1638 vector quantities

50
Fall 2006 Fall 2006

Upload: dr-fereidoun-dejahang

Post on 14-Feb-2017

36 views

Category:

Education


0 download

TRANSCRIPT

Fall 2006Fall 2006

Scalar Quantity(mass, speed, voltage, current and power)

1- Real number (one variable)

2- Complex number (two variables)

Vector Algebra(velocity, electric field and magnetic field)

Magnitude & direction

1- Cartesian (rectangular)2- Cylindrical3- Spherical

Specified by one of the following coordinates best applied to application:

Page 101

Conventions• Vector quantities denoted as or v• We will use column format vectors:

• Each vector is defined with respect to a set of basis vectors (which define a co-ordinate system).

v

Tvvvvvvvvv

321321

3

2

1

v

Unit vector

Magnitude

222

222

ˆˆˆˆ

ˆˆˆ

zyx

zyx

zyx

zyx

AAA

AzAyAxAAa

AAAAA

AzAyAxA

Page 101-102

a

Vectors• Vectors represent directions

– points represent positions

• Both are meaningless without reference to a coordinate system– vectors require a set of basis

vectors– points require an origin and a

vector space

y

x

y

x

vv

vv

Pv

both vectors equal

Co-ordinate Systems• Until now you have probably used a Cartesian

basis:– basis vectors are mutually orthogonal and

unit length– basis vectors named x, y and z

• We need to define the relationship between the 3 vectors.

5.07.05.0

v

Cartesian Coordinate System

Vector Magnitude• The magnitude or norm of a vector of

dimension n is given by the standard Euclidean distance metric:

• For example:

• Vectors of length 1(unit) are normal vectors.

22221 n

vvv v

11131131

222

Normal Vectors

• When we wish to describe direction we use normalized vectors.

• We often need to normalize a vector:

vvvv

22221

1

nvvv

Vector Addition and SubtractionVector Addition and Subtraction

)(ˆ)(ˆ)(ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

zzyyxx

zyx

zyx

BAzBAyBAxBbAaBACcC

BzByBxBbB

AzAyAxAaA

xC yC zC

Addition

Subtraction

212

212

21212

12121212

122112

)()()(

)(ˆ)(ˆ)(ˆ

zzyyxxR

zzzyyyxxxR

RRPPR

R12

Page 103

Vector Addition

u+v

y

x

v

u

Vector Addition

• Addition of vectors follows the parallelogram law in 2D and the parallelepiped law in higher dimensions:

vuvu

975

654

321

Vector Subtraction

y

x

v

u v-u

Problem 3-1

• Vector starts at point (1,-1,-2) and ends at point (2,-1,0). Find a unit vector in the direction of .

A

A

y

x

z

20ˆ11ˆ12ˆ zyxA

Problem 3-1

20ˆ11ˆ12ˆ zyxA

y

x

z

2,1,11 P

0,1,22 P

A

20ˆ11ˆ12ˆ zyxA

2ˆˆ zxA

24.2541 A

89.0ˆ45.0ˆ24.2

2ˆˆˆ zxzxAAa

Vector MultiplicationVector Multiplication1- Simple Product2- Scalar or Dot Product3- Vector or Cross Product

1- Simple Product

)(ˆ)(ˆ)(ˆˆ zyx kAzkAykAxkAaAkB

Scalar or Dot Product

ABABBA cos

Page 104

Vector Multiplication by a Scalar• Each vector has an associated length• Multiplication by a scalar scales the vectors

length appropriately (but does not affect direction):

Dot Product• Dot product (inner product) is defined as:

332211

3

2

1

321 vuvuvuvvv

uuuT

vuvu

i

iivuvu

cosvuvu

Dot Product• Note:

• Therefore we can redefine magnitude in terms of the dot-product operator:

• Dot product operator is commutative & distributive.

223

22

21 uuu uuu

uuu

Problem 3.2

• Given vectors:

– show that is perpendicular to both and .

A

B

C

zyxA ˆ3ˆ2ˆ

3ˆˆ2ˆ zyxB

2ˆ2ˆ4ˆ zyxC

Recall

10cosˆˆ

10cosˆˆ

10cosˆˆ

zz

yy

xx

zz

yy

xx

0ˆˆˆˆˆˆ zyzxyx

Also, recall

Similarly

0 BA

If the angle between the two vectors is 90.

)(ˆ)(ˆ)(ˆ xyyxzxxzyzzy BABAzBABAyBABAxBA

Show

zyx AAA zyxA ˆˆˆ

zyx BBB zyxB ˆˆˆ

yxzxzyzyx

ˆˆˆˆˆˆˆˆˆ

yzxxyzzxy

ˆˆˆˆˆˆˆˆˆ

Recall

xyyxzxxzyzzy

yzxzzyxyzxyx

zyxzyx

BABABABABABA

BABABABABABA

BBBAAA

zyx

xyxzyz

zyxzyxBA

ˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

)(ˆ)(ˆ)(ˆ xyyxzxxzyzzy BABAzBABAyBABAxBA

Problem 3.3

• In the Cartesian coordinate system, the three corners of a triangle are P1(0,2,2), P2(2,-2,2), and P3(1,1,-2). Find the area of the triangle.

y

x

z

y

x

z

y

x

z

y

x

z 2,2,01P

y

x

z 2,2,01P

y

x

z 2,2,01P

y

x

z 2,2,01P

y

x

z 2,2,01P

y

x

z 2,2,01P 2,2,22P

y

x

z 2,2,01P 2,2,22P

y

x

z 2,2,01P 2,2,22P

y

x

z 2,2,01P 2,2,22P

y

x

z 2,2,01P 2,2,22P

y

x

z 2,2,01P 2,2,22P

2,1,13 P

y

x

z 2,2,01P 2,2,22P

2,1,13 P

Let

4ˆ2ˆ21 yxB PP

and

4ˆˆˆ31 zyxC PP

represent two sides of the triangle.

Since the magnitude of the cross product is the area of the parallelogram, half of this magnitude is the area of the triangle.

91821324

21464256

212816

21

ˆ2ˆ8162116ˆ4ˆ8ˆ2

21

ˆˆ16ˆˆ4ˆˆ4ˆˆ8ˆˆ2ˆˆ221

4ˆˆˆ4ˆ2ˆ21

21

222

zyzyz

zyyyxyzxyxxx

zyxyxCB

xx

A

0 z y z 0 x

• The area of the triangle is 9 sq. units.

y

x

z

0,4.63,24.2

0,107.1,51

radP

r

51422 yxr

radxy 107.1

12tantan 11

0h

y

x

z

4.63,90,24.2

107.1,57.1,51

radradP

r

5014222 zyxr

radxy 107.1

12tantan 11

0h

radzyx

57.105tantan 1

221

Convert the coordinates of P1(1,2,0) from the Cartesian to the Spherical coordinates.

y

x

z

Convert the coordinates of P3(1,1,2) from the Cartesian to the Cylindrical and Spherical coordinates.

2,1,11P

21122 yxr

2h

radx

785.011tan1tan 11

y

x

z

Convert the coordinates of P3(1,1,2) from the Cartesian to the Cylindrical coordinates.

2,

4,23 radP

21122 yxr

2h

radx

785.011tan1tan 11

y

x

z

Convert the coordinates of P3(1,1,2) from the Cartesian to the Spherical coordinates.

45,3.35,45.23P

6211 222222 zyxr

rad616.022tan

211tan 1

221

rad4

1tan11tan 11