13c nmr of triterpenoids

59
Pergamon 9031-9422(94)00493-5 Phymchem~rry, Vol. 37, No. 6, pp. 1517-1575, 1994 copyright 8 1994 lilseti ScienceLtd Printed in Great Britain. Al1rights mrvcd 0031~9422/!% $24M) t 0.00 REVIEW ARTICLE NUMBER 98 13C NMR SPECTRA OF PENTACYCLIC TRITERPENOIDS-A COMPILATION AND SOME SALIENT FEATURES SHASHI B. MAHATO* and ASISH P. KUNDU Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India (Received 31 May 1994) Key Word Inde~--‘~C NMR da&g pentacyclic triterpenoids; signal assigmnent techniques; substitu- ent effects. Abstract-A compilation of the “C NMR data of a selected variety of naturally occurring pentacyclic triterpenoids, arranged skeletonwise, is provided. A brief account of the newer signal assignment techniques and a discussion on the substituent effects on the i3C shieldings of the triterpenoids, are also included. Triterpenoids are ubiquitous non-steroidal secondary metabolites of terrestrial and marine flora and fauna, occurring in the free form as well as in the forms of ether, ester and glycoside. Although medicinal uses of this class of compounds have been limited, considerable recent work [l] strongly indicates their great potential. As the name implies, triterpenoids are isopentenoids composed of thirty carbon atoms and may possess acyclic, mono-, di-, tri-, tetra- or pentacyclic carbon skeletons. Pentacyc- lit triterpenoids are dominant constituents of this class and have been widely investigated. Spectroscopic tech- niques are now routinely employed for structure elucida- tion of natural products. Of all the physical methods, the NMR technique has changed greatly during the last two decades, first with the ~troduction of the Fourier trans- form (FT) method and more recently the growth of mul- tiple pulse and 2DNMR. Perhaps more importantly have been developments consequent on the pulse tech- nique which permit enormously greater control and ma- nipulation of the sample’s magnetization. Consequently, the structural information which is gleaned through pulse NMR is probably greater and more readily ob- tained than by any other single technique. A large number of pentacyclic triterpenoids have been examined by 1 %Z NMR spectroscopy and considerable 13C chemical shift data have accumulated. These data are scattered in the literature, although compilations of i3C data for a number of compounds [2] and oleanane triter- penoids [S] are available. The assignment of carbon signals of a new compound by comparison with the data *Author to whom correspondence should be addressed. of known compounds is simple and str~gh~o~ard pro- vided, of course, the 13C data of appropriate model compounds are available. It would appear to be of value to provide an easy access to an extensive list of i3C data of pentacyclic triterpenoids and this paper reports the skeletonwise compilation of the data of these com- pounds. A brief description of the newer signal assign- ment techniques and a discussion on the substituent effects on the r3C shieldings, to illustrate their utility, as well as limitations, are also included. 13C SiGNALASSIGNMFJ'I'CTECHNIQUES The assignment of i3CNMR signals begins with an inspection of the proton noise (broad band) decoupling spectra taking into ~nsideration the chemical shift values and usually backed up by 13C multiplicity data. The off-resonance decoupled spectra were previously used for the determination of quaternary, methine, methylene and methyl carbons appearing as singlets, doublets, triplets and quartets, respectively. ffowever, in such spectra, severe signal overlap and second order effects f~quently prohibit un~biguo~ interpretation. Several techniques such as APT (attached proton test) [4], DEPT (distortionless enhancement by polarization transfer) [S] and INEPT (insensitive nuclei enhanced by polarization transfer) [6-81, are now widely used for distinguishing carbon types. Although the polarization transfer techniques, DEPT and INEPT are now used for the multiplicity determination, the polarization pulse se- quences were originally devised for the purpose of sensi- tivity enhan~ment. The DEPT sequence is usually pre- ferred for editing purposes because it has some advant- ages and is less susceptible to errors. The multiplicity 1517

Upload: minh-dao-huynh

Post on 02-Jan-2016

492 views

Category:

Documents


10 download

DESCRIPTION

pho nmr cua triteroen

TRANSCRIPT

Page 1: 13C NMR of Triterpenoids

Pergamon 9031-9422(94)00493-5 Phymchem~rry, Vol. 37, No. 6, pp. 1517-1575, 1994 copyright 8 1994 lilseti Science Ltd

Printed in Great Britain. Al1 rights mrvcd 0031~9422/!% $24M) t 0.00

REVIEW ARTICLE NUMBER 98

13C NMR SPECTRA OF PENTACYCLIC TRITERPENOIDS-A COMPILATION AND SOME SALIENT FEATURES

SHASHI B. MAHATO* and ASISH P. KUNDU

Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India

(Received 31 May 1994)

Key Word Inde~--‘~C NMR da&g pentacyclic triterpenoids; signal assigmnent techniques; substitu- ent effects.

Abstract-A compilation of the “C NMR data of a selected variety of naturally occurring pentacyclic triterpenoids, arranged skeletonwise, is provided. A brief account of the newer signal assignment techniques and a discussion on the substituent effects on the i3C shieldings of the triterpenoids, are also included.

Triterpenoids are ubiquitous non-steroidal secondary metabolites of terrestrial and marine flora and fauna, occurring in the free form as well as in the forms of ether, ester and glycoside. Although medicinal uses of this class of compounds have been limited, considerable recent work [l] strongly indicates their great potential. As the name implies, triterpenoids are isopentenoids composed of thirty carbon atoms and may possess acyclic, mono-, di-, tri-, tetra- or pentacyclic carbon skeletons. Pentacyc- lit triterpenoids are dominant constituents of this class and have been widely investigated. Spectroscopic tech- niques are now routinely employed for structure elucida- tion of natural products. Of all the physical methods, the NMR technique has changed greatly during the last two decades, first with the ~troduction of the Fourier trans- form (FT) method and more recently the growth of mul- tiple pulse and 2DNMR. Perhaps more importantly have been developments consequent on the pulse tech- nique which permit enormously greater control and ma- nipulation of the sample’s magnetization. Consequently, the structural information which is gleaned through pulse NMR is probably greater and more readily ob- tained than by any other single technique.

A large number of pentacyclic triterpenoids have been examined by 1 %Z NMR spectroscopy and considerable 13C chemical shift data have accumulated. These data are scattered in the literature, although compilations of i3C data for a number of compounds [2] and oleanane triter- penoids [S] are available. The assignment of carbon signals of a new compound by comparison with the data

*Author to whom correspondence should be addressed.

of known compounds is simple and str~gh~o~ard pro- vided, of course, the 13C data of appropriate model compounds are available. It would appear to be of value to provide an easy access to an extensive list of i3C data of pentacyclic triterpenoids and this paper reports the skeletonwise compilation of the data of these com- pounds. A brief description of the newer signal assign- ment techniques and a discussion on the substituent effects on the r3C shieldings, to illustrate their utility, as well as limitations, are also included.

13C SiGNALASSIGNMFJ'I'CTECHNIQUES

The assignment of i3CNMR signals begins with an inspection of the proton noise (broad band) decoupling spectra taking into ~nsideration the chemical shift values and usually backed up by 13C multiplicity data. The off-resonance decoupled spectra were previously used for the determination of quaternary, methine, methylene and methyl carbons appearing as singlets, doublets, triplets and quartets, respectively. ffowever, in such spectra, severe signal overlap and second order effects f~quently prohibit un~biguo~ interpretation. Several techniques such as APT (attached proton test) [4], DEPT (distortionless enhancement by polarization transfer) [S] and INEPT (insensitive nuclei enhanced by polarization transfer) [6-81, are now widely used for distinguishing carbon types. Although the polarization transfer techniques, DEPT and INEPT are now used for the multiplicity determination, the polarization pulse se- quences were originally devised for the purpose of sensi- tivity enhan~ment. The DEPT sequence is usually pre- ferred for editing purposes because it has some advant- ages and is less susceptible to errors. The multiplicity

1517

Page 2: 13C NMR of Triterpenoids

1518 S. B. MAHATO and A. P. KUNDU

dependence rests on the delay A for INEPT and the flip angle 0 for DEPT experiment. By performing three ex- periments with different values of A or 0, it is possible to distinguish unambiguously between the three types of protonated . 13C The quaternary carbons do not receive polarization from protons and disappear from INEPT and DEPT spectra. For example, a DEPT experiment with a flip angle 0 of 45” will show positive signals for all three multiplicities; with 0= 90” only methine signals should appear, while with 0 = 135” methylene signals will appear negative and methine and methyl signals remain positive [9].

The techniques of derivatization, usually acylation of hydroxy groups, use of shift reagents and isotope labell- ing have sometimes been used for definitive signal assign- ments of natural products, including pentacyclic triter- penoids. The ‘%NMR spectra of some derivatives of bryonolic acid (D : C-friedoolean-8-en-3B-ol-29-oic acid) were assigned by means of 13C-enrichment, lanthanide- induced shifts (LIS) and comparison of the chemical shift data of the derivatives [lo]. Lanthanide induced shifts associated with the addition of Eu(Fod)J have been used for the determination of conformation of bryonolic acid and its derivatives in CDCls solution [ll].

2D-NMR Spectroscopy

The above mentioned techniques are found to be inad- equate for unambiguous assignment of the 13C reson- ances of compounds possessing complex structural fea- tures. In such cases, 2D-NMR techniques provide a use- ful solution to the problem. ZD-NMR techniques have been reviewed in several monographs [12-171. There are many variants for the techniques of 2D-NMR and it is rather difficult to keep abreast with the acronyms of so many variants. However, it is perhaps pertinent to men- tion that no new interactions or parameters are involved in the newer techniques and the increase in experimental complexity stems rather from instrumental developments and from the necessity to interpret the spectra of increas- ingly complex samples. Sensitivity problems are inherent in NMR spectroscopy and acceptability of a technique largely depends on its sensitivity and the minimum time requirement. A few of the techniques e.g. J-resolved ex- periment [IS, 191, SECSY (spin echo correlated spectro- scopy) [20] are now rarely used, because of their limited sensitivity. The techniques and their applications which are useful today and have the potential of being used tomorrow are briefly dealt with in the following para- graphs.

Homonuclear correlation spectroscopy. Homonuclear ‘H-‘HCOSY [21] is now one of the most widely used 2D-NMR experiments for ‘H assignment. Once the de- finitive ‘H NMR assignments are achieved by homonuc- lear COSY or its variants, these can be correlated via ‘H-13C COSY spectrum to assign 13C signals. As such, ‘H-‘HCOSY not only provides information for unam- biguous ‘HNMR assignments but also helps in 13CNMR assignments. The phase sensitive COSY (PS-

COSY) is useful for establishing remote connectivities [22], as the COSY cross-peaks display the entire coup- ling information concerning the protons involved. The great strength of PS-COSY is the resolution obtainable of the fine structure of cross-peaks. This technique is very useful for the accurate measurement of chemical shifts and coupling constants from cross-peaks, when the par- ent signals are buried in the one dimensional spectrum. Thus, a cross-peak obtained at frequency Fz (horizontal axis) of a proton and frequency F, (vertical axis) of another proton not only shows the coupling betweeen themselves (active couplings) but also coupling between these and other protons (passive couplings). Double- quantum filtered COSY (DQF-COSY) [23] spectra are used for visualization of cross-peaks, which are close to diagonal. All the spin systems that contain less than three or more mutually coupled spins are eliminated in a triple- quantum filtered COSY (TQF-COSY) [24]. LR-COSY (long range-COSY) [21] and DQF-COSY sequences were used for elucidation of the structure of achilleol B, a new tricyclic triterpene from Achilles odorate L. [25]. The DQF-COSY sequence was selected in order to avoid the methyl group crowd on the diagonal. PS-COSY experiments were performed for complete assignments of the 13C and ‘HNMR signals of 12a-acetoxyfern-9(11)- en-3/I-01 [26], a lichen triterpenoid of established struc- ture. The phase sensitive heteronuclear correlated (PSHCOR) and phase sensitive double quantum COSY (PSDQFC) spectra of 22-hydroxyhopan-6-one (339) and 6a-acetoxyhopan-22-01 (340) were acquired and pro- cessed for assignment of their i3C resonances [27]. The PSDQFC spectra of methyl aipolate (350) were also used for complete assignment of the 13C signals [27j.

Homonuclear Hartmann-Hahn spectroscopy (HOHAHA). The HOHAHA spectroscopy [28,29] is related to TOCSY (total correlation spectroscopy) [30]. From a HOHAHA spectrum, ‘J-network’ can be determined, where a ‘J-network’ is defined as a group of protons that are serially linked via ‘H-‘H J (scalar) coupling. The HOHAHA spectrum of stelliferin A, a new antineoplastic isomalabaricane triterpene from the Okinawan marine sponge Jaspis stellifera was used by Tsuda et al. [31] to elucidate the partial structure of the side chain of the compound. The HOHAHA spectrum of achelleol B [25] proved to be very useful for structural elucidation of the acyclic moiety of the molecule, allowing unambiguous assignments of some ‘H signals.

2D Incredible natural abundance double quantum trans- fer experiment (INADEQUATE). The 2D INAD- EQUATE experiment [32,33] provides direct informa- tion on carboncarbon connectivity and therefore, can be used to trace the entire carbon skeleton of the molecule. The presence of a pair of double quantum peaks gener- ally indicates the presence of a bond. However, this may be absent from carbon atoms with long relaxation times, strongly coupled carbons and if the chemical shift differ- ence is large. Nevertheless this technique is only applic- able to limited problems, because of its extremely low sensitivity. The structure of odolactone (188), a triter- penoid of D : A-friedooleanane skeleton was revised and

Page 3: 13C NMR of Triterpenoids
Page 4: 13C NMR of Triterpenoids

1520 S. B. MAHATO and A. P. KUNDU

A modification of the proton-detected heteronuclear chemical shift correlation experiments was proposed by Zuiderweg [55] to improve both resolution and sensitiv- ity. In these heteronuclear single-and multiple-quantum coherence (HSMQC) experiments, both single- and mul- tiple-quantum coherence pathways contribute to the ob- served signal, thereby intermixing the narrow line char- acteristics of the heteronuclear single-quantum coher- ence (HSQC) experiment originally described by Boden- hausen and Ruben [57], into the signal obtained from the HMQC experiment.

HMBC. Although modified long-range heteronuclear correlation experiments were devised to overcome the problem of low sensitivity, these experiments met with limited success. However, a successful solution was pro- vided by using proton-detected heteronuclear multiple bond correlation (HMBC) [54]. In HMBC experiments, the first 90” proton pulse creates transverse proton mag- netization in the XY plane. The low pass J-filter is opti- mized as a function of the one-bond coupling to bring the components of proton magnetization, driven by iJcH, antiphase at the end of the interval, A. The 90” carbon pulse applied at this point creates one-bond multiple- quantum coherence. By cycling the phase of the first 90” carbon pulse as 02022020 . . . , the undesired one-bond component of magnetization is ultimately added and then subtracted (filtrated) from the FID. After a further period of time, AU, a second 90” carbon pulse is applied to create multiple-quantum coherence from the desired long-range protoncarbon couplings. This magnetiz- ation is manipulated as in the HMQC experiment, recon- verted to observable proton single-quantum coherence, and recorded [56].

Application of HMQC and HMBC techniques

The techniques of HMQC and HMBC were success- fully used for elucidation of the structure of stelliferin A, a new isomalabaricane triterpene by Tsuda et al. [31]. Fame et al. [58] employed HMQC and HMBC experi- ments for complete i3C signal assignments of isomulti- florenyl acetate (159). Carbon-hydrogen pairings of the methyl groups were readily determined from an HMQC contour plot. The structure of abrisapogenol G (106), a triterpenoid sapogenol isolated from Abrus precatori- ous, has been established by the use of HMBC specrro- scopy [59]. The HMBC NMR spectroscopy was success- fully used to elucidate the structure of chiratenol (364), a novel triterpene possessing a rearranged hopane skel- eton 160-J The two- and three-bond correlation between methyl protons and carbon of the ketone of chiratenol led to the elucidation of the structure 364. Three friedelane triterpenes isolated from the stem-bark of Caloncoba glauca were characterized as trichadonic acid (195X caloncobalactone (174) and 21/I-hydroxycalon- cobalactone (175) by considerable use of long-range C-H coupling studies [61]. For example, the methyl doublet of trichadonic acid (195) was found by means of the proton detected direct C-H coupling (HMQC) study, to be highly shielded, which is typical for the 23-Me reson-

ance of a 3-oxo-friedelane. Assuming this resonance as- signable to C23, the application of the HMBC technique led to the elucidation of the structure and 13C assign- ments of the triterpene (1%) by identifying ‘J and 3J connectivities associated with the methyl proton reson- ances. Thus HMBC, using the protons from only the seven methyl resonances, allows unambiguous assign- ment of C3, C4, C5, C6, C8, C9, ClO, Cll, C13, C14, C15, C17, C18, C20 and C23 to C30 of the triterpene (195) and assignment of C19/C21 and C16/C22 without distin- guishing between these pairs. Parsons et al. [62] de- scribed the assignments of different ‘H and “C signals using HMBC experiments for the elucidation of the structure of D-friedoolean-14-ene-38,7a-diol (152).

The hybrid methods e.g. HMQC-COSY ‘[63, 641, HMQC-TOCSY [65] and HMQC-NOESY [66] are powerful alternatives for obtaining further connectivity information, specially when the ‘H spectrum is highly congested. The application of these techniques in the field of triterpenoid is still very limited.

Ont dimensional analogues of proton detected ZD-NMR experiments. The 2D-NMR experiments usually yield some information which is not always required. In such cases, selective 1D analogues of the 2D experiments would be highly desirable. Two such techniques are selec- tive inverse correlation (SELINCOR) reported by .Berger 1671 and selective one dimensional HMQC-TOCSY [68]. A selective inverse multiple bond analysis (SIMBA) which is a 1D analogue of the 2D HMBC experiment has recently been described by Crouch and Martin [69]. The authors are of the opinion that the future for application of 1D analogues of ZD-NMR experiments is quite bright, as they can provide vital structural information with minimum investment in time, compared to the acquisi- tion of full 2D-NMR experiments.

“C NMB SHIELDING DATA OF PENTACYCLIC TEITEEPENES AND SUESTITUENT EFFECTS

13CNMR shielding data of a large number of pen- tacyclic triterpenes have been published. A compilation of the 13CNMR data of selected varieties of naturally occurring pentacyclic triterpenes is given in Table 1. The triterpenes have been arranged skeletonwise and accord- ing to increasing number of hydroxy substituents. The olean-12-enes have been listed first, followed *by ole- anenes with other double bonds and more than one double bond, friedooleananes, urs- 12-enes, Ursa-dienes, taraxastanes, pseudotaraxastanes, friedoursanes, gam- maceranes, serratanes, swertanes, kairatane, stictanes, flavicanes, lupanes, hopanes, fernanes, adiananes, arbor- anes, bicadinane, friedomadeiranes and pachanane.

Hydroxyl substituent eflects

Inspection of the “C data of various mono- and poly- hydroxy triterpenes (Table l), reveals that introduction of a hydroxyl group results in downfield shifts of 34-50 ppm for cc-carbons and 2-10 ppm for p-carbons and upfield shifts of O-9 ppm for y-carbons. These values

Page 5: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1521

closely resemble those observed for cyclopentanols and cyclohexanols [70]. Eggert et al.’ [71] determined the ‘“CNMR spectra of thirty one mono-hydroxylated an- drostanes and cholestanes and assigned the individual resonances. The effects of the hydroxyl groups were quantified by empirical rules. However, Van Antwerp et al. [72] observed that there are significant differences between the found chemical shifts of compounds with 1,2- or l$-dihydroxy groups and those calculated, as- suming additivity of the substituent effects of the mono substituted compounds. Similarly, for triterpenes which are closely related to steroids, the substituent effect on chemical shifts of the carbinyl carbon atom, is not prim- arily dependent on the stereochemistry of hydroxyl groups. It also depends on the number of y-gauche car- bon atoms possessing hydrogens able to interact with the hydroxyl group, as well as the number of 1,3-diaxial interactions of the hydroxyl group with carbon atoms. However, where l$-diaxial interactions are absent the carbinyl carbon is less shielded in the equatorial epimer than in the axial one. In triterpenes 31-34 and 65, the carbinyl carbons, C6, C16, C19, C21 and C2, each con- taining an axial hydroxyl groups, are less shielded than their equatorial counterparts, because of 1,3-diaxial in- teractions.

Location and conJgurationa1 determination of hydroxyl groups

The location of the primary hydroxyl group at C23, C24, C29 and C30 in oleanenes may be determined from the chemical shifts of the hydroxymethylene carbons, as the equatorial hydroxymethylenes (C23 and C29) are less shielded than their axial counterparts (C24 and C30).

Configurational determination of 2,3-dihydroxy and 2,3,23- and 2,324~trihydroxy substituents in oleanenes and ursenes by ‘H NMR spectroscopy has been reported [73]. However, “CNMR data of these triterpenes are also extremely useful for the determination of configura- tions of 2,3-; 3,23-; 3,24- diiydroxy and 2,3,23- and 2,3,24- trihydroxy substituents. Comparison of the i3C data of triterpenes 1 and 5, containing equatorial and axial hy- droxyl groups at C3, reveals that not only the carbinyl carbon’of the equatorial isomer is less shielded (679.0) than the axial one (a 76.4), but also the axial C4 methyl and Cl methylene groups in 1 are shifted by about 6.5 ppm and 2.0 ppm, respectively, in comparison to that of triterpene 5 due to y-gauche interaction. It should be mentioned that the 13C data reported by Gupta and Singh [74,75] for two triterpenes, 3g16a,21a,22a,28-pen- tahydroxy-olean-12-ene and 3a,16a,21~,22a,28-pen- tahydroxyolean-12-ene are not in conformity with the structures and a reinvestigation of these triterpenes seems necessary.

In triterpenes 28, 29, 215 and 217 containing 2a,3/I-, 2a,3a-, 2fi,3a- and 2&3/Lhydroxyl groups, the C2 and C3 carbons resonate at S 68.8,83.8; 66.5,78.9; 68.9,78.2; 71.0 and 78.4 ppm, respectively. Evidently the hydroxyl bear- ing C2 or C3 is less deshielded by the adjacent axial

hydroxyl than by the equatorial one. In triterpenes 38 and 39 bearing 3/3,24 and 3a,24 hydroxyls the C3 of the former is only slightly affected but the latter is shielded by about 6 ppm. Comparison of the r3C data of triterpenes 28,29,37 and 66 indicates that the C3 carbon containing the equatorial hydroxyl is shielded by about 5 ppm by the 23-hydroxyl group but for the axial hydroxyl, it remains more or less unaffected. In 27 containing laJ/?- hydroxyls, C3 is shielded by about 7 ppm and in 102 bearing lp,3/&hydroxyls, the C25 methyl carbon is shiel- ded by about 3 ppm due to y-gauche interaction. In 31 and 226 containing axial and equatorial hydroxyl groups, respectively, the C6 carbons resonate at 668.9 and 67.3 ppm i.e. the axial bearing carbon is less shielded than the equatorial counterpart. As already mentioned, this may be attributed to the 1,3-syn diaxial interaction. Although no oleanene or ursene triterpene containing a 15/?-(axial) hydroxyl group appears to have been iso- lated so far, the 13C data of triterpene 17 containing a 15a-(equatorial) hydroxyl, show the Cl5 resonance at 668.2 ppm, as expected. For 55 and 77 with 16a-OH configurations, the Cl6 resonance is found at a signifi- cantly lower field than for the epimers 54 and 76 with 16/I-OH configurations. For the analogous structural situation in arjungenin (&I) and tomentosic acid @I), a similar downfield shift is observed for the Cl9 reson- ance of 86 where the 19a-OH is axial, compared with that of 85, where the 19/I-OH is equatorial. These results for carbinyl carbons are ascribed to the strong 1,3diaxial Me . . . . . OH interaction. The strong dependence of “C chemical shifts upon a steric factor is illustrated by the results for the triterpene, 3fl,16u,22a,23,28+entahyd- roxyolean-12-ene (93). It is evident that the close spatial approach of the 22a-OH to the 168-H, gives rise to an upfield shift of 5.4 ppm for C16, as compared to that in cyclamiretin D, 3/?,16a,28-trihydroxyolean-12-en-3O-a1 (68). For yunganogenin C (57), with a 21a (axial)-OH configuration, the C21 resonance is found at a lower field (674.5) than for the epimer kudzusapogenol C (58) (672.8), with the C21fi (equatorial)-OH configuration. A similar low field is observed for the C21 resonance of triterpene 34 with 21a-OH compared with that of 35 with alp-OH. These results are in conformity with other cases having a 1,3-diaxial Me . . . . OH interaction. For soyasapogenol B (3/$22/W-trihydroxyolean-12ene) (59), the C22 resonates at 675.8. In triterpene 38,22a,28- trihydroxyolean-12-ene (60), the C22 resonance is also observed at 675.8. However, in case of the latter there exists a y-gauche effect on C22 due to the presence of 28-OH. In soyasapogenol A (3/$21/&22~,24_tetrahyd- roxyolean-12-ene) (73), the C21 and C22 resonate at 674.6 and 79.6, respectively, the former being less deshiel- ded due to the fi-effect of C22b(axial)-OH, than the latter, which is more &shielded due to the p-effect of the equa- torial 21-OH. For the triterpene 3fl,16a,21fi,22a,24,28- hexahydroxyolean-12-ene (99), the C21 and C22 reson- ances are observed at 678.6 and 77.1, respectively. While there is j-effect of C22 (equatorial)-OH on C21, the C22 is influenced by the /?-effect of C21 (equatorial)-OH as well as the y-effect of 28-OH.

Page 6: 13C NMR of Triterpenoids

1522 S. B. MAHATO and A. P. KUNDU

Table 1. “C NMR data of pentacyclic triterpenes*

C 1 2 3 4P 5 6 7 8 Y

1 38.7 38.5 2 27.3 27.4 3 79.0 78.1 4 38.8 38.7 5 55.3 55.2 6 18.5 18.3 7 32.8 32.6 8 38.8 39.3 9 47.7 47.6

10 37.6 37.0 11 23.6 23.1 12 121.8 122.1 13 145.1 143.4 14 41.8 41.6 15 26.2 27.7 16 27.0 23.4 17 32.5 46.6 18 47.4 41.3 19 46.9 45.8 20 31.1 30.6 21 34.8 33.8 22 37.2 32.3 23 28.2 28.1 24 15.5 15.6 25 15.6 15.3 26 16.9 16.8 27 26.0 26.0 28 28.4 181.0 29 33.3 33.1 30 23.7 23.6 References [ 1131 Cl141

39.1 34.1

217.6 47.4 55.3 19.6 32.2 39.3 46.0 36.7 23.0

122.1 143.8 41.8 21.7 23.5 46.7 41.4 45.8 30.6 33.8 32.3 26.4 21.4 14.9 16.7 25.8

33.0 23.6

Cl151

36.Y 36.7 38.4 38.6 38.8 38.4 27.8 27.6 23.6 27.2 27.2 27.0

78.8 76.4 81.1 78.8 78.6 71.6 40.2 39.9 37.8 38.6 38.7 56.2 55.5 48.8 55.4 55.1 55.2 48.0 18.3 18.0 18.3 18.4 18.3 21.0 33.5 32.9 32.7 32.7 33.1 32.5 37.3 36.7 39.9 39.7 39.5 40.0 49.2 48.8 47.6 47.6 47.2 47.7 38.8” 36.7 37.0 36.9 36.8 36.2

23.0 23.6 23.6 23.4 23.2 23.8 125.5 126.0 123.0 122.2 117.2 122.2

137.5 137.6 144.4 143.9 141.5 144.8 56.1 56.0 41.7 41.5 43.6 42.2 22.3 22.7 26.6 26.1 26.3 28.2 21.3 26.2 27.0 27.0 38.1 23.8 32.9 32.9 32.5 31.9 34.9 46.6 47.5 47.0 46.1 48.1 39.3 41.9 44.0 44.2 40.6 42.8 36.0 46.5 30.9 31.0 42.8 44.1 42.8 30.9 34.3 34.2 29.1 31.3 32.4 34.2 36.8 36.2 36.0 38.3 28.7 23.1 28.3 28.2 28.3 28.1 28.1 207.1 15.7 22.1 16.8 15.3 15.2 9.6 16.4 15.8 15.6 15.5 15.7 15.7 18.1 18.0 16.8 16.8 15.8 17.3

176.1 179.0 26.0 25.9 23.2 26.1 28.2 28.2 28.2 28.1 17.4 180.0 33.2 32.9 179.6 28.4 20.9 33.2 23.5 23.6 19.4 176.9 178.7 23.8

Cl161 Cl161 Cl171 C761 C761 Cl 181

Page 7: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1523

Table 1. Continued

10 11 12p 13 14p 15 16 17 18 19p 2op 21P

36.7 36.2 37.6 39.2 38.9 38.4 39.5 38.7 38.5 39.2 39.1 39.1 27.5 27.3 26.2 25.3 28.0 27.1 27.4 27.2 27.1 28.2 28.1 28.1 76.0 75.8 74.0 77.8 78.1 78.1 78.7 78.8 78.8 78.1 78.0 78.0 39.6 39.9 53.0 39.1 39.4 38.7 39.0 38.7 38.7 39.4 39.4 39.4 48.5 48.5 50.5 55.7 55.8 55.2 55.1 54.8 55.1 55.9 55.7 55.1 18.0 18.0 20.2 18.7 18.8 18.3 18.4 18.6 18.2 18.9 18.7 18.7 32.9 32.7 31.5 37.4 33.2 32.6 32.9 36.8 32.6 33.3 32.9 33.0 36.7 37.0 38.6 39.8 39.7 39.2 43.3 41.1 39.8 40.1 39.9 39.9 46.8 47.9 46.9 47.5 48.0 47.5 49.7 47.7 46.8 48.1 47.8 47.9 37.0 37.0 35.3 37.3 37.4 36.9 31.9 37.0 37.2 37.3 31.2 31.2 22.6 22.5 22.3 23.4 23.8 23.3 81.7 23.6 23.4 23.9 23.9 23.8

126.8 126.8 122.4 125.9 122.2 122.9 121.2 123.0 122.2 122.5 124.9 124.7 136.1 135.8 143.3 138.1 144.3 142.9 153.2 146.1 143.4 144.9 141.1 141.5 55.6 55.5 40.7 56.5 42.5 41.4 41.8 47.4 43.7 42.5 42.0 42.0 21.8 21.7 26.8 28.1 28.3 27.6 26.4 68.2 35.5 26.5 25.3 25.3 25.3 25.2 22.2 24.9 23.8 23.3 27.4 36.0 65.9 28.7 21.3 28.1 32.7 32.7 45.1 47.7 46.6 46.0 32.3 33.0 36.8 38.0 48.2 47.5 47.1 46.4 40.5 44.2 41.1 42.5 46.9 47.6 49.0 45.4 46.7 48.5 35.1 38.1 45.0 44.0 41.1 42.0 46.9 46.2 46.5 46.9 41.1 44.1 46.6 42.0 29.5 30.9 42.2 43.6 31.2 31.0 30.8 30.9 44.4 45.7 24.6 21.2 32.7 34.0 29.4 30.3 34.7 34.6 34.1 42.3 45.9 46.8 34.6 35.1 31.5 32.8 32.4 33.4 31.0 37.4 30.5 75.6 214.1 213.0 28.0 28.2 179.2 28.5 28.3 27.9 28.0 28.1 28.0 28.8 28.7 28.7 21.9 22.3 10.7 16.5 16.6 15.6 15.5 15.6 15.4 15.9 15.6 15.8 15.8 16.1 14.5 16.4 15.5 15.3 18.3 15.6 15.3 16.6 16.6 16.6 17:7 17.9 15.9 18.7 17.4 16.7 16.8 17.5 16.7 17.3 16.9 16.9

178.5 185.5 24.7 178.5 26.1 25.9 24.1 20.2 27.0 25.8 25.4 25.3

28.0 27.8 178.7 180.2 180.0 176.4 28.5 28.9 21.3 28.8 21.3 21.3 206.0 183.0 31.8 33.1 181.2 28.1 33.3 33.3 33.1 33.3 176.6 26.2

15.8 19.3 22.3 23.1 20.0 177.3 23.1 23.6 23.8 21.2 20.9 176.8

Cl161 Cl161 Cl191 cw Cl211 Cl221 ~1231 cl241 cl251 Cl261 ~1271 ~1271

PHYTO 37-6-D

Page 8: 13C NMR of Triterpenoids

1524 S. B. MAHATO and A. P. KUNDU

Table 1. Continued

22 23 24 25 26p 27” 28 29 30 31

38.3 38.6 38.5 38.2 38.9 72.8 46.4 41.7 40.6 35.2 21.6 27.2 27.2 27.3 28.4 35.9 68.8 66.5 27.4 25.1 80.7 79.0 78.8 78.8 80.1 71.9 83.8 78.9 79.1 77.4 42.1 38.8 38.7 38.7 43.2 40.1 39.1 38.5 39.5 38.1 55.8 55.2 55.1 55.2 56.4 48.6 55.3 48.1 55.6 49.1 18.4 18.4 18.4 18.3 19.1 17.4 18.3 18.1 68.7 68.9 32.9 32.6 32.7 34.1 33.6 33.0 32.6 32.5 40.7 40.5 39.8 39.8 39.7 39.5 39.8 39.8 39.1 39.7 38.6 38.5 47.7 47.6 47.6 47.2 48.1 38.4 47.5 47.4 47.9 47.5 36.7 36.9 36.8 36.8 37.1 42.7 38.3 38.3 36.5 36.6 23.8 23.6 23.5 23.1 24.1 23.8 23.1 23.2 23.3 23.1

121.6 122.3 122.1 116.9 123.7 123.7 122.0 122.1 122.7 122.7 -145.2 144.2 144.4 141.9 142.8 144.7 143.6 143.8 142.9 142.8

41.7 41.7 41.7 43.6 42.8 41.7 41.7 41.9 42.2 42.2 26.9 25.6 26.1 26.3 25.7 26.7 27.6 27.7 27.7 27.5 26.1 22.0 27.3 38.8 26.5 27.5 23.5 23.2 23.0 23.0 32.5 36.9 32.4 35.0 38.6 33.0 46.6 46.8 46.7 46.7 47.2 42.3 46.7 39.6 45.2 46.8 41.3 41.3 41.3 41.2 46.8 46.5 41.9 36.3 46.1 41.8 45.8 46.0 45.8 45.8 31.1 31.0 35.5 36.2 40.0 43.0 30.7 30.7 30.7 30.7 34.7 34.1 29.6 32.3 39.3 30.0 33.8 34.0 33.9 33.8 37.1 31.0 36.5 28.5 85.8 36.7 32.3 32.5 32.4 32.3 22.4 28.1 28.1 28.1 23.6 28.6 28.6 28.5 27.9 28.3 64.4 15.5 15.5 15.2 64.6 16.8 16.8 21.9 17.0 24.4 16.1 15.5 15.5 15.7 16.2 16.6 16.8 16.4 16.8 16.5 16.7 16.7 16.8 15.8 17.0 16.6 16.8 17.0 18.2 18.1 26.0 25.9 25.9 23.1 25.1 26.3 26.0 26.2 26.0 26.1 28.4 69.7 28.1 17.4 23.5 29.0 178.0 178.1 178.2 178.3 33.3 33.2 29.6 20.6 72.6 181.4 33.1 33.2 33.1 33.1 23.1 23.6 66.6 74.9 76.4 18.9 23.5 23.6 23.6 23.6

cl241 WI C761 C761 cl291 Cl301 Cl311 cl321 I91 c501

Page 9: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1525

32’ 33p 34 35 36p 37 3&v 39e 40 41

38.9 38.8 28.0 28.1 78.0 78.2 39.3 39.4 55.8 56.0 18.8 19.0 33.3 33.3 39.8 40.0 47.2 48.3 37.3 37.5 23.7 24.1

122.4 123.8 144.9 144.3 42.0 42.0

36.0 29.0 74.6 28.1 48.8 46.4 41.3 44.7 47.2 81.0 30.9 35.6 36.0 29.0 32.7 33.3 28.7 28.8 16.5 16.5 15.6 15.5 17.4 17.3 27.1 24.7

179.8 178.7 33.5 28.8 24.7 24.9

Cl311 Cl341

38.6 38.4 27.1 27.0 77.8 76.9 38.6 38.4 55.3 54.9 18.3 18.0 32.8 32.3 39.1 38.9 47.5 47.2 36.9 36.6 23.3 23.0

122.1 122.1 143.8 142.7 41.8 41.3 27.9 27.3 26.4 24.0 46.6 47.9 41.2 40.6 40.8 46.2 35.0 35.7 72.9 70.8 39.0 40.6 28.3 28.2 15.9 16.0 15.3 15.1 16.8 16.6 27.6 25.5

177.6 176.1 25.3 29.1

24.8 17.1

Cl351 Cl361

39.2 28.8 78.1 39.4 55.8 18.8 33.2 40.1 48.1 37.3 23.9

123.0 144.1 42.4 26.4 28.5 37.9 44.3 41.1 42.7 37.3 75.0 28.2 15.9 16.6 17.2 25.7 21.0

18.8

Cl371

38.9 38.8 33.9 33.6 38.1 27.6 28.5 26.4 27.5 27.1

73.7 80.3 70.0 78.8 78.8

42.9 43.3 43.9 38.5 38.7 48.8 56.5 50.1 55.1 54.8

18.7 19.1 19.1 17.8 18.2

33.6 33.6 33.6 32.7 32.4

39.8 39.8 39.9 39.3 39.7

48.2 48.3 48.1 48.2 48.3 37.3 37.3 37.5 41.1 37.1

23.8 24.1 24.0 22.9 24.1

122.7 122.7 123.0 122.7 129.7

145.0 145.1 144.1 143.3 137.7 42.2 42.2 42.0 41.6 47.5

28.4 28.5 28.1 28.0 24.5

23.8 23.8 23.5 24.8 22.4 46.7 46.8 47.0 46.5 46.0

42.0 42.1 41.9 41.1 40.4

46.5 46.6 46.1 45.7 44.9

31.0 31.0 30.8 30.4 30.7

34.3 34.3 34.0 33.1 33.4

33.3 33.3 32.8 32.2 32.3

68.2 23.7 23.4 28.6 28.0

13.1 64.6 65.8 15.6 15.7 16.0 16.0 15.9 61.0 15.5

17.5 17.3 17.1 17.0 18.5

26.2 26.2 26.1 26.1 63.0

180.4 180.4 177.9 178.1 183.0

33.3 33.3 33.1 32.9 33.0

23.8 23.8 23.7 23.3 23.8

Cl381 Cl381 Cl391 Cl361 Cl141

Page 10: 13C NMR of Triterpenoids

1526 S. B. MAHATO and A. P. KIJNDU

42p 43 44 45 46

Table 1. Continued

41P 48p 49p SOD 51p 52 53p

38.9 35.7 38.7 38.9 38.1 39.0 38.7 39.0 33.2 38.6 28.1 27.6 27.0 27.2 26.0 27.9 27.6 27.7 25.3 28.0 78.1 73.6 78.9 78.0 71.7 75.1 73.5 74.0 70.6 78.0 39.4 39.3 38.7 39.3 55.2 52.2 42.7 43.0 42.7 39.4 55.9 48.0 55.3 56.0 48.1 54.6 48.6 49.1 49.6 55.9 18.8 18.0 18.5 18.7 20.7 21.9 18.6 18.8 18.7 18.9 33.3 32.9 32.8 32.6 32.3 33.3 32.9 33.2 33.0 32.8 39.8 36.7 39.3 40.4 39.7 40.5 39.7 40.0 40.0 39.8 48.2 48.0 47.7 47.4 46.7 48.7 48.1 48.4 47.1 47.8 37.4 36.8 37.2 37.3 35.9 37.1 37.2 37.4 36.9 37.6 23.8 23.6 23.4 23.8 23.2 24.3 23.8 24.0 23.7 23.8

122.5 124.8 122.8 124.6 122.2 123.4 123.2 123.4 122.4 122.4 144.9 137.5 143.2 140.2 142.8 145.0 144.4 144.6 143.9 141.1 42.2 55.3 41.7 43.4 41.7 42.2 42.1 42.3 41.2 42.2 28.2 22.7 27.7 38.0 35.4 28.4 28.4 28.6 27.8 24.0 23.8 26.2 23.4 66.6 74.7 29.3 23.8 24.0 23.2 26.6 47.2 32.9 46.8 49.9 48.7 46.1 46.1 46.4 45.9 44.1 41.4 46.3 40.3 41.7 40.5 44.9 43.3 43.5 42.7 40.2 41.4 40.5 40.3 42.8 46.4 81.4 42.7 43.0 41.3 30.2 36.6 35.7 35.2 34.1 30.3 35.5 44.2 44.3 44.0 38.6 29.1 29.0 32.8 83.4 35.4 29.2 30.8 31.1 30.6 80.4 32.1 38.7 32.1 28.0 30.3 33.7 34.5 34.6 33.6 36.6 28.8 28.0 28.1 28.6 207.0 181.0 68.0 68.4 21.7 28.6 16.5 22.2 15.7 15.7 9.0 12.3 13.1 13.1 66.5 16.4 15.5 15.9 15.4 16.3 15.7 16.0 15.9 16.1 15.6 15.6 17.4 17.7 16.9 16.4 16.9 17.5 17.4 17.6 16.7 16.3 26.2 176.9 26.0 28.6 27.0 25.0 26.1 26.3 25.4 23.5

180.2 28.5 178.5 181.0 177.2 180.7 179.1 179.8 178.9 181.9 73.9 73.1 28.9 28.7 32.7 29.0 177.1 28.6 27.9 22.1 19.8 19.0 65.8 24.3 24.6 25.0 28.4 177.3 176.5 68.0

Cl403 Cl161 Cl411 ~1421 I3411 Cl431 Cl441 Cl451 Cl391 Cl461

33.0 27.4 78.2 39.0 48.3 18.5 30.5 46.9 79.0 44.8 67.2

123.2 149.0 43.3 27.7 26.8 32.9 46.8 45.3 31.0 34.8 36.9 28.2 15.5 20.2 19.6 27.6 28.7 33.3 23.6

Cl471

39.1 28.5 80.2 43.2 56.2 19.5 37.2 41.6 48.3 37.1 24.3

123.7 146.9 48.2 66.9 37.1 33.3 48.3 46.7 31.2 34.9 38.7 23.8 64.7 16.4 17.7 20.9 21.3 33.5 23.6

El241

Page 11: 13C NMR of Triterpenoids

“C NMR spectra of pentacyclic triterpenoids 1527

Table 1. Continued

54p sp fsp s7p 58p 59p 60 61 62 63p 64p

38.8 39.2 39.2 39.0 38.9 39.2 39.9 38.3 47.1 47.1 41.1

26.8 28.1 28.1 28.2 28.4 28.5 27.0 26.0 67.2 68.9 28.3

78.8 78.1 78.1 80.1 80.1 80.4 78.8 76.7 82.2 78.7 73.3

38.9 39.4 39.4 43.1 43.2 43.4 39.0 41.8 38.8 43.5 44.0 55.2 55.8 55.7 56.5 56.3 56.5 55.6 49.8 54.8 48.4 49.3 18.3 18.8 18.8 19.1 19.1 19.3 18.6 18.5 16.9 18.6 67.5 32.6 33.3 32.9 33.6 33.3 33.8 32.8 32.4 32.4 33.1 41.1 39.8 40.1 40.3 40.6 40.1 40.3 40.2 39.8 38.9 40.1 39.2 46.9 47.2 48.0 48.2 48.1 48.4 47.9 47.6 47.2 48.5 48.7

37.0 37.3 37.3 37.1 37.0 37.3 37.1 36.9 38.5 38.5 36.9

23.5 23.9 23.9 24.2 24.1 24.2 23.8 23.6 23.0 23.8 23.7

122.3 122.4 122.6 122.4 122.7 122.6 123.0 122.3 122.6 123.5 122.9

143.2 145.2 144.5 145.4 144.3 144.7 143.2 144.2 143.4 144.1 144.2 43.7 42.1 42.1 42.4 41.9 42.5 41.5 41.8 41.9 42.4 42.7

36.0 34.7 26.6 26.7 26.5 26.6 25.3 25.6 28.4 28.3 28.3

67.5 74.2 27.5 31.0 28.6 28.8 14.7 22.0 24.0 23.9 23.9

40.2 40.9 39.2 33.3 35.1 38.0 43.0 36.9 46.6 47.0 46.6

44.7 42.5 44.0 47.6 47.2 45.6 42.4 42.4 43.1 43.5 42.0

46.9 48.3 47.3 42.9 46.5 47.0 46.0 46.5 80.0 46.3 46.4 30.7 30.5 36.6 36.0 36.9 30.8 31.5 31.0 36.9 30.7 30.9 33.8 37.1 74.6 74.5 72.8 42.7 42.2 34.1 28.4 34.2 34.2

26.2 31.3 79.6 44.6 47.7 75.8 75.8 31.0 34.8 33.0 33.2 28.0 28.7 28.8 23.5 23.5 23.6 28.2 72.0 27.1 67.2 67.1

16.0 16.6 15.8 64.5 64.5 64.6 15.6 11.4 16.8 14.0 14.7

15.6 15.9 16.5 16.2 16.2 16.2 15.6 15.9 16.1 17.6 17.4

16.7 17.2 17.1 17.1 16.9 17.0 16.7 16.8 16.9 17.2 18.6

26.8 27.3 26.7 25.6 26.0 25.8 26.4 26.8 28.7 26.1 26.2

70.8 70.2 22.3 28.8 28.7 28.8 70.1 69.7 179.0 178.6 180.2

33.0 33.4 31.5 28.1 29.9 33.2 33.4 33.2 28.7 32.9 23.7

23.9 24.9 21.3 25.5 17.7 21.0 24.8 23.6 24.4 23.7 33.2

Cl481 Cl491 L-1261 Cl501 Cl261 Cl511 Cl411 cl521 Cl531 Cl541 Cl551

Page 12: 13C NMR of Triterpenoids

1528 S. B. MAHATO and A. P. KUNDU

Table 1. Continued

65’ 66 67 68 w 7op 71P 72’ 73p 7@ 75p

44.8 41.7 41.4 71.5 66.7 66.2 73.1 78.8 73.3 42.3 41.1 41.4 48.5 42.6 48.6 18.3 18.0 18.2 33.0 32.6 32.7 39.9 39.7 39.3 48.2 47.7 47.4 37.2 38.2 38.0 23.9 23.2 23.4

122.7 122.4 121.9 144.8 144.4 143.7 42.3 42.0 41.6 28.2 27.9 27.5 23.7 23.6 22.9 46.6 47.0 46.6 42.0 41.6 41.1 46.4 46.2 45.7 30.9 30.8 30.6 34.2 34.1 33.7 33.1 32.4 32.2 67.8 71.5 22.0 14.4 17.5 65.5 17.2 16.8 16.6 17.5 17.1 16.6 26.2 26.2 25.9

180.1 178.7 178.2 33.1 33.2 33.0 23.7 23.8 23.5

Cl561 Cl571 Cl581

38.9 27.5 77.8 38.9 55.4 18.3 32.8 39.6 47.0 36.8 23.4

122.5 144.0 41.4 34.3 73.3 40.0 43.2 30.7 46.7 29.5 27.5 28.3 15.4 16.1 16.6 27.2 69.7 23.8

207.6

Cl591

38.9 45.0 44.8 39.4 38.9 28.4 71.6 71.5 28.0 28.4 80.1 75.8 73.0 78.0 80.1 43.2 54.0 42.4 39.4 43.2 56.3 52.3 48.1 55.8 56.3 19.1 21.6 18.2 18.5 19.1

33.4 34.1 33.0 33.8 33.2

39.9 40.9 39.8 40.5 40.3 48.0 49.5 48.5 48.6 48.1 37.1 37.1 37.2 37.4 37.0 24.1 24.0 23.9 23.6 24.2

124.0 127.6 123.3 127.9 122.5 142.2 139.7 144.4 138.2 144.5 42.1 46.5 42.2 45.9 42.1 25.5 24.7 28.4 80.1 26.6 27.4 24.1 23.9 34.6 27.5 47.8 46.5 46.1 46.5 39.2 47.5 41.8 43.3 41.7 44.0 43.0 45.5 42.7 42.5 47.3 38.9 31.0 44.1 41.0 36.6 47.0 33.5 30.8 74.5 74.6

216.0 33.2 34.5 36.7 79.6 23.6 180.2 67.7 28.7 23.6 64.6 13.7 14.5 16.5 64.6 16.2 17.5 17.4 16.3 16.2 16.9 18.8 17.2 19.8 17.0 25.4 64.4 26.2 25.3 26.7 21.3 180.6 179.7 179.5 22.3 27.0 33.2 28.4 25.1 31.5 68.3 23.2 177.1 63.2 21.3

cl291 cw Cl211 Cl611 Cl261

44.8 71.8 73.4 42.9 50.5 18.9 32.2 40.8 48.9 37.6 24.5

124.1 142.1 42.3 35.9 66.3 73.5 50.2 49.3 31.4 36.8 81.8 67.2 14.5 18.1 17.5 27.1 -

33.1 24.6

Cl621

38.8 28.3 80.0 43.1 56.3 19.0 33.2 39.9 47.9 37.0 24.0

123.9 142.0 41.9 25.4 27.2 48.1 47.4 41.4 39.7 46.3

216.2 23.5 64.5 16.2 16.8 25.4 21.2 71.9 21.1

cl271

Page 13: 13C NMR of Triterpenoids

W NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1529

76’ 77p 78p 79p 80° 81’ 82’ 83’ SIM 85’ 8ap 87’

38.4 38.9 39.0 39.0 48.9 48.5 47.4 41.3 45.6 47.7 47.4 39.0 26.5 27.4 28.4 28.5 67.4 68.9 71.8 28.6 72.6 68.8 68.9 27.6 76.5 74.1 80.0 80.2 75.6 78.9 73.0 73.4 73.9 78.3 78.4 73.6 41.9 42.7 43.1 43.2 43.1 43.0 43.6 43.9 43.2 43.5 43.6 42.9 49.2 48.9 56.3 56.4 47.4 48.8 49.1 49.7 48.2 48.0 48.2 48.8 18.5 18.6 19.1 19.2 66.0 28.1 67.0 67.9 19.2 18.5 18.8 18.9 32.6 33.0 33.5 33.6 39.6 67.4 41.0 40.8 34.1 33.0 33.6 33.4 40.0 40.1 39.9 40.1 38.1 39.5 39.3 39.3 41.0 39.9 40.1 40.5 47.1 47.2 48.1 48.2 46.7 50.1 49.0 49.0 48.5 48.0 48.5 47.9 37.0 37.1 37.0 37.1 36.9 38.2 37.1 37.1 38.1 38.3 38.6 37.3 23.6 23.8 24.0 24.1 22.6 24.2 24.1 24.7 24.9 25.2 28.8 24.2

122.6 122.3 122.4 122.8 121.7 123.3 123.1 123.8 123.8 126.5 123.5 128.6 143.2 145.2 144.9 144.7 143.3 144.1 144.2 144.7 145.5 139.5 144.9 140.2 43.8 42.0 42.3 42.4 41.8 41.9 42.9 42.6 43.0 42.5 42.2 42.3 36.3 34.7 26.4 26.5 27.1 28.3 28.2 28.7 36.5 28.2 29.2 29.6 67.5 73.9 28.9 28.7 22.9 23.8 23.8 27.9 75.6 24.0 24.3 27.4 40.5 40.9 38.2 38.1 45.5 46.0 46.7 46.3 48.8 48.5 46.0 49.2 44.6 42.6 44.8 45.2 40.9 44.7 42.1 45.0 42.4 49.5 44.8 54.6 47.0 48.2 41.5 42.2 45.7 46.8 46.5 81.6 48.0 75.0 81.3 74.9 30.9 31.1 36.5 35.9 30.4 31.0 31.0 35.7 31.7 35.7 35.7 50.6 33.8 37.1 37.3 38.8 33.3 34.3 34.2 29.2 36.9 32.7 28.4 67.6 26.0 30.2 75.6 75.2 32.1 32.3 33.3 33.9 33.0 35.0 33.1 48.0 71.3 68.6 23.5 23.6 63.7 66.0 67.5 67.3 67.9 66.7 66.8 68.0 11.4 12.9 64.5 64.6 14.9 15.7 16.2 14.6 14.4 14.2 14.2 13.2 16.0 16.2 16.3 16.3 17.8 19.1 18.5 17.3 18.2 17.5 17.7 16.1 16.7 17.1 17.1 17.1 18.1 18.7 19.0 18.4 17.8 17.3 17.3 17.4 26.8 27.3 25.5 25.9 25.7 26.3 26.4 24.8 27.7 24.8 24.9 24.7 70.0 70.2 21.1 21.3 178.6 180.1 180.2 180.0 181.6 179.2 180.8 180.4 33.1 33.3 73.0 28.6 32.9 33.3 33.3 25.0 33.8 30.6 29.2 27.8 24.1 24.9 24.4 70.3 23.3 23.6 23.8 28.8 25.3 17.8 24.9 11.5

Cl481 Cl631 Cl641 Cl291 Cl541 Cl651 Cl661 Cl551 Cl671 PO1 Cl681 Cl431

Page 14: 13C NMR of Triterpenoids

1530 S. B. MAHATO and A. P. KUNDU

Table 1. Continued

88 w 90 91P 92 93 94 95 %p 97 !w

47.9 38.6 38.9 39.4 38.4 38.5 38.6 38.9 47.9 47.5 39.3 69.0 27.6 28.4 28.0 26.4 26.3 28.4 28.4 69.0 71.9 28.2 80.0 73.7 80.1 78.0 78.3 76.0 80.1 80.0 79.8 73.4 78.1 41.7 42.7 43.2 37.2 38.4 41.8 43.2 43.2 47.9 43.5 39.4 48.4 49.0 56.3 55.9 55.0 49.3 56.3 56.3 48.7 49.1 55.7 19.3 18.7 19.1 18.5 18.0 18.4 19.1 19.1 19.5 67.9 19.2 33.2 33.4 33.1 33.8 32.4 32.6 33.2 33.4 33.3 41.4 36.8 40.0 40.4 40.3 40.6 39.3 39.8 40.3 39.9 40.1 39.5 41.5 48.9 48.8 48.0 48.7 46.9 46.7 48.1 48.0 48.2 48.3 47.5 38.3 37.4 37.0 37.2 36.5 36.9 37.0 37.0 38.1 37.2 37.4 24.3 24.1 24.2 23.6 23.1 23.5 24.1 24.0 24.3 24.2 24.1

122.4 127.7 123.8 128.1 123.0 122.9 122.5 124.0 123.4 123.0 124.5 144.9 140.1 143.6 138.1 141.6 142.7 144.6 142.3 144.8 144.6 144.7 42.4 48.0 42.0 46.5 41.0 41.8 42.0 42.1 41.9 42.9 47.5 28.4 24.4 26.5 80.2 32.7 33.4 26.6 25.5 29.0 36.3 67.5 23.9 23.8 27.4 27.8 66.7 67.9 27.4 27.0 28.0 74.9 72.4 46.7 46.9 38.9 52.4 45.9 43.9 39.0 48.1 46.1 49.5 48.2 42.1 41.2 42.7 41.6 40.6 42.4 43.2 47.1 44.9 41.7 42.1 46.7 40.4 42.4 42.0 46.3 47.2 41.1 37.6 80.8 47.4 47.9 31.0 36.6 49.9 41.4 35.1 31.4 41.0 44.1 35.6 31.0 36.4 34.4 28.9 70.5 79.6 78.2 44.8 70.5 42.4 28.5 36.2 78.4 33.2 32.7 79.1 69.7 77.4 75.5 79.7 216.8 33.2 32.7 77.2 64.1 68.8 23.5 28.7 27.5 70.8 23.5 23.6 64.3 67.8 28.8 63.8 12.9 64.5 16.5 15.2 11.7 64.5 64.6 63.2 16.0 16.6 17.4 16.3 16.2 16.3 15.1 16.0 16.2 16.2 17.5 19.0 16.0 17.2 18.8 16.9 19.8 16.2 16.8 17.0 16.9 17.2 18.7 17.7 26.2 64.4 26.5 25.4 26.4 27.0 26.7 25.3 24.9 27.5 21.1

180.0 180.3 22.1 178.9 69.5 71.1 22.3 21.6 180.9 180.1 67.8 33.5 74.0 178.7 25.3 28.9 33.2 71.7 68.3 28.9 33.3 30.6 23.9 19.8 16.5 63.8 17.9 24.9 17.5 65.0 24.8 24.9 19.4

Cl681 Cl691 Cl261 Cl611 Cl701 ~1521 W61 cl271 Cl651 [I711 ~1721

Page 15: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1531

Table 1. Continued

w 100 101 10ZP 103 104 105 106 107 108 109

38.8 38.5 38.8 75.7 39.0 38.5 38.1 28.2 21.4 21.3 39.0 21.3 27.4 23.8 - 80.1 79.0 78.3 79.5 78.9 79.1 81.1 77.7 43.0 39.0 38.8 38.4 38.9 39.0 37.7 38.9 56.3 55.1 55.4 53.4 56.4 55.7 55.4 54.9 18.9 18.3 18.2 18.0 18.5 18.4 18.4 - 33.4 34.7 34.5 34.6 36.3 34.5 34.8 33.2 39.9 40.8 40.6 41.4 41.2 40.8 41.0 42.7 41.1 51.3 51.1 52.4 53.4 51.3 50.6 63.4 36.8 31.3 37.1 43.8 38.4 37.4 37.2 36.9 23.9 21.2 20.9 23.9 67.4 21.3 21.7 -

123.1 26.2 25.9 26.2 36.3 26.7 26.5 - 144.1 39.0 41.2 38.1 32.8 39.1 134.2 132.8 41.8 43.4 42.5 43.5 43.3 42.8 44.7 43.8 34.1 27.6 29.3 27.5 21.6 34.1 25.0 25.4 67.8 31.7 33.5 37.8 31.6 76.7 36.7 33.3 47.2 34.4 48.1 34.4 34.5 39.6 34.6 40.2 41.0 142.8 136.9 142.7 142.5 141.7 133.3 133.5 48.1 129.8 132.3 129.7 130.0 129.4 39.4 31.9 36.3 32.3 32.0 32.4 32.4 31.9 33.4 32.2 18.6 33.4 33.5 33.5 33.3 33.7 35.4 43.5 77.1 37.4 33.5 31.5 37.4 37.4 38.5 78.8 23.3 28.0 27.9 28.0 28.2 28.1 28.0 28.1 64.5 15.4 16.6 15.1 15.5 15.5 17.7 15.6 16.0 16.1 15.4 12.5 20.0 16.3 16.4 16.3 16.6 16.7 15.9 16.5 18.1 16.9 16.6 18.8 21.2 14.6 14.9 14.5 14.7 14.8 21.3 20.4 66.2 25.3 176.8 25.4 25.2 21.4 24.1 16.7 30.4 31.3 30.3 31.3 31.3 31.9 32.4 32.2 19.3 29.2 29.1 29.3 29.2 30.0 23.8 25.1

Cl731 Cl741 Cl751 Cl741 Cl741 Cl761 Cl771 c591

38.8 21.2 78.9 38.8 55.2

18.2 32.9 41.0

50.3 37.4 20.7 25.1

123.5

42.1 26.9 20.7 43.0

139.7 34.8 81.0

31.2 37.5 28.1 16.3 15.5 17.9 25.9

175.9

25.3

Cl781

38.4 38.0

26.3 27.1 70.9 18.9

55.4 38.9

47.2 54.2

20.7 18.4

33.7 32.4

44.3 40.2 50.3 54.8 36.2 36.7 22.0 125.3 25.1 125.8

126.3 138.1

42.2 42.4

35.9 35.3

69.3 24.4

52.8 34.7 135.6 133.4

41.5 38.9

32.5 33.1

35.5 36.1 27.0 38.0

206.8 27.8

8.8 15.1

16.6 16.6 18.2 17.9 24.6 20.2

177.3 25.3

33.0 24.1

24.6 32.5

II781 Cl791

Page 16: 13C NMR of Triterpenoids

1532 S. B. MAHATO and A. P. KUNDU

Table 1. Continued

llop lllP 112p l13p l14p 1lSP 116 117p l18p 119

38.6 37.8 28.1 28.0 78.2 78.5 39.5 39.7 55.4 55.6 18.8 18.9 32.7 33.0 40.5 40.2 54.6 54.5 37.1 37.0

127.6 127.1 126.1 125.8 136.1 136.6 42.3 44.4 24.7 35.1 36.6 76.3 48.5 44.4

136.0 133.4 38.3 38.7 41.2 32.6 43.6 35.3 74.3 30.2 29.6 27.8 15.8 15.9 18.3 18.3 17.0 17.2 26.8 22.1 20.5 64.0 25.0 25.0

177.8 32.3

Cl491 c791

39.0 28.1 78.0 39.5 55.4 18.9 32.6 41.1 53.9 37.0

126.2 126.2 136.1 41.9 31.9 67.7 45.3

133.1 38.6 32.6 35.5 24.5 28.5 16.0 18.4 17.3 21.9 64.7 25.1 32.6

Cl801

38.9 29.0 80.1 39.8 56.4 19.6 34.0 40.7 54.8 39.8

127.3 126.3 138.3 40.8 25.0 35.6 42.0

135.0 38.4 43.2 43.3 75.6 23.3 64.5 18.3 16.9 25.4 23.6 25.0 29.1

Cl491

38.4 27.6 73.1 43.1 48.2 18.6 32.4 40.5 54.5 36.8

127.1 125.7 136.4 44.4 34.8 76.5 44.4

133.3 38.4 32.7 35.1 29.9 67.4 12.6 18.6 17.1 22.0 64.0 24.8 32.3

Cl811

38.4 27.6 73.3 43.0 48.4 18.7 31.9 41.0 54.0 36.8

126.2 126.2 136.0 41.9 32.8 67.6 45.3

133.0 39.0 326 35.4 24.4 64.7 12.6 18.7 17.3 21.9 64.4 25.1 32.4

Cl811

38.8 27.9 78.6 38.9 51.2 18.4 32.2 37.0

154.3 40.7

115.8 120.8 147.1 42.8 25.7 27.3 32.2 45.6 46.9 31.1 34.7 37.2 28.8 15.1 20.1 21.0 25.3 28.3 23.7 33.2

Cl801

37.8 28.7 77.8 39.6 51.8 18.6 32.6 43.1

154.9 39.0

116.1 121.2 145.3 43.2 36.1 668 40.6 42.6 47.0 31.0 34.1 26.2 28.8 16.6 21.0 21.3 25.5 69.4 33.2 24.0

c791

37.6 28.4 73.0 43.2 44.6 18.5 32.2 43.2

155.0 39.0

116.1 121.2 145.4 43.2 36.2 66.8 40.6 42.7 47.0 31.0 34.2 26.1 67.7 13.2 21.1 21.3 26.1 69.4 33.2 24.1

Cl811

39.1 28.1 78.2 39.5 56.0 19.0 33.5 40.4 47.9 37.8 23.7

123.0 141.7 44.8

129.9 134.9 44.0 42.9 47.9 30.8 35.2 33.5 28.9 16.4 15.5 17.9 25.1

178.4 33.5 23.5

C801

Page 17: 13C NMR of Triterpenoids

‘“C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1533

1w 121P 122p lUP 124 125 12Cip 127 1W 1W

41.7 43.2 38.8 38.5 38.0 38.0 38.3 38.2 39.9 39.1 67.4 70.8 28.0 26.6 26.2 26.1 25.8 26.2 28.8 28.3 68.4 73.0 78.0 78.5 75.9 75.6 75.3 75.2 78.1 78.0 40.3 45.5 39.5 39.1 41.9 42.0 42.1 42.2 39.6 39.5

140.8 148.7 55.3 54.4 49.3 49.2 48.8 49.0 55.8 55.7 115.6 120.9 18.3 17.9 17.7 17.7 17.6 17.8 18.3 18.6 34.6 33.2 31.3 31.7 31.1 31.1 31.4 321.2 31.9 32.9 40.5 37.5 41.9 41.8 41.6 41.4 41.9 41.8 42.6 42.5 47.6 46.0 52.9 52.7 53.3 52.5 52.8 52.8 50.7 47.8 41.4 38.5 36.8 36.3 36.3 36.3 36.2 36.4 37.3 37.3 20.9 24.1 131.9 132.5 132.5 132.6 133.0 133.2 19.3 19.3

117.6 123.4 131.9 130.1 130.7 130.5 129.8 130.3 34.6 31.8 144.4 145.1 84.9 84.0 85.2 85.1 84.2 85.5 86.5 86.4 41.9 43.1 43.6 45.9 43.9 43.0 45.3 43.8 44.7 44.7 28.2 27.7 36.8 35.7 25.7 34.7 35.3 34.3 37.0 34.6 21.5 23.6 77.1 64.3 25.3 77.3 64.5 70.5 77.2 77.2 35.8 47.0 45.4 46.2 41.6 44.9 46.4 47.5 44.7 44.7 42.8 42.5 51.4 51.8 51.1 50.6 52.0 50.4 51.6 50.6 43.1 45.8 38.5 37.9 37.2 38.0 37.5 37.4 39.1 37.0 31.8 31.0 31.9 31.5 31.7 31.7 31.5 33.2 31.9 48.0 34.8 34.2 36.8 34.2 34.9 36.5 34.5 45.7 36.9 37.0 36.3 33.1 31.9 25.2 30.9 30.5 25.3 74.3 33.0 33.8 71.2 69.4 28.4 27.6 70.7 70.3 69.8 69.6 28.7 28.7 16.8 21.3 15.9 15.7 11.1 11.1 11.3 11.3 16.6 16.6 16.8 23.0 18.2 17.8 18.2 18.3 18.4 18.4 16.4 16.6 19.5 23.8 19.5 19.5 19.3 19.0 19.5 19.1 18.7 18.2 22.3 26.2 18.2 20.6 19.3 17.9 20.7 18.1 19.6 19.6 22.3 180.2 77.8 72.3 77.1 77.3 72.6 16.9 78.0 78.0

31.0 33.3 33.8 33.8 33.7 33.4 33.5 33.2 33.8 24.8

21.3 23.8 24.4 23.7 23.6 24.2 23.8 25.2 24.8 207.2

CW rwl IT301 Cl481 ~1521 ~1521 Cl481 cl521 Cl831 Cl841

Page 18: 13C NMR of Triterpenoids

1534 S. B. MAHATO and A. P. KUND~J

Table 1. Continued

130p 131 132 133 134p 139 136 137 138 13M 140 141

38.0 38.8 38.7 39.3 39.6 33.0 28.3 27.2 27.0 26.6 28.4 27.5 78.2 76.2 76.2 79.1 78.2 75.1 39.6 42.8 42.7 39.8 39.6 37.0 55.8 49.5 49.6 55.8 55.7 48.6 18.3 18.5 18.6 18.0 18.3 17.3 32.7 33.3 33.4 33.0 34.5 31.5 42.9 42.0 42.0 42.7 42.8 40.9 47.6 50.1 50.0 50.5 50.6 49.8 37.3 36.8 36.6 37.0 33.2 37.0 19.2 18.5 17.8 19.3 19.4 52.9 31.8 32.8 31.6 34.5 33.5 57.4 86.1 86.4 86.2 86.4 87.5 88.0 44.6 44.4 49.7 45.1 44.2 41.9 34.4 34.4 45.4 36.7 36.8 27.0 73.2 77.4 213.3 70.7 69.8 21.7 46.5 44.7 56.1 48.9 52.9 44.1 50.6 51.4 54.5 51.4 47.4 51.1 36.8 39.4 40.0 38.1 38.7 38.0 47.6 31.7 31.6 33.3 37.3 31.6 30.1 36.8 35.2 42.2 46.7 34.4 74.1 29.8 24.8 75.8 68.1 27.7 28.8 69.2 71.6 28.2 28.7 29.1 16.6 13.1 11.3 16.7 16.4 22.2 16.4 16.9 16.3 16.5 16.6 17.3 18.7 17.6 17.8 18.6 18.8 18.8 20.1 18.6 21.7 19.8 19.8 20.5 70.3 77.8 75.1 76.8 98.6 180.0 24.2 24.6 23.6 33.4 33.8 33.6

205.3 33.5 33.3 25.6 26.0 23.5

Cl841 Cl851 Cl851 CW Cl871 cl231

45.5 68.1 79.0 42.6 47.6 17.3 34.1 40.4 50.4

52.4 56.9 87.4 41.2 26.5 21.1 43.7 49.4 37.6 30.6 26.8 37.3 68.1 12.3 18.6 18.7 19.9

179.3 33.0 23.4

39.8 21.5 36.6 30.6 54.4 21.0 33.1 40.5 48.6 37.1 21.2 25.0 43.0 41.6 31.1 29.7 43.8 37.9 43.9 31.1 39.2 30.4 20.5 __

14.1 15.8 14.9

25.4 33.7

w31 Cl891

39.1 34.1

217.9 47.4 55.3 19.7 32.5 39.1 47.0 36.8 23.4

120.8 146.0 42.5

31.2

__

26.5 21.5 15.1 17.4 24.9 -

33.6 23.8

tml

39.0 38.1 37.7 28.1 23.7 23.0 78.2 80.8 74.5 39.4 31.7 40.7 55.9 55.4 48.3 18.9 18.2 18.1 33.5 32.6 32.4 40.0 39.9 39.2 48.3 47.2 47.1 37.5 37.0 37.0 24.0 23.7 23.3

122.7 125.4 118.3 145.7 140.7 143.0 42.1 47.2 42.4 28.1 43.0 33.3 26.4 213.3 74.6 71.0 76.5 39.8 48.8 52.5 35.8 49.0 47.2 44.8 31.2 30.8 34.7 37.1 32.3 78.2 38.8 37.7 32.8 28.9 28.1 65.5 16.6 15.4 12.9 15.6 16.7 15.8 17.9 17.3 16.8 25.8 27.0 26.2 ._

33.0 24.0

32.6 23.7

Cl911

__

18.9 19.3

C781 ~1231

Page 19: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1535

142 143 144p 145o 146 147p 14V 149 l!W 151 152

37.6 38.7 45.1 38.1 22.4 27.1 71.6 26.9 73.3 78.7 72.8 78.1 54.1 38.7 42.5 41.9

48.0 55.3 48.2 55.1 20.5 18.2 18.1 19.6 32.3 33.4 33.5 32.7 39.0 38.7 39.1 39.3 47.1 46.1 46.8 46.1 36.1 36.8 37.0 41.1 23.2 24.1 24.6 22.1

118.1 126.8 127.5 19.8 141.5 139.1 139.3 38.8 42.6 44.9 45.2 43.2 43.7 40.4 40.3 22.2

212.1 200.4 199.2 125.6

48.0 128.9 129.1 140.2 36.1 146.8 146.2 42.1 42.8 44.1 44.4 66.9

34.5 29.2 29.2 35.2 78.1 33.4 34.6 133.2 27.7 20.6 21.2 123.2

203.9 28.1 67.5 65.2

9.4 15.6 14.6 16.9

15.4 15.6 17.4 18.2 16.8 17.9 18.0 16.9 25.7 28.1 28.1 27.1

28.8 19.3

C781

-

28.6 23.1

Cl911

28.6 62.1 23.3 16.1

Cl911 ~1921

39.4 39.1

26.5 28.2 78.1 78.2 39.4 39.5 55.9 55.9 18.7 18.9 34.0 33.4

39.4 39.9 48.1 47.5 37.4 37.4

23.7 24.0 122.9 122.8 143.4 143.8 43.2 44.6 28.2 38.6

23.4 64.9 46.2 50.4 45.6 43.5

129.5 46.2

130.4 68.2 33.2 34.2 39.2 27.2

28.8 28.9 16.6 16.7

15.9 15.7 17.7 17.8 23.6 27.2

179.9 181.3 23.0 32.3

[l?s] Cl931

38.3 38.4 38.1 38.1 37.7

24.0 24.0 24.1 27.3 27.4 80.7 80.6 80.9 79.2 79.1 38.2 38.0 37.9 39.1 38.5 55.6 55.2 55.7 55.7 46.5 18.3 18.6 18.7 19.0 23.9 31.8 38.2 33.7 35.3’ 71.6

42.8 44.9 40.0 38.9 45.7 46.5 46.2 48.2 48.9 42.1

37.5 37.9 37.4 37.9 38.6

39.2 39.2 23.9 17.7 17.1

210.3 210.4 123.2 35.9 34.1 83.1 85.8 144.9 37.9 37.5 45.4 51.1 42.2 158.1 155.2 23.1 66.7 28.4 117.0 118.7

34.0 44.0 29.2 36.9 36.9

34.2 35.1 46.1 38.1 36.0 51.3 51.6 44.8 49.4 49.0 35.5 35.2 81.3 41.4’ 37.2

30.0 31.8 35.7 29.0 29.3 34.7 34.5 29.2 33.9 33.2 39.7 39.6 33.2 33.2 35.2

28.1 28.0 28.2 28.1 27.9

16.7 16.7 16.9 15.6 15.8

15.9 15.9 15.3 15.6 15.6

20.1 20.4 17.5 30.1 26.7

18.4 14.4 24.9 26.0 21.1

31.5 32.0 180.9 30.1 29.6 32.1 32.3 28.8 33.5 33.1 25.9 24.8 24.9 21.5 29.8

Cl941 Cl941 Cl941 C811 C621

Page 20: 13C NMR of Triterpenoids

1536 S. B. MAHATO and A. P. KUNDU

153 154 155 156 157

Table 1. Conti~d

158 159 160 161 162 163 144

37.8 32.6 38.3 38.4 37.4 36.6 34.9 36.9 36.9 34.7 35.0 21.6 28.0 25.0 34.0 34.1 23.4 24.2 24.4 19.2 19.3 24.2 27.9 38.1 78.2 76.2 217.2 217.3 80.8 81.1 81.1 41.8 41.8 80.9 78.9 215.4 41.4 37.5 47.5 47.5 37.6 37.7 37.9 33.3 33.3 37.7 38.8 50.0 56.0 48.8 55.7 55.7 55.5 50.2 51.1 51.7 51.5 50.8 50.5 142.4 19.2 18.7 19.9 21.5 18.7 24.0 19.3 19.6 19.5 19.1 19.2 121.3 36.3” 41.2 35.8” 35.41 40.7 117.5 27.5 21.2 27.8 27.3 27.6 23.6 39.3 40.3 39.0 38.9 39.0 147.6 135.4 135.0 133.3 135.4 133.9 47.0 45.6b 49.2 48.6 48.6 49.0 48.7 133.6 134.2 134.8 133.2 134.2 35.1 37.8 37.3 37.5 37.3 37.9 35.1 37.7 37.9 37.9 37.5 37.5 50.7 17.9 17.3 17.3 17.3 17.2 17.1 20.9 20.8 20.8 20.8 20.7 34.1 31.2’ 32.2 30.7b 31.3 33.2 34.6 31.0 30.9 30.2 30.7 30.3 30.3 38.3 38.0 37.7 37.8 37.2 37.0 37.5 37.6 36.9 37.6 37.1 39.3

158.7 159.3 158.5 162.1 160.5 41.6 41.1 40.1 42.1 40.6 41.8 37.9 116.8 115.5 116.0 117.1 116.8 31.7 26.6 26.8 25.6 26.7 25.0 31.9 33.2’ 30.8 32.6b 30.7 31.3 36.1 37.1 36.4 37.1 36.3 37.0 35.9 38.3 39.2 40.3 51.5 51.4 30.9 31.0 31.2 31.0 31.1 30.9 30.1 49.6b 44.7 44.9 41.4 41.3 46.9 44.3 43.1 44.7 43.0 44.7 43.1 41.7” 35.8 40.6” 40.38 35.2 36.1 34.3 28.8 30.5 28.0 30.8 35.1 28.8 28.6 28.5 29.3 29.2 28.2 28.4 33.3 40.5 33.1 40.5 28.2 33.8 33.5 33.3 33.7 33.6 33.9 43.0 29.1 29.6 28.9 29.9 33.1 28.7 27.9 27.9 31.9 30.6 36.8 36.9 37.6 34.3 37.6 34.4 38.9 28.4 28.2 26. I 26.1 27.9 27.6 28.1 33.3 33.0 28.0 28.0 24.4” 16.5 22.2 21.6 20.0 16.5 16.0 16.8 21.8 21.9 16.7 15.6 28.5’ 15.7 15.2 14.8 15.0 15.6 13.2 20.0 19.9 19.9 19.8 19.9 15.6 30.1 29.9 29.8 28.7 26.1 27.1 18.9 25.9 21.8 25.9 22.1 19.3 26.2 26.2 25.7 25.9 22.4 26.1 25.0 18.0 18.0 17.9 17.1 18.4 64.6 65.5 65.4 184.7 184.2 31.7 31.6 31.4 31.3 31.3 31.2 32.0 33.8 21.5 33.5 33.2 31.8 34.1 34.7 72.9 185.3 12.6 179.2 34.5 22.0 33.5 21.4 22.6 28.6 33.7 33.2 27.6 32.7 27.6 32.9 32.4

PI II821 1811 Cl951 fl961 Dll L581 Cl11 Cl11 WI Cl01 cw

Page 21: 13C NMR of Triterpenoids

‘“C NMR spectra of pentacyclic triterpenoids 1537

Table 1. Continued

165 166 167 168 169 im 171 172 173 174 175 176

31.9 31.9 31.9 17.8 24.7 24.8 24.7 35.0 84.4 84.0 84.4 72.7 43.3 43.5 43.4 49.0 53.1 51.8 53.1 37.3 19.8 31.5 19.8 41.4 20.0 68.4 20.0 15.8 41.9 48.0 423 53.2 36.7 36.9 36.6 37.9 93.6 93.3 93.5 61.2 30.6 31.1 30.3 37.9 30.0 30.0 30.9 27.8 39.2 39.3 38.9 54.8 39.3 40.4 39.4 39.3 31.8 31.8 31.2 32.8 35.9 36.0 32.0 35.6 30.1 29.8 41.6 36.7 43.6 44.2 45.2 43.3 35.0 34.6 34.5 35.7 28.3 28.3 34.7 28.5 33.4 33.9 41.5 32.5 38.7 38.1 75.4 38.2 24.4 23.9 24.4 11.6 23.0 228 23.0 16.4 m.5 21.7 20.4 18.8 19.3 19.8 20.0 22.5 18.5 18.8 18.7 179.4 31.9 33.5 23.3 31.1 34.1 34.0 34.9 30.6 328 324 31.9 35.3

D51 C851 C851 Cl971

20.8 27.4 36.9 46.0 37.7 42.6 M.6 53.1 37.1 61.2 35.4 23.7 42.2 39.8 30.1 35.7 30.4 43.5 35.4 28.3 32.9 39.1 13.4 15.1 19.6 18.0 64.1 31.7 -

31.9

Cl981

20.7 20.7 20.7 22.3 21.4 27.4 27.4 41.5 30.9 30.9 30.9 213.2 46.1 46.1 46.1 58.2 37.5 37.6 37.5 421 41.4 41.5 41.5 41.3 18.1 18.1 18.1 18.2 525 53.5 53.1 53.1 37.1 37.0 37.0 37.4 60.7 60.7 60.8 59.4 35.3 35.5 35.4 35.6 30.2 30.7 30.7 30.5 39.3 39.9 39.7 39.1 38.2 38.3 38.4 38.3 31.2 32.6 32.1 32.4 29.2 35.9 36.0 36.0 34.2 30.5 30.0 30.0 39.5 41.8 42.7 42.8 34.5 29.1 29.3 35.3 28.1 33.1 33.4 28.1 328 27.8 28.2 32.7 33.4 39.5 38.1 39.2 15.1 15.1 15.1 6.8 13.5 13.5 13.5 14.6 18.3 18.1 18.2 17.9 19.2 18.4’ 18.6* 20.2 19.0 20.7’ 19.9 18.6 68.0 321 321 32.1 31.3 74.8 28.9 35.0 35.1 25.8 72.0 31.8

C871 C871 C871 c461

22.1 22.1 21.1 41.3 41.3 27.0

212.5 212.4 30.2 57.8 57.8 46.3 41.9 41.9 44.1 40.0 40.0 58.0 19.9 19.9 212.4 47.9 47.9 63.9 , 36.6 36.6 43.5 58.2 58.2 60.6 35.7 35.6 35.7 21.6 21.4 32.2 50.9 51.0 39.4 46.7 46.6 37.6 81.0 81.0 30.7 39.7 39.8 36.2 31.4 31.6 30.2 44.7 44.8 42.0 30.8 28.3 35.1

145.3 141.1 28.1 29.2 70.1 33.0 36.8 45.9 38.9 6.8 6.8 13.8

14.6 14.6 15.1 16.3 16.3 19.6 13.3 13.3 18.4’

179.3 179.3 19.6’ 30.1 32.6 32.3

109.1 110.0 31.7

c611 c611

Page 22: 13C NMR of Triterpenoids

1538 S. B. MAHATO and A. P. KUNDU

Table 1. Continued

177 178 179 180 181 182 183 184 185 186 187 188

22.8 16.5 41.5 35.3

213.0 72.7 58.1 49.0 42.0 37.8 39.5 39.9 21.5 20.9 46.6 46.8 40.5 40.4 57.1 59.1 37.0 36.8 34.9 35.1 39.0 39.0

142.3 143.0 116.1 115.5 30.9 30.9 33.7 33.8 46.1 46.2 39.6 39.6 31.0 31.0 34.4 34.4 37.9 37.9 6.8 11.6

14.4 16.0 14.7 14.8

24.1 24.1 31.8 31.8 33.7 33.8 24.4 24.5

Cl991 cw

20.8 22.2 26.6 16.8 22.4 22.3 22.1 27.5 27.5 69.6 34.7 41.5 41.6 41.3 31.1 30.6 73.2 72.0 213.1 212.5 212.6 46.3 47.0 45.6 48.8 58.2 58.3 57.8 37.6 38.8 37.8 43.4 42.0 42.3 41.9 41.5 41.4 41.0 58.2 41.3 41.4 41.0 18.2 18.1 17.8 210.3 20.0 18.6 18.1 51.9 53.1 52.9 63.9 53.5 53.5 52.2 37.2 48.3 36.4 43.4 37.8 37.6 37.3 61.0 60.0 51.3 61.1 59.4 59.7 59.1 35.6 32.5 35.2 35.6 35.8 35.8 35.3 30.2 31.4 30.5 30.1 31.2 30.8 29.9 38.7 37.6 39.6 38.8 40.6 39.3 39.1 39.6 39.8 38.2 37.6 44.1 40.1 38.0 30.4 33.3 32.3 31.6 74.6 44.4 31.3 27.2 36.1 35.9 36.3 48.4 75.6 29.0 45.1 30.0 29.9 30.1 30.2 32.1 35.1 48.1 42.8 42.7 41.9 41.6 44.8 39.2 34.8 35.5 35.2 35.0 35.6 35.8 34.4 31.4 28.1 28.0 28.1 28.2 28.0 27.9 49.7 32.8 32.7 32.9 31.9 32.1 31.4

217.3 39.4 39.2 39.4 38.9 36.0 33.2 13.6 15.1 9.6 11.6 6.8 6.8 6.7 15.1 11.9 13.4 16.3 14.5 14.7 14.5 18.0 173.9 17.8 18.3 18.0 18.2 18.0 18.4 20.5 18.6” 19.5 14.1 20.1 18.9 18.5 18.9 20.1’ 19.5 18.8 21.5 19.1 34.0 31.7 32.0 32.1 32.6 24.9 67.0 31.1 35.1 31.6 31.9 30.9 30.8 32.9 35.1 32.1 34.9 34.9 35.7 35.5 34.2

C861 PW C871 C871 c511 C871 C871

22.4 41.6

212.9 58.3 42.2 41.3 18.0 49.9 37.8 59.7 34.5 27.8 39.8

27.8 33.2 82.8 43.4 32.1 30.8 27.2 35.7 6.8

14.6 16.5 15.5 19.5

33.4 25.4

C871

22.3 22.1 41.6 41.3

212.2 212.5 58.3 57.7 42.2 41.9 41.4 39.9 18.3 19.9 53.5 48.0 37.5 36.6 59.6 58.2 35.7 35.6 29.8 22.4 40.0 51.0 38.3 47.9 32.8 80.7 36.0 40.3 29.8 30.5 42.0 44.2 30.6 34.3 33.2 28.2 27.9 34.2 39.6 35.8 6.8 6.8

14.7 14.5 17.9 16.4 18.4’ 13.6 20.8” 180.1 32.1 29.6 25.9 34.3 74.8 31.1

C871 WI

Page 23: 13C NMR of Triterpenoids

‘jC NMR spectra of pentacyclic triterpenoids 1539

Table 1. Continued

189 1% 191 192 193 194 1% 1% 197 1% 199 w

17.8 15.7 21.6 223 22.2 22.3 22.3 22.2 22.2 22.3 22.3 22.4 32.8 34.9 40.8 41.4 41.4 41.5 41.4 42.1 41.5 44.5 41.4 41.6 75.1 72.5 210.6 213.1 212.5 212.6 213.0 213.3 213.3 212.6 213.0 211.8 50.0 49.0 57.8 58.2 58.2 58.3 58.1 58.2 58.2 58.3 58.1 58.0 38.3 37.7 47.0 42.0 42.1 42.1 42.2 44.7 42.1 42.1 42.2 42.1 41.3 41.6 56.9 40.5 41.0 41.3 40.9 41.5 41.3 41.3 42.4 41.2 17.8 17.4 210.2 21.3 18.6 18.1 18.5 18.0 18.2 18.2 20.7 18.4 52.1 522 63.4 45.3 52.4 51.8 53.0 53.0 50.7 53.2 51.2 53.2 37.0 37.0 42.4 37.2 37.7 37.6 38.3 37.8 37.4 37.5 37.5 37.5 59.9 61.2 59.0 59.3 59.4 59.7 59.4 59.2 59.8 59.5 59.9 59.2 35.3 35.2 35.5 34.4 35.4 35.7 37.6 35.9 35.3 35.5 35.4 35.7 30.4 30.3 29.8 29.4 29.1 30.2 27.8 31.0 30.2 30.3 30.0 30.5 39.2 39.1 39.4 42.4 39.2 38.6 54.8 41.1 39.1 39.7 39.6 40.1 38.5 38.5 37.5 54.2 40.5 39.7 39.2 38.9 39.2 38.1 42.7 38.3 31.1 31.0 31.6 214.1 50.2 30.4 33.0 29.3 29.7 32.8 23.4 29.5 36.4 36.2 36.3 54.0 218.8 27.1 35.9 326 36.1 35.5 36.3 32.6 31.9 31.8 30.1 33.5 45.3 45.0 30.7 37.6 30.1 29.5 32.9 36.6 43.3 43.2 41.8 44.0 44.0 48.1 43.3 37.6 44.2 42.5 44.9 39.0 35.8 35.8 34.9 34.9 35.5 34.8 35.7 35.4 29.5 31.4 36.0 29.8 33.5 33.4 28.0 27.9 27.6 31.5 28.4 28.4 40.4 40.5 34.5 33.6 76.4 76.6 32.8 33.8 31.7 49.5 32.4 34.8 29.5 28.6 74.3 29.2 43.7 43.6 38.6 38.6 30.8 217.3 37.6 32.6 36.6 38.3 46.6 33.0

9.9 11.5 6.8 6.8 6.8 6.8 6.8 6.8 6.2 6.8 6.7 7.2 14.5 16.2 15.1 15.0 14.7 14.7 14.7 14.6 14.6 14.6 14.4 14.7 18.2 18.3 18.2 17.4 17.3 18.1 18.4 17.5 18.0 17.6 17.9 18.0 18.8 18.6 19.2 14.7 20.3 18.3 22.7 20.6 18.4 17.6= 63.2 20.1 19.0 18.9 19.4 18.9 16.2 18.5 181.1 18.5 16.3 20.Y 20.2 19.0

32.8 32.5 32.1 32.2 27.4 34.0 31.0 185.0 31.8 31.9 32.7 67.1

30.8 30.7 31.8 33.3 31.1 31.1 30.5 29.7 184.5 179.4 24.9 73.6 26.2 26.1 34.6 33.4 35.2 35.1 35.4 34.5 31.6 31.8 32.0 27.5

IPll WI I371 c511 C871 WI WI c200) PW C871 C87l P321

PHYTO 37-6-E

Page 24: 13C NMR of Triterpenoids

1540 S. B. MAHATO and A. P. KUNDU

201 202 203 204

Table 1. Continued

2osp 20@ 207 208 209 210

22.3 202.1 22.6 202.6 29.4 24.9 38.7 40.1 38.8 39.4

41.5 60.7 41.3 60.5 68.5 61.3 27.2 35.6 27.3 34.2

212.9 204.1 211.6 203.7 74.7 78.0 78.3 207.8 78.8 217.8

58.3 59.1 57.9 59.2 46.6 43.8 38.7 56.6 38.8 47.4

42.1 37.7 42.2 37.5 41.1 50.2 55.2 57.2 55.4 55.4 41.4 40.7 40.9 38.5 31.0 32.1 18.3 19.6 18.4 19.7

18.3 19.7 18.9 17.0 30.3 29.0 32.9 32.0 33.0 32.6

52.5 52.6 54.1 45.2 39.4 40.3 40.0 38.9 39.6 39.1 37.5 37.6 43.7 37.1 133.7 149.1 47.7 45.6 47.5 46.8 59.7 71.9 59.3 69.0 133.7 85.0 36.9 36.2 37.0 36.6

35.5 34.7 56.1 35.8 29.0 120.7 23.3 22.7 23.3 23.6 30.0 30.8 211.4 26.5 121.7 120.3 124.3 123.1 125.5 125.4

39.6 40.6 62.3 38.1 144.7 139.8 139.3 138.9 138.0 138.4 38.4 44.0 43.7 40.0 41.6 41.2 42.0 41.3 42.0 42.2 31.1 74.7 33.1 34.7 27.6 27.8 28.7 25.6 28.2 28.1 29.2 48.6 37.2 36.8 24.0 23.8 26.6 27.1 24.3 24.3 35.2 30.2 30.4 30.8 47.0 45.7 33.7 32.8 48.1 48.2 38.9 41.6 37.6 44.0 41.5 40.6 58.9 58.2 52.8 53.0 31.5 35.5 36.3 35.4 47.3 46.6 39.6 38.7 39.1 39.0

33.3 28.2 28.7 28.3 31.0 30.7 39.6 38.6 38.8 38.9 30.2 31.9 33.3 32.5 34.3 34.6 31.2 30.2 30.7 30.7 28.3 38.9 40.4 38.9 33.1 33.8 41.5 40.5 36.7 36.7

6.8 7.3 7.3 6.8 67.3 73.4 28.1 20.0 28.2 26.6 14.7 15.8 14.6 15.7 16.0 14.2 15.6 173.2 15.5 21.5 18.2 18.1 18.3 67.1 27.9 18.6 15.6 12.4 15.7 15.2 18.7 14.1 223 19.3 24.0 20.3 16.8 15.9 16.9 16.9 19.1 18.9 62.5 69.9 26.2 21.4 23.3 22.1 23.6 23.5 69.0 32.7 30.6 30.0 179.9 178.3 28.1 27.8 177.7 178.0 73.4 31.0 35.6 31.4 33.1 33.0 17.4 16.5 16.9 17.1 28.6 35.6 31.9 35.1 23.8 23.6 21.3 20.3 21.2 21.2

II871 1511 cm31 WI Pw PO41 c2051 c391 cl321 Cl151

Page 25: 13C NMR of Triterpenoids

1 “C NMR spectra of pentacyclic triterpenoids 1541

Table 1. Continued

211 212 213 214 215 216 217 218’ 219 22v

39.4 33.5 38.8 46.8 47.2 42.2 44.3 38.7 38.8 38.5 26.5 25.4 27.3 68.9 68.9 66.7 71.0 28.0 27.3 26.9 78.1 76.0 79.0 83.8 78.2 79.2 78.4 78.2 79.0 77.4 39.4 37.5 38.8 39.1 37.5 39.3 38.0 39.3 38.8 38.5 55.9 48.8 55.4 55.4 51.0 48.3 55.2 55.8 55.4 54.8 19.0 18.2 18.4 18.4 19.8 18.2 18.1 18.9 18.4 18.2 37.7 35.2 32.9 32.9 32.4 33.0 32.9 33.6 33.2 32.3 40.2 43.5 39.4 39.6 39.7 40.0 39.6 40.3 39.5 39.6 47.4 55.8 47.8 47.5 48.2 47.6 47.9 47.7 47.7 47.2 37.5 38.2 37.2 38.3 37.3 38.4 36.6 37.3 37.1 38.4 23.5 68.4 23.4 23.4 23.3 23.4 23.4 24.0 23.4 23.0

129.1 128.7 125.0 125.3 125.6 125.8 125.6 128.1 125.9 124.8 134.2 142.9 138.0 138.1 138.1 138.7 138.1 139.9 137.9 138.0 56.9 42.2 42.8 42.1 42.2 42.2 42.1 42.1 423 42.2 28.3 27.9 29.2 28.0 27.9 28.2 27.9 29.2 28.5 25.5 25.6 27.7 22.6 24.3 24.2 24.4 24.2 26.6 27.1 20.3 48.9 33.6 36.8 48.1 48.2 48.3 48.1 48.2 48.2 36.4 55.1 58.1 54.1 52.8 53.0 53.2 52.9 54.5 53.7 57.2 39.5 39.4 38.9 39.1 39.0 39.1 39.0 72.7 32.0 33.6 37.8 39.3 39.4 38.9 38.8 38.5 38.8 42.3 42.8 49.7 30.7 31.1 30.7 30.7 30.7 30.8 30.6 27.0 71.8 33.1 37.2 41.3 30.6 36.7 36.6 36.8 36.6 37.4 428 76.7 28.7 28.7 28.1 28.7 23.8 28.6 29.7 28.7 28.2 28.0 16.8 22.4 15.4 17.0 23.2 22.0 17.3 16.7 15.5 15.4 16.8 16.6 15.6 17.0 21.1 16.5 16.4 15.5 15.7 15.7 18.4 18.0 16.9 17.0 16.7 17.1 16.9 17.1 16.8 16.4

178.2 23.3 23.4 23.7 23.6 23.9 23.6 24.6 23.2 23.1 180.2 28.6 69.7 177.9 178.1 178.4 178.0 180.6 177.6 24.3 19.1 17.5 16.2 17.0 17.0 17.1 17.0 26.8 17.0 18.0 21.7 21.3 21.3 21.2 21.1 21.2 21.1 16.4 17.2 177.0

WI VW 12071 ~1321 c731 Cl571 c731 PO81 Cl351 P-3

Page 26: 13C NMR of Triterpenoids

1542 S. B. MAHATO and A. P. KUNDU

Table 1. Continued

221P 222 223’ 2rMp 225 22iiM 227 228 229 230

39.0 38.2 38.5 39.8 42.9 39.4 41.7 46.7 41.6 41.8

26.3 27.5 26.9 29.1 66.1 27.4 28.4 69.0 66.6 66.2

74.2 80.7 73.3 78.3 79.3 80.2 78.8 79.9 78.6 73.3 43.8 42.5 52.2 49.2 38.7 41.4 39.7 42.9 41.1 43.8

48.0 55.7 49.6 56.9 48.8 55.3 56.4 48.8 42.1 48.5

18.3 18.3 19.5 20.9 18.6 67.3 67.8 18.4 17.8 18.2

33.0 33.0 34.5 33.9 33.5 42.7 41.3 32.8 32.4 33.0

40.0 39.3 39.8 40.2 40.6 42.9 40.5 39.8 39.6 39.5

48.5 47.4 45.9 47.2 47.6 47.8 48.3 47.7 47.9 47.3

37.1 36.5 36.8 37.9 38.8 38.3 37.1 38.3 37.9 37.9

24.2 23.4 24.1 24.5 24.1 24.4 24.1 23.5 23.3 23.3 125.5 125.2 125.6 128.1 128.0 129.5 128.4 125.7 125.2 125.1 139.2 137.6 137.6 139.9 139.9 140.2 139.3 138.7 138.4 138.1

43.0 41.8 40.0 42.2 42.9 42.9 42.6 42.3 42.1 41.9 27.3 29.9 31.1 29.1 29.2 28.0 29.3 28.2 28.0 27.8 24.0 24.0 25.4 26.5 26.4 26.6 26.5 24.4 24.2 24.1

47.5 47.9 45.7 48.3 48.3 47.8 48.5 48.3 48.1 47.9 52.2 52.7 52.3 54.7 54.6 55.3 54.7 53.1 52.9 52.7 39.2 38.9 70.4 72.7 72.7 73.9 72.8 39.3 39.0 38.9 30.9 38.7 39.8 42.2 42.4 43.1 42.4 39.1 38.9 38.7 37.0 30.5 24.8 27.0 26.9 26.8 27.0 30.9 30.6 30.5 33.0 36.5 36.1 38.4 38.5 39.0 38.5 36.8 36.6 36.5

64.6 22.4 178.2 24.2 29.4 17.6 17.1 69.3 71.3 22.0 12.7 64.4 9.8 180.6 22.3 29.1 28.6 13.1 17.5 65.5 15.6 15.8 13.8 13.9 16.6 16.8 16.8 17.1 16.8 16.7 17.5 16.7 14.4 17.1 17.3 22.4 18.0 17.1 16.9 16.7 24.2 23.4 24.6 24.5 24.7 24.9 24.7 23.9 23.7 23.6

179.7 177.9 178.3 180.6 180.1 179.2 180.7 178.4 178.1 178.0 17.1 16.9 26.9 27.0 27.1 27.3 27.2 17.3 17.0 16.9 21.1 21.1 14.8 16.8 16.8 16.5 16.8 21.2 21.2 21.1

Pm c2111 c-w cw c2131 c2141 c2151 Cl571 c731 Cl581

Page 27: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1543

UP 232p 233 234p usM 236 237 2w 239 w 241P

38.9 27.1 73.1 42.9 48.8 18.9 33.4 40.4 47.9 31.3 24.1

128.1 140.0 42.2 29.4 26.5 48.3 54.7 12.1 42.4 21.0 38.5 68.2 l3.1 17.3 16.8 24.9

180.7 21.2 16.0

WI

38.8 28.5 80.3 43.2 56.5 19.3 34.0 40.4 41.9 31.2 24.3

127.9 140.0 42.1 29.1 26.5 48.4 54.7 728 424 27.0 38.6 23.7 64.6 17.2 16.8 24.1

180.8 21.2 16.1

cm

33.1 25.2 70.6 42.1 49.5 18.7 32.9 40.0 47.1 36.8 23.7

129.1 137.9 41.1 28.2 25.5 41.9 53.2 73.1 41.1 26.0 37.4 21.6 65.5 15.6 16.5 24.6

178.2 27.4 16.1

C’M

48.1

68.6 80.9 54.1 52.2 21.4 33.3 40.5 48.1 38.5 24.2

121.1 139.9 42.0 29.1 26.3 48.6 54.1 72.1 42.0 27.1 38.5

180.6 13.4 17.3 17.1 24.1

180.0 27.1 16.8

C2l7l

40.5 26.2 121 56.4 49.6 70.8 40.5 39.1 41.1 35.9 23.1

128.6 137.8 42.0 28.4 25.6 41.9 53.6 73.2 41.5 26.2 31.7

209.3 10.1 17.0 11.1 24.5

181.2 27.1 16.1

C2181

14.6 14.9 19.9 40.6 53.2 17.9 32.8 41.8 48.0 37.4 24.5

130.0 137.3 41.8 29.8 26.1

48.5 52.6 13.2 42.9 21.0 38.1 28.3 16.1 11.4 16.9 25.6

178.3 21.4 17.1

~2191

14.7

11.0 19.9 40.6 53.2 17.9 32.8 41.8 48.0 31.4 24.6

130.1 137.2 41.8 29.8 26.1 48.5 52.6 13.2 42.9 26.9 38.1 28.3 16.1 11.4 16.9 25.6

178.4 21.4 17.1

~2191

50.3 69.6 84.7 38.8 51.4 68.8 41.8 41.2 49.1 40.3 24.1

129.6 139.4 421 29.5 27.8 49.1 55.1 13.6 43.1 26.6 39.0 29.0 16.6 18.5 18.8 24.8

182.2 27.1 18.5

c2201

48.4 61.7 82.9 41.2 53.3 21.7 66.9 39.2 41.4 38.4 22.8

127.6 137.5 41.2 28.7 25.4 41.9 55.3 71.8 41.1 24.8 37.1 25.2 16.6 16.8 16.6 21.0

180.6 22.9 14.6

cm

48.2 69.0 78.5 43.1 48.6 67.6 39.0 39.5 48.9 38.0 25.0

126.0 138.6 44.3 28.7 26.0 48.0 53.3 38.1 39.1 31.0 37.5 66.6 15.5 17.2 18.6 23.8

179.8 24.0 21.3

I?221

47.8 68.6 78.2 43.6 48.2 18.6 33.0 40.3 48.2 38.2 24.1

128.1 139.4 42.1 28.9 26.8 48.2 54.4 725 42.1 21.2 38.2 66.5 14.3 17.3 17.3 24.6

178.4 21.2 16.6

C2l7-l

Page 28: 13C NMR of Triterpenoids

1544 S. B. MAHATO and A. P. KIJNDU

Table 1. Continued

242p 243 SUP 245 246 247 248P 249 250 zslP zszp

47.8 32.7 48.1 48.2 528 528 68.8 62.8 37.0 68.7 24.6 69.0 67.8 87.5 87.4 156.7 148.9 24.3 85.8 67.0 78.4 76.6 177.2 177.2 134.0 137.5 80.6 44.0 45.3 43.7 42.8 48.5 48.5 42.1 42.6 38.6 56.6 46.4 48.1 47.2 61.9 61.8 63.7 63.0 51.2 19.4 18.4 18.7 27.9 18.9 19.0 17.7 17.2 18.2 33.8 32.7 33.0 67.0 33.0 35.8 34.7 37.4 32.0 40.4 39.8 41.0 38.3 40.9 41.9 42.1 47.9 40.7 47.9 46.9 48.1 47.1 46.8 46.7 42.4 42.9 154.2 38.3 36.6 38.2 36.7 43.3 43.3 51.0 41.3 37.9 24.4 23.8 24.4 23.8 25.4 25.4 26.9 26.5 115.1

127.9 128.9 127.6 126.7 129.4 130.3 128.3 129.2 123.0 140.0 138.0 140.2 138.5 137.9 139.2 140.2 138.4 141.4 42.1 41.2 42.0 41.4 42.0 46.9 42.3 41.7 43.1 29.3 28.2 27.6 28.7 28.0 68.2 29.7 28.7 28.2 26.9 25.5 25.7 25.5 18.6 35.4 27.0 25.5 26.1 48.3 47.9 38.8 47.9 58.8 47.0 48.3 50.8 33.7 54.6 53.3 55.7 54.0 53.5 53.7 54.8 53.3 57.3 72.7 73.1 73.5 72.4 72.8 73.0 72.8 73.1 39.0 42.4 41.1 42.8 41.1 38.9 41.0 43.7 41.2 39.5 26.4 26.0 27.1 25.3 33.4 25.8 26.4 26.1 31.2 38.5 37.5 36.3 37.7 73.6 37.0 38.4 33.9 41.4 24.2 70.3 66.7 64.5 27.3 27.3 30.1 21.3 28.2 65.7 66.0 14.4 17.1 21.0 21.0 21.7 29.6 17.4 17.3 14.9 17.6 22.3 16.0 15.6 18.9 18.6 17.6 17.1 16.6 17.1 14.8 16.9 17.4 16.6 18.6 22.2 24.6 24.6 24.4 25.9 25.1 19.2 25.3 25.2 25.5

180.7 178.5 69.4 178.4 177.3 177.8 180.5 25.2 28.7 27.1 27.4 27.1 23.0 27.0 27.2 27.2 27.4 16.8 16.8 16.1 17.1 13.3 15.8 16.0 16.6 16.1 21.5

c2231 CW c217l iwl P241 c2241 r2251 l-2261 ~2271

48.5 48.9 68.7 68.3 83.8 78.9 39.4 41.6 56.1 49.4 18.8 24.0 35.1 34.5 39.9 39.5 48.4 47.7 38.4 38.4 23.6 23.5

125.9 125.8 139.5 139.5 45.1 45.1 29.2 29.1 27.1 27.1 49.8 49.8

134.7 134.7 -

34.8 31.9 35.6 29.4 17.8 17.7 18.4 22.1

178.7 19.7 18.9

i?‘W

34.8 31.9 35.6 -

11.1 18.1 18.4 22.2

178.7 19.7 18.9

C-W

Page 29: 13C NMR of Triterpenoids

“C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1545

259 254 25s 256 251 258 259 260 Ml 262 263 264

41.9 71.9

82.3 31.5 52.2 21.0

34.2 39.2

46.1 31.9

24.0 126.1 139.7 45.2 29.0 27.1 49.8

134.7 -

34.8

31.9 35.6

15.9 -

15.9

18.5 22.1

178.7 19.7

18.9

12281

42.0 41.6 38.8 38.8 36.5 34.8 38.7 38.3 38.7 38.7 38.6 66.4 66.1 27.4 27.4 24.2 24.2 27.3 25.4 27.4 27.4 25.2 78.8 13.2 79.0 79.0 81.1 80.9 79.0 76.0 79.1 79.0 78.8 38.2 43.8 38.8 38.9 37.8 37.8 38.8 37.5 38.9 38.8 38.2 48.0 48.5 55.4 55.3 50.0 50.6 55.2 49.0 55.3 55.1 55.7 17.9 18.1 18.3 18.3 24.0 19.0 18.7 18.7 18.7 18.4 18.9 32.6 32.9 34.1 34.3 116.2 25.3 33.1 33.4 33.5 33.1 45.1 39.5 39.5 40.9 41.1 145.4 134.0 41.9 41.5 41.3 41.7 39.0 47.2 47.3 50.5 50.4 48.2 134.5 50.2 50.2 50.5 50.2 57.1 38.1 37.9 37.1 37.1 35.1 37.4 37.1 31.2 37.1 37.0 36.1 23.2 23.3 21.4 21.6 16.9 20.5 21.1 21.2 21.4 21.2 25.4

125.7 125.5 26.2 21.6 32.5 33.1 21.3 227 22.7 21.2 27.6 137.8 137.8 39.2 39.2 37.8 38.2 50.3 46.5 46.5 50.2 62.8 41.8 41.9 42.0 42.3 41.3 41.1 41.7 39.5 39.4 41.7 138.2 27.8 27.7 26.6 27.0 28.9 27.3 33.1 33.4 33.4 33.1 122.2 24.2 24.1 38.3 36.7 31.5 29.6 18.7 117.9 117.8 18.4 24.0 48.1 48.1 34.5 34.4 32.1 31.8 56.3 147.7 147.7 55.1 49.5 54.1 54.6 48.7 48.7 55.0 52.4 37.3 37.6 37.1 37.0 38.9 37.2 37.1 39.4 36.3 35.4 35.9 40.3 41.5 41.5 38.7 29.2

152.8 152.7 154.6 139.8 38.0 38.2 18.7 18.1 18.2 21.4 27.2 321 32.1 25.6 118.9 29.2 29.1 42.1 41.8 41.8 79.0 19.2 38.6 38.6 38.9 42.2 37.8 37.8 33.2 36.1 36.1 38.8 37.1 28.4 22.0 28.0 28.0 21.5 21.9 28.0 28.3 28.1 28.0 15.7 21.7 65.7 15.4 15.4 15.8 15.6 15.4 22.2 15.5 15.4 19.8

16.3 16.7 16.8 16.3 13.0 19.9 15.9 16.0 16.2 16.0 28.1 16.8 16.6 15.9 16.1 23.6 22.1 16.5 16.9 16.9 16.5 15.4 23.6 23.5 14.8 14.8 22.7 16.2 15.9 17.7 17.6 16.5 56.0

177.2 177.2 19.5 17.7 32.1 32.0 15.9 29.9 29.9 16.0 13.4 16.0 16.0 25.5 22.5 25.6 25.2 21.5 20.7 20.6 15.4 27.5

105.0 105.0 107.2 21.7 22.5 22.4 33.4 33.5 33.5 28.0 14.6

Cl581 Cl561 II441 [441 c911 c911 E931 c931 1931 r941 [951

Page 30: 13C NMR of Triterpenoids

1546 S. B. MAHATO and A. P. KUNDU

MS 266 267 268

Table 1. Continued

2459 270 271 272 273 274 275

38.6 38.6 38.5 38.4 25.2 25.2 22.4 22.3 78.8 76.1 88.5 88.4 38.2 37.7 38.2 38.2 55.7 49.4 56.3 56.2 18.9 18.8 18.8 18.7 45.2 44.9 45.2 45.1 39.0 38.2 38.9 38.9 56.8 56.9 57.2 55.0 36.0 35.9 36.1 36.6 25.4 25.4 25.3 25.7 27.2 28.4 27.7 27.2 62.9 62.7 62.9 62.6

138.5 138.6 138.3 138.6 122.0 122.0 122.1 120.8 24.0 24.0 24.1 24.6 43.4 43.4 49.5 53.6 37.1 37.3 38.9 37.1 31.2 31.2 29.7 38.7 27.5 27.1 27.2 37.1 76.2 76.2 79.2 209.4 37.4 37.4 37.1 63.2 15.7 15.6 15.7 15.7 19.8 19.8 19.8 19.8 28.1 30.0 28.1 28.1 15.4 13.5 16.2 16.2 56.2 56.3 56.1 55.8 13.3 13.3 13.4 12.7 27.7 21.8 27.5 16.3 21.8 27.7 14.6 201.9

c951 c951 c951 c951

38.9 22.4 88.4 38.5 56.4 18.8 37.1 38.9 57.4 36.1 25.7 27.3 62.8

138.6 121.6 29.5 45.7 56.1 38.3 37.9

212.9 49.4 15.7 19.8 28.2 16.2 45.2 11.5 11.0 -

38.6 22.5 88.6 38.3 56.1 18.9 37.0 41.1 57.1 35.9 24.5 27.3 63.0

138.3 121.8 25.6 50.6 56.4 37.2 21.8 80.3 39.0 15.8 19.9 28.2 16.2 45.3 13.8 24.3 64.0

~2291 c2291

36.9 27.8 79.3 39.0 50.7 24.2

116.2 145.0 47.9 35.3 16.7 34.1 36.5 41.0 29.1 27.9 38.2 43.4 23.3

21.3 27.2 39.0 27.6 14.6 12.9 23.8 22.2 16.1 25.3 23.0

c911

38.3 31.7 34.8 23.0

216.5 78.3 47.8 36.6 52.3 45.6 24.5 24.0

116.1 116.1 145.1 145.3 47.4 47.5 35.3 35.0 16.8 16.6 33.9 34.0 36.5 36.5 41.0 41.1

29.1 29.1 27.9 27.9 38.1 38.2 43.4 43.4 23.2 23.2

21.5 21.6 37.0 37.1 39.0 39.0 24.5 27.2 21.4 21.3 12.5 12.8 23.8 23.7 22.2 22.2 16.0 16.1 25.3 25.3 22.9 23.0

c911 c2301

37.2 37.9 24.7 27.2 81.1 79.1 37.6 38.8 44.6 55.7 17.4 18.7 19.0 32.4 40.3 39.4

150.2 48.4 37.3 36.6

116.7 23.2 39.1 117.5 37.2 146.7 38.2 41.8 28.1 24.6 27.9 29.2 38.2 37.4 41.2 41.7 23.3 23.9 21.8 21.9 37.6 36.2 39.3 37.7 27.4 28.0 16.2 15.3 25.3 15.4 15.2 16.3 16.5 21.5 16.4 21.3 25.3 25.5 23.0 22.2

c911 WI

Page 31: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1547

276 277 278 279 280 281 282 283 284 285 286

34.6 34.4 33.2 33.2 31.7 31.6 41.4 41.6 39.0 23.9 39.2 20.2 20.2 29.2 29.2 33.9 33.8 70.8 71.2 71.8 25.7 71.9 41.5 41.5 79.3 79.3 220.5 220.1 84.3 84.7 81.0 82.5 81.0 33.7 33.8 39.2 39.2 47.0 47.2 38.7 39.1 38.7 38.3 39.1 49.1 49.2 48.0 48.0 43.4 43.3 47.9 48.0 47.5 33.4 47.6 19.5 19.4 19.1 19.1 20.6 20.6 18.8 19.0 18.7 20.2 18.9 34.5 34.4 34.5 34.6 33.9 33.8 34.3 34.3 34.0 32.7 34.4 42.0 421 41.9 41.9 42.0 42.0 41.7 41.9 41.7 40.3 41.6 46.0 45.9 45.8 46.2 47.5 47.4 46.1 46.5 46.1 46.7 46.5 37.2 37.2 36.9 36.9 36.1 36.2 37.4 37.7 37.3 44.9 37.5 22.7 22.6 22.6 22.5 22.1 220 22.7 22.9 22.7 20.8 227 21.8 22.2 21.5 21.3 21.3 22.2 21.4 21.6 21.4 21.7 24.1 48.6 48.6 48.6 49.8 48.6 48.6 48.7 48.9 48.6 48.5 48.9 43.3 43.5 42.8 43.4 42.3 43.3 42.5 426 42.5 42.8 43.3 32.1 30.4 31.8 32.6 31.7 30.4 31.4 31.9 31.6 31.6 32.7 25.9 17.7 19.4 23.5 19.3 17.6 19.6 19.4 19.5 19.2 20.6 42.8 55.1 49.0 45.9 48.9 55.0 46.5 48.7 46.5 49.0 54.2 36.6 42.5 38.5 36.5 38.6 42.2 38.9 38.5 39.0 38.5 44.2 34.8 35.7 34.9 35.6 34.8 35.6 34.8 35.1 34.8 34.9 40.0 36.0 36.9 35.0 30.2 35.0 36.8 34.8 35.1 34.8 35.0 27.4 30.6 43.8 35.8 34.8 35.8 43.8 35.2 35.9 35.2 35.8 47.9 42.1 217.7 76.5 81.3 76.5 217.3 78.4 76.6 78.3 76.5 148.1 33.9 33.9 29.1 29.1 29.4 29.3 29.6 29.8 29.4 26.4 29.4 22.0 22.0 16.1 16.1 19.6 19.6 17.2 17.3 17.9 20.2 18.0 23.1 23.1 22.7 22.7 23.4 23.3 23.8 24.0 23.6 178.2 23.7 22.6 22.5 22.7 22.5 221 22.0 22.5 22.6 22.4 22.1 22.6 17.2 16.8 17.3 17.3 17.2 16.5 17.1 17.2 17.0 17.1 17.1 12.1 13.7 13.5 15.9 13.6 13.7 13.4 13.6 13.3 13.5 15.1 33.5 25.6 29.9 27.8 29.9 25.5 29.3 29.8 29.4 29.8 109.3 23.0 26.5 18.6 26.0 18.5 26.4 19.6 18.6 19.5 18.5 19.6

ml1 [loll Poll cw WI cw cw WI cw Wll cw

Page 32: 13C NMR of Triterpenoids

1548 S. B. MAHATO and A. P. KUNDU

Table 1. Contimred

287 288 289 290 291 292 293 294 295 296

39.0 40.3 38.7 40.2 40.2 38.7 34.0 39.5 38.7 33.6

71.8 18.7 27.4 18.6 18.6 27.4 23.2 27.3 27.3 25.9

81.8 42.1 78.9 42.1 42.0 78.9 75.5 77.9 78.9 76.4 39.0 33.2 38.8 33.2 33.2 38.8 j9.0 38.4 38.8 37.5 47.6 56.3 55.3 56.3 56.3 55.3 49.3 55.2 55.5 49.9 18.7 18.7 18.3 18.6 18.6 18.3 18.6 17.9 18.2 18.4 34.4 34.3 34.2 34.2 34.2 34.3 34.8 33.9 34.3 34.4 41.4 41.0 40.8 41.1 40.8 40.7 41.2 40.3 40.8 41.0

46.6 50.5 50.4 50.4 50.6 50.5 50.7 51.0 50.4 50.5

37.5 37.5 37.1 37.4 37.4 37.2 37.7 37.1 37.1 37.3

22.8 20.8 20.9 20.7 20.7 20.8 21.0 20.3 20.7 20.8

24.0 25.2 25.1 25.3 25.5 25.5 26.1 27.0 25.5 25.6

49.4 38.0 38.0 37.2 38.2 38.4 38.5 38.4 38.7 38.7

43.0 42.8 42.8 42.7 42.3 42.4 42.9 59.5 42.5 42.6

31.8 27.4 27.4 27.0 29.6 30.5 31.2 25.8 29.2 29.5

19.5 35.6 35.5 29.2 32.1 32.1 32.8 37.5 28.8 28.8

139.7 43.0 43.0 47.7 56.5 56.3 56.6 55.8 59.3 59.3

49.8 48.3 ’ 48.2 48.7 49.4 46.8 47.7 51.7 48.0 48.0 41.4 47.9 47.9 47.7 46.9 49.2 49.7 46.5 47.5 47.5 27.4 150.6 150.9 150.2 150.3 150.3 151.2 149.3 149.7 149.8

136.2 29.9 29.8 29.8 30.6 29.7 29.9 30.0 29.8 30.0 26.3 40.0 40.0 33.9 36.9 37.0 37.5 36.5 33.2 33.2 29.3 33.4 28.0 33.3 33.3 27.9 29.2 27.7 27.9 28.2 17.9 21.6 15.4 21.5 21.5 15.3 22.5 15.3 15.4 222 23.6 16.1 16.1 16.0 16.0 16.0 16.4 16.4 15.9 15.9 22.5 16.1 15.9 16.0 16.0 16.1 16.4 16.8 16.1 16.1 15.0 14.6 14.5 14.8 14.7 14.7 14.9 175.3 14.2 14.2 18.7 18.0 18.0 60.4 176.3 180.5 178.7 176.1 205.6 205.6 21.2 109.2 109.3 109.4 109.4 109.6 109.8 109.5 110.1 110.1 21.8 19.3 19.3 19.1 19.3 19.4 19.4 18.6 19.0 19.0

WI c1021 Cal PO21 PO21 c2311 ~2321 Iwl PW WI

Page 33: 13C NMR of Triterpenoids

‘“C NMR spectra of pentacyclic tritcrpenoids

Table 1. Continued

1549

297 298 299 300 301 302 303 304 305 306 307p

79.0 37.5 75.7 38.9 53.1 18.0 34.1 41.3 51.4 43.5 23.8 25.0 38.0 42.8 27.4 35.5 42.9 48.3 47.9

150.8 29.7 39.9 27.8 14.9 11.9 16.2 14.4 18.0

109.4 19.2

CW

39.0 28.1 78.5 38.7 55.2 18.1 34.2 40.5 50.4 37.9 20.7 25.4 79.0 42.2 29.5

55.7 49.1 46.8

150.4 30.4 37.0 15.6 27.3 16.0 15.9 14.5

177.6 109.3

19.2

PW

38.7 39.0 38.9 38.9 38.5 38.8 39.6 421 39.2 27.5 27.5 27.4 27.4 27.8 27.2 34.1 66.6 27.9 78.9 78.6 78.9 78.8 80.9 78.9 218.3 78.9 73.6 37.3 39.4 38.8 38.9 42.8 38.9 47.3 38.3 42.9 52.5 55.6 54.9 55.4 55.9 55.3 54.9 51.2 48.9 27.5 18.1 18.5 18.3 18.4 18.3 19.7 17.9 18.6 74.7 35.3 37.8 34.3 34.9 34.3 33.6 34.0 34.6 46.9 41.1 42.5 41.0 40.9 40.9 40.8 40.8 41.2 50.5 55.7 51.0 50.0 50.5 50.4 49.7 49.4 49.8 37.3 37.7 37.4 37.1 38.0 37.2 36.9 38.5 37.6 20.9 70.5 21.0 20.9 21.2 20.9 21.6 20.8 21.3 25.3 27.7 25.2 24.9 25.1 25.3 26.7 25.8 26.2 38.7 37.7 37.6 37.3 36.9 37.3 38.1 38.1 38.7 42.8 42.6 47.9 44.1 42.8 427 42.9 42.4 42.9 29.4 27.5 69.7 36.9 27.4 27.0 27.4 29.6 30.3 36.1 35.5 46.5 76.9 35.6 29.2 35.4 32.1 32.9 42.8 43.0 43.0 48.6 43.0 47.8 43.0 56.6 56.7 48.3 47.7 48.1 47.7 48.0 48.8 48.8 48.1 47.8 48.2 47.7 47.4 47.6 48.3 47.8 43.8 46.9 49.7

151.0 150.2 150.4 149.8 150.9 150.6 154.7 150.5 151.4 30.0 29.9 30.1 30.0 29.9 29.8 31.8 30.5 31.8 40.2 39.9 39.7 37.8 40.0 34.0 39.8 36.9 37.6 28.0 28.3 27.9 28.0 224 28.0 26.7 28.4 68.2 15.4 15.6 15.4 15.4 64.5 15.4 21.0 21.6 12.9 15.1 16.1 16.1 16.1 15.9 16.1 16.0 17.1 16.5 10.2 17.3 16.6 16.1 16.7 16.0 15.8 15.9 19.5

15.8 14.5 8.0 16.1 14.6 14.8 14.5 14.7 14.9 17.9 18.1 19.2 11.8 18.0 60.2 17.7 176.6 178.9

109.3 109.8 109.7 109.6 109.4 109.6 106.8 109.6 109.9 19.4 19.4 19.4 19.4 19.3 19.1 65.0 19.3 19.5

I2361 ~2371 C2381 Cl021 cl241 c491 c491 P391 c2401

Page 34: 13C NMR of Triterpenoids

1550 S. B. MAHATO and A. P. KUNDU

Table I. Continued

308 309 31op 311P 312 313p 314 31sp 316’ 317p 318

39.2 35.4 35.4 41.5 39.9 66.6 38.2 66.7 25.5 26.6 27.1 28.9 34.1 36.2 30.6 37.7 77.9 72.8 73.1 78.7 218.3 75.1 82.3 75.2 39.2 52.8 53.0 40.6 47.2 40.0 40.9 42.8 55.9 45.2 44.2 56.7 54.5 58.2 59.5 58.3 18.6 22.1 21.3 67.8 19.8 18.8 22.0 18.8 35.8 35.9 35.5 42.6 36.9 35.9 37.5 35.8 41.8 42.9 42.8 40.7 42.4 42.7 42.7 43.0 50.2 56.6 56.0 51.4 50.3 53.5 54.5 53.5 37.6 39.6 39.0 37.3 37.1 46.3 32.2 46.4 21.3 69.9 69.8 21.6 21.5 76.5 24.7 76.6 27.7 38.5 38.3 25.7 25.2 35.1 30.8 35.1 39.4 37.7 37.6 37.1 37.0 36.2 41.3 36.3 46.6 43.4 43.3 44.5 47.8 43.1 44.8 43.3 28.0 30.2 30.1 37.7 69.0 30.2 33.0 32.4 33.7 32.9 32.8 76.3 40.3 38.0 38.0 38.1 56.3 56.6 56.5 49.4 47.9 43.2 46.4 43.3 50.0 49.5 49.5 48.4 48.3 48.7 53.3 49.1 47.5 47.6 47.5 48.3 47.2 48.2 47.4 44.0

151.1 150.9 150.8 150.9 149.9 150.6 150.7 156.3 31.0 31.3 31.3 30.5 30.0 28.0 35.4 28.1 37.6 37.5 37.4 38.5 33.9 40.1 33.1 40.0 28.3 179.7 209.9 27.9 26.6 28.7 31.2 28.7 15.4 18.1 17.8 17.3 21.0 14.4 19.3 14.4 16.6 18.3 15.0 17.9 16.1 15.7 18.6 15.7 17.0 17.2 16.8 16.8 16.3 17.8 19.2 17.8 59.9 14.8 14.8 16.7 8.1 14.3 17.8 14.3

178.8 178.8 178.8 12.0 61.5 18.3 62.9 18.1 109.5 110.1 110.0 109.9 110.0 110.3 109.8 106.6

19.3 19.6 19.5 19.4 19.1 19.4 67.8 64.4

c351 ~2411 c2421 C2431 c491 P441 C2451 c2441

38.6 28.0 78.0 39.4 55.9 18.9 32.8 39.8 47.8 37.6 23.8

122.4 141.1 42.2 24.0 26.6 44.1 40.2 30.0 38.6 80.4 36.6 28.6 16.4 15.6 16.3 23.5

181.9 22.1

39.2 40.5 28.2 18.8 78.0 42.3 39.4 33.3 55.7 56.5 18.6 18.8 34.9 34.6 41.5 41.3 50.3 50.4 37.3 37.6 21.3 21.0 28.5 27.1 40.1 38.1 44.7 43.2 37.0 27.5 68.2 35.8 59.0 43.2 42.5 47.8 56.4 44.9 69.2 29.5 81.6 22.0 42.5 40.5 28.6 33.4 16.3 21.7 16.3 16.1 16.4 16.2 15.6 14.6

177.0 18.2 30.7 15.2 31.0 23.0

Cl461 cw

Page 35: 13C NMR of Triterpenoids

‘“C NMR spectra of pentacyclic triterpenoids 1551

319 320 321 322 323

Table 1. Continued

324 325 326 327 328 329 330

38.7 40.2 40.5 27.4 18.6 18.6 78.8 42.0 42.1 38.8 33.2 33.3 55.2 56.1 56.5

18.3 18.6 18.7

34.4 34.5 35.0 40.8 41.5 41.0 50.1 50.2 51.2 37.1 37.4 37.5

20.9 21.2 21.5 26.8 29.1 28.4 37.8 37.4 40.3 43.0 43.5 43.7 27.4 27.5 28.3 35.5 35.5 37.7 43.1 44.6 48.4 47.5 48.2 139.0 44.6 49.9 138.7 29.3 73.3 26.4

21.9 28.7 28.7

40.4 40.2 39.2 28.0 33.3 33.3 15.4 21.5 21.5 16.0 16.1 16.6 16.0 16.2 16.7 14.4 14.8 15.4 18.0 19.2 23.7 15.1 24.8 21.4 23.0 31.4 21.9

rP1 IN21 Cl021

40.5 38.7 38.8 - 18.7 27.3 27.3 40.7 42.1 78.7 79.1 38.9 33.3 38.8 38.0 37.8 56.6 55.2 55.2 61.6 18.7 18.2 18.4 18.8 34.8 34.4 32.9 34.7 40.9 41.0 40.1 41.4

51.3 49.1 47.7 50.0 37.5 37.1 36.9 45.6 21.2 21.0 23.4 23.6 28.2 26.6 125.1 25.1 39.5 38.1 138.8 38.3 43.5 43.1 421 43.0 27.0 34.2 23.4 27.8 39.7 74.2 26.0 35.7 48.3 47.4 38.8 42.9

141.4 40.4 54.4 48.4 135.7 43.8 39.5 48.0 145.3 29.3 39.4 150.7 37.4 21.3 30.7 29.9 36.8 33.2 35.2 40.1 33.3 27.9 28.2 32.7 21.5 15.4 16.8 26.2 16.0 16.0 15.6 16.1 16.3 16.0 15.7 16.3 15.4 17.2 69.9 14.7 16.7 19.1 23.3 18.0

111.7 15.2 21.3 109.2 23.6 22.9 17.3 19.4

Cl021 WI c2461 Cl021

- - 55.4 51.5

224.5 82.3 45.7 44.4 59.2 61.8 18.1 18.6 33.8 34.4

41.2 41.4 48.7 49.9 41.6 43.4

23.7 23.6 24.8 24.9

38.1 38.2 42.9 42.9

27.5 27.6 35.5 35.6 429 428 48.2 48.3 47.9 47.9

150.4 150.5 29.8 29.8

39.9 40.0 27.7 31.8 21.0 19.0 17.5 17.2 16.2 16.1 14.6 14.6 18.0 18.0

109.3 109.2

19.3 19.3

cw w21

- 51.3 81.2 41.9 61.1 19.0 34.4

41.4

49.7 40.9

23.6 24.9 38.2 42.9 27.6

32.1 42.8

48.3 47.9

150.5 29.8

40.0 25.4 25.2 17.4 16.2 14.6 18.0

109.2 19.3

c1021

- 40.4 65.3 18.8 84.6 42.2 43.2 33.3 56.4 56.2 19.4 18.8 33.9 33.4 41.6 41.9

44.5 50.5 49.3 37.5

23.5 21.0

25.4 24.0 38.5 49.4 42.8 41.8

29.8 33.7 32.1 22.7 56.5 54.7 49.3 44.4 46.8 41.7

150.1 27.7

30.6 48.0

36.8 32.0 30.7 33.4 18.4 21.6 18.4 15.9 16.5 16.6 14.7 16.7

176.4 15.9 109.4 22.9

19.1 23.9

c1021 W’l

Page 36: 13C NMR of Triterpenoids

1552 S. B. MAHATO and A. P. KUNDU

331 332 333 334

Table 1. Continued

335 336 337 338 339 340 341

40.4 40.4 40.4 40.2 40.4 40.5 40.4 18.8 18.8 18.9 18.6 18.7 18.7 18.5 42.2 42.2 42.2 42.0 42.2 42.2 43.8 33.3 33.3 33.3 33.0 33.2 33.2 33.6

56.5 56.2 56.6 56.0 56.2 56.3 61.1 18.8 18.8 18.6 18.6 18.7 18.8 69.3 33.2 33.4 33.0 32.9 33.4 33.4 45.5 42.2 42.0 42.4 41.6 41.9 41.9 42.9 51.1 50.5 51.2 50.4 50.5 50.6 49.5 37.6 37.5 37.5 37.2 37.5 37.5 39.4 21.7 21.0 21.6 20.8 21.0 21.1 21.1 23.8 22.8 24.3 23.8 24.0 24.1 24.0 39.1 48.6 43.1 49.5 493 49.5 49.8 41.5 42.4 40.7 41.8 41.8 41.9 41.9 26.8 32.8 33.0 34.2 33.6 33.8 34.3

222 21.6 20.1 21.7 22.0 22.6 21.9 49.4 53.3 51.2 53.8 54.2 54.4 54.0 44.2 44.5 44.4 43.9 44.5 44.5 44.0 41.7 39.9 44.4 43.4 41.6 41.8 41.3 25.0 23.9 26.7 26.5 26.3 27.2 26.6 47.7 45.5 48.3 50.9 41.0 42.8 51.1 31.0 28.9 28.9 73.9 38.7 39.6 73.9 33.5 33.4 33.5 33.2 33.4 33.4 36.8 21.7 21.6 21.7 21.4 21.6 21.6 22.1 16.1 15.9 16.0 15.6 15.8 15.7 17.1 16.4 16.8 22.0 16.4 16.7 16.6 18.3 16.7 16.8 16.6 16.5 16.2 16.5 17.1 22.1 15.2 227 22.7 15.9 15.9 16.1 18.4 17.5 21.7 28.7 68.1 18.1 28.7 24.1 221 26.7 30.8 21.6 67.7 30.9

C2471 P481 CW PW C2491 C2491 c2501

39.6 34.2

218.1 47.3 54.9 19.8 32.7 41.7 49.6 36.8 21.6 24.1 50.0 41.9 34.4 21.9 54.0 44.1 41.3 26.6 51.0 73.9 26.6 21.1 15.7 16.5 16.9 16.2 28.7

41.1 40.2 18.6 18.4 42.8 43.5 32.6 33.2 66.5 58.5

214.0 72.0 51.7 41.0 48.5 42.8 50.9 49.4 44.1 39.6 21.6 21.1 24.0 24.0 49.8 49.9 42.4 42.1 34.5 34.3 22.0 21.9 54.2 54.0 44.1 44.0 41.5 41.3 26.8 26.6 51.2 51.1 73.8 73.8 32.7 36.3 22.0 22.2 17.2 17.1 17.0 18.1 17.8 17.1 16.3 16.1 29.0 28.9 31.2 31.0

c271 c271

40.2 18.6 41.8 33.0 53.1 29.6 73.3 47.6 50.5 37.4 20.7 24.1 50.0 43.4 38.3 22.2 53.5 44.1 41.4 26.5 51.5 73.8 33.2 21.4 15.5 11.2 17.7 16.2 28.6

Page 37: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1553

342 343 34P 345 346 347 348 349 350 351

40.4 18.7

420 33.2 55.8 18.9 36.8 43.5 50.5

37.6 20.8 24.1

48.9 47.1 74.8

32.6 50.5 44.2

40.9 26.9 50.5 73.7

33.3 21.6 15.8 17.4

11.8 15.8 28.7

39.3 73.1 73.4 40.7 40.3 38.5 17.7 25.8 25.5 18.4 18.5 26.8 36.7 36.7 36.3 38.6 43.8 80.8 47.7 33.8 33.6 38.6 33.7 37.1 51.1 48.4 47.7 56.6 61.0 54.6 21.6 19.1 18.8 19.2 68.7 21.2 32.8 35.6 35.0 35.7 44.7 34.9 42.3 43.3 43.0 43.6 43.0 43.1 50.5 47.7 47.0 50.9 49.1 50.2 36.7 43.3 43.3 37.6 39.5 37.6 20.6 68.6 69.9 21.2 21.2 20.8 23.5 33.8 33.5 24.2 23.7 23.6 49.0 49.2 48.8 492 49.4 49.0 44.0 42.4 42.1 47.2 41.8 45.8 41.5 34.7 33.8 74.9 33.7 76.7 66.8 22.4 22.7 32.8 21.5 28.5 60.6 54.7 54.5 50.6 53.0 50.1 45.8 44.2 44.3 44.3 43.9 43.9 43.7 41.6 41.6 41.0 47.7 40.8 27.8 27.0 27.3 26.9 78.1 23.6 49.8 51.5 42.8 50.6 56.9 50.4 74.1 72.4 39.7 73.8 72.8 73.4

179.3 33.7 33.4 26.9 36.8 28.5 16.6 21.7 21.5 65.5 21.8 21.9 16.1 18.1 17.8 16.4 17.1 15.7 16.3 17.4 17.2 17.3 18.9 15.8 18.3 17.5 16.8 11.7 16.9 12.7 17.1 16.2 15.6 15.8 17.4 16.4 26.6 29.9 18.2 28.7 28.3 27.9

31.5 67.8 31.0 31.0

W’l W’l ~2511 c2521

40.6 38.4 38.5

20.5 19.4 26.7

38.0 42.5 78.2 43.7 33.7 39.0 56.3 57.9 60.1 19.2 71.5 67.8 35.1 40.2 42.7 43.1 42.2 42.6

50.4 49.2 49.1

37.8 51.2 38.9

21.1 21.9 20.6

23.9 24.1 23.0 49.1 49.9 47.2 45.9 42.2 43.4 76.9 34.8 45.4 28.6 21.9 67.3 49.7 53.9 57.3 43.9 44.0 46.5 40.8 41.3 39.5

26.8 26.6 25.9 50.2 50.9 51.9 73.5 73.6 70.9

28.6 35.7 30.0 178.0 23.5 16.1

13.6 175.5 15.9 17.1 15.7 16.7

12.7 16.7 17.5 15.8 16.3 17.9 28.6 28.8 30.8

31.0 31.0 22.6

~2511 [571 C2531

Page 38: 13C NMR of Triterpenoids

1554 S. B. MAHATO and A. P. KUNDU

352 353 354 355

Table 1. Continued

356 357 358 359 360 361

45.4 40.4 40.3 40.4 40.4 40.4 40.4 39.6 40.4 40.3 24.6 18.8 18.7 18.7 18.8 18.7 18.7 34.2 18.8 18.7 49.9 77.2 42.1 42.2 42.2 42.1 42.2 218.1 42.2 42.1

32.5 33.4 33.2 33.3 33.3 33.2 33.3 47.4 33.3 33.2

51.3 56.2 56.1 56.2 56.6 56.2 56.2 54.9 56.2 56.1

20.0 18.8 18.5 18.8 18.6 18.7 18.7 19.7 18.7 18.7

32.1 34.4 33.5 33.3 33.2 33.3 33.3 32.6 33.4 33.2

42.1 41.9 41.4 41.9 41.7 41.8 41.9 41.6 42.3 41.9

50.5 50.5 50.6 50.5 51.0 50.9 50.4 49.7 50.5 50.3 38.0 37.5 37.4 37.4 31.6 37.4 37.4 36.8 37.5 37.4

22.1 21.0 20.9 21.0 21.5 21.2 21.0 21.5 21.0 20.8

24.6 24.0 24.2 23.8 24.6 24.0 24.0 23.9 24.0 24.8

49.0 49.4 44.8 48.1 42.8 49.2 49.5 48.7 48.7 49.2 42.2. 41.8 40.5 41.5 42.1 41.9 42.1 42.3 42.0 42.0 34.6 33.7 34.0 32.9 32.2 31.8 33.7 32.6 32.7 33.2

22.1 22.1 119.4 23.3 25.8 19.8 21.7 20.8 20.9 20.2

54.2 54.7 147.6 56.0 49.4 135.7 54.9 53.8 53.9 54.4

44.3 44.4 43.6 44.4 44.3 49.7 44.8 44.2 44.3 45.3

41.5 43.3 43.2 39.1 41.4 41.6 41.9 40.2 40.2 41.7 26.6 81.8 27.0 28.4 28.4 27.4 27.4 21.3 27.4 26.1 51.1 48.8 51.3 135.6 140.4 139.8 46.5 47.9 48.0 39.1 73.9 32.1 35.0 120.6 122.7 26.3 148.7 148.1 148.2 144.0 31.1 33.5 33.4 33.4 33.5 33.3 33.4 26.6 33.4 33.4 21.8 21.7 21.6 21.6 21.7 21.6 21.6 21.3 21.6 21.6 17.0 63.2 16.0 15.9 16.1 16.2 15.9 15.8 15.9 15.6 16.3 16.6 16.9 16.7 20.7 16.3 16.7 16.5 16.7 15.8 16.3 16.7 18.0 16.6 16.6 14.9 16.8 16.5 16.8 16.1 23.2 16.0 19.3 14.7 23.0 19.1 16.1 15.2 15.1 16.7 29.0 21.6 21.5 19.4 21.0 21.2 110.7 109.6 109.4 122.3 30.9 23.7 22.0 22.8 21.5 21.9 25.0 19.7 19.7 169.7

c2541 I2551 C2481 c2481 WV C2481 C2481 Cl961 C2481 C2561

Page 39: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1555

362 363 364 365

Table 1. Continued

366 361 368 369 370 371 372

39.5 18.2 40.7 33.0 58.2 71.9 40.0 42.5 49.1 39.3 20.7 23.2 49.6 41.9 33.3 20.2 64.1 44.4 43.3 37.0 83.5

149.1 36.1 22.0 16.9 17.7 16.4 15.2

112.0

38.5 38.8 38.7 38.7 37.3 35.5 27.0 27.4 19.1 19.2 19.3 28.0 78.7 79.0 42.5 42.5 41.8 79.0 39.4 38.8 33.2 33.2 33.3 38.9 60.8 55.3 48.1 48.1 51.1 50.5 68.9 18.2 24.6 24.7 18.9 20.4 40.2 33.7 116.3 116.9 27.0 27.2 42.5 40.4 145.4 144.9 134.9 134.3 50.0 50.7 51.6 51.6 133.7 134.3 39.2 36.8 35.6 35.6 37.8 37.6 21.6 21.4 16.1 16.3 20.4 19.1 222 23.3 32.5 31.8 27.0 30.3 46.7 45.2 36.1 36.5 36.7 41.1 46.0 41.0 41.6 41.6 41.1 36.7

119.8 32.1 30.4 29.8 30.4 27.0 134.5 120.0 36.4 33.1 36.0 35.9 138.7 139.2 42.9 54.1 43.0 42.9 47.9 37.1 54.2 56.3 52.8 52.8 45.7 38.3 20.1 21.7 19.4 18.9 28.2 35.2 28.3 30.9 28.4 28.4

140.8 32.5 59.7 60.2 59.8 59.8 26.5 46.2 30.7 31.7 30.8 30.8 30.9 28.1 32.9 33.0 33.3 28.1 16.7 15.4 21.2 21.3 21.8 15.5 15.5 16.2 12.9 13.0 20.3 22.1 18.8 16.8 24.1 24.5 22.1 22.1 17.5 17.5 21.1 19.5 15.8 15.8 20.4 16.3 14.1 176.2 14.6 14.6 21.6 32.4 22.1 22.2 22.1 22.8 21.3 24.6 23.0 23.0 23.0 22.1

CW c591 C2581 C2581 C2581 W’l

37.2 19.3 41.8 33.4 51.2 19.3 26.8

134.7 133.4 37.8 22.2 28.4 37.0 41.0 29.1 32.7 54.1 54.6 22.1 30.0 60.3 31.8 33.3 21.8 20.2 19.4 14.0

176.5 22.1 22.9

C2581

34.1 33.7 34.4 27.9 27.2 27.4 78.6 78.3 78.1 38.4 39.0 38.6 45.2 48.0 48.0 28.6 36.9 36.7 64.2 200.7 199.9

158.0 142.2 151.9 142.6 160.2 156.0 38.6 39.5 38.2

199.9 65.9 201.1 50.8 42.1 51.1 43.3 39.4 38.5 37.5 40.5 41.6 27.3 25.6 26.4 35.8 35.7 35.8 42.7 42.3 42.6 51.9 51.1 50.8 20.3 20.2 20.4 28.0 28.0 28.9 59.5 59.6 59.5 30.7 30.6 30.7 28.2 27.4 27.5 16.1 15.0 14.9 18.0 20.0 17.9 23.9 23.7 21.8 19.7 16.9 20.8 13.9 14.6 14.0 22.9 22.8 22.9 22.1 21.9 22.0

C2591 II2591 C2591

PHYTO 37-6-F

Page 40: 13C NMR of Triterpenoids

1556 S. B. MAHATO and A. P. KIJNDU

Table 1. Continued

373 374 375 376 377 378 379 380 381 382 383

41.5 40.5 41.5 39.1 36.3 46.9 19.6 20.6 19.6 28.0 28.0 68.7 42.5 42.2 42.5 79.0 71.4 79.9 33.6 34.1 33.7 39.3 36.9 53.0 44.9 45.9 44.9 44.1 52.0 41.8 18.0 20.7 18.1 19.0 36.4 20.2 19.6 18.9 19.6 17.8 75.1 17.6 40.0 39.5 40.2 39.8 47.9 39.6

151.7 142.9 151.6 153.4 117.0 149.6 37.7 48.5 31.7 40.6 39.2 39.3

115.7 121.2 115.5 120.9 121.1 117.3 36.8 36.6 35.5 75.9 24.5 36.7 36.8 36.7 37.1 42.2 43.9 36.8 38.1 38.0 38.1 37.6 57.0 37.8 29.4 29.3 29.7 29.5 33.0 29.3 36.3 36.0 33.2 35.9 31.9 36.2 43.0 42.9 54.2 43.6 40.9 43.0 52.1 51.9 54.0 51.4 39.4 52.0 20.2 20.1 21.9 23.6 74.5 20.2 28.3 28.2 31.1 28.7 30.3 28.2 59.7 59.6 60.3 58.9 57.3 59.7 30.8 30.8 31.7 30.8 27.8 30.8 32.8 31.4 32.8 27.5 21.9 177.1 21.7 19.8 21.7 15.7 15.4 11.8 25.1 176.1 25.0 25.1 22.9 26.6 15.9 15.6 15.5 15.1 15.5 16.0 15.4 15.5 14.1 11.3 21.7 15.4 14.0 14.0 171.0 14.2 16.8 14.0 22.2 22.1 22.1 22.2 16.1 22.2 23.0 23.0 22.9 23.1 16.5 23.0

C2581 mu C2581 ~271 WI C2471

23.8 21.9 40.9 34.8

145.6 117.6 34.3 51.8 35.7 44.3 25.9 29.2 38.7 39.4 29.2 35.5 42.9 51.9 20.0 28.4 60.1 30.8 30.0 29.8 16.1 17.9 15.1 15.8 22.0 22.9

C2581

23.8 36.6 42.5 46.6

21.8 34.8 74.1 66.9 40.8 217.1 79.5 84.8 34.9 47.6 40.2 39.4

145.4 53.2 48.9 48.7 117.4 26.3 33.8 33.6 34.6 22.6 71.9 71.8 51.5 41.0 49.1 49.2 35.7 147.4 146.6 146.7 44.3 39.3 41.0 40.8 26.0 115.6 117.5 117.6 28.2 36.1 37.2 37.3 38.8 36.7 38.3 38.3 39.3 38.2 39.9 39.9 29.9 29.6 32.1 32.1 30.9 35.8 37.2 37.2 54.1 42.8 43.8 43.8 54.0 52.0 59.2 59.2 21.8 20.1 70.3 70.4 31.8 28.2 41.9 41.9 60.7 59.6 57.8 57.8 31.7 30.7 30.7 30.7 29.8 22.v 29.0 28.7 29.7 25.5” 17.4 18.0 16.2 21.6 22.6 23.0 17.6 16.9 17.1 17.1 13.6 15.3 17.0 17.0

176.8 13.9 15.9 15.9 221 22.1 22.2 22.2 22.9 23.0 23.2 23.2

P581 14’51 E2621 iI

Page 41: 13C NMR of Triterpenoids

‘“C NMR spectra of pentacyclic triterpenoids

Table 1. Continued

1557

3w 38!F 3w 387p 388 389 390 391 392 394 3w’

31.0 46.0 31.0 46.0 28.8 69.2 28.7 69.2 78.0 83.6 78.0 83.6 39.5 39.7 39.4 39.1 49.1 49.1 48.5 49.1 33.9 33.9 33.9 33.9 12.2 721 72.1 72.1 49.5 49.2 49.4 49.3

147.6 147.2 147.7 147.4 39.9 41.0 39.8 41.0

117.1 117.3 117.3 117.5 31.3 31.3 37.6 31.1 38.3 38.4 38.4 38.5 39.9 40.0 40.2 40.3 32.1 32.1 33.0 33.1 31.2 31.2 33.3 33.4 43.8 43.8 49.0 49.1 59.3 59.3 60.0 60.1 70.4 70.4 10.1 70.1 41.9 41.9 43.4 43.5 57.8 57.8 58.1 58.2 30.7 30.7 30.7 30.8 28.1 29.3 28.7 29.3 16.4 17.5 16.4 17.5 22.1 23.1 22.0 23.2 17.1 17.1 17.2 17.3 17.0 17.0 16.7 16.6 16.0 15.9 62.9 63.0 22.2 22.2 23.4 23.5 23.2 23.2 23.4 23.6

C2621 w21 P521 W21

33.4 29.3 79.3 39.2 46.5 22.1 30.5 41.5 48.2 37.2 19.0 26.4

130.8 42.6 26.5 35.0 42.7

142.0 27.5 37.6 59.2 29.8 29.1 16.1 18.0 23.0 26.1 25.1 23.0

37.1 30.8 39.4 Me 15.3 13.1 39.1

33.8 28.8 31.3 15.5 14.7 28.3 220.0 76.6 39.4 16.8 17.0 71.9 46.9 41.4 49.4 19.0 17.3 39.2 44.1 140.6 19.0 19.6 23.0 54.5 22.3 121.5 421 24.4 24.2 19.5 30.4 22.1 50.3 25.2 25.8 41.1

41.6 44.5 37.9 28.0 27.6 40.4 47.1 34.5 41.9 CHz 17.2 16.8 55.4 36.4 37.2 24.3 18.8 22.2 38.1 20.4 30.6 36.1 27.2 24.2 22.9 26.2 30.7 37.9 30.4 27.1 124.0

131.3 39.3 33.9 32.5 28.5 1320 42.3 39.6 23.3 33.4 31.1 140.0 26.4 29.4 26.4 37.8 35.3 125.4

34.4 32.1 15.2 38.5 35.9 42.4 42.8 39.9 21.6 41.8 37.0 45.2

141.8 54.5 18.7 CH 34.1 33.6 39.3 21.5 48.2 26.4 34.5 35.2 29.0

31.1 36.0 15.2 49.5 48.6 38.7

59.1 21.9 21.5 55.5 50.3 80.2 29.7 424 20.4 63.5 56.7 33.0

29.3 21.3 37.O(C3a) 79.1 19.3 28.6

19.7 25.4 33.7(C6a) 118.3 116.9 16.4

17.9 28.8 37.3(C7a) C 29.7 35.2 16.6

23.5 15.4 44.1 (C8a) 38.0 37.0 19.0

26.1 16.8 49.7(C12a) 38.8 38.5 23.8 23.5 33.4 49.5(C13a) 39.1 40.5 180.3 23.0 21.3 40.3(C13b) 50.3 46.8 21.8

23.0 23.4 54.1(C13c) 157.5 145.4 68.9

C2631 iF41 v-w Cl051 Cl051 [X51

*The data are for CDCl, solns unless indicated by supercripts D@MSO-d,& P(C,DsN) and M(CDsOD). a, b, c within a vertical column may be reversed.

Page 42: 13C NMR of Triterpenoids

1558 S. B. MAHATO and A. P. KUNDU

30

31

32

33

10 11 12

13

14

15 16 17 18 19

3&OH, p-amyrin 36-OH. 28-COOH. oleanolic acid 310x0. iS_COQG 3p-OH. 27-COOMe 3a-OH. 27-COOH 3fSOAc. 29-COOMe 3p-OH. 30-COOMe 3@-OH, 30-COOMe. 18a-H 3fhOH. 23-CHO. 28-COOH gypsogenin 3a-OH. 29-CHO, 27-COOH 3a-OH. 27.29~COOH 3@OH. 23. 28-COOH, gypsogenic acid 38-OH, 27, 28-COOH. cincholic acid 3&OH. 28,29-COOH, serratagenic acid 38-OH.28. 30-COOMe, methylserjanate 38, lla-OH 3&15a-OH 38, 16fkOH. maniladiol

40 41 42 43 44

45 38,22@OH, sophoradiol

203B-OH, 2%oxo.29-COOMe, subprogenin 046 213B-OH, 22-oxo,3O-COOMe, snbprogenin C 22 38.24-08 47 23 38,28-OH, erythrodiol 24 38.30-OH 48 25 38.30-OH. 18a-H 49 26 38.24-OH, 228: 30 epoxy 50 27 la, 38-OH. 29-COOH, imberic acid 51 28 2a, 38-OH, 28-COOMe, methylmaslinate 52 29 2a, 3a-OH, 28-COOMe, 53

methylepimaslinate 54 55

Acetylation shifts Cl8 Conjiguration

Acetylation of the hydroxyl group accentuates the The configuration at Cl8 in an oleanene triterpene, a-effect and diminishes the B-effect, the latter being at- namely whether the oleanene triterpene belongs to the tributed to the y-effect of the acetyl moiety; the y-effects, 18cr- or 18/Gseries, can be recognized by inspecting the however, remain more or less unaltered. For example, in chemical shift of some characteristic carbons [76]. The triterpenes 2 and 6, C3, C2 and C4 resonate respectively geometry of the D/E ring junction does not cause a sig- at 78.7, 27.4, 38.7 and 81.1 (+2.4), 23.6 (-3.8), 37.7 nificant alteration in the shielding of carbons in the (- 1.1). It is a general tendency that the substituent effects A and B rings. In ring C (cf. triterpenes 7,8,24,25), Cl2 depend somewhat on the degree of substitution of the and Cl3 of the 18a-series exhibit diagnostically valuable carbon under consideration, e.g. methine carbons show upfield shifts of about 5 and 2.5 ppm, respectively, with smaller effects than methylene carbons, while quaternary respect to the corresponding carbons of the 18B-series. carbons are even less affected. However, there are some For C12, the upfield shift is attributed to the strong steric exceptions to this generai observation. interaction with C19. In ring D, Cl6 exhibits a significant

3/3,6fbOH, 28-COOMe. methylsumaresinolate 3a. 68-OH, 28-COOMe. methyl-3-episumaresinolate 38. 16a-OH. 28-COOH. echinocystic acid 38, 19a-OH. 28-COOMe, methylsiare- sinolate 38,21a-OH, 28-COOMe 38.21 f&OH, 28-COOMe. methylmacha- erinate 3&22@-OH, 29-COOMe 38,23-OH, 28-COOH, hederagenin 38.24-OH, 28-COOH, epihedaragenin 3a, 24-OH. 28-COOMe 38.25OH. 28-COOMe 38,27-OH, 28-COOH 38.29-OH. 28-COOH 3;; 29-OH; 27-COOH 38,30-OH, 28-COOMe. methylquereta- roate 38, 16fSOH, 28 --w 218lactone, acacic acid lactone 38. 16a-OH. 23-CHO, 28-COOMe, methylquillalate 38, 19c+OH, 23, 28-COOH, ilexolic acid B 38.23-OH, 28-COOH, 29-COOMe 38,23-OH, 28.3~COOH 3a, 24OH, 28.3~COOMe 3f4,30-OH, 28 + 218lactone. macherogenin 38,9a, 1 la-OH 38, 15a, 24-OH 38, 168, 28-OH, longispinogenin 38, 16o. 28-OH, primulagenin A

Page 43: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1559

56 57 58 59 60 61 62

63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 88

81 82

83 84 85

3g. 21&22p-OH, cantoniensistriol 3&21a, 24-OH, yunganogenin C 3g. 2 l&24-OH. kudzusapogenol C 3g. 22s. 24-OH, soyasapogenol B 3&22a. 28-OH [email protected],28-OH Pa, 38. 19a-OH, 28-COOH, arjunic acid 2a, 3&23-O& 28-COOH, arjunolic acid 38.68.23-OH, 28-COOH 2&3@, 23-OH, 28-COOH. bayogcnin 2a. 3a. 23-OH. 28-COOMe 2a; 3a; 24-O< 28-COOMe 38, 16a, 28-OH, 30-CHO. cyclamiretin D 36.24.3O-OH. 22-0~0. wistariasatmnenol A 28,3fl. 27-OH. 23.28-COOH, p&enegenin 26.38.23-OH. 28-COOH. 3O-COOMe 3’8; 2i &30-OH, 28 4.15f3lactone. bridgesigenin A 38.2 1 p. 226.24-OH. soyasapogenol A 28.38. 168,23-OH, 17-WHO. viscogenin 3g. 24.29-OH. 22-0~0, subprogenin A 38. 16&23.28-OH 3&16a, 23.28-OH 3&22fJ,24.29-OH 3&228,24.30-OH. wistariasapogenol B 2a, 3@,6@. 23-OH, 28-COOH, terminolic acid Pa, 38,7a, 23-OH, 28-COOH. bellericagenin A 2&3&6& 23-OH, 28-COOH. protobassic acid 38,6j3,19a, 23-OH, 28-COOH 2f3.38. 16a. 23-OH. 28-COOH, polygalacic acid 2a. 38. 19B. 23-OH, 28-COOH, tomentosic acid

downfield shift (N 11 ppm) caused by the absence of two y-gauche interactions with Cl9 and C21 in the triterpenes of 181x-series. The chemical shift of Cl8 is also sensitive to the change of absolute configuration at C18. The signals appear at about 7-8 ppm higher field in the 18a-series than in the l@-series. This is ascribed to a new y-gauche interaction with the C27 methyl group. The C28 signals in the 18a-series appear at a higher field of about 11 ppm, in comparison to those of the 18gseries, due to two y-gauche interactions with the axial hydrogens at Cl9 and C21.

Olean-12-enes

Except for those cases having substituents in close proximity to a 12 : 13 double bond, the chemical shifts of Cl2 and Cl3 of olean-l2-enes are N 122 and 145 ppm, respectively.

The presence of a carboxyl group at Cl4 (y and 6 to Cl3 and C12, respectively), has a pronounced effect on the olefinic carbon resonances. The chemical shifts of Cl2 and Cl3 in olean-12-enes e.g. cincholic acid (13), appear at 125.9 and 138.1 ppm, respectively, i.e. Cl2 is deshielded by 3.8 and Cl3 is shielded by 5.3 ppm. The corresponding resonances for quinovic acid (211), be-

86 87

88

89 90

91

92 93 94 95

2a. 36.19a. 23-OH, 28-COOH. arjungenin 38, 19a. 2 l&23-OH. 28-COOH, ilexolic acid A 2a. 3&23.24-OH, 28-COOH. belleric acid 38.23,27,29-OH, 28-COOH 3&21~.22& 24-OH, 29-COOMe. kudzusapogenol B methyl ester 38,21& 224~. JO-OH, 28 W 15p lactone, bridgesigenin B 38, 16a, 2 1 p. 22a. 28-OH, barringtogenol C 38, 16a. 22a, 23,28-OH 38.2 1 f3,22fJ, 24.29-OH, kudzusapogenol A 38, 24,29,3O_OH. 22-0~0. subprogenin B

96 2;. 3&19a. 23.24-OH, 28-C&DK bellericagenin B 97 2g, 3&6f3,16a, 23-OH. 28-COOH 98 38.15a. 16a. 21&22a, 28-OH !J9 38, 16a, 2 1 B. 22a. 24.28-OH. protoaescigenin

100 3p-OH. germanicol 101 3@OH. 28-COOMe, methylmorolate 102 1 p, S@-Oq anagadiol 103 38, 1 l&OH 104 3&16@OH

longing to the urs-1Zene series, appear at 129.1 and 134.2 ppm, i.e. Cl2 is deshielded by 3.6 and Cl3 is shiel- ded by 3.8 ppm. Dawidar et al. [77] reported “C data of methylmanevalate and methylazizate containing car- bomethoxy group at C14. The chemical shifts of Cl2 and C13. however, have normal values of the oleanolic acid type and show no shielding effect of a carboxyl group. Evidently a reinvestigation on the structures of these two triterpene acids appear to be necessary. The presence of a hydroxyl group at C27 can also be detected by the characteristic downfield ( - 6 ppm) and upfield shifts (- 5 ppm) for the olefinic Cl2 and C13, respectively (cf. triterpenes 41 and 70).

Olean-18- and 13(18)-ems

In olean-18-ene-triterpenes, e.g. in germanicol(100) the Cl8 and Cl9 olefinic carbons resonate at 142.8 and 129.8 ppm, respectively. The presence of a C28 car- bomethoxy group, as in triterpene (lOl), which is y to Cl8 and 6 to C19, shields the former by 5.9 ppm and deshields the latter by 2.5 ppm.

The 13C resonances of abrisapogenol G (106) have been assigned by the use of HMBC spectroscopy [59].

Page 44: 13C NMR of Triterpenoids

S. B. MAHATO and A. P. KUNDU

1tX 38- OCHO. 106 3f3,22f3iOH, abrisapogenol G 107 3/3-OH. 28 + 208 lactone, 30-nor.

larreagenin A 108 3&16cc-OH. 23-CHO. 28-COOH

109 3fl-OH 110 3&228-OH, 29-COOH. yunganogcnin F 111 38, 16&28-OH. saikogenin C 112 38,16a, 28-OH 113 3&22~.24_OH. yuaganogenin D 114 38. 168,23,28-OH. saikogenia A 115 38. 16a. 23.28-OH

‘\ /

116 3f3-OH 117 38.168.28-OH. saikogenio B 118 38, N&23.28-OH

The olefinic Cl3 and Cl8 resonate at 132.8 and 133.5 ppm, respectively. Where a 28-COOH is present, as in triterpene (108) [78], the Cl3 and Cl8 resonances am observed at S 126.3, 135.6 ppm, respectively.

119 3g-OH. 28-COOH

120 28.3@,23-OH, butyraceol 121 28.38,23-OH, 28-COOH, bassic acid

122 38. 16a-OH. At’, rotundiogenin A 123 3$ 16&OH A” ’ saikogenin E 124 38: 23-OH. htt 125 38, 16a. 23-OH, A”, saikogenin G 126 38. 16@,23-OH. A”, saikogenin F 127 38. 16a. 22~. 23-OH, A” 128 38. 16a-OH, protoprimulagenin A 129 38. 16~OH, 3OCHO. cyclamiretin A 130 38, 16a-OH. 22@OAc, 30-CHO. androsacenol 131 38,16a, 23-OH, anagalligenin B 132 3&23-OH. 16-0x0 133 38,16a-OH. 22a-OAc 134 38, 16a. 2la,22a-OH

Okana-11, 13(18)-; 9(11), 125 5,12-&nes

Although the presence of oleana-11,13(18)-diene (het- eroannular) and oleana-9( 1 l), 12-diene (homoannular) systems may be detected from their characteristic UV

Page 45: 13C NMR of Triterpenoids

“C NMR spectra of pentacyclic triterpenoids 1561

absorptions, they also display characteristic olefinic i3C resonances. For example, saikogenin C (111) [79], con- taining the heteroannular diene skeleton, exhibit Cll, C12, Cl3 and Cl8 resonances at 127.1, 125.8, 136.6 and 133.4 ppm, respectively. In saikogenin B (117) [79], which contains a homoannular diene system, the reson- ances of C9, Cll, Cl2 and Cl3 appear at 154.9, 116.1, 121.2 and 145.3 ppm, respectively. In oleana-12, 15diene triterpenes, as in 119 [SO], C12, C13, Cl5 and Cl6 resonate at 123.0,141.7,129.9 and 134.9 ppm, respective- ly. The chemical shifts of C5, C6, Cl2 and Cl3 in oleana- 5,12-diene, e.g. in bassic acid (121), are observed at 148.7, 120.9, 123.4 and 145.1 ppm, respectively. Consequently, after identification of the oleanene skeleton, e.g. by deter- mination of the number of quaternary carbon atoms (six for oleanene) by the application of spectral editing tech- niques, it is possible to tentatively locate the position of the double bond.

13B,28-Epoxy oleanenes

There are some triterpenes which contain a 13/?,28- epoxy-ll-ene system (triterpenes 122-127) and some others which possess the 13&28-epoxy oleanane skeleton (triterpenes 128-134). The discernible “C resonances for the former are those of olefinic Cl 1 ( N 133.0 ppm) and Cl2 (- 130.0 ppm) and quatemary Cl3 (~85.0 ppm), attached to an oxygen atom. The fingerprint resonance of the latter type of triterpenes is exhibited by the quater- nary Cl3 at about 86.5 ppm.

Taraxeranes (D-fiiedooleananes)

Assignment of 13C signals of a number of triterpenes e.g. 151-157 have been reported. All of these triterpenes contain a 14: 15 double bond. While Cl4 and Cl5 ole- finic resonances of taraxerol appear at 6 158.1 and 117.0, respectively, these resonances in myricadiol (153) and acetyl aleuritolic acid (157) appear at 158.7, 116.8 and 160.5, 116.8, because of 6 and y-effects of the 28-OH and 28-COOH, respectively. Sakuri et al. [Sl] first as- signed the “C resonances of taraxerol (151) and myr- icadiol(l53). However, Merfort et al. [82] subsequently partly reassigned the signal of 153 using a standard and an inverse H, C-COSY experiment. According to their reassignment, the values bearing the same superscripts under 151, 153 and 156 (Table 1) should be reversed. Inspection of the 13C values of acid IS6 reveals that the values for C7 and Cl9 should be reversed in the light of the above reassignments.

D: C-Friedooleananes

Some triterpenes of this series, all containing an 8 : 9 double bond, have been assigned “C resonances. The 13C values of a few representatives (159-163) are shown in Table 1. Although multiflorenol (3B-hydroxy D: C- friedooleanane-7-ene), a triterpene of this series contain- ing a 7 : 8 double bond, has been isolated long ago [83],

the 13C resonances of its acetate (158) have recently been assigned (Table 1).

D : B-Friedooleanane triterpenes

Dendropanoxide (165) is a triterpene oxide having a D: B-friedooleanane skeleton, isolated from Den- dropanax trifidas [84]. The 13C NMR signals of 165-167 (Table 1) were assigned by 2DNMR techniques, includ- ing H-H-C relayed r3C--lH correlation spectra [SS].

Friedelane (D : A fiiedooleanane) triterpenes

The occurrence of a number of triterpenes of this series has been reported and several groups of workers have assigned the 13C resonances of a variety of triterpene derivatives of this series, making use of various recent assignment techniques. The 13C values of some repres- entatives (168-204) are shown in Table 1. It may be pointed out that in the earlier publications there were severe inconsistencies in the assignments of the “C sig- nals of friedelin (173). Subsequently Gunatilaka et al. [86], Patra et al. [87] and Gottlieb et al. [88] reassigned the “C values of friedelin (173) and several of its derivat- ives. Inspection of their new data reveals a difference in the 13C values of C26 and C27. While Patra et al. [87] assigned the higher field signal to C26, Gottlieb et al. [88] assigned this signal to C27. It is evident from the assignments of the signals of dendropanoxide (165), which have been carried out by 2DNMR techniques, that the higher field value should be assigned to C27. Accordingly, the values bearing the same supercripts under the triterpenes 171, 172, 176, 181, 187 and 198 should be reversed. As mentioned earlier, the 13C reson- ances of three friedelane triterpenes (174, 175 and 195) from Caloncoba glauca were assigned by the use of HMQC and HMBC techniques.

Mimusopanes (5,10-fifedooleananes)

Two triterpene acids (205 and 206) possessing this rearranged oleanane triterpene skeleton have recently been isolated from the seeds of Mimusops elengi and their 13C resonances assigned (Table 1).

Urs-12-enes

The olean-12-ene and urs-12-ene triterpenes may be distinguished by inspection of the resonances of the ole- finic carbons alone. It is evident from Table I that Cl2 is deshielded by about 2 ppm and Cl3 is shielded by 5 ppm in urs-12-enes, in comparison to those of corresponding carbons in olean-12-enes. The difference between the two values has been rationalized by the presence of a lgjI(equatorial)-methyl group which is in close proxim- ity to the double bond (7 and 6 to Cl3 and C12, respec- tively), in urs-12-enes L-891. However, if an olean-12-ene triterpene contains a 19/I(equatorial)-hydroxyl group, e.g. tomentosic acid (85) [90], resembling 19b-methyl in urs-lZenes, the resonances of Cl2 and Cl3 in the former

Page 46: 13C NMR of Triterpenoids

1562 S. B. MAHATO and A. P. K~JNDU

152 38,7a-OH 153 38.28-OH. mvricadiol 154 3;; 28-OH; is~myricadiol 155 3-0x0.28-OH 156 3-0x0,28-COOH 157 3p-OAc, 28-OH. aeetyl aleuritolic

acid

135

136

137 138 139 140 141 142 143 144 145 146 147

148 149 150

3a-OH, lla: 12a-epoxy, 28 --t 136 &tone 2a, 38,23-OH. 1 la: 12a-epoxy, 28 ---) 138 &tone 24,28-dinor, 18a-H 3-0~0, 28-nor. Al2 3#l, 17fSOH. 28-m, Al2 3&OAc. 17&OH, 16-0x0.28-nor, Al2 38. l&x, Zig, 23-09 28-nor, Al2 38.21 &oAc, 16-0x0.23-CHO. 28-1~. Al2 3&oH. 16-0x0.28-nor, Afiz17, maragenin II 2&3fl, 23-OH. A ‘2’7, 28-nor, dchyahsapogenin 3a. 19a. 23.29-OH. A1621, 28-nor 3~&128-bOOH, 30-nor, Ar2*lg 3f%,l6f3,2Of&OH, 28-COOH. Ai2, 30-1~~9 pfameric acid 3@OAc. 13p-OH, 12-0~0, rubiprasin B 3&OAc, 13fl.15a-OH. 12-0~0, rubiprasin A 3p-OAc. 19a-OH, 28-COOH, Nbiprasin C

158 3@OAc. A7, multiflorenyl acetate 159 3fLOAc, An. isomultiflorenyl

acetate 160 29-OH. A* 161 29-COOMe, As 162 3&OAc. 29-09 A* 163 3p-OH. 29-COOMe. A*,

methylbryonolatc

164 3-0~0. As, glutinone 165 3: lo-epoxy. delldrqmoxide 166 3: 10 7a-OH epoxy. 167 3: 10 22p-OH epoxy,

151 3p-OH. taraxerol

are comparable to those of the latter. Moreover, the ring Friedoursanes E carbon atom, which shows the highest difference in chemical shifts between the two series, is C18, whose The 13C resonances of two friedoursanes e.g. 3/?-

resonance is upfield shifted ca 11.5 in olean-1Zenes due acetoxy-D : C-friedours-7-ene (bauerenyl acetate) (258)

to a shielding effect from the 208 (axial)-methyl group, and 3B-acetoxy-D : C-friedours-8-ene (isobauerenyl acet-

which is y-gauche disposed to C18. ate) (259) have recently been assigned [91] (Table 1).

Ursa-dienes Gammaceranes

Triterpenes containing Ursa-9(11),12-,12,18- and 12,20- Gammacerane triterpenoids occur very rarely in diene systems have been isolated and rheir 13C reson- plants. Tetrahymanol (260) was first reported from the antes assigned. The presence of such systems is indicated Protozoan Tetrahymena pyrijbrmis [92]. Recently, some by the characteristic olefinic 13C resonances (cf. triter- gammacerane derivatives have been isolated from the penes 250, 251 and 254). roots of Picris hieracioides subsp. japonica by Shiojima et

Page 47: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1563

168

169 170 171 172 173 174

175

176 177 178 179 180 181 182 183 184 185 186

187 188 189 1% 191 192 193 194 195 1% 197 1%

23

3&oH, 27CoOH. trichadenic S5dB 27-OH 28-OH 29-OH 3O-OH 3-0x0, friedelin 3-0x0,27 --t 15~ lactone, 30-nor, Am @“. caloncoba lmone 3-0x0, il

P H,27-+15a1actone,

30-nor.A GCJ) 7-0x0 3-0x0,26-nor, Al4 3fSOH, 26-nor, A*’ 22-0x0 25-COOMe 2a. 3a-OH 3f3XX-I. 7-0x0 3-oxo.lSa-OH 3-oxo,16@OH. pachysonol 3-0x0,28-OH, canophyllol 3-oxo.17a-OH. 28-1~. maytensifolin A 3-oxo. 29-OH 3-oxq 27 --t 15a dide.. odoktone 3a. 21 a-OAc 3&oH, Zla-OAc 3.7dioxo 3.15-dioxo 3. E-dioxo, maytensifolii B 3,224iioxo 3-oxo,27-COOH, trichadonii acid 3-oxo.28-COOH 3-oxo,2!XOOH, polpunonic acid 3-oxo.3wXXX4e

al. [93] and from the stem-bark of Abies ueitchii by Tanaka and Matsunaga [94]. The 13C assignments of four triterpenes (260-263), including two containing 16: 17 double bond, are shown in Table 1.

Serratanes

Serratane [8(14-+27) abeo gammacerane] triterpenes are biogenetically related to a-onocerane. The character- istic features of these triterpenes include seven tertiary methyls (instead of eight methyls in common pentacyclic triterpenes), a seven membered C ring and a double bond between Cl4 and Cl5 Fang et al. [95] isolated some

199 3-oxo,21a, 26-OH 200 3-0x0,28,29-OH 201 3-0x0,28,30-OH, maytenfoliol 202 1,3-dioxo, 15~OH 203 3. 12-dioxo, 27-OH. pristimeronol 204 1, Jdioxo. 25:26 epoxy

205

206

2~,[email protected], 28-COOH. A9* Iz, mimusapic acid 28.3

f 6901 -OH, 23:lO epoxy, 28-COOMe, 12 ti

. usopsic acid

M

Z 211 212 213 214 215 216 217

3&OI-& a-amyrin 3ixo. 24-cohe 36-OH. 2E-COOIble. mcthvlursobte &x0, i8-cooMe. inethyi- 3&OH, 27,~COOH, quinovic acid 3a. 1 la-OH 38.2s-OH. uvaol 2a, 3fGOH+ 28-COOMe 26.3a-OH. 28-cOOMe ii 3a-Ol-i 28-COOMe 28.313-oH. 28-COOMe

triterpenes (264-26g) of this group and assigned their 13C resonances. The characteristic 13C resonance of these triterpenes is that of the 27-methylene which appears between 49.9 to 56.3 ppm. Three new triterpenes have been characterized as bridged 148 : 26-epoxyserratanes [96]. However, their reported 13C assignments are con- fusing and are not included here.

Swertanes and kairaterwl

Four swertane(l7,18-friedogammacerane) triterpenes have so far been isolated and their 13C resonances as- signed. Some of the discrepancies in the assigned reson-

Page 48: 13C NMR of Triterpenoids

1564 S. B. MAHATO and A. P. KUNDU

218 219 228 221 222 223

224 225 226 227 228 229 238 231 232 233 234 235

3R.19a-0n 28-Coon pomolic acid 38,2la-On 28-COOMe 3&22a-OH, 3O-COOH 3&23-On 28-COOH 3$,24-On 28-COOMe 38,19a-On 23.28COOn mttmdioic acid 38, Wa-OH. 24,28-COOH, ikxageain A 2~.3fS,19a-On 28-COOH 3&6a, 19a-On 28-COOH 38,68, IS-OH, 28-COOH 2a. 38,23-On 28-COOMe. methylmhtatc 2a. 3~. 23-On 28-COOMe 2a, 3a, 24-OH, 2&COOMe 38, Not. 23-OI-t 28-COOMe. methylroamdate

3$.19a, 24-On 28-COOH 3~. 1%. 24-0n 28-~00Me, meth~ibarbi~rvate 2c4.38. won 23,28COOH 38.68.19a-On 23-CHO, 28-COOH

236 1s. &. 38,19a-OH, 28-COOMe 237 16.26.38.19a-0n 28-COOMe 238 2;; 3i3; 6’8; W-OH; 28COOH 239 2~. 38,7a. 19a-OH. 28-COOH 248 2a, 38.68.23OH, 28-COOH 241 2a. 3$,19a. 23-OH. 28COOMe 242 2a, 38,19a, 24-OH. 28COOH. hyptatic

acid B 243 3a, 19a, 23,24-OH. 2&COOMe, methyl cktkate 244 2u. 3&19a, 23,28-OH 245 2a. 38,7a. 19a, 23-OH. 28COOH

246 R=R2JeOH, Rt=R4=COOMe, R3=H, mcthylmusancropate A 247 R=R2~R%On R1=R4=COOMe, methylmusaacropate B

23 24

248 Rt=CH$DH. R2=OH, R3=COOH, hyptadienic acid 249 Rt=CH20Ac, R2=OH, R3=COOH, coleonic acid

monoacetate

250 38-OH

antes [97,98), have recently been revised by Chak- usual @-methyl group and chair ring B, hitherto found ravarty et al. [91]. The structure of kairatenol(275), the in pentacyclic triterpenes. Subsequently, Wilkins et al. first representative of a new class of migrated gam- [loll also assigned 13C resonances of stictane triterpenes macerane triterpenoid, has been established with assign- (276-285) and flavicanes (2% and 287) (Table I), by the ment of its r3C resonances [99] (Table 1). use of, in selected cases, the phase sensitive two-dimen-

sional 13C-‘H heteronuclear correlated and double-

Stictane and flavicanes quantum filtered COSY NMR techniques.

Wilkins and Corbett [lOOJ reported from dehydration, isomerization and spectroscopic studies, that stictane Lupanes and hopanes

and the related flavicane triterpenes have an 8a-methyl The 13CNMR spectra of a large number of lupeol group and a boat structure for ring B rather than the derived substances and some hopane derivatives were

Page 49: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1565

231

252.

253

2a. 3p-oH. 28-COOH. go~ishic iwidI 2~_3pOH, 28-COOH, 23-nor. goleishicacidII 2u. 3pOK 28400~ ~Qor, goreishicacidxII

254 2a, 3a-OH, 28-COOMe 255 2a, 3a. 24-O& 28-COOMe

256 Tamxasterol

i

HO

260 3fbOH, tetrahymmol 261 3a-OH, Al6 262 3fbOH. Al6 263 3$,21a-OH

264 3fL21a-OH 265 3&21&oH 266 3a,21&oH 267 3@-OMe, 21a-OH 268 3fbOMe. Ila-OAc. 3SCHO 269 3fWMe, 21a.3bOAc 270 3p-OMe, 21-oxo. 30-m

257 Pseudocaraxasterol

Page 50: 13C NMR of Triterpenoids

1.566 S. B. MAHATO and A. P. KUNDU

271 272 273 274

3~4.JH.A’. swertenol 3-0~0. A’, swertanonc 3a-OAc, A’* episwettextyl acetate Jg-oAc, A9(’ 1, pichieenyl xetatc

275 Kairatenol

276 Hydmcarbon 277 22-0x0 278 38,224~OH 279 3fS,22/3-OH 280 3-oxo,22a-OH 281 3,22-dioxo 282 2a, 3@OH, 22a-OAc 283 2a, 38.22a-OH 284 2a, 3@22a-OAc 285 22a-OH, 25 --_) 3g. lactone

286 2~. 3&oAc, A= (29) 287 2~. 3@-OAc, LI” @‘)

248 Hydmarbon 289 3P-OKlupad 290 28-OH 291 28-COOMe 292 3&OH, 28-COOH. be.tulinic acid 293 3a-OH. 28-COOH 294 3fbOH. 27.2II-COOMe 295 3&OH, 28-CHO. betulinaldehyde 2% 3a-06 28-CHO 297 1&3fbOH 298 38,13p-OH, 28-COOH, term& acid 299 3fS,7@OH 300 38.1 la-OH, nepiticin 301 3fJ.l5a-OH 302 3&16~-OH 303 3fS.24-OH 304 38.28-OH. bctldm 305 3-oxo,3O-OH 306 2u. 3a-tx-L 28-COOMe 307 38.23-OH. 2%COOH 308 38,27-OH, 28-COOH. cykodiscic

acid

recorded and their carbon chemical shifts assigned by The removal of the three-carbon side chain from the Wenlcert et al. [102]. The shift assignments were made by vicinity of Cl2 and the transplantation of the ring utilizing off-resonance decoupling techniques, functional- E angular methyl group on to C18, shields Cl2 in the ity manipulation causing predictable shift variations, hopanes, in comparison to the lupanes and deshields shift assessment utilizink 13C NMR data for carbocyclic dramatically Cl3 in the former. The C27 is deshielded in systems of known stereochemistry and conformation and the hopanes in comparison to the lupanes, due to the loss lanthanide-induced shift measurements. of the y-effect from Cl8 and the gain of a &effect from

Page 51: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1567

309 3~. 1 la-OH, 23,28-COOH 310 3a. 1 la-OH, 23-CHO,28-COOH 311 38.68, W-OH 312 3-oxo.15a. 28-OH 313 l&38, lla-OH 314 3~.28,3O-OH 315 1s. 38.1 la, 3O-OH 316 3&2o_oH, 28 ---) 218 lactonc, stellatogenin 317 3g. lq3,2@OH, 28 -21p lactone

318 Hydrocakm 319 3p-OH

320 321 2oB,-oH ‘A 322 AIs+@) 323 38,16@-OH 324 3&27-OH, Atz, obtusalin

325 Hydmcarbn 326 3-0x0 327 3&OH 328 3a-OH 329 3$-O& 1.28-cOOMe

C28. The neopentyl nature of Cl9 and the y-effects of the side chain on C20, allowed these methylenes to be distin- guished from each other.

The r3C data of a number of pentacyclic triterpenes of these two series have subsequently been assigned and the data of selected representatives (288-363) are shown in Table 1.

The assignments of “C resonances of chiratenol(364), a triterpene possessing a rearranged hopane skeleton, have recently been made using the HMBC techniques cm

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

354 355 356 357 358 359

Hydrocarbon 17a-H, hopane 21 a-H hopane 17a-H, 2la-H hopane 22-OH, diploterol 29-OH 3O-OH, drycerassol 6a, 22-OH, zeorin 3-0x0.22-OH 6+x0.22-OH, zeorinone 6a-OAc, 22-OH 7f3.22-OH 15~. 22-OH. dust&n 16g.22-0~ U-COOMe la, 1 la, 22-OH la, 1 la, 3O-OH 1Sa. 22 24-OH 6a. 22-OH, 20u-OAc 3f3,15a-OAe. 22-OH 1 Su-OAc, 22-OH, 24-COOMe 6a-OAc, 22-OH. 25-COOMe, methyl aijmlate 38,&x, lw,22-OH, mollugogenol A ZMe, 22-OH 38.25-epoxy. 2of%OAc. pauciflorol acetate A’6 d’ 17a-H. A*’ A17 (21)

Aa@) di letene 3-oxo. AJ@)

Fernanes, adiananes and arboranes

A number of triterpenes of these series have been isolated and their r3C signal assignments have been made in recent years and the assignments of some triter- penes (365-387) are shown in Table 1.

Two rearranged arborane type triterpenes, boehmerol (388) and boehmerone (389) and a new skeleton triter- pene hancokinol (390), have recently been isolated and their structures established by X-ray crystallography. Their 13C assignments are shown in Table 1.

Page 52: 13C NMR of Triterpenoids

S. B. MAHATO and A. P. KUNDU 1568

360 361 362 363

2lu-H, Ap(ss) 3O-COOMe, AZ ‘29! tuherosic methylester 6a-OAc. 2l&oH. A= 0, missoariensin 3B.6a-OH. At” 17(21), moBugogew1 B

365 366

z 369 370 371 372 373 374 375 376 377 378

A’ 28-COOMe.. A’ As 313-0H As 2gcoOMe. A8 38.7~OH, 11-0x0, As. supinenolone A 38.11 B-OH, 7-0~0, A*. supiaenolone B 3fSOH, 7.11 -dioxo, As, supinewlone C A901) 2%COOH A901) 28-COOh;e, A9(“) 38, 12a-OH A9(‘r) 3f3,7a, l%-OH, A9(“), rubiatricl 2a, 3fGOH, 23-COOMe, A9 (I’)

Bicadinane

This structure of a representative triterpene of a com- pletely new family of Csc pentacyclic triterpenoids has been reported [103]. The structure has been established as 2,6a,12-trimethyl-4,9-diisopropylperhydrobenzo[de] naphthacene, or bicadinane (391), by the application of MS, NMR and X-ray diffraction techniques. Two-dimen- sional ‘H and “C shift correlated NMR experiments have been used for the unambiguous assignment of all protons and carbon chemical shifts [104]. The 13C as- signments of this novel bicadinane (391) are shown in Table 1.

379 380

I ‘\

Hydmcarben 28-COOMe

381 3-0~0, arborinoae 382 2a-OAc. 3&19a-oH, Nhiil C 383 2a, l%-OH, 3$-OAc. rubiarbonel D 384 3g,7f3,1%-OH, rubiol B 385 2a.3&7$, 19a_OH, ruhiiol E 386 3$,7$.19a. 28-OH. rubiarbonof A 387 Za, 3g,7fS,19a, 28-OH rubiarbonol F

388 3fLOH lxlehnleml 389 3-0~0, bcehmerone

Friedomadeiranes

The pentacyclic triterpenes (392-395) have been iso- lated from extracts of Euphorbia mellfera AlT and their structures determined by X-ray crystallography [105]. The skeleton of these triterpenes differs from that of representatives of the lupane or hopane class by (i) an unusual arrangement of the substituents in the cyclopen- tane ring E, the Me group being on Cl9 and the iso- propyl group in an angular position Cl7 and (ii) a cis D/E ring junction. The name of the unknown pentacyclic parent skeleton has been proposed to be madeirane. Thus 392 and 393 are o-friedomadeir-l4-ene and 394 and

Page 53: 13C NMR of Triterpenoids

13C NMR spectra of pentacyclic triterpenoids 1569

16

2i ie

394 3p-OH 395 3-0x0

391 Bicadinane 3% Pachannol A

392 3p-OH 393 34x0

3% are D : C-friedomadeir-7-ene derivatives. The 13C data of methyl, methylene, methine and quaternary car- bons of 392 and 394 have been reported (Table 1) but the individual resonances have not been assigned.

GLYCOSYLATION SHIFTS

Many of the pentacyclic triterpenoids occur as sugar conjugates, called glycosides. The sugar moiety of these glycosides are generally oligosaccharide, linear or bran- ched, attached to a hydroxyl or a carboxyl group or both. The site of attachment may be one (monodesmoside), two

(bisdesmoside) or three (tridesmoside). The glycosylation of a hydroxyl group, depending upon its nature (alcohol- ic and carboxylic), causes a change in chemical shifts at the a- and p-carbons and, rarely, y-carbons to the OH group, in which the glycosylation takes place. These glycosylation shifts, i.e. chemical shift changes from aglycone and methylglycoside to triterpene glycoside, are characteristic of chemical and steric environments of the hydroxyl group in which the glycosylation takes place. The cr-effect for sterically unhindered secondary alcoholic glycosides varies from 5 to 10 ppm and shows depend- ence upon its stereochemical relationship to the pyranose

Page 54: 13C NMR of Triterpenoids

1570 S. B. MAHATO and A. P. KUNDU

ring oxygen. The /?-effect is always larger (ca 4 ppm) for the anti-related /&resonance, in comparison to syn-re- lated p-resonance, which shows an upfield shift of ca 2 ppm. For the sterically hindered secondary alcoholic glycosides, the r-effect is usually greater (8-12 ppm) and the p upfield shift effect is relatively lower (l-3 ppm), or almost negligible, depending upon the magnitude of sub- stitution. The quaternary /?-carbons/either show little or negligible upfield shift and in some cases, small downfield shifts. The downfield shifts of a-resonances and upfield shifts of /3-CH2 resonances are useful for determination of the glycosylation sites [lo&109-j.

Glycosylation of a carboxyl group causes a downfield shift (2-5 ppm) of the resonance of the carboxyl carbon, along with an upfield shift (05-2.0 ppm) of the B-carbon resonance. The anomeric carbon of the sugar linked to the carboxyl group resonates at a remarkably upfield position (93-97 ppm). These characteristics are helpful in identifying the sugars involved in glycosylation of the carboxyl group [ 110, 1 1 11. The literature information on ‘%NMR of various triterpene glycosides is available [112].

1.

2.

3.

4.

5.

6. 7.

8.

9. 10.

11.

12.

13.

14.

BEFEUENCES

Mahato, S. B., Nandy, A. K. and Roy, G. (1993) Phytochemistry 31, 2199. Wehrli, F. W. and Nishida, T. (1979) in Progress in the Chemistry of Organic Natural Products (Herz, W., Grisebach, H. and Kirby, G. W., eds), Vol. 36, p. 1. Springer, New York. Agarwal, P. K. and Jain, D. C. (1992) Progress in NMR Spectroscopy 24, 1. Patt, S. L. and Shoolery, J. N. (1982) J. Magn. Reson. 46, 535. Doddrell, D. M., Pegg, D. T. and Bendall, M. R. (1982) J. Magn. Reson. 48, 323. Morris, G. A. (1980) J. Am. Chem. Sot. 102, 428. Doddrell, D. M. and Pegg, D. T. (1980) J. Am. Chem. Sot. 102, 6388. Kowalewski, J. and Morris, G. A. (1982) J. Magn. Reson. 47, 331. Morris, G. A. (1986) Magn. Reson. Chem. 24, 371. Kamisako, W., Suwa, K., Morimoto, K. and Isoi, K. (1984) Org. Magn. Reson. 22, 93. Kamisako, W., Suwa, K., Honda, C., Isoi, K., Nakai, H., Shiro, M. and Machida, K. (1987) Magn. Reson. Chem. 25, 848. Derome, A. E. (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, New York. Martin, G. E. and Zektzer, A. S. (1988) Two-Dimen- sional NMR Methods for Establishing Molecular Connectivity: a Chemist’s Guide to Experiment Selec- tion, Performance and Interpretation. VCH, New York. Bax, A. (1982) Two-Dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, Delft, The Netherlands.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Sanders, J. K. M. and Hunter, B. K. (1987) Modern NMR Spectroscopy: A Guide for Chemists. Oxford University Press, Oxford. Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford. Brey, W. S. (ed.) (1988) Pulse Methods in 1D and 20 Liquid-Phase NMR. Academic Press, San Diego. Bodenhausen, G., Freeman, R. and Turner, D. L. (1976) J. Chem. Phys. 65, 839. Bodenhausen, G., Freeman, R., Morris, G. A. and Turner, D. L. (1978) J. Magn. Reson. 28, 17. Nagayama, K., Wiithrich, K. and Ernst, R. R. (1979) Biochem. Biophys. Res. Commun. 90, 305. Bax, A. and Freeman, R. (1981) J. Magn. Reson. 44, 542. Aue, W. P., Bartholdi, E. and Ernst, R. R. (1975) J. Chem. Phys. 64, 2229. Rance, M., Sorensen, 0. W., Bodenhausen, G., Wagner, G., Ernst, R. R. and Wuthrich, K. (1988) Biochem. Biophys. Res. Commun. 117, 479. Piantini, U., Sorensen, 0. W. and Ernst, R. R. (1982) J. Am. Chem. Sot. 104, 6800. Barrero, A. F., Manzaneda, R. E. A., Manzaneda, R. R. A., Arseniyadis, S. and Guittel, E. (1990) Tetrahedron 46, 8 16 1. Wilkins, A. L., Elix, J. A,, Gonzalez, A. G. and Parez, C. (1989) Aust. J. Chem. 42, 1185. Wilkins, A. L., Elix, J. A., Gaul, K. L. and Moberg, R. (1989) Aust. J. Chem. 42, 1415. Davis, D. G. and Bax, A. (1985) J. Am. Chem. Sot. 107,282O. Bax, A., Davies, D. G. and Sarkar, S. K. (1985) J. Magn. Reson. 63, 230. Braunschweiler, L. and Ernst, R. R. (1983) J. Magn. Reson. 53, 521. Tsuda, M., Ishibashi, M., Agemi, K., Sasaki, T. and Kobayashi, J. (1991) Tetrahedron 47, 2181. Bax, A., Freeman, R. and Frenkiel, T. A. (1981) J. Am. Chem. Sot. 103, 2102. Bax, A., Freeman, R., Frenkiel, T. A. and Levitt, M. H. (1982) J. Magn. Reson. 44,409. Pradhan, B. P., Hassan, A. and Shoolery, J. N. (1990) Indian J. Chem. Sect. B 29, 797. Tchivounda, H. P., Koudogbo, B., Besace, Y. and Casadevall, E. (1990) Phytochemistry 29, 3255. Facundo, V. A., Andrade, C. H. S., Silveira, E. R., Braz-Filho, R. and Hufford, C. D. (1993) Phytochemistry 32, 411. Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R. (1979) J. Chem. Phys. 71, 4546. Kumar, A., Ernst, R. R. and Wuthrich, K. (1980) Biochem. Biophys. Res. Commun. 95, 1. Loganathan, D., Trivedi, G. K. and Chary, K. V. R. (1990) Magn. Reson. Chem. 28, 925. Maudsley, A. A., Miiller, L. and Ernst, R. R. (1977) J. Magn. Reson. 28, 463. Freeman, R. and Morris, G. A. (1978) J. Chem. Sot. Chem. Commun. 684.

Page 55: 13C NMR of Triterpenoids

“C NMR spectra of pentacyciic triterpenaids 1571

42. Bax, A. and Morris, G. A. (1981) J. Magn. Resota, 42, S~&~~os~o~~. Verlag Chemie, W~nhe~~r~tr., 501. Germany.

43. Reynolds, W. F., Hughes, D. W., Pe~ick~~umount, M. and Enriquez, R. G, (1985) J, &fag@. &son, 63_ 413.

44. Reynolds, W. F., McLean, S., Popiawski, J., En- riquez, R. G., Escobar, L. I, and Leon, 1. (1986) Te~a~~o~ 42, 3419.

71. Eggert, MI., VanA~twerp, C, L., Bhacca, N. S. and Djerassi, C. (19%) J. Org. Gem. 41, 71.

72. VanAntwerp, C. L., Eggert, H., Meakins, G. D., Miners, J. 0. and Djerassi, C. (1977) J. Org. Chem. 42, 789,

45. Kessler, H., Griesinger, C., Zarbock, J. and Loo&, H. R. (1984) .Z. Nagn. Reson, 57, 331.

46. Akihisa, T., Yamamoto, K., Tamura, T,, Kumura, Y., Iida, T., Nambara, T, and Chang, F. C. (1992) &hem. Pharm. Bull. 40, 789.

47. Reynolds, W. F., McLean, S., Pe~i~k-Dumount~ M. and Enriquez, R. G. (1989) Map. Reson. Chem.

27, 162.

73. Kojima, H. and Ogura, H. (1989) Phytochem~stry 28, 1703.

74. Gupta, D. and Singh, J. (1989) Phytochemistry 28, 1197.

75. Gupta, D. and Singh, J. (1990) Indian .Z. Gem. Sect. B 29B, 34.

76. Duddeck, Ii., Elgamoi, M. H. A., R&a, G. S., Danieli, 18. and Palmisano, G. (1978) Org. Magn. Reson. II, 130.

48, Garbow, J. R., We~ek~p, D. P. and Pines, A. (1982) Chem. Phys. Lett. 93, 504.

49. Tinto, W. F., Blair, L. C., Ah, A., Reynolds, W. F. and McLean, S. (1992) f. Nat. Prod. 55, 395.

50. Ghan, W. R., Sheppard, V., Medford, K. A., Tinto, W. F., Reynolds, W. F. and McLean, S. (1992) f. Nat. Prod. 35, 963.

77. Dawidar, A. A., Reiseh, J. and Amer, M. (1979) C&em Pharm. Bull. 27,2938.

78. Chang, I. S., Han, Y. B., Woo, W. S., Kang S. S., Lotter, H. and Wagner, H. (1989) Piurrra Me&. 55, 544.

79. Mahato, S, B., Pal, B. C!. and Sarkar, S. K. (1988) Phyto~~mistr~l 27, 1433.

51. Kfass, J., Tinto, W. F., McLean, S. and Reynolds, W. F, (1992) J. Nat. Prod. 55, 1626.

52. Muller, L. (1979) J, Am. Chem. Sot. 101,4481. 53. E&m, A. and Subrama~an, S. (1986) J. EAagn. Z&son.

67, 56.5.

80. Bhattacharyya, J. and Cur&a, E. V. L. (1992) Phytochemistry 31, 2546.

81. Sakuri, N., Yaguchi, Y. and fnoue, T. (1987) Ph y~och~~is~r~ 26, 2 17.

54. Bax, A. and Summers, M. F. (1986) J, Am. Chem, Sot. IaS, 2093.

55. Zuiderweg, E. R. P. (1990) 1. Magn, Reson. 86, 346. 56. Martin, G. E. and Crouch, R. C. (1991) 3. Nat. Prod.

54, 1.

82. Merfort, I., Buddrus, J., Nawwar, M, A. M. and Lambert, J. (1992) Phytochemistry 31,403l.

83. Khastgir, H. N. and Sengupta, P. (1961) Chem. and Ind. 1077.

57. Bodenhauseu, G. and Ruben, D. (1980) C/tern. Phys. L&t. 69, 185.

58. Faure, R., Gaydou, E. M. and Wolle~we~r, E. (1991) J. Nat. Prod. 54, 1564.

59. Kinjo, J., Matsumoto, R., Inoue, M., Takeshita, T. and Nohara, T. (1991) Chem. Pharm. Bull. 39,116.

60. Chakravarty, A. K., Das, B., Masuda, K. and Ageta, H. (1990) Tetrahedron Letters 31, 7649.

61. Giner-Pons, R. M., Gray, A. I., Lavaud, C., Massiot, G., Gibbons, S. and Wate~an, P. G. (1992) Phytochemistry 31, 223.

84. Kumura, K., Hashimoto, Y. and Agata, I. (1960) Chem. Phffrm. Bult. 8, 1145.

85. Tori, M., Matsunaga, R., Sano, M. and Asakawa, Y. (1988) Magn. Reson. Chem. 26, 581.

86. Gunatilaka, A. A. L., Nanayak~r~ N. P. D. and Wazzeer, M. 1. M. (1983) Ph~~rQe~rn~stry 22, 991,

87. Patra, A. and Chaudhuri, S. K. (1987) Magn. Reson. Chem. 25,95.

62. Parsons, I. C., Gray, A. f., Wate~an, P. G. and Hartley, T, G. (1993) J. Nat. Prod. 56,46.

63. Gronenborn, A. M., Bax, A., Wingfield, P. T. and Clore, G. M. (1989) FEBS LRtrers 243, 93.

64. Torchia, D. A., Sparks, S, W, and Bax, A. (1989) Biochemistry %, 5509.

65. Davis, D. G. (1989) J. Mryrrr. Reson. 84,417. 66. Soha, K. and Opella, S, J. (1989) J. n”ltzgn. Reson. 82,

193.

88. Gottfieb, H. E., Ramaiah, P. A. and Lavie, D. (1985) Magn. Reson. Chem. 23,616.

89. Levy, G. C., Lichter, R. L. and Nelson, G. L. (1980) Carbon- 13 Nuclear Magnetic Resource Spectra-

scopy, p. 29. Wiley Interscience, New York, 90. Mahato, S. B., Nandy, A. K., Luger, P. and Weber,

M, ~1990) f. CZtem. Sot. Perk& Trans if 1445. 91. Chakravarty, A. K., Das, B. and Mukhopadhyay, S.

(1991) Tetrahedron 47,2337. 92. Mallory, F. B, Gordon, J. T. and Corner, R. L.

(1963) J. Am. Ckem. Sot. 85, 1362. 93. Shiojima, K., Masuda, K,, Lin, “I’., Suzuki, H.,

Ageta, H., Inoue, M. and Ishida, T. (1989) Tetruhed- ran Letters 30,4977.

67. Berger, S. (1989) J. Magn. Reson. 81, 561. 68. Crouch, R. C., Shockcor, J. P. and Martin, G. B.

(1990) Tetrahedron Letters 31, 5273. 69. Crouch, R. C. and Martin, G. E. (1991) J. Mug%

R&son. 92, 189.

94. Tanaka, R. and Matsunaga, S. (1992) Phytochemis- try 31, 3535.

95. Fang, J., Tsai, W. and Cheng, Y. (1991) Ph~~~rn- istry 30, 1333.

70. Breitmeir, E. and Voelter, W. (1974) 13CZ%%fR 96. Bhutani, K. K., Kapoor, R, and $tal, C. K. (1984)

Phytoc~emistry 23, 403.

Page 56: 13C NMR of Triterpenoids

1572 S. B. MAHATO and A. P. KUNDU

97. Chakravarty, A. K., Das, B., Pakrashi, S. C., McPhail, D. R. and McPhail, A. T. (1989) J. Chem. Sot. Chem. Commun. 438.

123. Ikuta, A. and Morikawa, A. (1992) J. Nat. Prod. 55, 1230.

98. Shiojima, K., Masuda, K., Ooishi, Y., Suzuki, H. and Ageta, H. (1989) Tetrahedron Letters 30, 6873.

99. Chakravarty, A. K., Mukhopadhyay, S., Masuda, K. and Ageta, H. (1992) Tetrahedron Letters 33, 125.

100. Wilkins. A. L. and Corbett, R. E. (1976) J. Chem. Sot. Perkin Trans I 857.

124. Tanaka, R., Tabuse, M. and Matsunaga, S. (1988) Phytachemistry 27, 3563.

101. Wilkins, A. L., Bremer, J., Ralph, J., Holland, P. T., Ronaldson, K. J., Jager, P. M. and Bird, P. W. (1989) Aust. J. Chem. 42, 243.

102. Wenkert, E., Baddeley, G. V., Burfit, I. R. and Moreno, L. N. (1978) Org. Magn. Reson. 11, 337.

103. Cox, H. C., de Leeuw, J. W., Schenck, P. A., van Koningsveld, H., Jansen, J. C., van de Graaf, B., van Geerestein, V. J., Kanters, J. A., Kruk, C. and Jans, A. W. H. (1986) Nature (London) 319, 316.

104. Krok, C., Cox, H. C. and de Leeuw, J. W. (1988) Magn. Reson. Chem. 26, 228.

105. Ferreira, M. U., Lobo, A. M., O’Mahoney, C. A., Williams, D. J. and Wyler, H. (1991) Helo. Chim. Acta 74, 1329.

125. Guang-Yi, L., Gray, A. I. and Waterman P. G. (1988) Phytochemistry 27, 2283.

126. Kinjo, J., Miyamoto, I., Miurakami, K., Kida, K., Tomimatsu, T., Yamasaki, M. and Nohara, T. (1985) Chem. Pharm. Bull. 33, 1293.

127. Takeshita, T., Yokoyama, K., Yi, D., Kinjo, J. and Nohara, T. (1991) Chem. Pharm. Bull. 39, 1908.

128. Xue, H. Z., Lu, Z. Z., Konno, C., Soejarto, D. D., Cordell, G. A., Fong, H. H. S. and Hodgson, W. (1988) Phytochemistry 27, 233.

129. Konoshima, T., Kozuka, M., Haruna, M., Ito, K. and Kimura, T. (1989) Chem. Pharm. Bull. 37, 1550.

130. Rogers, C. B. and Subramony, G. (1988) Phytochem- istry 27, 531.

131. Seo, S., Tomita, Y. and Tori, K. (1975) Tetrahedron Letters 7.

132. Seo, B. S., Tomita, Y. and Tori, K. (1975) J. Chem. Sot. Chem. Commun. 954.

106. Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, 0. (1977) Tetrahedron Letters 175.

107. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1977) Tetrahedron Letters 179.

108. Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, 0. (1979) Tetrahedron 35, 1427.

109. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1978) .I. Am. Chem. Sot. 100, 3331.

110. Sung, T. V., Steglich, W. and Adam, G. (1991) Phytochemistry 30, 2319.

111. Mahato, S. B., Sahu, N. P., Luger, P. and Miiller, E. (1987) J. Chem. Sot. Perkin Trans II 1509.

112. Mahato, S. B. and Nandy, A. K. (1991) Phytochem- istry 30, 1357.

133. Akai, E., Takeda, T., Kobayashi, Y. and Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 3715.

134. Inada, A., Kobayashi, M., Murata, H. and Nakanishi, T. (1987) Chem. Pharm. Bull. 35, 841.

135. Piozzi, F., Paternostro, M., Passannanti, S. and Gaes-Baitz, E. (1986) Phytochemistry 25, 539.

136. Patra, A., Mitra, A. K., Ghosh, S., Ghosh, A. and Barua, A. K. (1981) Org. Magn. Reson. 15, 399.

137. Yahara, S., Emura, S., Feng, H. and Nohara, T. (1989) Chem. Pharm. Bull. 37, 2136.

138. Kizu, H. and Tomimori, T. (1982) Chem. Pharm. Bull. 30, 3340.

113. Knight, S. A. (1974) Org. Magn. Reson. 6, 603. 114. Maillard, M., Adewunmi, C. 0. and Hostettman, K.

(1992) Phytochemistry 31, 1321. 115. Johns, S. R.. Lamberton, J. A., Morton, T. C.,

Suares, H. and Willing, R. I. (1983) Aust. J. Chem. 36,2537.

139. Pareda-Miranda, R., Delgado, G. and Vivar, A. R. D. (1986) J. Nat. Prod. 49, 225.

140. Shao, C. J., Kasai, R., Xu, J. D. and Tanaka, 0. (1989) Chem. Pharm. Bull. 37, 42.

141. Tori, K., Seo, S., Shimaoka, A. and Tomita, Y. (1974) Tetrahedron Letters 4227.

142. Mahato, S. B., Pal, B. C. and Price, K. R. (1989) Phytochemistry 28, 207.

116. Chen, T. K., Ales, D. C., Baewziger, N. C. and Wiemer, D. F. (1983) J. Org. Chem. 48, 3525.

117. Ricca, G. S., Danieli, B., Palmisano, G., Duddeck, H. and Elgamol, M. H. A. (1978) Org. Magn. Reson. 11, 163.

143. “Amimoto, K., Yoshikawa, K. and Arihara, S. (1993) Phytochemistry 33, 1475.

144. Mizui, F., Kasai, R., Ohtani, K. and Tanaka, 0. (1988) Chem. Pharm. Bull. 36, 1415.

145. Kang, S. S. and Woo, W. S. (1987) Planta Med. 53, 338.

118. Nie, R., Tanaka, T., Miyakoshi, M., Kasai, R., 146. Koyama, K., Yama, T., Kinoshita, K., Takahashi, Morita, T., Zhou, 3. and Tanaka, 0. (1989) K., Kondo, N. and Yuasa, H. (1983) J. Nat. Prod. Phytochemistry 28, 1711. 56,220l.

119. Hidaka, K., Ito, M., Matsuda, Y., Kohda, H., Yamasaki, K. and Yamahara, J. (1987) Phytochem- istry 26, 2023.

147. Tanaka, R. and Matsunaga, S. (1989) Phytochemis- try 28, 1699.

120. Rumbero-Sanchez, A. and Vazquez, P. (1991) Phytochemistry 30, 623.

148. Mahato, S. B. and Pal, B. C. (1987) J. Chem. Sot. Perkin Trans I 629.

121. Kasai, R., Oinaka, T., Yang, C. R., Zhou, J. and Tanaka, 0. (1987) Chem. Pharm. Bull. 35, 1486.

122. Alvarado, M., Moreno, M. and Rodriguez, V. M. (1981) Phytochemistry 20, 2436.

149. Akai, E., Takeda, T., Kobayashi, Y., Chen, Y. and Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 4685.

150. Ohtani, K., Ogawa, K., Kasai, R., Yang, C., Yamasaki, K., Zhou, J. and Tanaka, 0. (1992) Phytochemistry 31, 1747.

Page 57: 13C NMR of Triterpenoids

‘“C NMR spectra of pentacyclic triteqmoids 1573

151. Mahato, S. B. (1991) Phytochemistry 30, 3389. 152. Tori, K., Yosbimura, Y., Seo, S., Sakarawi, K.,

Tomita, Y. and Ishii, H. (1976) Tetrahedron Letters 4163.

153. Delgado, M. C. C., Da Silva, M. S. and Fo, R. B. (1984) Phytochemistry 23, 2289.

154. Kundu, A. P. and Mahato, S. B. (1993) Phytochemis- try 32, 999.

155. Khan, I. A., Sticher, 0. and Ralli, T. (1993) J. Nut. Prod. 56, 2163.

156. Fujioka, T., Iwamoto, M., Iwase, Y., Hachiyama, S., Okabe, H., Yamuchi, T. and Mihasbi, K. (1989) Chem. Pharm Bull. 37, 2355.

157. Kojima, H. and Ogura, H. (1986) Phytochemistry 25, 729.

158. Kojima, H., Tominaga, H., Sate, S. and Ogura, H. (1987) Phytochemistry 26, 1107.

159. Pal, B. C., Roy, G. and Mahato, S. B. (1984) Phytochemistry 23, 1475.

160. Sakuma, S. and Shoji, J. (1982) Chem. Phurm Bull. 30, 810.

161. Konoshita, K., Koyama, K., Takahashi, K., Kondo, N. and Yuasa, H. (1992) J. Nat. Prod. 55, 953.

162. Vasantb, S., Kundu, A. B. and Patra, A. (1992) J. Nat. Prod. 55, 1149.

163. Amoros, M. and Girre, R. L. (1987) Phytochemistry 26,787.

164. Sun, R. Q. and Zia, Z. J. (1990) Phytochemistry 29, 2032.

165. Mahato, S. B., Nandy, A. K. and Kundu, A. P. (1992) Tetrahedron 48,2483.

166. Toyota, M., Msonthi, J. D. and Hostettman, K. (1990) Phytochemistry 29, 2849.

167. Asada, Y., Ueoka, T. and Furuya, T. (1989) Chem. Pharm. Bull. 37, 2139.

168. Nandy, A. K., Podder, G., Sahu, N. P. and Mahato, S. B. (1989) Phytochemistry 28, 2769.

169. Hamburger, M. 0. and Hostettman, K. (1986) Helu. Chino. Acta 69, 221.

170. Massiot, G., Chen, X., Lavaud, C., Men-Olivier, L. L., Delaude, C., Vivari, A., Vigny, P. and Duval, J. (1992) Phytochemistry 31, 3571.

171. Nigam, S. K., Li, X., Wang, D., Misra, G. and Yang, C. (1992) Phytochemistry 31, 3169.

172. Konoshima, T. and Lee, K. H. (1986) J. Nat. Prod. 49, 650.

173. Agarwal, P. K., Tbakur, R. S. and Shoolery, J. N. (1991) J. Nat. Prod. 54, 1394.

174. Gonzalez, A. G., Fraga, B. M., Gonzalez, P., Her- nandez, M. G. and Ravelo, A. G. (1981) Phytochem- istry 20, 1919.

175. Majumder, P. L., Maiti, R. N., Panda, S. K., Mal, D., Raju, M. S. and Wenkert, E. (1979) J. Org. Chem 44, 2811.

176. Gonzalez, A. G., Mendoza, J. J., Ravelo, A. G., Luis, J. G. and Dominguez, X. A. (1989) J. Nat. Prod. 52, 567.

177. Tanaka, R. and Matsunaga, S. (1988) Phytochemis- try 27, 3579.

178. Wang, H. B., Yu, D. Q.. Liang, X. T., Watanabe, N.,

Tamai, M. and Omura, S. (1989) Planta Med. 55, 303.

179. Tanaka, R. and Matsunaga, S. (1988) Phytochemis- try 27, 2273.

180. Kobayashi, Y., Takeda, T. and Ogihara, Y. (1981) Chem. Pharm. Bull. 29, 2222.

181. Sbimizu, K., Amagaya, S. and Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 3349.

182. Misra, G., Banerjee, R. and Nigam, S. K. (1991) Phytochemistry 30, 2087.

183. Kohda, H., Takeda, 0. and Tanaka, S. (1989) Chem. Pharm. Bull. 37, 3304.

184. Waltho, J. P., Williams, D. H., Mahato, S. B., Pal, B. C. and Barna, J. C. J. (1986) J. Chem. Sot. Perkin Trans I 1527.

185. Mahato, S. B., Sahu, N. P., Roy, S. K. and Sen, S. (1991) Tetrahedron 47, 5215.

186. Gomblitza, K. W. and Kurth, H. (1987) Plunta Med. 53, 548.

187. Aliotta, G., Napoli, L. D., Giordano, F., Picialli, G., Picialli, V. and Santacroce, C. (1992) Phytochemis- try 31, 929.

188. Jayasingbe, L., Wannigama, G. P. and Macleod, J. K. (1993) Phytochemistry 34, 1111.

189. Trendel, J. M., Graff, R., Albrecht, P. and Riva, A. (1991) Tetrahedron Letters 32, 2959.

190. Mamer, F., Freyer, A. and Lex, J. (1991) Phytochem- istry 30, 3709.

191. Rowan, D. D. and Newman, R. H. (1984) Phytochemistry 23, 639.

192. Kumar, R., Bban, S., Kalla, A. K. and Dhar, K. L. (1992) Phytochemistry 31, 2797.

193. Nisbimoto, N., Oliveira, F. D., Akisue, G., Akisue, M. K. and Hashimoto, G. (1993) Phytochemistry 32, 1527.

194. Itokawa, H., Qiao, Y., Takeya, K. and Iitaka, Y. (1989) Chem. Pharm. Bull. 37, 1670.

195. Carpenter, R. C., Sotheesaran, S., Sultanbawa, M. U. S. and Ternai, B. (1980) Org. Magn. Reson. 14, 462.

196. McLean, S., William, M. P., Reynolds, F., Jacobs, H., Sing, L. and Sing, S. (1987) Can. J. Chem. 65, 2519.

197. Tanaka, R., Matsunaga, S. and Isbida, T. (1988) Tetrahedron Letters 29,475l. .

198. Gunatilaka, A. A. L., Nanayakhara, N. P. D.,Uvais, M., Sultanbawa, M. V. S. and Waizeer, y. I. M. (1982) Org. Magn. Reson. 18 53.

199. Rahmani, M. and Ismail, H. B. M. ’ (1993) Phytochemistry 32, 165.

200. Prakasb, O., Roy, R., Garg, H. S. and Bhakuni, D. S. (1987) Magn. Reson. Chem. 25, 39.

201. Anjaneyulu, V., Babu, J. S., Babu, B. H., Ravi, K. and Connolly, J. D. (1993) Phytochemistry 33, 647.

202. Nozaki, H., Matsuura, Y., Hirono, S.,Kasai, R., Chang, J. and Lee, K. (1990) J. Nat:Pred. !53,1039.

203. Rao, R. B., Sukumar, E., Kundu, A. B. and Patra, A. (1990) Phytochemistry 29,2027.

204. Sen, S., Sabu, N. P. and Mabato, S. B. (1993) Tet- rahedron 49, 9031.

Page 58: 13C NMR of Triterpenoids

1574 S. B. MAHATO and A. P. KUNDU

205. Seo, S., Tomita, Y. and Tori, K. (1981) J. Am. Chem. 233. Monaco, P. and Previtera, L. (1984) J. Nat. Prod. Sot. 103, 2075. 47, 673.

206. Torre, M. C., Bruno, M., Piozzi, F., Savona, G., Rodriguez, B. and Arnold, N. A. (1990) Phytochem- istry 29, 668.

207. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui, B. S. (1986) J. Nat. Prod. 49, 1086.

208. Kakuno, T., Yoshikawa, K. and Arihara, S. (1992) Phytochemistry 31, 3553.

234. Savona, G., Bruno, M., Rodriguez, B. and Marco, J. L. (1987) Phytochemistry 26, 3305.

235. Anjaneyulu, A. S. R. and Prasad, A. V. R. (1983) Phytochemistry 22, 993.

236. Anaya, J., Caballero, M. C., Grande, M., Navarro, J. J., Tapia, I. and Almeida, J. F. (1989) Phytochem- istry 28, 2206.

209. Zhang, D. M. and Yu, D. Q. (1990) Planta Med. 56, 98.

210. Srivastava, S. K. and Jain, D. C. (1989) Phytochem- istry 28, 644.

237. Ahmed, V. U., Bano, S., Voelter, W. and Fuchs, W. (1981) Tetrahedron Letters 22, 1715.

238. Tanaka, R., Masuda, K. and Matsunaga, S. (1993) Phytochemistry 32, 472.

211. Duh, C. Y., Pezzuto, J. M., Kinghom, A. D., Leung, S. L. and Farnsworth, N. R. (1987) J. Nut. Prod. 50, 63.

212. Nakatani, M., Miyazaki, Y., Iwashita, T., Naoki, H. and Hase, T. (1989) Phytochemistry 28, 1479.

213. Cheng, D. and Cao, X. (1992) Phytochemistry 31, 1317.

239. Kumar, N. S., Muthukuda, P. M. and Wazzeer, M. I. M. (1986) Phytochemistry 24, 1337.

240. Ikuta, A. and Itokawa, H. (1988) Phytochemistry 27, 2813.

241. Lischewski, M., Ty, P. D., Schmidt, J., Preiss, A,, Phiet, H. V. and Adam, G. (1984) Phytochemistry 23, 1695.

214. Liang Z. Z., Aquino, R., Feo, V. D., Simone, F. D. and Pizza, C. (1990) Planta Med. 56, 330.

215. Aimi, N., Likhitwitayawuid, K., Goto, J., Ponglux, D., Haginiwa, J. and Sakai, S. (1989) Tetrahedron 45, 4125.

242. Ty, P. D., Lischewski, M., Phiet, H. V., Priess, A., Naguyen, P. V. and Adam, G. (1985) Phytochemis- try 24, 867.

216. Takahasi, K. and Takani, M. (1978) Chem. Pharm. Bull. 26, 2689.

243. Facundo, V. A., Andrade, C. H. S., Silveira, E. R., Braz-Filho, R. and Hufford, C. D. (1993) Phytochemistry 32, 411.

217. Gao, F., Chen, F., Tanaka, T., Kasai, R., Sato, T. and Tanaka, 0. (1985) Chem. Pharm. Bull. 33, 37.

218. Aquino, R., Simone, F. D., Vincieri, F. F., Pizza, C. and Gacs-Baitz, E. (1990) J. Nut. Prod. 53, 559.

219. Kouno, I., Baba, N., Ohni, Y. and Kawano, N. (1988) Phytochemistry 27, 297.

220. Gopalsamy, N., Vargas, D., Gueho, J., Ricaud, C. and Hostettman, K. (1988) Phytochemistry 27,3593.

221. Houghton, P. J. and Lian, L. M. (1986) Phytochem- istry 25, 1939.

244. Ahmad, V. U. and Mahammad, F. V. (1986) J. Nut. Prod. 49, 524.

245, Gonzalez, A. G., Jimenez, I. A. and Ravelo, A. G. (1992) Phytochemistry 31, 2069.

246. Siddiqui, S., Siddiqui, B. S., Naeed, A. and Begum, S. (1989) Phytochemistry 28, 3143.

247. Wilkins, A. L., Bird, P. W. and Jager, P. M. (1987) Magn. Resort. Chem. 25, 503.

248. Shiojima, K. and Ageta, H. (1990) Chem. Pharm. Bull. 38, 347.

222. Sahu, N. P., Roy, S. K. and Mahato, S. B. (1989) Phytochemistry 28, 2852.

223. Zhou, X., Kasai, R., Ohtani, K., Tanaka, O., Nie, R., Yang, C., Zhou, J. and Yamasaki, K. (1992) Phytochemistry 31, 3642.

249. Kamaya, R., Tanaka, Y., Hiyama, R. and Ageta, H. (1990) Chem. Pharm. Bull. 38, 2130.

250. Elix, J. A., Whitton, A. A. and Jones, A. L. (1982) Aust. J. Chem. 35, 641.

224. Lontsi, D., Sondengam, B. L., Martin, M. T. and Bodo, B. (1991) Phytochemistry 30, 2361.

225. Rao, K. V. R., Rao, L. J. M. and Rao, N. S. P. (1990) Phytochemistry 29, 1326.

226. Roy, R., Vishwakarma, R. A., Varma, N. and Tan- don, J. S. (1990) Tetrahedron Letters 31, 3467.

227. Matsunaga, S., Tanaka, R. and Akagi, M. (1988) Phytochemistry 27, 535.

251. Wilkins, A. L., Ronaldson, K. J., Jager, P. M. and Bird, P. W. (1987) Aust. J. Chem. 40, 1713.

252. Van Eijk, G. W., Roeijmans, H. J. and Seykens, D. (1986) Tetrahedron Letters 27, 2533.

253. Hamburger, M., Dudan, G., Nair, A. G. R., Jaya- prakasam, R. and Hostettman, K. (1989) Phytochemistry 28, 1767.

254. Babadjamian, A., Faure, R., Laget, M., Dumenil, G. and Padien, P. (1984) J. Chem. Sot. Chem. Commun. 1657.

228. Numata, A., Takahashi, C., Miyamoto, T., Yoneda, M. and Yang, P. (1990) Chem. Pharm. Bull. 38,942.

229. Conner, A. H., Nagasampangi, B. A. and Rowe, J. W. (1984) Tetrahedron 40, 4217.

230. Chakravarty, A. K., Mukhopadhyay, S. and Das, B. (1991) Phytochemistry 30, 4087.

231. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui, B. S. (1988) J. Nat. Prod. 51, 229.

232. Kitajima, J., Shindo, M. and Tanaka, Y. (1990) Chem. Pharm. Bull. 38, 714.

255. Ayatollahi, S. A. M., Ahmed, Z., Afza, N. and Malik, A. (1992) Phytochemistry 31, 2899.

256. Murasaki, C., Kakinuma, K. and Fujimoto, Y. (1993) Phytochemistry 33, 240.

257. Wong, S. M., Pezzuto, J. M., Fang, H. H. S. and Farnsworth, N. R. (1986) J. Nut. Prod. 49, 330.

258. Masuda, K., Kamaya, R., Ikegami, S., Ikeshima, Y. and Ageta, H. (1989) Chem. Pharm. Bull. 37, 1673.

259. Tanaka, R. and Matsunaga, S. (1989) Phytochemis- try 28, 3149.

Page 59: 13C NMR of Triterpenoids

‘%Z NMR spectra of pentacyclic triterpenoids 1575

260. Banerjee, J., Datta, G., Dutta, C. P., Eguchi, T., Fujimoto, Y. and Kakinuma, K. (1991) Phytochem- istry 30, 3478.

261. Arisawa, M., Ueno, H., Nimura, M., Hayashi, T. and Morita, N. (1986) J. Nat. Prod. 49, 1114.

262. Itokawa, H., Qiao, Y. and Takeya, K. (1990) Chem. Pharm. Bull. 38, 1435.

263. Oyarzum, M. L., Garbarino, J. A., Gambaro, V., Guilhem, J. and Pascard, C. (1987) Phytochemistry 26,221.

264. Konda, Y., Iguchi, M., Harigaya, Y., Takayanagi, H., Ogura, H., Li, X., Lou, H. and Onda, M. (1990) Tetrahedron Letters 31, 5315.

265. Takigawa, T., Kinoshita, K., Koyama, K., Takahashi, K., Kondo, N., Yuasa, H. and Kawai, K. (1993) J. Nat. Prod. 56, 2183.

266. Bendall, D. M., Doddrell, D. M. and Pegg, D. T. (1981) J. Magn. Reson. 44, 238.