16. serial correlation -...

45
16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I, Autumn 2010, Serial Correlations 1

Upload: vokiet

Post on 06-Feb-2018

252 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

16. Serial Correlation

Hayashi pp. 365-412

Advanced Econometrics I, Autumn 2010, Serial Correlations 1

Page 2: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Introduction

The serial correlaion discussion here permits extending the GMM discussionwe had

The extension involves incorporating serially correlated moment conditions

This though necessitates the generalisation of the CLT to serially correlatedprocesses

The generalisation is possible under certain conditions restricting the degreeof serial correlation

The condition is transparent for the stochastic processes called linearprocesses

Advanced Econometrics I, Autumn 2010, Serial Correlations 2

Page 3: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Introduction (cont’d)

Recall (from Ch. 1) the OLS Assumptions, in particular

(a) Strict exogeneity

E(εi|x) = 0 (i = 1, 2, . . . , n)

– in the context of time-series, this assumption means that the errorterm is orthogonal to the past, current, and future regressors

– for most time-series models this condition is not satisfied– the finite-sample theory based on strict exogeneity is rarely applicable

in time-series contexts– (however, the estimator possesses good large-sample properties wi-

thout strict exogeneity.)

Advanced Econometrics I, Autumn 2010, Serial Correlations 3

Page 4: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Introduction (cont’d)

– A first-order Autoregressive process (AR(1)) is the clearest exampleof the violation of strict exogeneity assumption

yi = βyi−1 + εi (i = 1, 2, . . . , n)

– consistent with strict exogeneity assumption, suppose that the regressorfor observation i, yi−1, is orthogonal to the error term for i so thatE(yi−1εi) = 0

E(yiεi) = E[(βyi−1 + εi)εi]

= βE(yi−1εi) + E(ε2i )

= E(ε2i ) (since E(yi−1εi) = 0 by hypothesis)

Advanced Econometrics I, Autumn 2010, Serial Correlations 4

Page 5: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Introduction (cont’d)

– ⇒ unless the error term is always zero, E(yiεi) is not zero– but yi is the regressor for observation i + 1 ⇒ the regressor is not

orthogonal to the past error term ⇒ violation of the assumption of strictexogeneity

(b) Spherical error variance

E(ε2i |x) = σ2 > 0 (i = 1, 2, . . . , n)

E(εiεj|x) = 0 (i, j = 1, 2, . . . , n; i 6= j)

– E(εiεj|x) = 0 ⇒ the joint distribution of (εi, εj) conditional on x, thecovariance, is zero

– in the context of time-series models, this states that there is noserial correlation in the error term.

Advanced Econometrics I, Autumn 2010, Serial Correlations 5

Page 6: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Introduction (cont’d)

Recall also (from Ch. 2) that:

- if the index for a sequence of raondom variables zi (i = 1, 2, . . . , ) isrepresenting time, t, the stochastic process is called a time series.

- a stochastic process zi (i = 1, 2, . . . , ) is (strictly) stationary if, forany given integer, r, and for any set of subscripts i1, i2, . . . , ir, the j.d.of zi, zi1, zi2, . . . , zir depends only on i1 − i, i2 − i, i3 − i, . . . , ir − i butnot on i.

- a stochastic process zi is weakly (or covariance) stationary if:(i) E(zi) does not depend on i, and (ii) Cov(zi, zi−j) exists, is finite,and depends only on j but not on i.

Advanced Econometrics I, Autumn 2010, Serial Correlations 6

Page 7: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation

A white noise process {εt} is a zero-mean covariance-stationary processwith no serial correlation:

E(εt) = 0,

E(ε2t ) = σ2 > 0

E(εtεt−j) = 0 forj 6= 0.

linear processes: a very important class of covariance-stationary processescan be created by taking a moving average of a white noise process.

The current value of a linear process can depend on possibly infinite pastvalue of a white noise process

Advanced Econometrics I, Autumn 2010, Serial Correlations 7

Page 8: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

q-th order moving-average process (MA(q)): a process {yt} is calledMA(q) if it can be written as a weighted average of the current and mostrecent q values of a white noise process

yt = µ+ θ0εt + θ1εt−1 + . . .+ θqεt−q with θ0 = 1.

Serial correlation in MA(q) processes dies out completely after q lags

infinite-order moving-average process (MA(∞)): an (MA(∞)) processis one where yt depends on the infinite past:

yt = µ+ ψ0εt + ψ1εt−1 + . . .

= µ+

∞∑j=0

ψjεt−j where{ψj} = a sequence of real numbers

Advanced Econometrics I, Autumn 2010, Serial Correlations 8

Page 9: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Let yt is an ergodic-stationary time series with E[yt] = µ and var(yt) existsand is finite.

Wold decomposition Theorem means that yt has the following representation

yt = µ+

∞∑j=0

ψjεt−j

= µ+ εt + ψ1εt−1 + . . .

ψ0 = 1,

∞∑j=0

ψ2j <∞

εt ∼ MDS(0, σ2)

Advanced Econometrics I, Autumn 2010, Serial Correlations 9

Page 10: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

According to the Wold representation:

- yt has a linear structure, hence the Wold representation is often calledthe linear representation of yt

- ψ is the infinite vector of moving average weights

-∑∞

j=0ψ2j < ∞ is called square-summability and controls the memory

of the process.

- square-summability ⇒ |ψj| → 0 as j →∞ at sufficiently fast rate.

Advanced Econometrics I, Autumn 2010, Serial Correlations 10

Page 11: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Variance

γ0 = var(yt)

= var

∞∑j=0

ψjεt−j

=

∞∑j=0

ψ2jvar(εt)

= σ2∞∑j=0

ψ2j

<∞

Advanced Econometrics I, Autumn 2010, Serial Correlations 11

Page 12: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Autocovariances

γj = E[(yt − µ)(yt−j − µ)]

= E

[( ∞∑k=0

ψkεt−k

)( ∞∑h=0

ψhεt−h−j

)]= E[(ψ0εt + ψ1εt−1 + . . .+ ψjεt−j︸ ︷︷ ︸+ . . .)× (ψ0εt−j︸ ︷︷ ︸+ψ1εt−j−1 + . . .)]

= σ2∞∑k=0

ψj+kψk, j = 0, 1, 2, . . . .

Advanced Econometrics I, Autumn 2010, Serial Correlations 12

Page 13: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Ergodicity requires that∞∑j=0

|ψj| <∞

We can show that ∞∑j=0

ψ2j <∞,

which in turn implies that∑∞

j=0 |ψj| <∞.

Advanced Econometrics I, Autumn 2010, Serial Correlations 13

Page 14: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Example: MA(1) process

yt = µ+ εt + θεt−1, |θ| < 1

εt ∼ iid(0, σ2)

Then

φ1 = θ, φk = 0 for k > 1

E[yt] = µ

γ0 = E[(yt − µ)2] = σ2(1 + θ2)

γ1 = E[(yt − µ)(yt−1 − µ)] = σ2θ

γk = 0, k > 1,

Advanced Econometrics I, Autumn 2010, Serial Correlations 14

Page 15: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

which shows that

∞∑j=0

ψ2j = 1 + θ2 <∞,

∞∑j=0

|γj| = σ2(1 + θ2 + |θ|) <∞

⇒ {yt} is both weakly stationary and ergodic.

Advanced Econometrics I, Autumn 2010, Serial Correlations 15

Page 16: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Example: AR(1) process

Mean adjusted form:

yt − µ = φ(yt−1 − µ) + εt, εt ∼WN(0, σ2), |φ| < 1,

E[yt] = µ

Regression form:

yt = c+ φyt−1 + εt, c = µ(1− φ)

Advanced Econometrics I, Autumn 2010, Serial Correlations 16

Page 17: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Solution by recursive substitution:

yt − µ = φt+1(y−1 − µ) + φtε0 + . . .+ φεt−1 + εt

= φt+1(y−1 − µ) +

t∑i=0

φiεt−i

= φt+1(y−1 − µ) +

t∑i=0

ψiεt−i, ψi = φi

Advanced Econometrics I, Autumn 2010, Serial Correlations 17

Page 18: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Stability and Stationarity Conditions

If |φ| < 1, thenlimj→∞

φj = limj→∞

ψj = 0

limj→∞

φj(y−1 − µ) = 0

the stationary solution (Wold form) for the AR(1) becomes.

yt = µ+

∞∑j=0

φjεt−j = µ+

∞∑j=0

ψjεt−j

ψj = φj

This is a stable (non-explosive) solution.

Advanced Econometrics I, Autumn 2010, Serial Correlations 18

Page 19: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation - Lag operator

The lag operator L, defined by the relation Ljxt = xt−j,enables compactexpression of the operation of taking a weighted average of successive valuesof a process.

Properties of L

- LC = C, the lag of a constant is a constant

- the distributive law holds

(Li + Lj)yt = Liyt + Ljyt = yt−i + yt−j

- associative law of multiplication holds

LiLjyt = Li(Ljyt) = yt−j−i

Advanced Econometrics I, Autumn 2010, Serial Correlations 19

Page 20: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

similarly

LiLjyt = Li+jyt = yt−i−j

note L0yt = yt

- lead operator, L raised to a negative power

L−iyt = yt+1

- For |φ| < 1, the infinite sum

(1 + φL+ φ2L2 + φ3L3 + . . .)yt =yt

(1− φL)

Advanced Econometrics I, Autumn 2010, Serial Correlations 20

Page 21: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

proof:(×) each side by (1− φL)

(1− φL)(1 + φL+ φ2L2 + φ3L3 + . . .)yt = yt

Given that |φ| < 1, φnLnyt → 0 as n→∞

- For |φ| > 1, the infinite sum

[1 + (φL)−1 + (φL)−2 + (φL)−3 + . . .]yt =−φLyt

(1− φL)

Thus

Advanced Econometrics I, Autumn 2010, Serial Correlations 21

Page 22: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

yt(1− φL)

= −(φL)−1∞∑i=0

(φL)−iyt.

proof:(×) each side by (1− φL)

(1− φL)(1 + φL+ φ2L2 + φ2L2 + φ3L3 + . . .)yt = −φyt

⇒ [1−φL+(φL)−1−1+(φL)−2−(φL)−1+(φL)−3−(φL)−2+. . .]yt = −φLyt

since |φ| > 1,

φ−nL−nyt → 0 as n→∞

Advanced Econometrics I, Autumn 2010, Serial Correlations 22

Page 23: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

It is straightforward to use lag operators to solve linear difference equations.

Eg. Consider the First-order equation:

yt = φ0 + φ1yt−1 + εt

where |φ| < 1using L we could write this as

yt = φ0 + φ1Lyt + εt

=φ0 + εt1− φ1L

Property 1 ⇒ Lφ0 = φ0, so that

Advanced Econometrics I, Autumn 2010, Serial Correlations 23

Page 24: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

φ0(1− φ1L)

= φ0 + φ1φ0 + φ21φ0 + . . .

=φ0

(1− φ1)

Prpoerty 5 ⇒

εt(1− φ1L)

= εt + φ1εt−1 + φ21εt−2 + . . .

=

∞∑i=0

φi1εt−i

Thus,

yt =φ0

(1− φ1)+

∞∑i=0

φi1εt−i

Advanced Econometrics I, Autumn 2010, Serial Correlations 24

Page 25: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

A AR(1) process satisfies the following stochastic difference equation:

yt = c+ φyt−1 + εt or

yt − φyt−1 = c+ εt or

(1− φL)yt = c+ εt

where {εt} ∼WN(0, σ2).

Advanced Econometrics I, Autumn 2010, Serial Correlations 25

Page 26: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

AR(1) in Lag Operator Notation:

(1− φL)(yt − µ) = εt

If |φ| < 1, then

(1− φL)−1 =

∞∑j=0

φjLj = 1 + φL+ φ2L2 + . . .

so that(1− φL)−1(1− φL) = 1

Advanced Econometrics I, Autumn 2010, Serial Correlations 26

Page 27: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Finding the Wold form:

yt − µ = (1− φL)−1(1− φL)(yt − µ) = (1− φL)−1εt

=

∞∑j=0

φjLjεt

=

∞∑j=0

φjεt−j

=

∞∑j=0

ψjεt−j, ψj = φj

Advanced Econometrics I, Autumn 2010, Serial Correlations 27

Page 28: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Calculating moments: use stationarity properties

E[yt] = E[yt−j] for all j

cov(yt, yt−j) = cov(yt−k, yt−k−j) for all k, j

Mean of AR(1)

E[yt] = c+ φE[yt−1] + E[εt]

= c+ φE[yt]

⇒ E[yt] =c

(1− φ)= µ

Advanced Econometrics I, Autumn 2010, Serial Correlations 28

Page 29: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Variance of AR(1)

γ0 = var(yt) = E[(yt − µ)2]

= E[(φ(yt−1 − µ) + εt)2]

= φ2E[(yt−1 − µ)2] + 2φE[(yt−1 − µ)εt] + E[ε2t ]

= φ2E[(yt−1 − µ)2] + 0 + σ2

= φ2γ0 + σ2

⇒ γ0 =σ2

1− φ2

Advanced Econometrics I, Autumn 2010, Serial Correlations 29

Page 30: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Modelling Serial Correlation (cont’d)

Autocovariances and Autocorrelations:

Multiply yt − µ by yt−j − µ and take expectations

γj = E[(yt − µ)(yt−j − µ)]

= E[φ(yt−1 − µ)(yt−j − µ)] + E[εt(yt−j − µ)]

= φγj−1 (by stationarity)

⇒ γj = φjγ0 = φjσ2

1− φ2

Autocorrelations:

ρj =γjγ0

=φjγ0γ0

= φj = ψj

Advanced Econometrics I, Autumn 2010, Serial Correlations 30

Page 31: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotic Properties of Linear Processes

LLN for Linear Processes. Assume

yt = µ+ ψ(L)εt, εt ∼ MDS(0, σ2)

= µ+

∞∑j=0

ψjεt−j, ψ(L) =

∞∑j=0

ψjLj

ψ(L) is 1-summable, that is

∞∑j=0

j|ψj| = 1|ψ1|+ 2|ψ2|+ . . . <∞

Advanced Econometrics I, Autumn 2010, Serial Correlations 31

Page 32: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Then

µ =1

T

T∑t=1

yt →pE[yt] = µ

γj =1

T

T∑t=1

(yt − µ)(yt − µ)→pcov(ytyt−j) = γj

Advanced Econometrics I, Autumn 2010, Serial Correlations 32

Page 33: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

CLT for Linear Processes

yt = µ+ ψ(L)εt, εt ∼ MDS(0, σ2)

= µ+

∞∑j=0

ψjεt−j, ψ(L) =

∞∑j=0

ψjLj

ψ(L) is 1-summable

ψ(1) =

∞∑j=0

ψj 6= 0

Advanced Econometrics I, Autumn 2010, Serial Correlations 33

Page 34: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Then √T (µ− µ)→

dN(0, LRV)

LRV = long-run variance

=

∞∑−∞

γj

= γ0 + 2

∞∑j=1

γj, since γj = γ−j

= σ2ψ(1)2

Advanced Econometrics I, Autumn 2010, Serial Correlations 34

Page 35: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Intuition behind the LRV formula

Consider

var(√T y) = var

(1√T

T∑t=1

yt

)=

1

Tvar

(T∑

t=1

yt

)

Using the fact that

T∑t=1

yt = 1′y, 1 = (1, . . . , 1)

′, y = (y1, . . . , yT )

It follows that

var

(T∑

t=1

yt

)= var(1

′y) = 1

′var(y)1

Advanced Econometrics I, Autumn 2010, Serial Correlations 35

Page 36: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Nowvar(y) = E[(y − µ1)(y − µ1)

′]

=

γ0 γ1 γ2 . . . γT−1γ1 γ0 γ1 . . . γT−2... ... ... . . . ...

γT−1 γT−2 γT−3 . . . γ0

= Γ ,

whereγj = cov(yt, yt−j) and γj = γ−j

Thus,

var

(T∑

t=1

yt

)= 1

′var (yt) 1 = 1

′Γ1

Advanced Econometrics I, Autumn 2010, Serial Correlations 36

Page 37: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Now1′Γ1=sum of all elements in the T × T matrix Γ

This sum may be computed by summing across the rows, or the columns oralong the diagonals

Given the banded diagonal structure of Γ, it is most convinent to sum alongthe diagonals so that

1′Γ1 = Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + . . .+ 2γT−1

Advanced Econometrics I, Autumn 2010, Serial Correlations 37

Page 38: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Then

1

T1′Γ1 = γ0 + 2

T − 1

Tγ1 + 2T − 2Tγ2 + . . .+ 2

1

TγT−1

= γ0 + 2 ·T−1∑j=1

(1− j

T

)γj

As T →∞, it can be shown that

1

T1′Γ1 → γ0 + 2 ·

∞∑j=1

γj = LRV

Advanced Econometrics I, Autumn 2010, Serial Correlations 38

Page 39: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Remark

Since γj = γ−j,1T1′Γ1 may also be re-written as

1

T1′Γ1 = γ0 +

T−1∑j=−(T−1)

(1− |j|

T

)γj

Advanced Econometrics I, Autumn 2010, Serial Correlations 39

Page 40: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Asymptotics (cont’d)

Example: MA(1) Process

Yt = µ+ εt + θεt−1; |θ| < 1, εt ∼ iid(0, σ2)

We have seen that (see slide 14)

ψ(L) = 1 + θL

γ0 = σ2(1 + θ2), γ1 = σ2θ

Then

Advanced Econometrics I, Autumn 2010, Serial Correlations 40

Page 41: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

LRV = γ0 + 2 ·∞∑j=1

γj

= σ2(1 + θ2) + 2σ2θ

= σ2(1 + θ)2

= σ2ψ(1)2

Remarks

1. If θ = 0, then LRV=σ2

2. If θ = −1, then ψ(1) = 0⇒ LRV = σ2ψ(1)2 = 0

This motivates the condition that ψ(1) 6= 0 in the CLT for stationary andergodic linear processes

Advanced Econometrics I, Autumn 2010, Serial Correlations 41

Page 42: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Estimating Long-Run Variance

yt = µ+ ψ(L)εt, εt ∼ MDS(0, σ2)

LRV =

∞∑j=−∞

γj = γ0 + 2 ·∞∑j=1

γj

= σ2ψ(1)2

There are two types of estimators of the LRV:

• Parametric (assumes a parametric model for yt)

• Nonparametric (does not assume a parametric model for yt)

Advanced Econometrics I, Autumn 2010, Serial Correlations 42

Page 43: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Incorporating Serial correlation in GMM

Recall that the moment condition gt in our GMM discussion is a K-dimensional vector defined as xt · εt (the product of the K-dimensionalvector of instruments xt and the scalar error term εt).

We also looked at:

i. the mean of gt is zero (by orthogonality assumption)

ii. the matrix S, defined to be the asymptotic variance of g(≡ 1T

∑Tt=1 gt),

was the variance of gt (by the assumption of gt being a m.d.s. with finitesecond moments)

Serial corelation was ruled out by the second assumption (Assumption 3.5)in our earlier discussion.

Advanced Econometrics I, Autumn 2010, Serial Correlations 43

Page 44: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Incorporating Serial correlation in GMM

The CLT we looked at earlier is a generalisation that allows for serialcorrelation in {gt} by relaxing Assumption 3.5

This ensures that the long-run covariance matrix of {gt} is nonsingular.

Then √T g→

dN(0,LRV),

where

LRV =

∞∑j=−∞

Γj = Γ0 +

∞∑j=1

(Γj + Γ′j)

and Γj is the j-th order autocovariance matrix

Γj = E(gtg′t−j) (j = 0,±1,±2, . . .)

.

Advanced Econometrics I, Autumn 2010, Serial Correlations 44

Page 45: 16. Serial Correlation - uni-mannheim.defroelich.vwl.uni-mannheim.de/.../teaching/Ch5_Serial_Correlation.pdf · 16. Serial Correlation Hayashi pp. 365-412 Advanced Econometrics I,

Incorporating Serial correlation in GMM

Or

Γ0 = E(gtg′t) = E[xtx

′tε

2t ]

Γj = E(gtg′t−j) = E[xtx

′t−jεtεt−j]

Comparing GMM with and without serial correlation, we could concludethat:

• S(≡ Avar(g)) = Γ0 in the absence of serial correlation (underAssumption 3.5)

• S(≡ Avar(g)) = LRV =∑∞

j=−∞Γj in the presence of serial correla-tion

Advanced Econometrics I, Autumn 2010, Serial Correlations 45