining operation, including grinding

Functions in machining:

Holds workpart

Positions tool relative to work

Provides power at speed, feed, and depththat have been set

The term is also applied to machines thatperform metal forming operations

Page 17: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 17/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Simplified 2-D model of machining that describesthe mechanics of machining fairly accurately

Figure 21.6 Orthogonal cutting: (a) as a three-dimensional process.

Orthogonal Cutting Model

Page 18: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 18/45

Page 19: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 19/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Determining Shear Plane Angle

Based on the geometric parameters of theorthogonal model, the shear plane angle  canbe determined as:

where r = chip ratio, and   = rake angle

 

 

  sin

cos

tan r 

1

Page 20: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 20/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Figure 21.7 Shear strain during chip formation: (a) chip formationdepicted as a series of parallel plates sliding relative to each other, (b)one of the plates isolated to show shear strain, and (c) shear straintriangle used to derive strain equation.

Shear Strain in Chip Formation

Page 21: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 21/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Shear Strain

Shear strain in machining can be computedfrom the following equation, based on thepreceding parallel plate model:

  = tan( -  ) + cot   

where  = shear strain,  = shear planeangle, and  = rake angle of cutting tool

Page 22: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 22/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Figure 21.8 More realistic view of chip formation, showing shearzone rather than shear plane. Also shown is the secondary shearzone resulting from tool-chip friction. 

Chip Formation

Page 23: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 23/45

Page 24: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 24/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Brittle work materials

Low cutting speeds

Large feed and depthof cut

High tool-chip friction

Figure 21.9 Four types of

chip formation in metalcutting: (a) discontinuous

Discontinuous Chip

Page 25: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 25/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Ductile work materials

High cutting speeds

Small feeds anddepths

Sharp cutting edge

Low tool-chip friction

Figure 21.9 (b) continuous

Continuous Chip

Page 26: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 26/45

Page 27: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 27/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Semicontinuous -saw-toothappearance

Cyclical chip forms

with alternating highshear strain then lowshear strain

Associated withdifficult-to-machinemetals at high cuttingspeeds

Serrated Chip

Figure 21.9 (d) serrated.

Page 28: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 28/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Friction force F and Normal force to friction N  

Shear force F s and Normal force to shear F n  

Figure 21.10 Forces inmetal cutting: (a) forcesacting on the chip inorthogonal cutting 

Forces Acting on Chip

Page 29: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 29/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Resultant Forces

Vector addition of F and N = resultant R   Vector addition of F s and F n = resultant R '

Forces acting on the chip must be in balance:

R ' must be equal in magnitude to R  

R’ must be opposite in direction to R 

R’ must be collinear with R  

Page 30: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 30/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Coefficient of Friction

Coefficient of friction between tool and chip:

Friction angle related to coefficient of frictionas follows:

F  

    tan

Page 31: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 31/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Shear Stress

Shear stress acting along the shear plane:

 sin

w t A o s 

where As = area of the shear plane 

Shear stress = shear strength of work materialduring cutting 

A

F S 

Page 32: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 32/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

F , N , F s , and F n cannot be directly measured Forces acting on the tool that can be measured:

Cutting force F c and Thrust force F t  

Figure 21.10 Forcesin metal cutting: (b)forces acting on the

tool that can bemeasured 

Cutting Force and Thrust Force

Page 33: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 33/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Forces in Metal Cutting

Equations can be derived to relate the forcesthat cannot be measured to the forces that canbe measured:

F = F c sin   + F t cos   

N = F c cos  - F t sin   F s = F c cos  - F t sin   

F n = F c sin  + F t cos   

Based on these calculated force, shear stress

and coefficient of friction can be determined

Page 34: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 34/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

The Merchant Equation

Of all the possible angles at which sheardeformation can occur, the work material willselect a shear plane angle   that minimizesenergy, given by

Derived by Eugene Merchant

Based on orthogonal cutting, but validity

extends to 3-D machining

2245    

Page 35: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 35/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

What the Merchant Equation Tells Us 

To increase shear plane angle

Increase the rake angle

Reduce the friction angle (or coefficient offriction)

2245

   

Page 36: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 36/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Higher shear plane angle means smaller shearplane which means lower shear force, cuttingforces, power, and temperature

Figure 21.12 Effect of shear plane angle  : (a) higher  with aresulting lower shear plane area; (b) smaller  with a correspondinglarger shear plane area. Note that the rake angle is larger in (a), whichtends to increase shear angle according to the Merchant equation 

Effect of Higher Shear Plane Angle

Page 37: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 37/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Power and Energy Relationships  A machining operation requires power The power to perform machining can be

computed from:

P c = F c v  

where P c = cutting power; F c = cutting force;and v = cutting speed

Page 38: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 38/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Power and Energy Relationships  In U.S. customary units, power is traditional

expressed as horsepower (dividing ft-lb/min by33,000)

where HP c = cutting horsepower, hp 00033,

v F 

HP c 

Page 39: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 39/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Power and Energy Relationships  Gross power to operate the machine tool P g or

HP g  is given by

or

where E = mechanical efficiency of machine tool

Typical E for machine tools 90%

P P  c g 

HP HP  c 

Page 40: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 40/45

Page 41: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 41/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Specific Energy in Machining

Unit power is also known as the specific  energy  U  

Units for specific energy are typicallyN-m/mm3 or J/mm3 (in-lb/in3) 

w vt 

v F 

P P U 

MR 

u ===

Page 42: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 42/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting Temperature

Approximately 98% of the energy in machiningis converted into heat

This can cause temperatures to be very high atthe tool-chip

The remaining energy (about 2%) is retainedas elastic energy in the chip

Page 43: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 43/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting Temperatures are Important

High cutting temperatures1. Reduce tool life

2. Produce hot chips that pose safety hazards tothe machine operator

3. Can cause inaccuracies in part dimensionsdue to thermal expansion of work material

Page 44: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 44/45

 ©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Cutting Temperature

Analytical method derived by Nathan Cookfrom dimensional analysis usingexperimental data for various work materials

where T = temperature rise at tool-chipinterface; U = specific energy; v = cutting

speed; t o = chip thickness before cut;   C =volumetric specific heat of work material; K =thermal diffusivity of work material

333040

..

 

  

  K 

vt 

U T  o 

  

Page 45: 16430 Machining Groover

8/2/2019 16430 Machining Groover

http://slidepdf.com/reader/full/16430-machining-groover 45/45

Cutting Temperature

Experimental methods can be used to measuretemperatures in machining

Most frequently used technique is thetool-chip thermocouple  

Using this method, Ken Trigger determined thespeed-temperature relationship to be of theform:

T = K v m  

where T = measured tool-chip interfacetemperature, and v = cutting speed