1,3,6,8-tetraazapyrenes: synthesis, solid-state structures

86
1,3,6,8-Tetraazapyrenes: Synthesis, Solid-State Structures, and Properties as Redox-Active Materials Sonja Geib, Susanne C. Martens, ,§ Ute Zschieschang, Florian Lombeck, Hubert Wadepohl, Hagen Klauk, and Lutz H. Gade* ,Anorganisch-Chemisches Institut, Universitä t Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany * S Supporting Information ABSTRACT: A series of new tetraazapyrene (TAPy) derivatives has been synthesized by reducing 1,4,5,8-tetrani- tronaphthalene to its corresponding tin salt (I) and reacting it with peruorinated alkyl or aryl anhydrides. The resulting 2,7- disubstituted TAPy molecules and the known parent compound 1,3,6,8-tetraazapyrene (II) have been further derivatized by core chlorination and bromination. The brominated compounds served as starting materials for Suzuki cross-coupling reactions with electron-poor arylboronic acids. Single-crystal X-ray analyses established polymorphism for some TAPy compounds. The ground-state geometries of all new TAPy derivatives were modeled with DFT methods [B3PW91/6-31 g(d,p) and B3PW91/6-311+g(d,p)], especially focusing on the energies of the lowest unoccupied molecular orbital (LUMO) and the electron anities (EA) of the molecules. The results of the calculations were conrmed experimentally by cyclic voltammetry to evaluate the substitution eects at the 2 and 7 position and the core positions, respectively, and gave LUMO energy levels that range from 3.57 to 4.14 eV. Fabrication of organic eld-eect transistors (OFETs) with several of these tetraazapyrenes established their potential as organic n-type semiconductors. INTRODUCTION During the past decade, there has been growing interest in developing new organic, π-conjugated materials 1 for application in electronic and optoelectronic devices, such as light-emitting diodes (LEDs), eld-eect transistors (FETs), and solar cells. 2,3 We recently studied a new class of polyheterocyclic aromatics, 1,3,8,10-tetraazaperopyrenes (TAPPs) 4,5 and established their use either as functional dyes or n-type semiconductors in the eld of organic electronics. 6 Inspired by the interesting results obtained with this class of azaaromatic compounds we decided to investigate a similar class of polycyclic aromatics, 1,3,6,8- tetraazapyrenes (TAPys), which can be seen as contractedTAPPs, containing one naphthalene core unit less. By reducing the size of the aromatic core, not only the solubility of the molecules in organic solvents but also the options of derivatization were thought to be enhanced. By variation of the substituents at the 2 and 7 position as well as at the aromatic core the electronic properties were expected to be specically inuenced. For example, introduction of peruori- nated substituents as well as halogens are known to lower the LUMO energy levels signicantly, making such tetraazapyrene derivatives interesting candidates for n-channel semiconducting materials that might be processable from solution. The parent compound, 1,3,6,8-tetraazapyrene, was rst described in 1927 by Dimroth and Roos, but initially its physical properties remained unexplored and no derivatives were prepared. 7 It was not until 1964 that the synthesis of two derivatives, 2,7-dimethyl- and 2,7-diphenyl-1,4,6,8-tetraazapyr- ene, was published and the EPR spectra of the corresponding radical cation and anion were studied in detail. 8,9 Three patents describe the synthesis of several 2,7-dialkyl substituted as well as halogenated 1,3,6,8-tetraazapyrenes which were claimed to possess pharmaceutical activity against protozoan infections. 10 Pozharskii and co-workers synthesized 2,7-dimethyl-1,3,6,8- tetraazapyrene starting from 6,7-dinitro-2-methylperimidine 11 and Aksenov et al. recently published an alternative synthetic way to obtain inter alia 2,7-dimethyl- and 2,7-diphenyltetraa- zapyrenes from pyrimidine ketones. 12 Apart from these few examples, tetraazapyrenes have been unexplored to date. In this work, we report a general method for the synthesis of 2,7-peruoroalkyl-substituted tetraazapyrenes as well as several methods for the core-substitution of dierent derivatives, including bromination and chlorination procedures, which then again give access to versatile building blocks for further conversions of these compounds in Suzuki cross-coupling reactions. Furthermore, we present a detailed study of the redox properties of the TAPy derivatives and a rst investigation into the performance of some TAPys as organic semiconducting materials in n-channel thin-lm transistors (TFTs). Received: May 3, 2012 Published: June 25, 2012 Article pubs.acs.org/joc © 2012 American Chemical Society 6107 dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 61076116

Upload: others

Post on 18-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

1,3,6,8-Tetraazapyrenes: Synthesis, Solid-State Structures, andProperties as Redox-Active MaterialsSonja Geib,† Susanne C. Martens,†,§ Ute Zschieschang,‡ Florian Lombeck,† Hubert Wadepohl,†

Hagen Klauk,‡ and Lutz H. Gade*,†

†Anorganisch-Chemisches Institut, Universitat Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany‡Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

*S Supporting Information

ABSTRACT: A series of new tetraazapyrene (TAPy)derivatives has been synthesized by reducing 1,4,5,8-tetrani-tronaphthalene to its corresponding tin salt (I) and reacting itwith perfluorinated alkyl or aryl anhydrides. The resulting 2,7-disubstituted TAPy molecules and the known parentcompound 1,3,6,8-tetraazapyrene (II) have been furtherderivatized by core chlorination and bromination. Thebrominated compounds served as starting materials for Suzukicross-coupling reactions with electron-poor arylboronic acids.Single-crystal X-ray analyses established polymorphism forsome TAPy compounds. The ground-state geometries of allnew TAPy derivatives were modeled with DFT methods[B3PW91/6-31 g(d,p) and B3PW91/6-311+g(d,p)], especially focusing on the energies of the lowest unoccupied molecularorbital (LUMO) and the electron affinities (EA) of the molecules. The results of the calculations were confirmed experimentallyby cyclic voltammetry to evaluate the substitution effects at the 2 and 7 position and the core positions, respectively, and gaveLUMO energy levels that range from −3.57 to −4.14 eV. Fabrication of organic field-effect transistors (OFETs) with several ofthese tetraazapyrenes established their potential as organic n-type semiconductors.

■ INTRODUCTIONDuring the past decade, there has been growing interest indeveloping new organic, π-conjugated materials1 for applicationin electronic and optoelectronic devices, such as light-emittingdiodes (LEDs), field-effect transistors (FETs), and solar cells.2,3

We recently studied a new class of polyheterocyclic aromatics,1,3,8,10-tetraazaperopyrenes (TAPPs)4,5 and established theiruse either as functional dyes or n-type semiconductors in thefield of organic electronics.6 Inspired by the interesting resultsobtained with this class of azaaromatic compounds we decidedto investigate a similar class of polycyclic aromatics, 1,3,6,8-tetraazapyrenes (TAPys), which can be seen as “contracted”TAPPs, containing one naphthalene core unit less. By reducingthe size of the aromatic core, not only the solubility of themolecules in organic solvents but also the options ofderivatization were thought to be enhanced. By variation ofthe substituents at the 2 and 7 position as well as at thearomatic core the electronic properties were expected to bespecifically influenced. For example, introduction of perfluori-nated substituents as well as halogens are known to lower theLUMO energy levels significantly, making such tetraazapyrenederivatives interesting candidates for n-channel semiconductingmaterials that might be processable from solution.The parent compound, 1,3,6,8-tetraazapyrene, was first

described in 1927 by Dimroth and Roos, but initially itsphysical properties remained unexplored and no derivatives

were prepared.7 It was not until 1964 that the synthesis of twoderivatives, 2,7-dimethyl- and 2,7-diphenyl-1,4,6,8-tetraazapyr-ene, was published and the EPR spectra of the correspondingradical cation and anion were studied in detail.8,9 Three patentsdescribe the synthesis of several 2,7-dialkyl substituted as wellas halogenated 1,3,6,8-tetraazapyrenes which were claimed topossess pharmaceutical activity against protozoan infections.10

Pozharskii and co-workers synthesized 2,7-dimethyl-1,3,6,8-tetraazapyrene starting from 6,7-dinitro-2-methylperimidine11

and Aksenov et al. recently published an alternative syntheticway to obtain inter alia 2,7-dimethyl- and 2,7-diphenyltetraa-zapyrenes from pyrimidine ketones.12 Apart from these fewexamples, tetraazapyrenes have been unexplored to date.In this work, we report a general method for the synthesis of

2,7-perfluoroalkyl-substituted tetraazapyrenes as well as severalmethods for the core-substitution of different derivatives,including bromination and chlorination procedures, whichthen again give access to versatile building blocks for furtherconversions of these compounds in Suzuki cross-couplingreactions. Furthermore, we present a detailed study of the redoxproperties of the TAPy derivatives and a first investigation intothe performance of some TAPys as organic semiconductingmaterials in n-channel thin-film transistors (TFTs).

Received: May 3, 2012Published: June 25, 2012

Article

pubs.acs.org/joc

© 2012 American Chemical Society 6107 dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−6116

■ RESULTS AND DISCUSSION

Synthesis. The parent compound, 1,3,6,8-tetraazapyrene(II), which was subsequently used as starting material, wassynthesized according to literature procedure by reducing1,4,5,8-tetranitronaphthalene13 with tin dust in fuming hydro-chloric acid and subsequent cyclization with formic acid.7,14

Core substitution of II could be achieved by classicalchlorination and bromination methods. For the introductionof chlorine substituents, II was dissolved in chlorosulfonic acidand reacted with chlorine gas in the presence of catalyticamounts of iodine to yield compound 1a (Scheme 1). Thecorresponding brominated TAPy (1b) was synthesizedaccordingly by direct bromination of II in concentrated sulfuricacid (Scheme 1).

For the introduction of substituents in the positions 2 and 7a preparative method, based on synthetic procedures developedfor known TAPy9,10 and TAPP6 derivatives, was employed.The synthesis of the 2,7-bisperfluoroalkyl-1,3,6,8-tetraazapyr-enes (2a−c) and 2,7-bispentafluorophenyl-1,3,6,8-tetraazapyr-ene (3) was achieved by reducing 1,4,5,8-tetranitronaphtha-lene13 as described above to the corresponding ammonium/tin(II) salt14 (I), followed by the addition of an excess of thecorresponding perfluoroalkyl- or perfluorophenyl carboxanhy-drides in refluxing THF in the presence of catalytic amounts oftriethylamine to generate the free tetraamino species (Scheme2a). Column chromatography and recrystallization frommethanol gave the desired products 2a−c and 3 in moderateyields of 36−63% as light yellow solids (Scheme 2a). Therelatively low yields are due to as yet incompletely understoodside reactions which give rise to several minor components.In contrast to the case of the parent compound II, the core-

halogenation of the 2,7-bis(perfluoralkylated) TAPys was notachieved as easily because of the electron withdrawing nature ofthe substituents. In order to obtain core-brominated 2,7-bis(perfluoralkyl)-substituted TAPy derivatives, 2a−c werereacted with dibromoisocyanuric acid (DBI)15 in concentratedsulfuric acid (Scheme 2b). Remarkably, only the 2-foldbrominated TAPy derivatives 4a−c (Scheme 2b) were isolated,and no traces of higher substituted reaction products wereobserved even though a large excess (8 equiv) of DBI wasemployed. Tetraazapyrenes 4a−c were obtained as colorless tolight yellow solids after extraction with dichloromethane andrecrystallization from methanol. For 2,7-bisperfluorophenyl-TAPy 3 the same reaction conditions only gave mixtures of

two- to 4-fold brominated derivatives which could not beseparated. However, in this particular case bromination withbromine in concentrated sulfuric acid could be appliedselectively giving the tetrabrominated product 5 (Scheme2b). Apparently, the deactivation of the aromatic system causedby the perfluorinated phenyl substituent does not inhibit theclassical bromination method. The yield, however, is signifi-cantly lower (18%) than for 1b (87%).Core-chlorination of the 2,7-disubstituted TAPys turned out

to be a greater challenge and was eventually only successfullycarried out for derivative 2a (Scheme 2b). While the 4-foldchlorination of 2,9-perfluoroalkyl-substituted tetraazaperopyr-ene (TAPP) derivatives is selectively achieved with dichlor-oisocyanuric acid (DCI),16 as we have presented recently,6 theconversion of 2a with DCI not only results in a mixture of the1-, 2-, 3- and 4-fold substituted compounds with low yields butalso requires more drastic conditions and significantly longerreaction times. However, the 4-fold substituted derivative 6(Scheme 2b) could be isolated as the main product afterreacting 2a with ten equivalents of DCI in concentrated sulfuricacid at 100 °C for 10 days. Even though the yield of 13% is notsignificantly lower than for compound 5 (18%), it is importantto note that the formation of 6 as the main product could onlybe observed when the reaction was carried out on a small scale.Further derivatization was achieved by Suzuki cross-coupling.

Due to the fact that bromides are known to be more reactive inthese transformations than their chlorinated analogues17 andsince they were easier to obtain, compounds 1b and 4a werechosen as starting materials for the following conversions. Inorder to obtain molecules with low LUMO energy levels, twoboronic acids with electron withdrawing groups in their para-position were chosen for the cross-coupling reaction: p-cyanophenylboronic acid and p-trifluoromethylphenylboronicacid. Using Pd(dppf)Cl2 as catalyst gave the desired cross-coupling target molecules 7a,b and 8a,b (Scheme 3).

Crystal Structures. Since tetraazapyrenes (TAPys) werethought to potentially display semiconducting properties, it wasof interest to study their packing behavior in the solid statewhich strongly influences charge-carrier mobilities and stabilityand thus the performance of organic semiconducting devices.Recent literature discusses molecular packing motifs that arefavorable for achieving high charge-carrier mobilities.2k,18,19

Among these motifs, especially a 2-D-π-stacking or at least a 1-D-π-stacking should be present in the solid state in order toenable an efficient charge transport. On the other hand,herringbone patterns (with or without π-overlap) arecommonly associated with low or no conductivity.2k,18,19

The crystal and molecular structures of several TAPyderivatives have been determined. The molecular structuresare characterized by the planar tetraazapyrene core with almostidentical bond lengths and angles (see the SupportingInformation) with either the two perfluoroalkyl substituentspointing in opposite directions above and below (2b−c, 4b) orthe phenyl substituents being rotated out of the plane of thepolycyclic molecular core to reduce the steric repulsion (3, 5),respectively.More importantly, a variety of motifs have been observed for

the packing pattern of TAPy molecules (Table 1). Apart fromthe obvious influence of substitution, the organic solvent fromwhich the crystals were grown also has an impact, as has beenshown by the crystallization of different polymorphic solvent-free forms of 2a and 2c and by the formation of crystal solvates,such as 3·THF and 5·2 toluene (Table 1).

Scheme 1. Synthesis of 1,3,6,8-Tetraazapyrene (II) and ItsTetrahalogenated Derivatives 1a and 1b

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166108

The packing pattern in the monoclinic modification of 2a isdominated by two separate layers of π−π-stacks with the twostacks being rotated by 86° with respect to each other. Theinterplanar distance between the polycyclic aromatic coreswithin the stacks was found to be 3.41 Å. In the tricliniccrystalline form of 2a (Figure 1, right), the molecules arrange inflat layers which are themselves slip-stacked in the perpendic-ular direction with an interplanar distance of 3.36 Å, a packingpattern which is very similar to graphite (3.37 Å).20 In both

modifications, weak intermolecular hydrogen bonds are foundbetween the nitrogen and the aromatic hydrogen atoms of theneighboring molecules (2.53−2.58 Å).A similar type of polymorphism was observed for compound

2c: single crystals suitable for X-ray diffraction were obtainedfrom methanol and a mixture of hexane and ethyl acetate. Inboth cases, monoclinic single crystals (space group P21/n) werefound, but with significantly different cell data. In the crystalsobtained from hexane/ethyl acetate, the crystal packing patterndisplays a herringbone arrangement (Figure 2a) withinterplanar distances of 3.48 and 3.50 Å, respectively. On theother hand, in the polymorph obtained from methanol the

Scheme 2. Synthesis of the (a) 2,7-Disubstituted 1,3,6,8-Tetraazapyrenes 2a−c and 3 and (b) Their Core-BrominatedDerivatives 4a−c and 5 and the Core-Chlorinated Derivative 6

Scheme 3. Suzuki Cross-Coupling of the Core-BrominatedTAPy Derivatives 1b and 4a with Arylboronic Acids

Table 1. Selected Details of Crystal Structures

compd crystallization solvent space group interplanar distance (Å)

2a methanol or chloroform C2/c 3.412a pentane/ethyl acetate P1 3.362b methanol P1 3.482c methanol P21/n 3.48/3.502c hexane/ethyl acetate P21/n 3.483a THF C2/c 3.364a THF P1 3.574b chloroform P1 3.365a toluene P21/c 4.536 chloroform P21/n 3.41

aCompound crystallized as a solvate; therefore, solvent molecules areembedded in the solid-state structure.

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166109

molecules are layered with the tetraazapyrene cores essentiallybeing coplanar (Figure 2b). Two types of slipped π-stacks arethus formed (π−π-stacking distance 3.46 Å) with the samelateral orientation of the molecules along the skew stack axiswithin each stack and the two types of stack rotated by about90° relative to one another.The pentafluorophenyl-substituted compound 3 crystallized

from THF as a solvate in the form of monoclinic crystals (spacegroup C21/c). Not surprisingly, the molecular packing patternobserved in this case differs significantly from the ones

discussed above (Figure 3a). The structure appears to bedominated by pairwise π−π interactions between theperfluorinated phenyl rings (interplanar distance 3.56 Å)which are twisted out of the plane of the tetraazapyrene coreby 52° in opposite directions.The pyrene cores of neighboring molecules are thus so

strongly shifted with respect to one another that hardly any π-overlap can occur. In this rather open network channels areformed along the crystal c axis (Figure 3b), which are filled with

Figure 1. Crystal structures of two polymorphs of compound 2a: (a) molecular packing in the monoclinic crystals obtained from methanol orchloroform; (b) molecular packing in the triclinic crystals obtained from pentane/ethyl acetate (view along the b-axis). Thermal ellipsoids are drawnat the 50% probability level, and weak hydrogen interactions are indicated .

Figure 2. Crystal structures of two polymorphs of compound 2c: (a) molecular packing in the monoclinic crystals obtained from hexane/ethylacetate; (b) molecular packing of the polymorph obtained from methanol.

Figure 3. Crystal packing pattern of compound 3: (a) twisted arrangement of the aryl substituent and weak hydrogen interactions betweenneighboring molecules within each layer; (b) pairwise arrangement of layers and the π−π interactions between the perfluorinated phenyl rings inneighboring “sandwich-type layers” (embedded solvent molecules have been omitted for clarity).

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166110

strongly disordered solvent molecules (see the ExperimentalSection).In the solid-state structure of the dibrominated tetraazapyr-

ene 4a, the molecules stack along the c axis with an interplanardistance of 3.57 Å (Figure 4a). Within the stacks the moleculesare significantly shifted giving rise to a brickwork arrangementwhich may be classified as a two-dimensional stack. Moleculesof 4b build parallel stacks along the shortest axis with aninterplanar distance of 3.36 Å (Figure 4b).The tetrabromo derivative 5 crystallized as a toluene solvate

in the form of monoclinic crystals (space group P21/c). Itdisplays a typical herringbone-like structure with an enhanced

interplanar distance of 4.53 Å (Figure 4c). In this case, theperfluorinated phenyl substituents are even further twisted outof the plane of the aromatic core (dihedral angle 74°) than inthe solid-state structure of 3 (52°) and no π−π interactionsbetween adjacent pyrene molecules can be observed.Finally, in the crystal structure of the 4-fold core-chlorinated

tetraazapyrene 6, the molecules build parallel stacks along theshortest cell axis with an interplanar distance of 3.41 Å (Figure4d).To date, polymorphism has been observed for compounds

2a and 2c, but it is very likely that other TAPy-derivativesdisplay polymorphism as well. Furthermore, different inter-

Figure 4. Intermolecular packing patterns of (a) 4a brickwork arrangement, (b) 4b ladder-type arrangement, (c) 5 typical herringbone-like structure,and (d) 6 ladder-type arrangement (embedded solvent molecules have been omitted for clarity).

Figure 5. Kohn−Sham HOMO (left) and LUMO (right) of 2a (a) and its core-chlorinated equivalent 6 (b).

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166111

planar distances ranging from 3.36 to 4.53 Å and very divergingarrangements of the molecules in the solid state, ranging fromherringbone structures to brickwork arrangements, have beenobserved. Apart from the way in which the molecular shapesinfluence the crystal structures, the conditions of crystallization,in particular the solvent, play an important role. Whenprocessing thin organic layers from the liquid phase, thisaspect therefore needs to be considered.Theoretical Modeling and Electrochemistry. The redox

properties of organic compounds, which are relevant forpotential applications as semiconductors, are primarilydetermined by their frontier orbital energies.21 The relativeHOMO and LUMO energetic positions of an organic materialindicate which type of charge carriers are expected to bepredominant and furthermore allow a prediction of the stabilityof this material in typical organic semiconductors. In the case oforganic n-type materials, in which the charge transport occurspredominantly by hopping through the LUMO energy levels,low-lying LUMOs are thought to be required for an efficientelectron injection into the semiconductor.3d,21 Furthermore,the electron affinities (EA) of the organic material should bewithin the range of 2.8 to 4.0 eV to provide the stability of theradical anion species against ambient oxidants, such as waterand oxygen.21−23 The size of the molecular π-system is onefactor that determines the electron affinity: The smaller a π-system is, the less space is available for an injected electron todelocalize along that system, implying that smaller π-systems(as in naphthalene or pyrene derivatives) generally have lowerelectron affinities than larger π-systems (as in perylenes oroligoacenes).The electronic structure of the tetraazapyrene derivatives

reported in this work were modeled at the B3PW91/6-31g(d,p) level of DFT which has been validated for this type ofsystems in previous studies.4,5 Molecular geometries wereoptimized and the energy minima verified by frequencyanalysis. Electron affinities were determined by using a basisset that includes diffuse functions (6-311+g(d,p)). An energyoptimization of the corresponding anionic species of eachcompound was carried out and subtraction of the minimumenergy of the neutral form gives the electron affinity.24

Bond lengths and angles obtained from the calculations weregenerally in good agreement with those found in the crystalstructure analyses (see Supporting Information). The Kohn−Sham HOMO and LUMO of compound 2a and 6 displayed inFigure 5 represent the frontier orbitals of the TAPy derivativesinvestigated in this work. The longitudinal axis of the molecule,connecting the carbon atoms at position 2 and 7, lies in a nodalplane of the frontier orbitals. As a consequence, the substituentsin these positions only have a small effect on the frontier orbitalenergies.Table 2 summarizes the calculated HOMO and LUMO

energies and the electron affinities of TAPy derivatives 2a−cand 3 which have no core substituents. Compounds 2a−cdisplay HOMO energies of about −7.70 eV and LUMOenergies of about −3.70 eV. It is not surprising, however, thatwith increasing length of the perfluorinated alkyl chain theenergies are not significantly affected because the substituentsat the positions 2 and 7 lie on the nodal plane referred to above.Insertion of pentafluorophenyl substituents to the pyrene core(3) also results in lowering of the HOMO and LUMO energylevels compared to the parent compound II but the effect is lessprominent than for the perfluoroalkyl groups (Table 2). This

observation is in accordance with the reactivity of derivatives2a−c and 3 in the bromination procedures discussed above.While bromination of TAPy 3 can still be accomplished with

elemental bromine in the presence of a catalyst, thedeactivation of the tetraazpyrene which is caused byintroduction of the stronger electron-withdrawing perfluoro-alkyl substituents is too strong and therefore bromination canonly be achieved with the use of DBI. As expected, in the sameway as the LUMO energies were lowered the calculatedelectron affinities of tetraazapyrenes 3 (2.55 eV) and 2a−c(2.65−2.77 eV) increased (Table 2).In order to compare the results obtained from theoretical

modeling with experimentally accessible data, cyclic voltammo-grams were recorded for all tetraazapyrenes except forcompound 1b, which was found to be insufficiently soluble inTHF. It is well-established that the measured reductionpotentials may be correlated with the LUMO energies.25 AllCVs display two reversible reduction half waves thatcorrespond to the sequential formation of the mono- anddianions (Figure 6).Using ferrocene as an internal standard confirmed that all

redox waves corresponded to one-electron reductions andfurthermore allowed the estimation of the LUMO energies forall compounds. The cyclic voltammograms of the parentcompound II (dotted line) and compound 2a (gray line)displayed in Figure 6 nicely visualize the effect of the electron-

Table 2. Calculated HOMO and LUMO Energies and EAsand Measured LUMO Energies for the 2,7-Substituted TAPyDerivatives 2a−c and 3 (Compared to the Computed Valuesof the Parent Compound II)

compdHOMOa

(eV) LUMO DFTa (eV) LUMO CV (eV) EAb (eV)

II −7.10 −3.11 −3.38 1.922a −7.69 −3.69 −3.75 2.652b −7.72 −3.72 −3.77 2.722c −7.74 −3.73 −3.78 2.773 −7.09 −3.40 −3.61 2.55

aDetermined with B3PW91/6-31 g(d,p). bDetermined with B3PW91/6-311+g(d,p).

Figure 6. Cyclic voltammograms of the parent compound II, the 2,7-disubstituted derivative 2a, and the core-substituted tetraazapyrenes 4aand 8a recorded in THF (sweep rate 50 mV s−1; supporting electrolyteBu4NPF6).

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166112

withdrawing trifluoromethyl group by a significant shift of thetwo reversible redox waves of 2a to higher potentials.The LUMO energy levels obtained from the CV data of 2a−

c are slightly lower than the values calculated at the level ofDFT. However, for 3, the difference between theoretically andexperimentally determined LUMO energies is greater (0.21eV), an observation which has been previously made in ourgroup for aryl-substituted polycyclic aromatics.5 As indicatedabove, the introduction of substituents at the aromatic core isexpected to influence the electronic properties of the TAPyderivatives significantly which is evident when comparing thedata for the 4-fold core-chlorinated and brominated species 1aand 1b to the parent compound II (Table 3). The LUMO

energies of 1a and 1b are decreased by >0.50 eV and theelectron affinities of, respectively, 2.56 and 2.60 eV aresignificantly higher than that of the parent compound II.As a next step, the introduction of bromine and chlorine

atoms at the pyrene core combined with perfluorinated alkylchains in position 2 and 7 was studied (compounds 4a−c, 5,and 6) as well as the properties of the Suzuki cross-coupledproducts 7a,b and 8a,b. Like the introduction of perfluoroalkylsubstituents to the parent compound in positions 2 and 7(Table 2) the subsequent addition of further electron-withdrawing groups, such as bromine (4a−c) or chlorine (6),to the pyrene core led to an even further decrease of LUMOenergy levels and an increase of electron affinities (Table 3).Also in this case, the cyclic voltammograms of 2a (gray line)and 4a (dashed line) displayed in Figure 6 illustrate the effect ofcore-substitution.Substitution of the bromine atoms of 1b and 4a by p-

cyanophenyl groups decreases the theoretically determinedLUMO level, the effect being significant only for the Suzukicross-coupled product 7a. According to the experimentallyobtained values on the other hand, the LUMO energy level of8a is slightly higher than that of 4a but still in the same rangeand the LUMO energy level of 7a is actually considerablyhigher than expected (Table 3). However, in both cases theEAs are increased significantly from 2.60 eV (1b) to 3.09 eV(7a) and 3.01 eV (4a) to 3.25 eV (8a), respectively. The effect

of the p-trifluorophenyl substituent on the electronic propertiesof the TAPys is similar but less prominent (Table 3).

Electron Mobilities in Thin Layers of TAPy Deriva-tives. The redoxchemical properties of all TAPy derivativessuggest that these molecules might have semiconductingproperties. To this end, thin-film transistors (TFTs) werefabricated by vapor deposition of the organic material in highvacuum. Source and drain metal contacts were subsequentlyinstalled on the organic layer by vacuum deposition through ashadow mask, giving rise to a bottom-gate, top-contact TFTarchitecture. The TFTs were measured in ambient air with ahumidity of about 50% under yellow laboratory light. All testedsubstances displayed either n-type or no semiconductingproperties, while ambipolar or p-type behavior was notobserved, confirming the notion that the TAPys presented inthis work are potential electron conducting materials.Neither the 4-fold core-chlorinated and brominated TAPy

derivatives 1a and 1b nor the Suzuki cross-coupling products7a,b and 8a displayed a measurable field effect, despite the factthat their calculated LUMO energies and EAs appear favorablefor n-channel semiconduction. For the latter, the nonplanaroverall molecular geometry due to the bulky phenyl rings mayinhibit an effective π-overlap on the device surface. Moreover,AFM studies of vapor deposited films of 1b, 7b, and 8a revealeda very rough, uneven. and amorphous morphology which doesnot seem to be suited for conduction (see the SupportingInformation).Whereas TAPy derivatives 2a−c proved to be too volatile to

be processed by vapor deposition, a small field effect wasmeasured for TAPys 3, 4a,c, and 5. Table 4 provides anoverview of all measured electron mobilities which we found tobe low compared to the recently studied tetraazaperopyrenes.6

■ CONCLUSIONIn summary, we have developed a general way to synthesize2,7-disubstituted tetraazapyrenes in good yields. Thesecompounds can be further derivatized by core chlorinationand bromination, creating valuable starting materials forsubsequent Suzuki cross-coupling reactions. Single crystalssuited for X-ray diffraction have been grown from differentorganic solvents, revealing polymorphism for some compounds.The LUMO energies have been calculated from the reductionpotentials obtained by cyclic voltammetry and compared to theones computed by DFT. LUMO energies of −3.57 to −4.14 eVand electron affinities ranging from 2.55 to 3.71 eV clearlyindicate that tetraazapyrenes that bear electron-withdrawinggroups are potential n-type semiconductors. Organic TFTshave been fabricated by vacuum deposition and the largestelectron mobility of 0.001 cm2/(V s) was found for compound3. It is well-known that the right combination of electro-chemical properties and crystal packing is required for largeelectron mobilities As we have shown in this first study, thetetraazapyrenes offer the potential for further derivatization andthus may give access to novel organic semiconductors.

Table 3. Calculated HOMO and LUMO Energies and EAsand Measured LUMO Energies for the Core-SubstitutedTAPy Derivatives (Compared to the Values of the ParentCompound II)

compdHOMOa

(eV) LUMO DFTa (eV) LUMO CV (eV) EAb (eV)

II −7.10 −3.11 −3.38 1.921a −7.49 −3.86 −3.81 2.561b −7.29 −3.62 c 2.604a −7.73 −3.96 −4.00 3.014b −7.76 −3.98 −4.00 3.074c −7.76 −3.99 −4.01 3.125 −7.23 −3.80 −3.98 3.076 −7.90 −4.16 −4.14 3.717a −7.19 −3.85 −3.65 3.097b −6.96 −3.50 −3.57 2.798a −7.44 −4.04 −3.91 3.258b −7.35 −3.84 −3.89 3.09

aDetermined with B3PW91/6-31 g(d,p). bDetermined with B3PW91/6-311+g(d,p). cSolubility of compound 1b in THF was not sufficientfor a CV measurement.

Table 4. Electron Mobilities Measured in Bottom-Gate, Top-Contact OTFTs for TAPys 3, 4a,c, and 5

compd 3 4a 4c 5

electron mobility(cm2/(V s))

1 × 10−3 6 × 10−4 5 × 10−5 6 × 10−5

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166113

■ EXPERIMENTAL SECTION1,4,5,8-Tetraaminonaphthalene hexachlorostannate (I)14 and theparent compound 1,3,6,8-tetraazapyrene (II)7 were prepared accord-ing to literature methods.4,5,9,10-Tetrachloro-1,3,6,8-tetraazapyrene (1a). A 420 mg

(2.0 mmol) portion of 1,3,6,8-tetraazapyrene (II) was dissolved in 50mL of chlorosulfonic acid, and 86 mg of iodine was added. Themixture was heated to 80 °C, and for a period of 3 h, chlorine gas waspassed through the solution. The resulting mixture was allowed to coolto room temperature and stirred for 12 h. It was then poured on ice,and the precipitate was collected by filtration and extracted withtoluene. The solvent was removed under reduced pressure to yield 530mg (1.56 mmol, 78%) of 1a as a golden-brown solid: mp dec above250 °C; 1H NMR (399.89 MHz, CDCl3) δ = 10.23 (s, 2H, CH); 13CNMR (150.90 MHz, CDCl3) δ = 158.7 (C7H), 150.2 (C1/4), 140.1(C2/3), 112.0 (C5/6); HRMS (EI+) m/z calcd for C12H2Cl4N4341.9034, found 341.9024. Anal. Calcd for C12H2Cl4N4: C, 41.90;H, 0.59; N, 16.29. Found: C, 42.21; H, 0.87; N, 15.87.4,5,9,10-Tetrabromo-1,3,6,8-tetraazapyrene (1b). A 420 mg

(2.0 mmol) portion of 1,3,6,8-tetraazapyrene (II) was dissolved in 50mL of concentrated sulfuric acid, and 86 mg of iodine and 1 mL ofbromine (19.5 mmol) were added. The mixture was heated to 80 °Cfor 3 h and then allowed to cool to room temperature overnight. Thereaction mixture was poured on ice, and the precipitate was collectedby filtration, washed thoroughly with sodium hydroxide solution,water, methanol, and pentane, and dried in vacuo to yield 920 mg(1.76 mmol, 87%) of 1b as a light brown solid: mp decompositionabove 260 °C; 1H NMR (600.13 MHz, CDCl3) δ = 10.18 (s, 2H,CH); 13C NMR (150.90 MHz, CDCl3) δ = 158.9 (C7H), 151.6 (C1/4),136.7 (C2/3), 113.0 (C5/6); HRMS (EI+) m/z calcd forC12H2

79Br281Br2N4 521.6972, found 521.6960. Anal. Calcd for

C12H2Br4N4: C, 27.62; H, 0.39; N, 10.74. Found: C, 27.82; H, 0.35;N, 10.67.General Procedure for the Preparation of 2,7-Disubstituted

Tetraazapyrene Derivatives. To a suspension of 1.0 g (1.9 mmol)of 1,4,5,8-tetraaminonaphthalene hexachlorostannate (I) in 30 mL ofabs THF was added 0.5 mL of abs triethylamine under argon. Thecorresponding anhydride (7.9 mmol) was added slowly under icecooling. The reaction mixture was heated under reflux for 72 h, andthen it was allowed to cool to room temperature. The solvent wasremoved under vacuum, and the residue was purified by columnchromatography (silica, n-hexane/ethyl acetate 4:1). The product wasrecrystallized from methanol three times.2,7-Bis(trifluoromethyl)-1,3,6,8-tetraazapyrene (2a). Anhy-

dride: trifluoroacetic anhydride; yield 407 mg (1.19 mmol, 62%) of2a as a beige solid; mp 179 °C; 1H NMR (600.13 MHz, CDCl3) δ =8.92 (s, 4H, CH); 13C NMR (150.92 MHz, CDCl3) δ = 156.1 (q, 2JCF= 37.3 Hz, C7), 153.7 (C1/4), 137.4 (C2/3), 120.0 (q, 1JCF = 277.0 Hz,CF3), 114.0 (C5/6); 19F NMR (376.27 MHz, CDCl3) δ = −68.64 (s,CF3); HRMS (EI+) m/z calcd for C14H4F6N4 342.0340, found342.0352. Anal. Calcd for C14H4F6N4: C, 49.14; H, 1.18; N, 16.37.Found: C, 49.09; H, 1.35; N, 16.43.2,7-Bis(pentafluoroethyl)-1,3,6,8-tetraazapyrene (2b). Anhy-

dride: pentafluoropropionic anhydride; yield 290 mg (0.66 mmol,45%) of 2b as a beige solid; mp 183 °C; 1H NMR (399.89 MHz,CDCl3,) δ = 8.90 (s, 4 H, CH); 13C NMR (150.90 MHz, CDCl3) δ =156.3 (t, 2JCF = 25.5 Hz, C7), 153.6 (C1/4), 137.4 (C2/3), 128.9 (tq, 1JCF= 285.3 Hz, 2JCF = 36.0 Hz, CF3), 113.8 (C

5/6), 110.2 (qt, 1JCF = 258.3Hz, 2JCF = 36.0 Hz, CF2);

19F NMR (79 MHz, CDCl3,) δ = −81.7 (t,6F, 3JFF = 1.8 Hz, CF3), 115.5 (q, 4F, 3JFF = 1.8 Hz, CF2); HRMS(EI+) m/z calcd for C16H4F10N4 442.0276, found 442.0270. Anal.Calcd for C16H4F10N4: C, 43.46; H, 0.91; N, 12.67. Found: C, 43.67;H, 1.15; N, 12.66.2,7-Bis(heptafluoropropyl)-1,3,6,8-tetraazapyrene (2c). An-

hydride: heptafluorobutyric anhydride: yield 280 mg (0.52 mmol,36%) of 2c as a beige solid; mp 185 °C; 1H NMR (399.98 MHz,CDCl3) δ = 8.94 (s, 4H, CH). 13C NMR (150.90 MHz, CDCl3) δ =156.4 (t, 2JCF = 25.8 Hz, C7), 153.6 (C1/4), 137.4 (C2/3), 119.1 − 107.8(m, C3F7), 113.8 (C5/6); 19F NMR (376.27 MHz, CDCl3) δ = −80.1

(t, 6F, 3JFF = 9.2 Hz, CF3), −113.7 (q, 4F, 3JFF = 9.1 Hz, CF2), −125.4(s, 4F, CF2); HRMS (EI+) m/z calcd for C18H4F14N4 542.0212, found542.0231. Anal. Calcd for C18H4F14N4: C, 39.87; H, 0.74; N, 10.33.Found: C, 39.88; H, 1.04; N, 10.54.

2,7-Bis(pentafluorophenyl)-1,3,6,8-tetraazapyrene (3). Anhy-dride: pentafluorophenyl anhydride: yield 457 mg (0.85 mmol, 44%)of 3 as a beige solid; mp 255 °C; 1H NMR (399.98 MHz, CDCl3) δ =8.80 (s, 4H, CH). 13C NMR (150.90 MHz, CDCl3) δ = 156.7 (C7),153.5 (C1/4), 146.2 (CPhenyl-F), 144.6 (CPhenyl-F), 138.7 (CPhenyl-F),136.9 (C2/3), 115.2 (CPhenyl-C7), 112.7 (C5/6); 19F-NMR (79 MHz,CDCl3) δ = −160.8 (m, 4F), −151.4 (m, 2F), −141.9 (m, 4F); HRMS(EI+) m/z calcd for C24H4F10N4 538.0276, found 538.0260.

General Procedure for the Preparation of 4,9-Dibrominated2,7-Perfluoroalkylated Tetraazapyrene Derivatives. 2,7-Bis-(perfluoroalkyl)-1,3,6,8-tetraazapyrene (0.5 mmol) was dissolved in30 mL of concentrated sulfuric acid. Dibromoisocyanuric acid (574mg, 2.0 mmol) was added, and the resulting reaction mixture wasstirred under the exclusion of light for 48 h at room temperature. Anadditional amount of 574 mg (2.0 mmol) of dibromoisocyanuric acidwas added, and the mixture was stirred under the exclusion of light for12 h at room temperature. Then it was poured on ice, neutralized withsodium hydroxide, and extracted with methylene chloride. The organicphase was washed with water and brine and dried over sodium sulfate.The solvent was evaporated in vacuo, and the solid residue wasrecrystallized from methanol twice.

2,7-Bis(trifluoromethyl)-4,9-dibromo-1,3,6,8-tetraazapyrene(4a): starting compound 2a; yield 50 mg (0.1 mmol, 20%) of 4a as abeige solid; mp 323 °C; 1H NMR (600.13 MHz, CDCl3) δ = 9.26 (s,2H, CH); 13C NMR (150.90 MHz, CDCl3) δ = 156.8 (q, 2JCF = 37.8Hz, C7), 154.1 (C4), 152.0 (C1) 139.4 (C3), 135.1 (C2), 119.7 (q, 1JCF= 276.3 Hz, CF3), 113.5 (C5/6); 19F NMR (79 MHz, CDCl3) δ =−68.67 (s, 6F, CF3); HRMS (EI+) m/z calcd for C14H2Br2F6N4

497.8550, found 497.8555. Anal. Calcd for C14H2Br2F6N4: C, 33.63;H, 0.40; N, 11.21. Found: C, 33.49; H, 0.53; N, 11.05.

2,7-Bis(pentafluoroethyl)-4,9-dibromo-1,3,6,8-tetraazapyr-ene (4b): starting compound 2b; yield 51 mg (0.09 mmol, 17%) of 4bas a beige solid; mp 303 °C; 1H NMR (600.13 MHz, CDCl3) δ = 9.28(s, 2H, CH); 13C NMR (150.90 MHz, CDCl3) δ = 157.1 (t, 2JCF =26.1 Hz, C7), 154.1 (C4), 151.9 (C1) 139.4 (C3), 135.1 (C2), 118.8(tq, 1JCF = 287.0 Hz, 2JCF = 36.1 Hz, CF3), 113.4 (C

5/6), 109.9 (qt, 1JCF= 256.6 Hz, 2JCF = 37.0 Hz, CF2);

19F NMR (79 MHz, CDCl3) δ =−81.56 (m, 6F, CF3), −115.24 (m, 4F, CF2); HRMS (EI+) m/z calcdfor C16H2Br2F10N4 597.8487, found 597.8489.

2,7-Bis(heptafluoropropyl)-4,9-dibromo-1,3,6,8-tetraazapyr-ene (4c): starting compound 2c; yield 56 mg (0.08 mmol, 16%) of 4cas a beige solid; mp 330 °C; 1H NMR (600.13 MHz, CDCl3) δ = 9.29(s, 2H, CH); 13C NMR (150.90 MHz, CDCl3) δ = 157.1 (t, 2JCF =26.0 Hz, C7), 154.0 (C4), 151.9 (C1) 139.4 (C3), 135.2 (C2), 117.8(tq, 6F, 1JCF = 288.5 Hz, 2JCF = 33.5 Hz, CF3), 113.4 (C

5/6), 111.5 (tt,4F, 1JCF = 259.8 Hz, 2JCF = 30.6 Hz, CF2), 109.8 (m, 4F, CF2);

19FNMR (79 MHz, CDCl3) δ = −80.03 (t, 6F, 3JFF = 8.9 Hz, CF3),−113.57 (m, 4F, CF2), −125.34 (m, 4F, CF2); HRMS (EI+) m/z calcdfor C18H2Br2F14N4 697.8423, found 697.8399. Anal. Calcd forC18H2Br2F14N4: C, 30.88; H, 0.29; N, 8.00. Found: C, 30.53; H,0.65; N, 7.86.

2,7-Bis(pentafluorophenyl)-4,5,9,10-tetrabromo-1,3,6,8-tet-raazapyrene (5). 2,7-Bis(pentafluorophenyl)-1,3,6,8-tetraazapyrene 3(100 mg, 0.19 mmol) was dissolved in 50 mL of concentrated sulfuricacid, and 86 mg of iodine and 1.6 mL of bromine (31.2 mmol) wereadded. The mixture was heated to 80 °C for 3 h and then allowed tocool to room temperature overnight. The reaction mixture was pouredon ice, and the precipitate was collected by filtration, washedthoroughly with sodium hydroxide solution, water, methanol, andpentane, and dried in vacuo to yield 29 mg (0.03 mmol, 18%) of 5 as alight brown solid: mp 326 °C; 13C NMR (150.90 MHz, CDCl3) δ =158.2 (C7), 152.5 (C1/4), 137.2 (C2/3), 111.3 (C5/6), perfluorinatedaryl carbon signals were not observed; 19F NMR (79 MHz, CDCl3) δ= −160.8 (m, 4F), −151.4 (m, 2F), −141.9 (m, 4F); HRMS (EI+) m/z calcd for C24Br4F10N4 849.6697, found 849.6684.

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166114

2,7-Bis(trifluoromethyl)-4,5,9,10-tetrachloro-1,3,6,8-tetraa-zapyrene (6). 2,7-Bis(trifluoromethyl)-1,3,6,8-tetraazapyrene 2a (50mg, 0.15 mmol) was dissolved in 10 mL of concentrated sulfuric acid.Dichloroisocyanuric acid (300 mg, 1.5 mmol) was added, and theresulting reaction mixture was stirred under the exclusion of light for10 days at 100 °C. Then it was poured on ice, neutralized with sodiumhydroxide, and extracted with methylene chloride. The organic phasewas washed with water and brine and dried over sodium sulfate. Thesolvent was evaporated in vacuo, and the solid residue wasrecrystallized three times from methanol and three times from THFto yield 10 mg (0.02 mmol, 13%) of 6 in the form of colorless crystals:13C NMR (150.90 MHz, CDCl3) δ = 157.0 (q, 2JCF = 38.7 Hz, C7),151.6 (C1), 141.5 (C2/3), 119.5 (q, 1JCF = 275.6 Hz, CF3), 111.8(C5/6); 19F NMR (376.27 MHz, CDCl3) δ = −68.62 (s, 6F, CF3);HRMS (EI+) m/z calcd for C14Cl4F6N4 477.8781, found 477.8803.General Procedure for Suzuki Cross-Coupling Reactions. An

oven-dried Schlenk tube was loaded with 1 equiv of brominatedtetraazapyrene 1a or 4a, 4−8 equiv of the corresponding boronic acid,6−10 equiv of cesium carbonate, and 0.1−0.2 equiv of Pd(dppf)Cl2and evacuated and refilled with argon three times. Absolute 1,4-dioxane (30 mL) was added, the Schlenk tube was sealed with a glasscap, and the reaction mixture was stirred at 100 °C for 48 h. Themixture was allowed to cool to room temperature, the solvent wasevaporated, and the solid residue was extracted with chloroform. Theorganic phase was washed with water and brine, dried over sodiumsulfate, and evaporated in vacuo.4,5,9,10-Tetrakis(4-cyanophenyl)-1,3,6,8-tetraazapyrene

(7a): starting compounds 120 mg (0.23 mmol) of 4,5,9,10-tetrabromo-1,3,6,8-tetraazapyrene (1b) and 270 mg (1.84 mmol) of 4-cyanophenylboronic acid; yield 65 mg (0.12 mmol, 46%) of 7a as alight brown solid; mp 458 °C; 1H NMR (600.13 MHz, CDCl3) δ =10.00 (s, 2H, C7H), 7.72 (d, 8H, 3JHH = 7.2 Hz), 7.47 (d, 8H, 3JHH =8.4 Hz); 13C NMR (150.90 MHz, CDCl3) δ = 158.0 (C7), 151.6(C1/4), 144.9 (C2/3), 139.1 (C8), 132.0 (C9), 131.8 (C10), 118.2 (CN),114.0 (C5/6), 112.7 (C11); HRMS (FAB+) m/z calcd for C40H19N8

611.1732, found 611.1752.4,5,9,10-Tetrakis(4-trifluoromethylphenyl)-1,3,6,8-tetraaza-

pyrene (7b): starting compounds 150 mg (0.29 mmol) of 4,5,9,10-tetrabromo-1,3,6,8-tetraazapyrene (1b) and 441 mg (2.32 mmol) of 4-trifluoromethylphenylboronic acid yield 45 mg (0.7 mmol, 24%) of 7bas a beige solid; mp 395 °C; 1H NMR (600.13 MHz, CDCl3) δ =10.04 (s, 2H, C7H), 7.67 (d, 8H, 3JHH = 8.2 Hz), 7.49 (d, 8H, 3JHH =8.0 Hz); 13C NMR (150.90 MHz, CDCl3) δ = 157.9 (C7), 151.9(C1/4), 145.3 (C2/3), 138.4 (C8), 131.8 (C9), 130.2 (C11), 125.0 (C10),123.0 (CF3), 113.9 (C

5/6); 19F NMR (79 MHz, CDCl3) δ = −62.68 (s,12F, CF3); HRMS (EI+) m/z calcd for C40H18F12N4 782.1340, found782.1329.2,7-Bis(trifluoromethyl)-4,9-bis(4-cyanophenyl)-1,3,6,8-tet-

raazapyrene (8a): starting compounds 100 mg (0.20 mmol) of 2,7-bis-(trifluoromethyl)-4,9-dibromo-1,3,6,8-tetraazapyrene (4a) and 118mg (0.80 mmol) of 4-cyanophenylboronic acid: yield 65 mg (0.12mmol, 60%) of 8a as a light gray solid; mp 420 °C; 1H NMR (600.13MHz, CDCl3) δ = 9.02 (s, 2H, C3H), 8.14 (d, 4H, 3JHH = 8.1 Hz), 7.98(d, 4H, 3JHH = 8.2 Hz); 13C NMR (150.90 MHz, CDCl3) δ = 156.2(C7), 153.7 (C4), 151.9 (C1), 147.1 (C2), 138.7 (C8), 136.4 (C3),132.5 (C10), 131.5 (C9), 118.2 (CN), 114.3 (C5/6), 114.0 (C11); 19FNMR (79 MHz, CDCl3) δ = −68.76 (s, 6F, CF3); HRMS (MALDI+)m/z calcd for C28H9F6N6 543.0787, found 543.0767.2,7-Bis(trifluoromethyl)-4,9-bis(4-trifluoromethylphenyl)-

1,3,6,8-tetraazapyrene (8b): starting compounds 130 mg (0.26mmol) of 2,7-bis(trifluoromethyl)-4,9-dibromo-1,3,6,8-tetraazapyrene(4a) and 197 mg (1.04 mmol) of 4-trifluoromethylphenylboronic acid;yield 35 mg (0.06 mmol, 23%) of 8b as a white solid; mp 419 °C; 1HNMR (600.13 MHz, CDCl3) δ = 9.02 (s, 2H, C3H), 8.20 (d, 4H, 3JHH= 8.0 Hz), 7.95 (d, 4H, 3JHH = 8.1 Hz); 13C NMR (150.90 MHz,CDCl3) δ = 156.1 (q, 2JCF = 37.2 Hz, C7), 153.8 (C4), 152.3 (C1),147.7 (C2), 137.9 (C8), 136.2 (C3), 132.1 (q, 2JCF = 33.0 Hz, C11),131.3 (C9), 125.8 (C10), 124.8 (C12F3), 119.0 (CF3), 114.2 (C

5/6); 19FNMR (79 MHz, CDCl3) δ = −68.76 (s, 6F, CF3), −62.72 (s, 6F,

C12F3); HRMS (MALDI+) m/z calcd for C28H9F12N4 629.0630, found629.0610.

X-ray Crystal Structure Determinations. Crystal data anddetails of the structure determinations are given in the SupportingInformation. Full shells of intensity data were collected at lowtemperature (T = 100 K, Mo Kα radiation, sealed tube, graphitemonochromator, all compounds except 3·thf or Cu Kα radiation,microfocus tube, multilayer mirror optics for 3·thf). Data werecorrected for air and detector absorption, Lorentz and polarizationeffects;26,27 absorption by the crystal was treated numerically (secondmonoclinic form of 2c and compound 4b) or with a semiempiricalmultiscan method (all others).27−29

The structures were solved by direct methods with dual-spacerecycling (compounds 2a30 and 2c31,32) by the heavy atom methodcombined with structure expansion by direct methods applied todifference structure factors33 (compound 4b) or by the charge flipprocedure34 (all others) and refined by full-matrix least-squaresmethods based on F2 against all unique reflections.32,35 All non-hydrogen atoms were given anisotropic displacement parameters.Hydrogen atoms were generally placed at calculated positions andrefined with a riding model. When justified by the quality of the datathe positions of the hydrogen atoms were taken from differenceFourier syntheses and refined. Due to severe disorder and fractionaloccupancy, electron density attributed to solvent of crystallization(thf) was removed from the structure (and the corresponding Fobs) of3 with the BYPASS procedure,36 as implemented in PLATON(SQUEEZE).37 Crystals of 5 were twinned; after detwinning(approximately twin fractions 0.87:0.13) refinement was carried outagainst all observations involving domain 1.

Fabrication of the Organic Thin-Film Transistors (TFTs). TheTFTs were fabricated in the bottom-gate, top-contact architecture ondoped silicon substrates. As the gate electrode, a 20-nm-thick layer ofaluminum was deposited by vacuum evaporation directly onto thesilicon substrate. The gate dielectric is a combination of 3.6 nm thickAlOx (grown by plasma oxidation) and a 1.7 nm thick self-assembledmonolayer (SAM) of n-tetradecylphosphonic acid (prepared byimmersing the substrate with the freshly oxidized aluminum gateelectrodes into a 2-propanol solution of n-tetradecylphosphonic acid).A 30 nm thick layer of the corresponding TAPy derivative was thenvacuum-deposited onto the AlOx/SAM gate dielectric, and Au source/drain contacts were deposited on top of the semiconductor by vacuumevaporation through a shadow mask. The TFTs have a channel lengthof 50 μm and a channel width of 1000 μm. Electrical measurementswere carried out in air, and field-effect mobilities were extracted fromthe transfer characteristics in the saturation regime.6

■ ASSOCIATED CONTENT

*S Supporting InformationGeneral experimental methods, compound characterization by1H and 13C NMR spectra for all compounds and computationaland X-ray crystallographic data. This material is available free ofcharge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author*E-mail: [email protected].

Present Address§Department of Physics, University of Basel, Klingelbergstrasse82, CH-4056 Basel, Switzerland

NotesThe authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the German Ministry of Education and Research(BMBF) for funding of this work within the project POLYTOS

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166115

(FKZ: 13N10205) in the Research Network “Forum OrganicElectronics”.

■ REFERENCES(1) (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-VCH:New York, 1997; (b) Topics in Current Chemistry, Vol. 196: CarbonRich Compounds I; de Meijere, A., Ed.; Springer: Berlin, 1998.(c) Topics in Current Chemistry, Vol. 201: Carbon Rich Compounds II:Macrocyclic Oligoacetylenes and Other Linearly Conjugated Systems; deMeijere, A., Ed.; Springer: Berlin, 1999. (d) Fetzer, J. C. Large (C ≥24) Polycyclic Hydrocarbons: Chemistry and Analysis; John Wiley andSons: New York, 2000.(2) For recent reviews, see: (a) Wurthner, F.; Schmidt, R.ChemPhysChem 2006, 7, 793−797. (b) Anthony, J. E. Chem. Rev.2006, 106, 5028−5048. (c) Organic Electronics; Klauk, H., Ed.; Wiley-VCH: Weinheim, Germany, 2006. (d) Organic Field-Effect Transistors;Bao, Z., Locklin, J., Eds.; Taylor and Francis: Boca Raton, FL, 2007.(e) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718−747.(f) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey,R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926−952. (g) Shirota, Y.;Kageyama, H. Chem. Rev. 2007, 107, 953−1010. (h) Katz, H. E.;Huang, J. Annu. Rev. Mater. Res. 2009, 39, 71−92. (i) Pisula, W.;Mishra, A. K.; Li, J.; Baumgarten, M.; Mullen, K. Carbazole-basedConjugated Polymers as Donor Material for Photovoltaic Devices. InOrganic Photovoltaics: Materials, Device Physics and ManufacturingTechnologies; Brabec, C., Dyakonov, V., Scherf, U., Eds.; Wiley-VCH:Weinheim, 2008; pp 93−128. (j) Thompson, B. C.; Frechet, J. M. J..Angew. Chem., Int. Ed. 2008, 47, 58−77. (k) Anthony, J. E. Angew.Chem., Int. Ed. 2008, 47, 452−483. (l) Wang, C.; Dong, H.; Hu, W.;Liu, Y.; Zhu, D. Chem. Rev. 2012, 112, 2208−2267.(3) See, for example: (a) Jonkheijm, P.; Stutzmann, N.; Chen, Z.; deLeeuw, D. M.; Meijer, E. W.; Schenning, A. P. H. J.; Wurthner, F. J.Am. Chem. Soc. 2006, 128, 9535−9540. (b) Chen, H. Z.; Ling, M. M.;Mo, X.; Shi, M. M.; Wang, M.; Bao, Z. Chem. Mater. 2007, 19, 816−824. (c) Schmidt, R.; Ling, M. M.; Oh, J. H.; Winkler, M.; Konemann,M.; Bao, Z.; Wurthner, F. Adv. Mater. 2007, 19, 3692−3695.(d) Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.;Radacki, K.; Braunschweig, H.; Konemann, M.; Erk, P.; Bao, Z.;Wurthner, F. J. Am. Chem. Soc. 2009, 131, 6215−6228. (e) Qian, H.;Yue, W.; Zhen, Y.; Di Motta, S.; Di Donato, E.; Negri, F.; Qu, J.; Xu,W.; Zhu, D.; Wang, Z. J. Org. Chem. 2009, 74, 6275−6282. (f) Zhan,X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski,M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268−284. (g) Hesse, H. C.;Weickert, J.; Hundschell, C.; Feng, X.; Mullen, K.; Nickel, B.; Mozer,A. J.; Schmidt-Mende, L. Adv. Energy Mater. 2011, 1, 861−869.(4) Riehm, T.; De Paoli, G.; Konradsson, A. E.; De Cola, L.;Wadepohl, H.; Gade, L. H. Chem.Eur. J. 2007, 13, 7317−7329.(5) (a) Martens, S. C.; Riehm, T.; Geib, S.; Wadepohl, H.; Gade, L.H. J. Org. Chem. 2011, 76, 609−617. (b) Matena, M.; Riehm, T.;Stohr, M.; Jung, T. A.; Gade, L. H Angew. Chem., Int. Ed. 2008, 47,2414−2417. (c) Matena, M.; Stohr, M.; Riehm, T.; Bjork, J.; Martens,S.; Dyer, M. S.; Persson, M.; Llobo-Checa, J.; Muller, K.; Enache, M.;Wadepohl, H.; Zegenhagen, J.; Jung, T. A.; Gade, L. H. Chem.Eur. J.2010, 16, 2079−2091.(6) Martens, S. C.; Zschieschang, U.; Wadepohl, H.; Klauk, H.; Gade,L. H. Chem.Eur. J. 2012, 18, 3498−3509.(7) Dimroth, O.; Roos, H. Liebigs Ann. Chem. 1927, 456, 177−192.(8) Gerson, F. Helv. Chim. Acta 1964, 47, 1484−1496.(9) Dawans, F.; Reichel, B.; Marvel, C. S. J. Polym. Sci. Part A 1964, 2,5005−5016.(10) (a) Plumpe, H.; Bock, M. Ger. Pat. (Bayer AG) DE 1265754,1964. (b) Plumpe, H.; Bock, M. Ger. Pat. (Bayer AG) DE 1263775,1964. (c) Plumpe, H.; Bock, M. Bel. Pat. (Bayer AG) BE 659016,1965.(11) Pozharskii, A. F.; Koroleva, V. N.; Komissarov, I. V.; Filippov, I.T.; Borovlev, I. V. Khim.Farm. Zh. 1976, 10, 34−38.(12) Aksenov, A. V.; Lyakhovnenko, A. S.; Karaivanov, N. Ts.;Aksenova, I. V. Chem. Heterocycl. Compd. 2010, 46, 1146−1147.

(13) (a) Ward, E. R.; Johnson, C. D.; Day, L. A. J. Chem. Soc. 1959,487−493. (b) Vitske, V.; Konig, C.; Hubner, O.; Kaifer, E.; Himmel,H.-J. Eur. J. Inorg. Chem. 2010, 115−126.(14) Will, W. Chem. Ber. 1895, 28, 2234−2235.(15) (a) Gotthardi, W. Monatsh. Chem. 1968, 99, 815. (b) Becker, H.G. O. Organikum; Wiley-VCH: Weinheim, 2001.(16) Rosevear, J.; Wilshire, J. F. K. Aust. J. Chem. 1980, 33, 843−852.(17) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457−2483.(b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174−238.(18) Gsanger, M.; Oh, J. H.; Konemann, M.; Hoffken, H. W.; Krause,A.-M.; Bao, Z.; Wurthner, F. Angew. Chem., Int. Ed. 2010, 49, 740−743.(19) Wang, C.; Dong, H.; Li, H.; Zhao, H.; Meng, Q.; Hu, W. Cryst.Growth Des. 2010, 10, 4155−4160.(20) Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H. J. Appl. Phys. 1984,55, 1492−1507.(21) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J.Am. Chem. Soc. 2007, 129, 15259−15278.(22) Chang, Y.-C.; Kuo, M.-Y.; Chen, C.-P.; Lu, H.-F.; Chao, I. J.Phys. Chem. C 2010, 114, 11595−11601.(23) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436−4451.(24) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F., III;Nandi, S.; Ellison, G. B. Chem. Rev. 2002, 102, 231−282.(25) Seguy, I.; Jolinat, P.; Destruel, P.; Mamy, R.; Allouchi, H.;Courseille, C.; Cotrait, M.; Bock, H. ChemPhysChem 2001, 7, 448−452.(26) SAINT, Bruker AXS, 1997−2008.(27) CrysAlisPro, Agilent Technologies XRD Products, Yarnton, UK,2011.(28) (a) Sheldrick, G. M., SADABS, Bruker AXS, 2004−2008.(b) Sheldrick, G. M., TWINABS, Bruker AXS, 2008.(29) Blessing, R. H. Acta Crystallogr. 1995, A51, 33−38.(30) (a) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.;Cascarano, G. L.; L. De Caro, Giacovazzo, C.; Polidori, G.; Spagna, R.SIR2004, CNR IC, Bari, Italy, 2004; (b) Burla, M. C.; Caliandro, R.;Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo,C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381−388.(31) (a) Sheldrick, G. M. SHELXD, University of Gottingen andBruker Nonius 2000−4. (b) Sheldrick, G. M.; Hauptman, H. A.;Weeks, C. M.; Miller, R.; Uson, I. Ab initio phasing. In Rossmann, M.G., Arnold, E., Eds.; International Tables for Crystallography; IUCr andKluwer Academic Publishers: Dordrecht, 2001; Vol. F, pp 333−351.(32) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112−122.(33) (a) Beurskens, P. T.; Beurskens, G.; R. de Gelder, Smits, J. M.M.; S. Garcia-Granda, Gould, R. O. DIRDIF-2008, RadboudUniversity Nijmegen: The Netherlands, 2008. (b) Beurskens, P. T..In Sheldrick, G. M., C. Kruger, Goddard, R., Eds. CrystallographicComputing 3; Clarendon Press: Oxford, UK, 1985; p 216.(34) (a) Palatinus, L. SUPERFLIP; EPF: Lausanne, Switzerland,2007. (b) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786−790.(35) Sheldrick, G. M. SHELXL-97, University of Gottingen, 1997.(36) Sluis, P. v. d.; Spek, A. L. Acta Crystallogr. 1990, A46, 194.(37) (a) Spek, A. L. PLATON, Utrecht University, The Netherlands.(b) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7−13.

The Journal of Organic Chemistry Article

dx.doi.org/10.1021/jo300894p | J. Org. Chem. 2012, 77, 6107−61166116

S1   

Supporting Information for

1,3,6,8-Tetraazapyrenes: Synthesis, Solid State Structures

and Properties as Redox Active Materials

Sonja Geib†, Susanne C. Martens†, Ute Zschieschang‡, Florian Lombeck†, Hubert Wadepohl†,

Hagen Klauk‡ and Lutz H. Gade†*

†Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270,

D-69120 Heidelberg, Germany

‡Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany

[email protected]

Contents:

SI.1 Materials and Methods S2

SI.2 Computational Details S2

SI.3 Crystallographic Tables S3-S6

SI.4 Cartesian coordinates of the optimized structures S7-S53

SI.5 Comparison of bond lengths and angles obtained from X-ray and DFT S54-S58

SI.6 AFM pictures of fabricated OTFTs S59

SI.7 1H and 13C NMR spectra S60-S75

SI.8 References S76

S2   

SI.1 – Materials and Methods

1,4,5,8-tetranitronaphthalene and 1,3,6,8-tetraazapyrene were synthesized according to

literature procedures.SI1 Solvents and reagents were obtained from commercial sources. THF

was distilled from potassium, NEt3 was distilled from CaH2 and 1,4-dioxane (anhydrous,

99.5%) and all other reagents were used as received.

The 1H- and 13C- NMR spectra were recorded either on a 400 MHz or a 600 MHz

spectrometer, using the residual solvent peak as internal standard. The detailed peak

assignment was accomplished by using 2D NMR experiments (HMBC and HSQC).

Cyclic voltammetry was performed with a standard commercial electrochemical analysor in a

three electrode single-component cell under argon. A platinum disk was used as the working

electrode, a platinum wire as the counter electrode and a saturated calomel electrode as the

reference electrode. All potentials were internally referenced to ferrocene. THF was used as

solvent that was dried over potassium. The supporting electrolyte was 0.1 M

tetrabutylammonium hexafluorophosphate.

Elemental analyses and mass spectrometry were carried out in the analytical laboratories of

the chemistry department at Heidelberg.

SI.2 - Computational Data

The DFT-B3PW91 functional has been employed to model the systems in this work with a 6-

31g(d,p) basis set for all atoms.SI2 All the calculations have been carried out with the

GAUSSIAN09 program package.SI3 Every optimization was followed by a frequency analysis

to verify the energy minima. Electron affinities were determined with a 6-311+g(d,p) basis set

by optimizing the structure of the anionic species, using the previously optimized geometry of

the neutral species as input and taking the difference of the total energies of both species.SI4

S3   

SI.3 - Crystallographic Tables

2a 2a 2b

formula C14H4F6N4 C14H4F6N4 C16H4F10N4

Mr 342.21 342.21 442.23

crystal system triclinic monoclinic triclinic

space group P -1 C 2/c P -1

a /Å 4.693(2) 14.229(6) 4.881(2)

b /Å 8.435(4) 9.395(4) 7.116(4)

c /Å 8.485(4) 19.200(9) 10.683(5)

/° 103.867(8) 86.32(1)

/° 102.721(17) 108.45(1) 83.46(1)

/° 99.713(7) 88.65(1)

V /Å3 309.2(3) 2435(2) 367.9(3)

Z 1 8 1

F000 170 1360 218

dc /Mg·m-3 1.838 1.867 1.996

/mm-1 0.178 0.181 0.212

max., min. transmission factors 0.8623, 0.7880 0.8623, 0.8165 0.8623, 0.7981

X-radiation, /Å Mo-K, 0.71073

range /° 2.6 to 32.0 2.2 to 32.2 1.9 to 32.0

index ranges h,k,l -6 ... 6, -12 ... 12, 0 ... 12 -21 ... 20, 0 ... 14, 0 ... 28 -7 ... 7, -10 ... 10, 0 ... 15

reflections measured 7514 30255 9120

unique [Rint] 2006 [0.0292] 4141 [0.0252] 2418 [0.0252]

observed [I≥2(I)] 1479 3673 2123

parameters refined 109 229 144

GooF on F2 1.036 1.052 1.072

R indices [F>4(F)] R(F), wR(F2) 0.0420, 0.1068 0.0373, 0.1069 0.0355, 0.1016

R indices (all data) R(F), wR(F2) 0.0628, 0.1191 0.0425, 0.1128 0.0407, 0.1079

largest residual peaks /e·Å-3 0.539, -0.256 0.637, -0.331 0.692, -0.271 a from ethyl acetate / hexane; b from methanol.  

S4   

 

2ca 2cb 3 · thf

formula C18H4F14N4 C18H4F14N4 C28H10F10N4O

Mr 542.25 542.25 608.40

crystal system monoclinic monoclinic monoclinic

space group P 21/n P 21/n C 2/c

a /Å 6.776(3) 5.469(4) 21.2334(7)

b /Å 5.063(2) 8.662(6) 12.6047(3)

c /Å 27.434(13) 19.040(14) 8.5605(2)

/° 96.026(8) 91.63(2) 92.620(3)

V /Å3 936.1(8) 902(1) 2288.8(1)

Z 2 2 4

F000 532 532 1216

dc /Mg·m-3 1.924 1.997 1.766

/mm-1 0.216 0.224 1.485

max., min. transmission factors 0.8623, 0.6993 0.9914, 0.9403 1.0000, 0.7259

Cu-K, 1.5418

range /° 1.5 to 29.6 2.1 to 28.3 4.1 to 72.5

index ranges h,k,l -9 ... 9, 0 ... 7, 0 ... 38 -7 ... 7, 0 ... 11, 0 ... 25 -22 ... 25, -15 ... 15, -10

... 10

reflections measured 20700 17408 35335

unique [Rint] 2602 [0.0752] 2245 [0.0627] 2260 [0.0534]

observed [I≥2(I)] 1830 1718 2084

parameters refined 163 163 178

GooF on F2 1.146 1.105 1.050

R indices [F>4(F)] R(F), wR(F2) 0.1002, 0.2536 0.0692, 0.1587 0.0295, 0.0806

R indices (all data) R(F), wR(F2) 0.1345, 0.2771 0.0889, 0.1679 0.0324, 0.0829

largest residual peaks /e·Å-3 1.015, -0.639 0.429, -0.405 0.203, -0.197

 

S5   

 

4a 4b 5 · 2 toluene

formula C14H2Br2F6N4 C16H2Br2F10N4 C38H16Br4F10N4

Mr 500.02 600.04 1038.19

crystal system triclinic Triclinic Monoclinic

space group P -1 P -1 P 21/c

a /Å 9.554(5) 4.959(2) 10.572(2)

b /Å 10.669(6) 8.559(4) 12.965(4)

c /Å 10.996(5) 10.259(5) 12.987(3)

/° 73.94(1) 90.869(11)

/° 81.90(1) 94.021(7) 107.308(6)

/° 84.01(1) 102.739(15)

V /Å3 1064(1) 423.4(4) 1699.5(7)

Z 3 1 2

F000 714 286 1004

dc /Mg·m-3 2.341 2.353 2.029

/mm-1 5.795 4.907 4.830

max., min. transmission factors 0.4346, 0.2715 0.8675, 0.5510 0.7461, 0.4853

Mo-K, 0.71073 Mo-K, 0.71073 Mo-K, 0.71073

range /° 1.9 to 32.3 2.4 to 32.1 2.0 to 30.5

index ranges h,k,l 13 ... 14, -14 ... 15, 0 ...

16 -7 ... 7, -12 ... 12, 0 ...

15 -15 ... 14, 0 ... 18, 0 ...

18

reflections measured 26515 10385 65782

unique [Rint] 6987 [0.0305] 2758 [0.0292] 5183 [0.1079]

observed [I≥2(I)] 6207 2500 3596

parameters refined 714 145 254

GooF on F2 1.105 1.062 1.190

R indices [F>4(F)] R(F), wR(F2) 0.0254, 0.0635 0.0281, 0.0683 0.0473, 0.1107

R indices (all data) R(F), wR(F2) 0.0309, 0.0657 0.0335, 0.0706 0.0816, 0.1181

largest residual peaks /e·Å-3 0.851, -0.598 0.727, -0.399 0.687, -0.520

 

S6   

 

6

formula C14Cl4F6N4

Mr 479.98

crystal system triclinic

space group P -1

a /Å 5.101(3)

b /Å 7.908(4)

c /Å 9.882(5)

/° 80.425(11)

/° 82.339(7)

/° 76.700(13)

V /Å3 380.7(3)

Z 1

F000 234

dc /Mg·m-3 2.094

/mm-1 0.856

max., min. transmission factors 0.7463, 0.6560

Mo-K, 0.71073

range /° 2.1 to 32.0

index ranges h,k,l -7 ... 7, -11 ... 11, 0 ...

14

reflections measured 9329

unique [Rint] 2489 [0.0334]

observed [I≥2(I)] 1924

parameters refined 127

GooF on F2 1.024

R indices [F>4(F)] R(F), wR(F2) 0.0379, 0.0828

R indices (all data) R(F), wR(F2) 0.0577, 0.0923

largest residual peaks /e·Å-3 0.590, -0.377

 

S7   

SI.4 - Cartesian coordinates of the optimized structures

with B3PW91/6-31g(d,p)

II

E = -679.672842 h

0 1 C -1.42294 1.21987 -0.01259 C -0.70148 0.00694 -0.00649 C -1.42215 -1.20711 -0.0123 C -0.68317 2.45713 -0.00558 C 0.70147 0.00751 0.00542 C 1.42181 1.22101 0.01185 C 0.68098 2.45766 0.00543 C 1.4233 -1.206 0.01162 C 0.6829 -2.44374 0.00519 C -0.68076 -2.44423 -0.00538 H -1.24874 -3.36902 -0.00996 H 1.25153 -3.36813 0.01021 H -1.25171 3.38159 -0.01031 H 1.24881 3.38254 0.01058 N 2.76378 1.21229 0.0248 N 2.76361 -1.19544 0.02472 N -2.76263 -1.19809 -0.02522 N -2.76473 1.2097 -0.02551 C -3.33669 0.00621 -0.03581 C 3.33671 0.00938 0.03484 H -4.40652 0.00558 -0.05531 H 4.40655 0.00965 0.05365

II Anion

E = -679.7306185 h

-1 2 C 1.42518 -1.21279 0.00006 C 0.70237 -0.00003 0.00002 C 1.42535 1.21278 0.00005 C 0.68194 -2.44856 0.00005 C -0.70237 -0.00003 -0.00005 C -1.42517 -1.21278 -0.00006 C -0.68194 -2.44855 -0.00002 C -1.42536 1.21279 -0.00006 C -0.68189 2.44862 -0.00002 C 0.68188 2.44861 0.00005 H 1.24975 3.37377 0.0001 H -1.24974 3.37379 -0.00004 H 1.24975 -3.37375 0.0001 H -1.24976 -3.37373 -0.00003 N -2.76778 -1.20584 -0.00002 N -2.76767 1.20591 -0.00002 N 2.76768 1.20592 0.00003 N 2.76778 -1.20583 0.00003 C 3.34652 -0.00013 -0.00023 C -3.34652 -0.00015 0.00017 H 4.43495 0.00004 0.00036 H -4.43495 0.00004 -0.00029

S8   

1a

E = -2517.8163106 h

0 1 C 1.20842 1.43108 0.0001 C 0. 0.70081 0.00014 C -1.20842 1.43106 0.00009 C 2.45562 0.68795 0.00013 C 0. -0.70081 0.00014 C 1.20842 -1.43108 0.0001 C 2.45562 -0.68795 0.00013 C -1.20842 -1.43106 0.00009 C -2.45561 -0.68796 0.00012 C -2.45561 0.68796 0.00012 N 1.20183 -2.76731 -0.00002 N -1.20182 -2.76732 -0.00005 N -1.20182 2.76732 -0.00005 N 1.20183 2.76731 -0.00002 C -0.00002 3.34922 -0.00008 C -0.00002 -3.34922 -0.00008 Cl -3.91657 -1.58751 -0.00006 Cl 3.91657 1.58752 -0.00007 Cl -3.91657 1.58751 -0.00006 Cl 3.91657 -1.58752 -0.00007 H 0. 4.43692 -0.00028 H 0. -4.43692 -0.00028

1a Anion

E = -2517.9014921 h -1 2 C 1.20842 1.43108 0.0001 C 0. 0.70081 0.00014 C -1.20842 1.43106 0.00009 C 2.45562 0.68795 0.00013 C 0. -0.70081 0.00014 C 1.20842 -1.43108 0.0001 C 2.45562 -0.68795 0.00013 C -1.20842 -1.43106 0.00009 C -2.45561 -0.68796 0.00012 C -2.45561 0.68796 0.00012 N 1.20183 -2.76731 -0.00002 N -1.20182 -2.76732 -0.00005 N -1.20182 2.76732 -0.00005 N 1.20183 2.76731 -0.00002 C -0.00002 3.34922 -0.00008 C -0.00002 -3.34922 -0.00008 Cl -3.91657 -1.58751 -0.00006 Cl 3.91657 1.58752 -0.00007 Cl -3.91657 1.58751 -0.00006 Cl 3.91657 -1.58752 -0.00007 H 0. 4.43692 -0.00028 H 0. -4.43692 -0.00028

S9   

1b

E = -10964.0080579 h

0 1 C -2.94009 -3.66791 -0.00045 C -3.65721 -2.4433 -0.00041 C -5.07634 -2.45264 -0.00038 C -1.50104 -3.62583 -0.00038 C -2.94842 -1.1975 -0.00019 C -1.52933 -1.18818 -0.00016 C -0.83022 -2.4467 -0.0003 C -3.66555 0.02715 -0.00003 C -5.10464 -0.01498 -0.00024 C -5.77546 -1.1941 -0.0004 N -5.75315 -3.67906 -0.00048 N -3.64856 -4.8764 -0.00045 N -2.95713 1.23559 0.00018 N -0.85249 0.03831 0. Br -6.03855 1.65113 -0.0001 Br -7.68484 -1.24277 -0.0013 Br -0.56736 -5.29207 -0.0009 Br 1.07917 -2.39821 -0.00079 C -5.04141 -4.8764 -0.00045 C -1.48716 1.22583 0.00018 H -0.93401 2.14176 0.00031 H -5.5705 -5.80643 -0.00042

1b Anion

E = -10964.0929881 h -1 2 C 1.2098 1.42974 0.00017 C 0.00011 0.70101 0.00009 C -1.20959 1.43007 0.00015 C 2.45496 0.68657 0.00013 C 0.00011 -0.70094 -0.00005 C 1.20968 -1.42962 -0.00011 C 2.45492 -0.68659 0. C -1.20961 -1.43005 -0.00014 C -2.45497 -0.68635 -0.0001 C -2.45498 0.68643 0.00004 N -1.20151 2.76657 0.00026 N 1.20144 2.76669 0.0003 N -1.20142 -2.7666 -0.00029 N 1.20127 -2.76663 -0.00025 Br -4.04155 -1.67359 -0.00024 Br -4.04159 1.67359 0.00008 Br 4.04158 1.67352 0.00023 Br 4.04148 -1.6736 -0.00011 C 0.00021 3.3483 0.00033 C 0.00009 -3.34816 -0.00033 H -0.00024 -4.43604 -0.00044 H -0.00009 4.43617 0.00049

2a

S10   

E = -1353.491011 h

0 1 C 1.02501 -1.48011 0.11006 C -0.16901 -0.71335 0.09182 C -1.42843 -1.36385 0.02308 C 2.28731 -0.79142 0.18031 C -0.10296 0.71753 0.14303 C 1.15643 1.368 0.21184 C 2.34981 0.56288 0.22865 C -1.29701 1.48431 0.12491 C -2.55932 0.79557 0.05452 C -2.62181 -0.5587 0.00611 H -3.58906 -1.08171 -0.04803 H -3.47425 1.40776 0.04144 H 3.20215 -1.40371 0.19317 H 3.31712 1.08581 0.28198 N 1.2028 2.76722 0.26118 N -1.21433 2.88173 0.17559 N -1.47481 -2.76299 -0.02621 N 0.94231 -2.8776 0.05959 C -0.29794 -3.50788 -0.00779 C -0.36705 -5.00559 -0.06118 C 0.02599 3.51205 0.24295 C 0.09509 5.00975 0.2965 F -0.47402 4.31557 1.30483 F 1.13385 5.70957 0.80021 F -0.81466 5.88758 -0.17708 F -1.40912 -4.2518 0.34918 F -0.03744 -5.84971 0.93948 F -0.7699 -5.74204 -1.11846

2a Anion

E = -1353.5728843 h

-1 2 C 1.42112 1.22307 0.0111 C 0.7016 0.0092 0.00485 C 1.42417 -1.20397 0.01085 C 0.67966 2.45922 0.00462 C -0.70135 0.00775 -0.00684 C -1.42353 1.22027 -0.01289 C -0.68453 2.45791 -0.00623 C -1.42133 -1.20674 -0.01265 C -0.67918 -2.44344 -0.00596 C 0.68444 -2.44215 0.00446 H 1.25363 -3.3662 0.00923 H -1.24661 -3.36858 -0.0106 H 1.24692 3.38446 0.00956 H -1.25357 3.38205 -0.01104 N -2.76534 1.20938 -0.02563 N -2.76172 -1.19831 -0.02541 N 2.76428 -1.19253 0.02358 N 2.76329 1.21529 0.02362 C 3.33672 0.01287 0.03329 C 4.86273 -0.00385 0.00342 C -3.33658 0.00554 -0.0358 C -4.8629 -0.00607 -0.00221 F -5.29058 -0.11894 1.26912 F -5.37332 1.11881 -0.51153 F -5.35336 -1.04048 -0.69469 F 5.34634 -0.98346 0.77726

S11   

F 5.37756 1.15473 0.42328 F 5.29223 -0.22023 -1.25349

2b

E = -1828.8816199 h

0 1 C 1.02501 -1.48011 0.11006 C -0.16901 -0.71335 0.09182 C -1.42843 -1.36385 0.02308 C 2.28731 -0.79142 0.18031 C -0.10296 0.71753 0.14303 C 1.15643 1.368 0.21184 C 2.34981 0.56288 0.22865 C -1.29701 1.48431 0.12491 C -2.55932 0.79557 0.05452 C -2.62181 -0.5587 0.00611 H -3.58906 -1.08171 -0.04803 H -3.47425 1.40776 0.04144 H 3.20215 -1.40371 0.19317 H 3.31712 1.08581 0.28198 N 1.2028 2.76722 0.26118 N -1.21433 2.88173 0.17559 N -1.47481 -2.76299 -0.02621 N 0.94231 -2.8776 0.05959 C -0.29794 -3.50788 -0.00779 C -0.36705 -5.00559 -0.06118 C 0.02599 3.51205 0.24295 C 0.09509 5.00975 0.2965 F -0.47402 4.31557 1.30483 F -0.81466 5.88758 -0.17708 F -1.40912 -4.2518 0.34918 F -0.03744 -5.84971 0.93948 C -0.8266 -5.84568 -1.26727 C 1.28004 5.80807 0.87111 F 0.8619 7.04183 1.22536 F 2.24813 5.91228 -0.06402 F 1.76886 5.16993 1.95569 F -1.99578 -6.45317 -0.97322 F 0.10752 -6.77915 -1.54757 F -0.99438 -5.04118 -2.3383

2b Anion

E = -1828.9658995 h

-1 2 C 1.42214 -1.17858 -0.47083 C 0.70146 0.03495 -0.44071 C 1.42274 1.24759 -0.39797 C 0.68126 -2.41528 -0.49982 C -0.70142 0.03536 -0.44065 C -1.4228 -1.17776 -0.47065 C -0.68264 -2.41489 -0.49972 C -1.42198 1.24842 -0.3979 C -0.68126 2.4846 -0.35403 C 0.68273 2.4842 -0.35405 H 1.25131 3.40803 -0.32121 H -1.2493 3.40876 -0.32118

S12   

H 1.24927 -3.3398 -0.52172 H -1.25119 -3.33908 -0.52154 N -2.76376 -1.16756 -0.46877 N -2.76327 1.2393 -0.39498 N 2.76401 1.23771 -0.39512 N 2.76311 -1.16916 -0.46907 C 3.33672 0.03462 -0.44122 C 4.86417 0.03022 -0.43165 C -3.33667 0.03657 -0.44098 C -4.86414 0.03274 -0.43148 F -5.33138 -1.01478 -1.14615 F -5.33857 1.17371 -0.97593 F 5.33899 1.16917 -0.98008 F 5.33114 -1.0199 -1.14259 C 5.46021 -0.07615 0.99096 C -5.4603 -0.07832 0.99074 F -6.79349 -0.04421 0.93883 F -5.03284 0.93877 1.74844 F -5.08109 -1.2255 1.56357 F 6.7935 -0.04687 0.93868 F 5.07714 -1.21946 1.56905 F 5.03636 0.94577 1.74409

2c

E = -2304.2670961 h

0 1 C 1.02501 -1.48011 0.11006 C -0.16901 -0.71335 0.09182 C -1.42843 -1.36385 0.02308 C 2.28731 -0.79142 0.18031 C -0.10296 0.71753 0.14303 C 1.15643 1.368 0.21184 C 2.34981 0.56288 0.22865 C -1.29701 1.48431 0.12491 C -2.55932 0.79557 0.05452 C -2.62181 -0.5587 0.00611 H -3.58906 -1.08171 -0.04803 H -3.47425 1.40776 0.04144 H 3.20215 -1.40371 0.19317 H 3.31712 1.08581 0.28198 N 1.2028 2.76722 0.26118 N -1.21433 2.88173 0.17559 N -1.47481 -2.76299 -0.02621 N 0.94231 -2.8776 0.05959 C -0.29794 -3.50788 -0.00779 C -0.36705 -5.00559 -0.06118 C 0.02599 3.51205 0.24295 C 0.09509 5.00975 0.2965 F -0.47402 4.31557 1.30483 F -0.81466 5.88758 -0.17708 F -1.40912 -4.2518 0.34918 F -0.03744 -5.84971 0.93948 C -0.8266 -5.84568 -1.26727 C 1.28004 5.80807 0.87111 F 2.24813 5.91228 -0.06402 F 1.76886 5.16993 1.95569 F -1.99578 -6.45317 -0.97322 F -0.99438 -5.04118 -2.3383 C 0.23898 -6.91053 -1.58702 C 0.80305 7.21547 1.27521 F -0.02673 -7.46655 -2.78816

S13   

F 0.21961 -7.8668 -0.6343 F 1.45819 -6.33171 -1.61889 F 0.44258 7.90285 0.17064 F 1.80463 7.86686 1.90371 F -0.25622 7.11045 2.10553

2c Anion

E = -2304.3530147 h

-1 2 C 1.6282 -0.51663 -1.26226 C 0.89122 0.50074 -0.6189 C 1.59556 1.5422 0.02321 C 0.90517 -1.58387 -1.90799 C -0.51121 0.47167 -0.60822 C -1.21529 -0.57541 -1.24126 C -0.45846 -1.61211 -1.89791 C -1.24813 1.48231 0.04608 C -0.5247 2.54451 0.69991 C 0.83885 2.57358 0.68849 H 1.3947 3.36734 1.17715 H -1.10546 3.31407 1.19822 H 1.48602 -2.35867 -2.39799 H -1.01409 -2.41034 -2.37949 N -2.55611 -0.5958 -1.22338 N -2.58881 1.44299 0.05744 N 2.93618 1.55952 0.01069 N 2.96889 -0.4831 -1.26263 C 3.52543 0.55149 -0.63321 C 5.05342 0.58954 -0.6393 C -3.14507 0.41563 -0.58403 C -4.67365 0.36918 -0.5689 F -5.12987 -0.09575 -1.75293 F -5.17488 1.60814 -0.36992 F 5.46834 1.86887 -0.79069 F 5.53609 -0.14084 -1.66681 C 5.73168 0.07713 0.66095 C -5.21829 -0.55511 0.55095 F -4.60364 -0.23212 1.71201 F -4.91422 -1.83097 0.23774 F 7.06663 0.20133 0.50691 F 5.33367 0.85459 1.68981 C 5.44768 -1.38901 1.05534 C -6.74493 -0.481 0.80037 F 6.13408 -1.68741 2.16103 F 5.80663 -2.22962 0.08591 F 4.14146 -1.55296 1.31156 F -7.08026 0.69419 1.334 F -7.09199 -1.45084 1.65265 F -7.41953 -0.65183 -0.33934

3

E = -2133.5075375 h

0 1 C 1.42449 1.02204 0.6509 C 0.70121 -0.00001 0.00002

S14   

C 1.42449 -1.02204 -0.65087 C 0.68188 2.06533 1.31552 C -0.70122 0. 0.00003 C -1.42449 1.02203 0.65092 C -0.68186 2.06532 1.31553 C -1.4245 -1.02204 -0.65086 C -0.68188 -2.06534 -1.31548 C 0.68186 -2.06533 -1.31548 H 1.2494 -2.84604 -1.81193 H -1.24942 -2.84604 -1.81192 H 1.24942 2.84603 1.81196 H -1.2494 2.84603 1.81198 N -2.76403 1.0128 0.65193 N -2.76404 -1.01281 -0.65186 N 2.76403 -1.01281 -0.65188 N 2.76404 1.0128 0.65189 C 3.35397 0. 0.00001 C -3.35397 0. 0.00004 C 4.83992 0. -0.00001 C 5.56676 1.15548 -0.30387 C 5.56677 -1.15549 0.30385 C 6.95757 1.16368 -0.30886 C 6.95758 -1.16367 0.30882 C 7.65459 0. -0.00003 C -4.8399 0. 0.00003 C -5.56677 -1.15552 0.30365 C -5.56676 1.15553 -0.30362 C -6.95758 -1.16371 0.3086 C -6.95757 1.16373 -0.30864 C -7.65462 0.00001 -0.00003 F 4.94208 2.28282 -0.63928 F 7.62378 2.27492 -0.61954 F 8.98384 0.00001 -0.00004 F 7.62381 -2.27491 0.6195 F 4.94211 -2.28282 0.63931 F -4.9421 2.28294 -0.63882 F -7.62375 2.27505 -0.61912 F -8.98386 0. -0.00006 F -7.62376 -2.27504 0.61904 F -4.94212 -2.28295 0.63883

3 Anion

E = -2133.5854128 h -1 2 C 1.42449 1.02204 0.6509 C 0.70121 -0.00001 0.00002 C 1.42449 -1.02204 -0.65087 C 0.68188 2.06533 1.31552 C -0.70122 0. 0.00003 C -1.42449 1.02203 0.65092 C -0.68186 2.06532 1.31553 C -1.4245 -1.02204 -0.65086 C -0.68188 -2.06534 -1.31548 C 0.68186 -2.06533 -1.31548 H 1.2494 -2.84604 -1.81193 H -1.24942 -2.84604 -1.81192 H 1.24942 2.84603 1.81196 H -1.2494 2.84603 1.81198 N -2.76403 1.0128 0.65193 N -2.76404 -1.01281 -0.65186 N 2.76403 -1.01281 -0.65188 N 2.76404 1.0128 0.65189

S15   

C 3.35397 0. 0.00001 C -3.35397 0. 0.00004 C 4.83992 0. -0.00001 C 5.56676 1.15548 -0.30387 C 5.56677 -1.15549 0.30385 C 6.95757 1.16368 -0.30886 C 6.95758 -1.16367 0.30882 C 7.65459 0. -0.00003 C -4.8399 0. 0.00003 C -5.56677 -1.15552 0.30365 C -5.56676 1.15553 -0.30362 C -6.95758 -1.16371 0.3086 C -6.95757 1.16373 -0.30864 C -7.65462 0.00001 -0.00003 F 4.94208 2.28282 -0.63928 F 7.62378 2.27492 -0.61954 F 8.98384 0.00001 -0.00004 F 7.62381 -2.27491 0.6195 F 4.94211 -2.28282 0.63931 F -4.9421 2.28294 -0.63882 F -7.62375 2.27505 -0.61912 F -8.98386 0. -0.00006 F -7.62376 -2.27504 0.61904 F -4.94212 -2.28295 0.63883

4a

E = -6495.6588168 h

0 1 C 1.78105 -0.59526 0.00017 C 0.65307 0.25485 -0.0001 C 0.87029 1.65019 -0.00012 C 1.53941 -2.02604 0.00024 C -0.65306 -0.25484 -0.00028 C -0.87031 -1.65018 -0.00024 C 0.26909 -2.52648 0.00004 C -1.78103 0.59527 -0.00046 C -1.53941 2.02604 -0.00046 C -0.26908 2.52649 -0.00031 N 2.11633 2.14881 0.00005 N 3.01278 -0.082 0.00035 N -3.01278 0.08199 -0.00062 N -2.11631 -2.14881 -0.00044 Br -3.01787 3.17607 -0.00069 Br 3.01788 -3.17607 0.00061 C 3.09658 1.24982 0.00026 C -3.09659 -1.24979 -0.00069 H -0.08639 3.59517 -0.00033 H 0.0864 -3.59517 0.00009 C -4.52666 -1.78459 -0.00029 C 4.52666 1.78459 0.00055 F -5.18513 -1.3423 -1.08257 F -4.55866 -3.11783 -0.00521 F 4.55866 3.11783 -0.00026 F 5.18361 1.34569 -1.08407 F 5.18262 1.34703 1.08632 F -5.18115 -1.35046 1.08778

S16   

4a Anion

E = -6495.7551009

-1 2 C 1.78105 -0.59526 0.00017 C 0.65307 0.25485 -0.0001 C 0.87029 1.65019 -0.00012 C 1.53941 -2.02604 0.00024 C -0.65306 -0.25484 -0.00028 C -0.87031 -1.65018 -0.00024 C 0.26909 -2.52648 0.00004 C -1.78103 0.59527 -0.00046 C -1.53941 2.02604 -0.00046 C -0.26908 2.52649 -0.00031 N 2.11633 2.14881 0.00005 N 3.01278 -0.082 0.00035 N -3.01278 0.08199 -0.00062 N -2.11631 -2.14881 -0.00044 Br -3.01787 3.17607 -0.00069 Br 3.01788 -3.17607 0.00061 C 3.09658 1.24982 0.00026 C -3.09659 -1.24979 -0.00069 H -0.08639 3.59517 -0.00033 H 0.0864 -3.59517 0.00009 C -4.52666 -1.78459 -0.00029 C 4.52666 1.78459 0.00055 F -5.18513 -1.3423 -1.08257 F -4.55866 -3.11783 -0.00521 F 4.55866 3.11783 -0.00026 F 5.18361 1.34569 -1.08407 F 5.18262 1.34703 1.08632 F -5.18115 -1.35046 1.08778

4b

E = -6971.0494489 h

0 1 C -2.94009 -3.66791 -0.00045 C -3.65721 -2.4433 -0.00041 C -5.07634 -2.45264 -0.00038 C -1.50104 -3.62583 -0.00038 C -2.94842 -1.1975 -0.00019 C -1.52933 -1.18818 -0.00016 C -0.83022 -2.4467 -0.0003 C -3.66555 0.02715 -0.00003 C -5.10464 -0.01498 -0.00024 C -5.77546 -1.1941 -0.0004 N -5.75315 -3.67906 -0.00048 N -3.64856 -4.8764 -0.00045 N -2.95713 1.23559 0.00018 N -0.85249 0.03831 0. Br -6.03855 1.65113 -0.0001 Br -0.56736 -5.29207 -0.0009 C -5.04141 -4.8764 -0.00045 C -1.48716 1.22583 0.00018 H -6.84511 -1.22136 -0.0009 H 0.23944 -2.41954 -0.00057 C -0.69103 2.54408 0.00037 C -5.80291 -6.21495 -0.00041

S17   

F -1.005 3.25923 1.1015 F 0.63112 2.27129 0.00282 F -7.13172 -5.97671 -0.00029 F -5.47237 -6.92075 -1.10272 C -1.04498 3.35771 -1.25833 C -5.42563 -7.02013 1.25694 F -2.24365 3.95439 -1.08613 F -0.09964 4.29873 -1.46645 F -1.10192 2.53325 -2.32582 F -5.36385 -6.19099 2.32053 F -6.35901 -7.96959 1.48015 F -4.2233 -7.60566 1.07238

4b Anion

E = -6971.1476444 h

-1 2 C -1.58964 -0.98844 -0.13802 C -0.68752 0.09634 -0.09704 C -1.20588 1.40119 -0.25525 C -1.04094 -2.32147 0.02715 C 0.68755 -0.09611 0.09698 C 1.2059 -1.40096 0.25518 C 0.29789 -2.51453 0.21319 C 1.58967 0.98867 0.13797 C 1.04096 2.3217 -0.0272 C -0.29786 2.51476 -0.21324 N -2.51906 1.59562 -0.44199 N -2.89537 -0.77593 -0.32324 N 2.8954 0.77617 0.32316 N 2.51909 -1.59538 0.44192 Br 2.21652 3.7788 0.02286 Br -2.21648 -3.77858 -0.0229 C -3.26911 0.49505 -0.47058 C 3.26914 -0.49482 0.47051 H -0.71024 3.50997 -0.33551 H 0.71026 -3.50974 0.33545 C 4.76566 -0.72415 0.67563 C -4.76565 0.72433 -0.67563 F 5.32533 0.35271 1.265 F 4.96406 -1.80357 1.46333 F -4.96418 1.80419 -1.46267 F -5.32513 -0.35228 -1.26568 C 5.52503 -0.9734 -0.64825 C -5.52512 0.97268 0.64837 F 5.36939 0.07081 -1.4699 F 6.82639 -1.14439 -0.41029 F 5.04962 -2.06735 -1.25297 F -5.04967 2.06623 1.25383 F -6.82645 1.14391 0.41042 F -5.36962 -0.07206 1.46935

4c

E = -7446.4341683 h

0 1

S18   

C -2.94009 -3.66791 -0.00045 C -3.65721 -2.4433 -0.00041 C -5.07634 -2.45264 -0.00038 C -1.50104 -3.62583 -0.00038 C -2.94842 -1.1975 -0.00019 C -1.52933 -1.18818 -0.00016 C -0.83022 -2.4467 -0.0003 C -3.66555 0.02715 -0.00003 C -5.10464 -0.01498 -0.00024 C -5.77546 -1.1941 -0.0004 N -5.75315 -3.67906 -0.00048 N -3.64856 -4.8764 -0.00045 N -2.95713 1.23559 0.00018 N -0.85249 0.03831 0. Br -6.03855 1.65113 -0.0001 Br -0.56736 -5.29207 -0.0009 C -5.04141 -4.8764 -0.00045 C -1.48716 1.22583 0.00018 H -6.84511 -1.22136 -0.0009 H 0.23944 -2.41954 -0.00057 C -0.69103 2.54408 0.00037 C -5.80291 -6.21495 -0.00041 F -1.005 3.25923 1.1015 F 0.63112 2.27129 0.00282 F -7.13172 -5.97671 -0.00029 F -5.47237 -6.92075 -1.10272 C -1.04498 3.35771 -1.25833 C -5.42563 -7.02013 1.25694 F -2.24365 3.95439 -1.08613 F -0.09964 4.29873 -1.46645 F -6.35901 -7.96959 1.48015 F -4.2233 -7.60566 1.07238 C -1.10994 2.41721 -2.47606 C -5.35515 -6.0743 2.47022 F -6.3102 -5.12675 2.3582 F -5.55282 -6.78068 3.60356 F -4.14066 -5.48632 2.51248 F -2.32763 1.83705 -2.53211 F -0.16192 1.46325 -2.35894 F -0.89721 3.12689 -3.6046

4c Anion

E = -7446.533975 h

-1 2 C -1.46051 -1.16611 -0.17641 C -0.68072 0.01072 -0.16655 C -1.30945 1.2302 -0.50334 C -0.79959 -2.40943 0.17376 C 0.68075 -0.01053 0.16652 C 1.30947 -1.23001 0.5033 C 0.52669 -2.43546 0.49707 C 1.46055 1.16631 0.17637 C 0.79961 2.40963 -0.1738 C -0.52667 2.43566 -0.4971 N -2.61102 1.26101 -0.82283 N -2.7551 -1.11625 -0.50002 N 2.75513 1.11645 0.49999 N 2.61105 -1.26083 0.82278 Br 1.81131 3.98578 -0.17059 Br -1.81127 -3.98559 0.17057 C -3.23973 0.0878 -0.80392

S19   

C 3.23976 -0.08762 0.80387 H -1.02283 3.36349 -0.75818 H 1.02284 -3.3633 0.75815 C 4.72137 -0.11701 1.17967 C -4.72133 0.11718 -1.17975 F 5.01008 0.96856 1.93311 F 4.99636 -1.2249 1.89933 F -4.99639 1.22517 -1.89923 F -5.00993 -0.96827 -1.93342 C 5.7077 -0.07742 -0.01996 C -5.70772 0.07726 0.01984 F 5.50765 1.06728 -0.70504 F 6.96128 -0.07971 0.47862 F -6.96128 0.07971 -0.47881 F -5.50775 -1.06766 0.70457 C 5.60955 -1.24227 -1.02968 C -5.60962 1.24179 1.02993 F -5.78694 2.41891 0.43158 F -6.54557 1.089 1.96876 F -4.40721 1.2338 1.62531 F 4.40711 -1.23444 -1.625 F 5.78686 -2.41919 -0.43094 F 6.54548 -1.08979 -1.96859

5

E = -12417.8414165 h 0 1 C 1.42449 1.02204 0.6509 C 0.70121 -0.00001 0.00002 C 1.42449 -1.02204 -0.65087 C 0.68188 2.06533 1.31552 C -0.70122 0. 0.00003 C -1.42449 1.02203 0.65092 C -0.68186 2.06532 1.31553 C -1.4245 -1.02204 -0.65086 C -0.68188 -2.06534 -1.31548 C 0.68186 -2.06533 -1.31548 N -2.76403 1.0128 0.65193 N -2.76404 -1.01281 -0.65186 N 2.76403 -1.01281 -0.65188 N 2.76404 1.0128 0.65189 C 3.35397 0. 0.00001 C -3.35397 0. 0.00004 C 4.83992 0. -0.00001 C 5.56676 1.15548 -0.30387 C 5.56677 -1.15549 0.30385 C 6.95757 1.16368 -0.30886 C 6.95758 -1.16367 0.30882 C 7.65459 0. -0.00003 C -4.8399 0. 0.00003 C -5.56677 -1.15552 0.30365 C -5.56676 1.15553 -0.30362 C -6.95758 -1.16371 0.3086 C -6.95757 1.16373 -0.30864 C -7.65462 0.00001 -0.00003 F 4.94208 2.28282 -0.63928 F 7.62378 2.27492 -0.61954 F 8.98384 0.00001 -0.00004 F 7.62381 -2.27491 0.6195 F 4.94211 -2.28282 0.63931 F -4.9421 2.28294 -0.63882 F -7.62375 2.27505 -0.61912

S20   

F -8.98386 0. -0.00006 F -7.62376 -2.27504 0.61904 F -4.94212 -2.28295 0.63883 Br -1.68059 3.43916 2.18915 Br 1.68061 3.43916 2.18913 Br 1.68059 -3.43917 -2.18911 Br -1.68061 -3.43917 -2.18909

5 Anion

E = -12417.9402562 h

-1 2 C -1.42958 -1.20325 0.11278 C -0.69988 0. -0.00002 C -1.42958 1.20325 -0.11281 C -0.68669 -2.44408 0.2301 C 0.69988 0. -0.00001 C 1.42958 -1.20325 0.11279 C 0.68669 -2.44408 0.23011 C 1.42958 1.20325 -0.1128 C 0.68669 2.44408 -0.23012 C -0.68669 2.44408 -0.23013 N 2.76321 -1.19417 0.11718 N 2.76321 1.19417 -0.11719 N -2.76321 1.19417 -0.1172 N -2.76321 -1.19417 0.11716 C -3.35751 0. -0.00003 C 3.35751 0. -0.00001 C -4.84111 0. -0.00001 C -5.56676 -0.89982 -0.78808 C -5.56674 0.89982 0.78808 C -6.95733 -0.90392 -0.79633 C -6.9573 0.90393 0.79636 C -7.65364 0. 0.00003 C 4.84111 0. 0. C 5.56675 0.89986 0.78804 C 5.56675 -0.89986 -0.78803 C 6.95731 0.90397 0.79631 C 6.95732 -0.90397 -0.79628 C 7.65364 0. 0.00001 F -4.9407 -1.75724 -1.59036 F -7.62387 -1.75851 -1.57007 F -8.98197 0. 0.00004 F -7.62383 1.75852 1.57012 F -4.94066 1.75724 1.59035 F 4.94069 -1.75732 -1.59027 F 7.62386 -1.7586 -1.56999 F 8.98197 0. 0.00002 F 7.62384 1.75859 1.57002 F 4.94068 1.75732 1.59028 Br 1.67297 -4.02208 0.37938 Br -1.67298 -4.02208 0.37937 Br -1.67297 4.02208 -0.37939 Br 1.67298 4.02208 -0.37938

6

E = -3191.6306416 h

0 1

S21   

C -1.42294 1.21987 -0.01259 C -0.70148 0.00694 -0.00649 C -1.42215 -1.20711 -0.0123 C -0.68317 2.45713 -0.00558 C 0.70147 0.00751 0.00542 C 1.42181 1.22101 0.01185 C 0.68098 2.45766 0.00543 C 1.4233 -1.206 0.01162 C 0.6829 -2.44374 0.00519 C -0.68076 -2.44423 -0.00538 N 2.76378 1.21229 0.0248 N 2.76361 -1.19544 0.02472 N -2.76263 -1.19809 -0.02522 N -2.76473 1.2097 -0.02551 C -3.33669 0.00621 -0.03581 C -4.86294 -0.0047 -0.00278 C 3.33671 0.00938 0.03484 C 4.86295 -0.00373 0.00305 F 5.29155 -0.16467 -1.2626 F 5.37473 1.13805 0.47104 F 5.35096 -1.01315 0.73391 F -5.35375 -1.03532 -0.70058 F -5.3729 1.123 -0.50645 F -5.29058 -0.12384 1.26792 Cl -1.60515 3.9563 -0.01325 Cl 1.60182 3.95752 0.01378 Cl -1.60183 -3.94395 -0.0128 Cl 1.60503 -3.94281 0.01333

6 Anion

E = -3191.7355796 h

-1 2 C -1.42851 1.20903 -0.01187 C -0.69998 -0.00012 -0.00572 C -1.42792 -1.20961 -0.01188 C -0.68919 2.4582 -0.00509 C 0.69998 0.00022 0.0057 C 1.42792 1.2097 0.01187 C 0.68801 2.45852 0.0051 C 1.42852 -1.20894 0.01185 C 0.68918 -2.45811 0.00508 C -0.688 -2.45843 -0.0051 N 2.76325 1.20063 0.02474 N 2.76378 -1.19919 0.02472 N -2.76324 -1.20053 -0.02476 N -2.76379 1.19929 -0.02475 C -3.33971 -0.00078 -0.03516 C -4.86731 -0.0007 -0.00041 C 3.33971 0.00088 0.03512 C 4.86731 0.00059 0.00042 F 5.28816 -0.00697 -1.27665 F 5.36384 1.08751 0.59649 F 5.36317 -1.07985 0.60898 F -5.36366 -1.08661 -0.59853 F -5.36339 1.08078 -0.60691 F -5.28812 0.00434 1.27668 Cl -1.58908 3.91487 -0.01165 Cl 1.58721 3.91562 0.01164 Cl -1.58721 -3.91553 -0.01163 Cl 1.58908 -3.91478 0.01164

S22   

7a

E = -1972.3493537 h

0 1 C -2.94009 -3.66791 -0.00045 C -3.65721 -2.4433 -0.00041 C -5.07634 -2.45264 -0.00038 C -1.50104 -3.62583 -0.00038 C -2.94842 -1.1975 -0.00019 C -1.52933 -1.18818 -0.00016 C -0.83022 -2.4467 -0.0003 C -3.66555 0.02715 -0.00003 C -5.10464 -0.01498 -0.00024 C -5.77546 -1.1941 -0.0004 N -5.75315 -3.67906 -0.00048 N -3.64856 -4.8764 -0.00045 N -2.95713 1.23559 0.00018 N -0.85249 0.03831 0. C -5.04141 -4.8764 -0.00045 C -1.48716 1.22583 0.00018 H -0.93401 2.14176 0.00031 H -5.5705 -5.80643 -0.00042 C -5.85764 1.32837 -0.00013 C -6.19887 1.93669 1.20779 C -6.19801 1.93717 -1.2084 C -6.88085 3.15381 1.20766 H -5.93034 1.45708 2.16015 C -6.88024 3.15377 -1.2086 H -5.92847 1.45751 -2.16063 C -7.22206 3.76207 -0.00016 H -7.15041 3.63277 2.16012 H -7.14933 3.63357 -2.1608 C -7.31496 -1.23334 -0.00113 C -8.01174 -1.25106 -1.20932 C -8.01269 -1.25171 1.20686 C -9.40644 -1.28684 -1.20975 H -7.46187 -1.23692 -2.16147 C -9.40707 -1.287 1.20651 H -7.46303 -1.23815 2.15932 C -10.10414 -1.30421 -0.00221 H -9.9555 -1.30002 -2.16243 H -9.95739 -1.30077 2.15848 C -0.74823 -4.96929 -0.0008 C -0.40713 -5.57816 1.20687 C -0.40788 -5.57763 -1.20931 C 0.27468 -6.79537 1.20627 H -0.67564 -5.09891 2.15943 C 0.27418 -6.79432 -1.20999 H -0.67732 -5.09753 -2.16135 C 0.61586 -7.40317 -0.00179 H 0.54413 -7.27476 2.15854 H 0.54324 -7.27376 -2.16238 C 0.70929 -2.40761 -0.0007 C 1.40632 -2.3896 -1.20874 C 1.40677 -2.38966 1.20744 C 2.80103 -2.35396 -1.20887 H 0.85665 -2.40341 -2.161 C 2.80115 -2.3545 1.20739 H 0.85691 -2.40345 2.15978 C 3.49848 -2.33701 -0.00118 H 3.35028 -2.34055 -2.16144

S23   

H 3.35128 -2.34108 2.15948 C -11.64365 -1.34282 -0.00258 C -7.97561 5.10511 -0.00041 C 5.03799 -2.29855 -0.00122 C 1.36923 -8.74632 -0.00257 N -12.78989 -1.37156 -0.00285 N 1.93014 -9.74635 -0.00315 N 6.18424 -2.26992 -0.00124 N -8.53666 6.10507 -0.0006

7a Anion

E = -1972.4527704 h

-1 2 C -1.21477 -1.41983 0.00885 C -0.00001 -0.70012 0.00007 C 1.21474 -1.41984 -0.0085 C -2.4777 -0.69188 0.00359 C 0. 0.70008 -0.00014 C -1.21474 1.41979 -0.00885 C -2.47769 0.69187 -0.00351 C 1.21475 1.4198 0.00839 C 2.47769 0.69184 0.00327 C 2.47769 -0.6919 -0.00344 N 1.20111 -2.76072 -0.00173 N -1.20117 -2.76071 0.0025 N 1.20117 2.76066 0.0016 N -1.2011 2.76067 -0.00248 C -0.00004 -3.3427 0.00035 C 0.00004 3.34262 -0.00047 H 0.00006 4.43085 -0.00067 H -0.00006 -4.43093 0.00081 C 3.73264 1.48884 -0.0419 C 4.64643 1.31611 -1.08982 C 4.00989 2.44138 0.94856 C 5.81287 2.06621 -1.14766 H 4.43818 0.59081 -1.86963 C 5.17886 3.18747 0.90802 H 3.30402 2.59733 1.75678 C 6.08826 3.00512 -0.14381 H 6.51328 1.93081 -1.96494 H 5.39228 3.91683 1.68225 C 3.73265 -1.48887 0.04166 C 4.64628 -1.31647 1.08977 C 4.01009 -2.44105 -0.94909 C 5.81274 -2.06654 1.14752 H 4.43789 -0.59145 1.8698 C 5.17908 -3.18711 -0.90864 H 3.30435 -2.59673 -1.75749 C 6.08831 -3.00509 0.14339 H 6.51302 -1.93141 1.96496 H 5.39266 -3.91618 -1.6831 C -3.73267 -1.48887 -0.04128 C -4.64634 -1.31667 -1.08938 C -4.01003 -2.4409 0.94964 C -5.81281 -2.06676 -1.14694 H -4.438 -0.5918 -1.86956 C -5.17903 -3.18696 0.90939 H -3.30424 -2.59645 1.75801 C -6.08832 -3.00512 -0.14262 H -6.51313 -1.93178 -1.96436 H -5.39255 -3.91591 1.68398

S24   

C -3.73263 1.48889 0.0415 C -4.64638 1.3164 1.0895 C -4.0099 2.44119 -0.94917 C -5.81282 2.0665 1.14718 H -4.4381 0.5913 1.86948 C -5.17888 3.18727 -0.90878 H -3.30405 2.59695 -1.75745 C -6.08825 3.00516 0.14311 H -6.51321 1.93131 1.96452 H -5.39234 3.91644 -1.68318 C 7.29204 -3.77805 0.19298 C 7.29196 3.7781 -0.19349 C -7.29196 3.77815 0.19264 C -7.29205 -3.77809 -0.192 N 8.27022 -4.40643 0.23181 N -8.27022 -4.4065 -0.23063 N -8.27012 4.40656 0.23138 N 8.27012 4.4065 -0.23239

7b

E = -2951.2078939 h

0 1 C -2.94009 -3.66791 -0.00045 C -3.65721 -2.4433 -0.00041 C -5.07634 -2.45264 -0.00038 C -1.50104 -3.62583 -0.00038 C -2.94842 -1.1975 -0.00019 C -1.52933 -1.18818 -0.00016 C -0.83022 -2.4467 -0.0003 C -3.66555 0.02715 -0.00003 C -5.10464 -0.01498 -0.00024 C -5.77546 -1.1941 -0.0004 N -5.75315 -3.67906 -0.00048 N -3.64856 -4.8764 -0.00045 N -2.95713 1.23559 0.00018 N -0.85249 0.03831 0. C -5.04141 -4.8764 -0.00045 C -1.48716 1.22583 0.00018 H -0.93401 2.14176 0.00031 H -5.5705 -5.80643 -0.00042 C -5.85764 1.32837 -0.00013 C -6.19887 1.93669 1.20779 C -6.19801 1.93717 -1.2084 C -6.88085 3.15381 1.20766 H -5.93034 1.45708 2.16015 C -6.88024 3.15377 -1.2086 H -5.92847 1.45751 -2.16063 C -7.22206 3.76207 -0.00016 H -7.15041 3.63277 2.16012 H -7.14933 3.63357 -2.1608 C -7.31496 -1.23334 -0.00113 C -8.01174 -1.25106 -1.20932 C -8.01269 -1.25171 1.20686 C -9.40644 -1.28684 -1.20975 H -7.46187 -1.23692 -2.16147 C -9.40707 -1.287 1.20651 H -7.46303 -1.23815 2.15932 C -10.10414 -1.30421 -0.00221 H -9.9555 -1.30002 -2.16243 H -9.95739 -1.30077 2.15848

S25   

C -0.74823 -4.96929 -0.0008 C -0.40713 -5.57816 1.20687 C -0.40788 -5.57763 -1.20931 C 0.27468 -6.79537 1.20627 H -0.67564 -5.09891 2.15943 C 0.27418 -6.79432 -1.20999 H -0.67732 -5.09753 -2.16135 C 0.61586 -7.40317 -0.00179 H 0.54413 -7.27476 2.15854 H 0.54324 -7.27376 -2.16238 C 0.70929 -2.40761 -0.0007 C 1.40632 -2.3896 -1.20874 C 1.40677 -2.38966 1.20744 C 2.80103 -2.35396 -1.20887 H 0.85665 -2.40341 -2.161 C 2.80115 -2.3545 1.20739 H 0.85691 -2.40345 2.15978 C 3.49848 -2.33701 -0.00118 H 3.35028 -2.34055 -2.16144 H 3.35128 -2.34108 2.15948 C -7.97561 5.10511 -0.00041 F -7.08595 6.12028 0.02033 F -8.76655 5.17754 1.09123 F -8.73492 5.19487 -1.11302 F -12.34775 -0.19103 0.00827 F -12.28913 -2.52846 -0.01374 C -11.64365 -1.34282 -0.00258 C 1.36923 -8.74632 -0.00257 C 5.03799 -2.29855 -0.00122 F 5.45607 -1.01492 0.00056 F 5.50368 -2.92196 -1.10439 F 5.50381 -2.92506 1.10015 F 0.47927 -9.76144 -0.003 F 2.14454 -8.82805 1.09957 F 2.14429 -8.8269 -1.10497 F -12.99323 -1.37666 -0.00289

7b Anion

E = -2951.2969566 h

-1 2 C -1.22588 -1.42734 0.02659 C -0.00884 -0.71109 0.01784 C 1.20465 -1.43343 0.01573 C -2.48691 -0.69666 0.01366 C -0.00543 0.68915 0.01082 C -1.21885 1.41142 -0.00311 C -2.4835 0.68694 0.00187 C 1.21152 1.40554 0.01737 C 2.47257 0.67484 0.01661 C 2.46925 -0.70885 0.0175 N 1.18745 -2.77458 0.03023 N -1.21544 -2.76861 0.0278 N 1.20104 2.74675 0.00477 N -1.20181 2.7526 -0.00269 C -0.01545 -3.3526 0.03289 C 0.00106 3.33074 -0.00141 H 0.00371 4.41912 -0.00615 H -0.01818 -4.44098 0.03981 C 3.7301 1.46848 -0.03201 C 4.63911 1.295 -1.08215

S26   

C 4.01766 2.4147 0.96066 C 5.80999 2.04228 -1.13857 H 4.42744 0.56952 -1.86099 C 5.19298 3.15328 0.91498 H 3.31764 2.56911 1.77455 C 6.09115 2.96969 -0.13688 H 6.50895 1.89884 -1.95544 H 5.41499 3.87184 1.6971 C 3.72388 -1.50711 0.06387 C 4.63525 -1.33815 1.11321 C 4.00446 -2.45627 -0.9275 C 5.80415 -2.0881 1.16587 H 4.42423 -0.61718 1.89644 C 5.17805 -3.1985 -0.88523 H 3.29831 -2.61407 -1.73537 C 6.08014 -3.01642 0.16287 H 6.49876 -1.95669 1.9887 H 5.3885 -3.92921 -1.65896 C -3.74434 -1.49051 -0.0336 C -4.64832 -1.32538 -1.08945 C -4.03689 -2.4286 0.96527 C -5.81906 -2.07284 -1.14547 H -4.43256 -0.60642 -1.87322 C -5.21221 -3.16728 0.91993 H -3.34086 -2.5766 1.78375 C -6.1053 -2.99202 -0.13763 H -6.51388 -1.93611 -1.96705 H -5.43817 -3.8794 1.70677 C -3.73728 1.48697 0.04005 C -4.65002 1.32631 1.08902 C -4.01762 2.42657 -0.96091 C -5.81738 2.07967 1.13624 H -4.44386 0.60629 1.87441 C -5.18951 3.17114 -0.92442 H -3.31471 2.57111 -1.77411 C -6.09142 3.00033 0.12637 H -6.51904 1.9464 1.95255 H -5.40588 3.88433 -1.71299 C 7.33119 3.81628 -0.21494 F 7.08108 5.00691 -0.79774 F 8.30136 3.22121 -0.93379 F 7.83295 4.07763 1.00801 F 8.34802 -3.11183 -0.47615 F 7.81901 -3.98519 1.43482 C 7.3758 -3.77873 0.18018 C -7.34515 -3.8389 -0.21534 C -7.32761 3.85336 0.19455 F -7.07507 5.04444 0.77529 F -8.30483 3.26517 0.9097 F -7.82113 4.11335 -1.03197 F -7.09436 -5.03073 -0.7953 F -8.31432 -3.24532 -0.93697 F -7.84872 -4.09746 1.0074 F 7.25713 -4.98221 -0.41247

8a

E = -1999.8362374 h

0 1 C -1.76108 -0.65857 0.00233 C -0.34785 -0.60839 0.00193 C 0.37289 -1.8218 0.00867

S27   

C -2.51163 0.59356 0.00461 C 0.34786 0.60846 0.00194 C -0.37287 1.82186 0.00879 C -1.80632 1.77352 0.00579 C 1.76109 0.65863 0.00223 C 2.51165 -0.59349 0.00446 C 1.80633 -1.77346 0.00562 N -0.27074 -3.00171 0.00568 N -2.37787 -1.8464 0.01359 N 2.37788 1.84647 0.01354 N 0.27075 3.00177 0.00579 C -1.5975 -2.92825 0.00516 C 1.59753 2.9283 0.00513 H 2.32561 -2.72601 -0.02254 H -2.32559 2.72609 -0.02234 C 2.36254 4.24856 0.01805 C -2.36258 -4.24846 0.01811 F 3.30679 4.24913 -0.93686 F 1.55897 5.29268 -0.1888 F -1.55893 -5.29272 -0.18775 F -3.30613 -4.24934 -0.93751 F -2.97645 -4.41591 1.20125 F 2.97554 4.41653 1.20158 C 3.99122 -0.61251 0.01834 C 4.7528 0.25886 -0.77541 C 4.66054 -1.55139 0.81833 C 6.13949 0.17612 -0.78146 H 4.25949 1.00486 -1.38574 C 6.04722 -1.62993 0.81834 H 4.0894 -2.20686 1.46906 C 6.78998 -0.76764 0.01296 H 6.71895 0.85324 -1.39988 H 6.55277 -2.34945 1.45343 C -3.9912 0.61253 0.01845 C -4.7527 -0.2588 -0.77546 C -4.66061 1.55127 0.81851 C -6.13938 -0.17613 -0.78157 H -4.25929 -1.00467 -1.38587 C -6.0473 1.62973 0.81845 H -4.08956 2.20671 1.46934 C -6.78997 0.7675 0.01292 H -6.71879 -0.85319 -1.40011 H -6.55291 2.34916 1.45359 C -8.32393 0.89298 -0.03994 C 8.32395 -0.89313 -0.03988 N -9.46604 0.9864 -0.07929 N 9.46606 -0.98657 -0.07922

8a Anion

E = -1999.9425601 h

-1 2 C -1.81656 -0.48562 -0.02201 C -0.4051 -0.57187 -0.02468 C 0.19446 -1.84946 -0.01896 C -2.44213 0.83373 -0.01657 C 0.40511 0.57187 -0.02467 C -0.19446 1.84946 -0.01892 C -1.6259 1.94001 -0.01953 C 1.81656 0.48561 -0.02201 C 2.44213 -0.83373 -0.0166 C 1.6259 -1.94001 -0.01957

S28   

N -0.55986 -2.96166 -0.02286 N -2.54484 -1.60809 -0.0109 N 2.54485 1.60808 -0.0109 N 0.55986 2.96165 -0.02281 C -1.87327 -2.76078 -0.02208 C 1.87328 2.76078 -0.02205 H 2.04941 -2.93883 -0.04769 H -2.04941 2.93883 -0.04762 C 2.76337 4.00035 -0.01033 C -2.76337 -4.00035 -0.01038 F 3.70483 3.905 -0.96324 F 2.0658 5.11676 -0.22144 F -2.06579 -5.11678 -0.22126 F -3.70467 -3.90507 -0.96346 F -3.3872 -4.10908 1.17401 F 3.38698 4.10921 1.17416 C 3.91251 -0.99635 0.00692 C 4.76331 -0.19047 -0.76675 C 4.47905 -2.00999 0.79695 C 6.13427 -0.40358 -0.7635 H 4.35065 0.60735 -1.37097 C 5.8489 -2.2262 0.81074 H 3.83993 -2.61839 1.42964 C 6.68685 -1.4236 0.02405 H 6.78432 0.21774 -1.37026 H 6.27661 -3.00604 1.43176 C -3.9125 0.99634 0.00693 C -4.76329 0.19048 -0.76677 C -4.47906 2.00997 0.79698 C -6.13425 0.40359 -0.76354 H -4.35062 -0.60732 -1.371 C -5.84891 2.22617 0.81074 H -3.83995 2.61835 1.42969 C -6.68685 1.42359 0.02402 H -6.78429 -0.21772 -1.37033 H -6.27663 3.006 1.43177 C -8.10139 1.64201 0.02981 C 8.10139 -1.64201 0.02986 N -9.25053 1.82239 0.03354 N 9.25054 -1.8224 0.03361

8b

E = -2489.265935 h

0 1 C -2.94009 -3.66791 -0.00045 C -3.65721 -2.4433 -0.00041 C -5.07634 -2.45264 -0.00038 C -1.50104 -3.62583 -0.00038 C -2.94842 -1.1975 -0.00019 C -1.52933 -1.18818 -0.00016 C -0.83022 -2.4467 -0.0003 C -3.66555 0.02715 -0.00003 C -5.10464 -0.01498 -0.00024 C -5.77546 -1.1941 -0.0004 N -5.75315 -3.67906 -0.00048 N -3.64856 -4.8764 -0.00045 N -2.95713 1.23559 0.00018 N -0.85249 0.03831 0. C -5.04141 -4.8764 -0.00045 C -1.48716 1.22583 0.00018

S29   

H -6.84511 -1.22136 -0.0009 H 0.23944 -2.41954 -0.00057 C -0.69103 2.54408 0.00037 C -5.80291 -6.21495 -0.00041 F -1.005 3.25923 1.1015 F 0.63112 2.27129 0.00282 F -7.13172 -5.97671 -0.00029 F -5.47218 -6.92079 1.10182 F -5.47237 -6.92075 -1.10272 F -1.00131 3.25732 -1.10304 C -5.85764 1.32837 -0.00013 C -6.19883 1.93665 1.2082 C -6.19845 1.93705 -1.20798 C -6.88129 3.15298 1.20859 H -5.93068 1.45614 2.16028 C -6.88024 3.15425 -1.20777 H -5.92945 1.45786 -2.16042 C -7.22181 3.7622 0.00023 H -7.15081 3.63218 2.16096 H -7.14846 3.63413 -2.16026 C -0.74823 -4.96929 -0.0008 C -0.4071 -5.57808 1.20729 C -0.40751 -5.57754 -1.20889 C 0.27518 -6.79451 1.20719 H -0.67519 -5.09791 2.15956 C 0.27412 -6.79483 -1.20916 H -0.67645 -5.09795 -2.16115 C 0.61561 -7.4033 -0.0014 H 0.54465 -7.27411 2.15938 H 0.54227 -7.27438 -2.16184 C -7.97528 5.10528 0.001 C 1.3689 -8.74649 -0.00116 F 2.69914 -8.51639 -0.00122 F 1.03393 -9.45048 -1.10329 F 1.03396 -9.45006 1.10125 F -7.64306 5.80827 -1.1026 F -9.30549 4.87501 0.00435 F -7.6378 5.80995 1.10194

8b Anion

E = -2489.363904 h

-1 2 C -1.76108 -0.65857 0.00233 C -0.34785 -0.60839 0.00193 C 0.37289 -1.8218 0.00867 C -2.51163 0.59356 0.00461 C 0.34786 0.60846 0.00194 C -0.37287 1.82186 0.00879 C -1.80632 1.77352 0.00579 C 1.76109 0.65863 0.00223 C 2.51165 -0.59349 0.00446 C 1.80633 -1.77346 0.00562 N -0.27074 -3.00171 0.00568 N -2.37787 -1.8464 0.01359 N 2.37788 1.84647 0.01354 N 0.27075 3.00177 0.00579 C -1.5975 -2.92825 0.00516 C 1.59753 2.9283 0.00513 H 2.32561 -2.72601 -0.02254 H -2.32559 2.72609 -0.02234 C 2.36254 4.24856 0.01805

S30   

C -2.36258 -4.24846 0.01811 F 3.30679 4.24913 -0.93686 F 1.55897 5.29268 -0.1888 F -1.55893 -5.29272 -0.18775 F -3.30613 -4.24934 -0.93751 F -2.97645 -4.41591 1.20125 F 2.97554 4.41653 1.20158 C 3.99122 -0.61251 0.01834 C 4.7528 0.25886 -0.77541 C 4.66054 -1.55139 0.81833 C 6.13949 0.17612 -0.78146 H 4.25949 1.00486 -1.38574 C 6.04722 -1.62993 0.81834 H 4.0894 -2.20686 1.46906 C 6.78998 -0.76764 0.01296 H 6.71895 0.85324 -1.39988 H 6.55277 -2.34945 1.45343 C -3.9912 0.61253 0.01845 C -4.7527 -0.2588 -0.77546 C -4.66061 1.55127 0.81851 C -6.13938 -0.17613 -0.78157 H -4.25929 -1.00467 -1.38587 C -6.0473 1.62973 0.81845 H -4.08956 2.20671 1.46934 C -6.78997 0.7675 0.01292 H -6.71879 -0.85319 -1.40011 H -6.55291 2.34916 1.45359 C 8.28846 -0.89023 -0.03866 C -8.28844 0.89007 -0.03871 F -8.67581 1.74943 -1.00351 F -8.7923 1.34819 1.12272 F -8.87806 -0.29042 -0.30227 F 8.79224 -1.34918 1.12248 F 8.67588 -1.74888 -1.00405 F 8.87811 0.29046 -0.30132

----------------------------------------------------------------------------------------------------------------- with B3PW91/6-311+g(d,p)

II

E = - -679.8138079 h

0 1 C 1.42518 -1.21279 0.00006 C 0.70237 -0.00003 0.00002 C 1.42535 1.21278 0.00005 C 0.68194 -2.44856 0.00005 C -0.70237 -0.00003 -0.00005 C -1.42517 -1.21278 -0.00006 C -0.68194 -2.44855 -0.00002 C -1.42536 1.21279 -0.00006 C -0.68189 2.44862 -0.00002 C 0.68188 2.44861 0.00005 H 1.24975 3.37377 0.0001 H -1.24974 3.37379 -0.00004 H 1.24975 -3.37375 0.0001 H -1.24976 -3.37373 -0.00003 N -2.76778 -1.20584 -0.00002 N -2.76767 1.20591 -0.00002 N 2.76768 1.20592 0.00003 N 2.76778 -1.20583 0.00003 C 3.34652 -0.00013 -0.00023

S31   

C -3.34652 -0.00015 0.00017 H 4.43495 0.00004 0.00036 H -4.43495 0.00004 -0.00029

II Anion

E = - -679.8845394 h

-1 2 C -1.42339 -1.21069 -0.00003 C -0.70184 -0.00001 -0.00003 C -1.42342 1.21069 -0.00003 C -0.68051 -2.44478 -0.00001 C 0.70184 -0.00001 0.00003 C 1.42339 -1.21069 0.00004 C 0.68051 -2.44478 0.00003 C 1.42342 1.21069 0.00004 C 0.6805 2.44479 0.00003 C -0.6805 2.44479 -0.00001 H -1.2461 3.37027 -0.00003 H 1.2461 3.37027 0.00006 H -1.2461 -3.37026 -0.00003 H 1.2461 -3.37026 0.00006 N 2.76325 -1.20197 0.00014 N 2.76323 1.20199 0.00014 N -2.76323 1.20199 -0.00014 N -2.76325 -1.20197 -0.00014 C -3.3436 -0.00002 -0.00053 C 3.3436 -0.00003 0.00044 H -4.43074 0.00001 0.00037 H 4.43074 0.00001 -0.00024

1a

E = - -2517.8325982 h

0 1 C 0.0001 1.20842 1.43108 C 0.00014 0. 0.70081 C 0.00009 -1.20842 1.43106 C 0.00013 2.45562 0.68795 C 0.00014 0. -0.70081 C 0.0001 1.20842 -1.43108 C 0.00013 2.45562 -0.68795 C 0.00009 -1.20842 -1.43106 C 0.00012 -2.45561 -0.68796 C 0.00012 -2.45561 0.68796 N -0.00002 1.20183 -2.76731 N -0.00005 -1.20182 -2.76732 N -0.00005 -1.20182 2.76732 N -0.00002 1.20183 2.76731 C -0.00008 -0.00002 3.34922 C -0.00008 -0.00002 -3.34922 Cl -0.00006 -3.91657 -1.58751 Cl -0.00007 3.91657 1.58752 Cl -0.00006 -3.91657 1.58751 Cl -0.00007 3.91657 -1.58752 H -0.00028 0. 4.43692 H -0.00028 0. -4.43692

S32   

1a Anion

E = -2517.9260914 h -1 2 C -0.00007 1.20894 1.43163 C -0.00007 0. 0.7013 C -0.00007 -1.20894 1.43162 C -0.00006 2.45665 0.68828 C -0.00007 0. -0.7013 C -0.00007 1.20894 -1.43163 C -0.00006 2.45665 -0.68828 C -0.00007 -1.20894 -1.43162 C -0.00006 -2.45664 -0.68828 C -0.00006 -2.45664 0.68828 N -0.00005 1.20127 -2.76872 N -0.00006 -1.20126 -2.76872 N -0.00006 -1.20126 2.76872 N -0.00005 1.20127 2.76872 C -0.00008 -0.00001 3.35261 C -0.00008 -0.00001 -3.35261 Cl 0.00009 -3.91834 -1.58605 Cl 0.00009 3.91834 1.58605 Cl 0.00009 -3.91834 1.58605 Cl 0.00009 3.91834 -1.58605 H 0. 0. 4.4401 H 0. 0. -4.4401

1b

E = - -10973.8947753 h

0 1 C 1.2098 1.42974 0.00017 C 0.00011 0.70101 0.00009 C -1.20959 1.43007 0.00015 C 2.45496 0.68657 0.00013 C 0.00011 -0.70094 -0.00005 C 1.20968 -1.42962 -0.00011 C 2.45492 -0.68659 0. C -1.20961 -1.43005 -0.00014 C -2.45497 -0.68635 -0.0001 C -2.45498 0.68643 0.00004 N -1.20151 2.76657 0.00026 N 1.20144 2.76669 0.0003 N -1.20142 -2.7666 -0.00029 N 1.20127 -2.76663 -0.00025 Br -4.04155 -1.67359 -0.00024 Br -4.04159 1.67359 0.00008 Br 4.04158 1.67352 0.00023 Br 4.04148 -1.6736 -0.00011 C 0.00021 3.3483 0.00033 C 0.00009 -3.34816 -0.00033 H -0.00024 -4.43604 -0.00044 H -0.00009 4.43617 0.00049

1b Anion

E = -10973.9901991 h -1 2 C -1.20816 -1.42791 0.00017

S33   

C -0.00001 -0.70007 0.00007 C 1.20815 -1.42803 0.00013 C -2.45516 -0.68613 0.00012 C -0.00001 0.70007 -0.00007 C -1.20816 1.42792 -0.00012 C -2.45517 0.68614 -0.00002 C 1.20816 1.42802 -0.00016 C 2.45521 0.68608 -0.00011 C 2.45521 -0.68609 0.00003 N 1.1975 -2.76191 0.00026 N -1.19748 -2.76196 0.0003 N 1.19751 2.7619 -0.0003 N -1.19748 2.76197 -0.00026 Br 4.04185 1.68694 -0.00024 Br 4.04185 -1.68694 0.0001 Br -4.04184 -1.68691 0.00024 Br -4.04184 1.68691 -0.0001 C -0.0001 -3.34454 0.00031 C -0.00008 3.34454 -0.00033 H 0. 4.43125 -0.00045 H 0. -4.43125 0.00047

2a

E = -1353.8470386 h

0 1 C -1.42294 1.21987 -0.01259 C -0.70148 0.00694 -0.00649 C -1.42215 -1.20711 -0.0123 C -0.68317 2.45713 -0.00558 C 0.70147 0.00751 0.00542 C 1.42181 1.22101 0.01185 C 0.68098 2.45766 0.00543 C 1.4233 -1.206 0.01162 C 0.6829 -2.44374 0.00519 C -0.68076 -2.44423 -0.00538 H -1.24874 -3.36902 -0.00996 H 1.25153 -3.36813 0.01021 H -1.25171 3.38159 -0.01031 H 1.24881 3.38254 0.01058 N 2.76378 1.21229 0.0248 N 2.76361 -1.19544 0.02472 N -2.76263 -1.19809 -0.02522 N -2.76473 1.2097 -0.02551 C -3.33669 0.00621 -0.03581 C -4.86294 -0.0047 -0.00278 C 3.33671 0.00938 0.03484 C 4.86295 -0.00373 0.00305 F 5.29155 -0.16467 -1.2626 F 5.37473 1.13805 0.47104 F 5.35096 -1.01315 0.73391 F -5.35375 -1.03532 -0.70058 F -5.3729 1.123 -0.50645 F -5.29058 -0.12384 1.26792

2a Anion

E = -1353.9445874 h

-1 2

S34   

C 1.41948 1.23432 0.00001 C 0.70074 0.02336 0.00001 C 1.42057 -1.18947 0.00001 C 0.68093 2.46916 0. C -0.70073 0.02336 0.00002 C -1.41947 1.23432 0.00001 C -0.68092 2.46916 0.00001 C -1.42057 -1.18947 0. C -0.68015 -2.42589 0. C 0.68015 -2.42589 0. H 1.24672 -3.35048 0. H -1.24671 -3.35048 -0.00002 H 1.24705 3.39405 0. H -1.24704 3.39404 0.00001 N -2.76076 1.2235 0. N -2.75694 -1.17702 -0.00002 N 2.75695 -1.17701 0.00001 N 2.76076 1.2235 -0.00001 C 3.3289 0.02532 -0.00001 C 4.85701 -0.01324 -0.00001 C -3.32889 0.02533 -0.00001 C -4.85701 -0.01322 -0.00001 F -5.30958 -0.66454 1.08404 F -5.3938 1.20582 -0.00008 F -5.30958 -0.66466 -1.08396 F 5.30957 -0.6646 1.08401 F 5.39378 1.20583 -0.00001 F 5.30957 -0.66461 -1.084

2b

E = -1829.3836532 h

0 1 C 1.42214 -1.17858 -0.47083 C 0.70146 0.03495 -0.44071 C 1.42274 1.24759 -0.39797 C 0.68126 -2.41528 -0.49982 C -0.70142 0.03536 -0.44065 C -1.4228 -1.17776 -0.47065 C -0.68264 -2.41489 -0.49972 C -1.42198 1.24842 -0.3979 C -0.68126 2.4846 -0.35403 C 0.68273 2.4842 -0.35405 H 1.25131 3.40803 -0.32121 H -1.2493 3.40876 -0.32118 H 1.24927 -3.3398 -0.52172 H -1.25119 -3.33908 -0.52154 N -2.76376 -1.16756 -0.46877 N -2.76327 1.2393 -0.39498 N 2.76401 1.23771 -0.39512 N 2.76311 -1.16916 -0.46907 C 3.33672 0.03462 -0.44122 C 4.86417 0.03022 -0.43165 C -3.33667 0.03657 -0.44098 C -4.86414 0.03274 -0.43148 F -5.33138 -1.01478 -1.14615 F -5.33857 1.17371 -0.97593 F 5.33899 1.16917 -0.98008 F 5.33114 -1.0199 -1.14259 C 5.46021 -0.07615 0.99096 C -5.4603 -0.07832 0.99074

S35   

F -6.79349 -0.04421 0.93883 F -5.03284 0.93877 1.74844 F -5.08109 -1.2255 1.56357 F 6.7935 -0.04687 0.93868 F 5.07714 -1.21946 1.56905 F 5.03636 0.94577 1.74409

2b Anion

E = -1829.483774 h

-1 2 C 1.41982 -1.18636 -0.47223 C 0.70061 0.02532 -0.45052 C 1.41965 1.23675 -0.41768 C 0.68058 -2.42203 -0.49547 C -0.70062 0.02529 -0.45052 C -1.41976 -1.18643 -0.47224 C -0.68048 -2.42206 -0.49547 C -1.41971 1.23669 -0.41768 C -0.68061 2.47212 -0.38631 C 0.68049 2.47215 -0.38631 H 1.24697 3.39647 -0.36218 H -1.24713 3.39642 -0.36219 H 1.24705 -3.34653 -0.51237 H -1.2469 -3.34659 -0.51237 N -2.75831 -1.17453 -0.46893 N -2.75843 1.22493 -0.41377 N 2.75837 1.22505 -0.41376 N 2.75836 -1.17441 -0.46892 C 3.32968 0.02563 -0.44654 C 4.86006 0.02327 -0.43078 C -3.32968 0.02548 -0.44655 C -4.86006 0.02308 -0.43079 F -5.33567 -1.03421 -1.12128 F -5.33913 1.14759 -1.00023 F 5.33909 1.14795 -0.99991 F 5.33569 -1.03382 -1.12157 C 5.45469 -0.05642 1.00391 C -5.45468 -0.05625 1.00392 F -6.78602 -0.03539 0.95714 F -5.03783 0.98058 1.7367 F -5.06745 -1.18211 1.60848 F 6.78602 -0.03536 0.95713 F 5.06762 -1.18251 1.60814 F 5.03769 0.98015 1.737

2c

E = -2304.9136047 h

0 1 C 1.6282 -0.51663 -1.26226 C 0.89122 0.50074 -0.6189 C 1.59556 1.5422 0.02321 C 0.90517 -1.58387 -1.90799 C -0.51121 0.47167 -0.60822 C -1.21529 -0.57541 -1.24126 C -0.45846 -1.61211 -1.89791 C -1.24813 1.48231 0.04608

S36   

C -0.5247 2.54451 0.69991 C 0.83885 2.57358 0.68849 H 1.3947 3.36734 1.17715 H -1.10546 3.31407 1.19822 H 1.48602 -2.35867 -2.39799 H -1.01409 -2.41034 -2.37949 N -2.55611 -0.5958 -1.22338 N -2.58881 1.44299 0.05744 N 2.93618 1.55952 0.01069 N 2.96889 -0.4831 -1.26263 C 3.52543 0.55149 -0.63321 C 5.05342 0.58954 -0.6393 C -3.14507 0.41563 -0.58403 C -4.67365 0.36918 -0.5689 F -5.12987 -0.09575 -1.75293 F -5.17488 1.60814 -0.36992 F 5.46834 1.86887 -0.79069 F 5.53609 -0.14084 -1.66681 C 5.73168 0.07713 0.66095 C -5.21829 -0.55511 0.55095 F -4.60364 -0.23212 1.71201 F -4.91422 -1.83097 0.23774 F 7.06663 0.20133 0.50691 F 5.33367 0.85459 1.68981 C 5.44768 -1.38901 1.05534 C -6.74493 -0.481 0.80037 F 6.13408 -1.68741 2.16103 F 5.80663 -2.22962 0.08591 F 4.14146 -1.55296 1.31156 F -7.08026 0.69419 1.334 F -7.09199 -1.45084 1.65265 F -7.41953 -0.65183 -0.33934

2c Anion

E = -2305.0152397 h

-1 2 C -1.63072 -0.45437 1.31056 C -0.89934 0.52681 0.61237 C -1.60551 1.53002 -0.08139 C -0.90511 -1.48246 2.01046 C 0.50148 0.50013 0.59977 C 1.20745 -0.5089 1.28471 C 0.45575 -1.50836 1.99851 C 1.23282 1.47387 -0.10919 C 0.50681 2.49805 -0.81493 C -0.85385 2.52527 -0.80133 H -1.41068 3.29132 -1.32947 H 1.08303 3.24137 -1.35464 H -1.48115 -2.23079 2.5434 H 1.01243 -2.27837 2.52103 N 2.54588 -0.52598 1.26312 N 2.57094 1.43534 -0.11993 N -2.94364 1.54318 -0.06594 N -2.96935 -0.42274 1.31012 C -3.52695 0.57174 0.62874 C -5.05778 0.60381 0.63127 C 3.12922 0.44669 0.57006 C 4.66088 0.40756 0.55552 F 5.12209 -0.00542 1.75484 F 5.15581 1.63935 0.31742

S37   

F -5.4811 1.88341 0.74081 F -5.54196 -0.08442 1.68322 C -5.73863 0.03869 -0.65803 C 5.21004 -0.55952 -0.53851 F 4.61648 -0.2582 -1.71365 F 4.87662 -1.82022 -0.2051 F -7.07265 0.11094 -0.49024 F -5.39477 0.81269 -1.7049 C -5.39678 -1.42928 -1.04084 C 6.74977 -0.52769 -0.77848 F -6.08408 -1.76926 -2.1307 F -5.70462 -2.274 -0.06201 F -4.09132 -1.54453 -1.31616 F 7.13132 0.6379 -1.29464 F 7.06791 -1.49492 -1.6425 F 7.41495 -0.73824 0.35611

3

E = -2134.0826859 h

0 1 C 1.42449 1.02204 0.6509 C 0.70121 -0.00001 0.00002 C 1.42449 -1.02204 -0.65087 C 0.68188 2.06533 1.31552 C -0.70122 0. 0.00003 C -1.42449 1.02203 0.65092 C -0.68186 2.06532 1.31553 C -1.4245 -1.02204 -0.65086 C -0.68188 -2.06534 -1.31548 C 0.68186 -2.06533 -1.31548 H 1.2494 -2.84604 -1.81193 H -1.24942 -2.84604 -1.81192 H 1.24942 2.84603 1.81196 H -1.2494 2.84603 1.81198 N -2.76403 1.0128 0.65193 N -2.76404 -1.01281 -0.65186 N 2.76403 -1.01281 -0.65188 N 2.76404 1.0128 0.65189 C 3.35397 0. 0.00001 C -3.35397 0. 0.00004 C 4.83992 0. -0.00001 C 5.56676 1.15548 -0.30387 C 5.56677 -1.15549 0.30385 C 6.95757 1.16368 -0.30886 C 6.95758 -1.16367 0.30882 C 7.65459 0. -0.00003 C -4.8399 0. 0.00003 C -5.56677 -1.15552 0.30365 C -5.56676 1.15553 -0.30362 C -6.95758 -1.16371 0.3086 C -6.95757 1.16373 -0.30864 C -7.65462 0.00001 -0.00003 F 4.94208 2.28282 -0.63928 F 7.62378 2.27492 -0.61954 F 8.98384 0.00001 -0.00004 F 7.62381 -2.27491 0.6195 F 4.94211 -2.28282 0.63931 F -4.9421 2.28294 -0.63882 F -7.62375 2.27505 -0.61912 F -8.98386 0. -0.00006 F -7.62376 -2.27504 0.61904

S38   

F -4.94212 -2.28295 0.63883

3 Anion

E = -2134.1765108 h -1 2 C 1.42169 0.93935 0.76318 C 0.70066 -0.00003 0.00003 C 1.42169 -0.93942 -0.76311 C 0.68045 1.89756 1.543 C -0.70066 -0.00003 0.00003 C -1.42169 0.93936 0.76317 C -0.68045 1.89756 1.543 C -1.42169 -0.93941 -0.76312 C -0.68045 -1.89761 -1.54295 C 0.68045 -1.89762 -1.54294 H 1.24595 -2.61624 -2.12592 H -1.24595 -2.61623 -2.12593 H 1.24595 2.61618 2.12598 H -1.24595 2.61619 2.12597 N -2.75945 0.92938 0.76044 N -2.75945 -0.92942 -0.7604 N 2.75945 -0.92945 -0.76038 N 2.75945 0.92936 0.76047 C 3.34563 -0.00006 0.00006 C -3.34563 -0.00002 0.00002 C 4.83396 -0.00002 0.00002 C 5.55647 1.14405 -0.33069 C 5.55654 -1.14406 0.33069 C 6.94411 1.15342 -0.33793 C 6.94418 -1.15336 0.33787 C 7.63925 0.00005 -0.00005 C -4.83396 0. 0. C -5.55652 -1.14405 0.33068 C -5.55649 1.14406 -0.33069 C -6.94416 -1.15337 0.33787 C -6.94413 1.15341 -0.33792 C -7.63925 0.00003 -0.00003 F 4.92457 2.25905 -0.69143 F 7.61056 2.2533 -0.67617 F 8.96582 0.00009 -0.00008 F 7.61071 -2.2532 0.67608 F 4.92472 -2.25909 0.69148 F -4.92461 2.25907 -0.69145 F -7.6106 2.25328 -0.67615 F -8.96582 0.00004 -0.00005 F -7.61067 -2.25322 0.67609 F -4.92468 -2.25908 0.69145

4a

E = -6500.8900573 h

0 1 C 1.78105 -0.59526 0.00017 C 0.65307 0.25485 -0.0001 C 0.87029 1.65019 -0.00012 C 1.53941 -2.02604 0.00024 C -0.65306 -0.25484 -0.00028 C -0.87031 -1.65018 -0.00024

S39   

C 0.26909 -2.52648 0.00004 C -1.78103 0.59527 -0.00046 C -1.53941 2.02604 -0.00046 C -0.26908 2.52649 -0.00031 N 2.11633 2.14881 0.00005 N 3.01278 -0.082 0.00035 N -3.01278 0.08199 -0.00062 N -2.11631 -2.14881 -0.00044 Br -3.01787 3.17607 -0.00069 Br 3.01788 -3.17607 0.00061 C 3.09658 1.24982 0.00026 C -3.09659 -1.24979 -0.00069 H -0.08639 3.59517 -0.00033 H 0.0864 -3.59517 0.00009 C -4.52666 -1.78459 -0.00029 C 4.52666 1.78459 0.00055 F -5.18513 -1.3423 -1.08257 F -4.55866 -3.11783 -0.00521 F 4.55866 3.11783 -0.00026 F 5.18361 1.34569 -1.08407 F 5.18262 1.34703 1.08632 F -5.18115 -1.35046 1.08778

4a Anion

E = -6501.0008168 h

-1 2 C 1.77982 -0.5937 0.00013 C 0.6523 0.25454 -0.00016 C 0.86729 1.64776 -0.00018 C 1.53876 -2.02441 0.00019 C -0.6523 -0.25453 -0.00037 C -0.8673 -1.64776 -0.00033 C 0.27027 -2.52346 -0.00005 C -1.77982 0.5937 -0.00056 C -1.53877 2.02441 -0.00057 C -0.27027 2.52346 -0.00041 N 2.11148 2.14533 0.00003 N 3.00768 -0.07763 0.00036 N -3.00768 0.07763 -0.0007 N -2.11148 -2.14533 -0.00052 Br -3.01662 3.1837 -0.00085 Br 3.01662 -3.18369 0.00062 C 3.08867 1.25 0.00028 C -3.08868 -1.24999 -0.00073 H -0.08593 3.59096 -0.00043 H 0.08593 -3.59096 -0.00001 C -4.52017 -1.78816 -0.00017 C 4.52017 1.78815 0.00066 F -5.18409 -1.35007 -1.08105 F -4.5566 -3.11954 -0.00548 F 4.55661 3.11955 -0.00034 F 5.18242 1.35362 -1.08273 F 5.18114 1.3553 1.08554 F -5.17947 -1.35888 1.08719

4b

E = - 6976.4267987 h

S40   

0 1 C -1.58964 -0.98844 -0.13802 C -0.68752 0.09634 -0.09704 C -1.20588 1.40119 -0.25525 C -1.04094 -2.32147 0.02715 C 0.68755 -0.09611 0.09698 C 1.2059 -1.40096 0.25518 C 0.29789 -2.51453 0.21319 C 1.58967 0.98867 0.13797 C 1.04096 2.3217 -0.0272 C -0.29786 2.51476 -0.21324 N -2.51906 1.59562 -0.44199 N -2.89537 -0.77593 -0.32324 N 2.8954 0.77617 0.32316 N 2.51909 -1.59538 0.44192 Br 2.21652 3.7788 0.02286 Br -2.21648 -3.77858 -0.0229 C -3.26911 0.49505 -0.47058 C 3.26914 -0.49482 0.47051 H -0.71024 3.50997 -0.33551 H 0.71026 -3.50974 0.33545 C 4.76566 -0.72415 0.67563 C -4.76565 0.72433 -0.67563 F 5.32533 0.35271 1.265 F 4.96406 -1.80357 1.46333 F -4.96418 1.80419 -1.46267 F -5.32513 -0.35228 -1.26568 C 5.52503 -0.9734 -0.64825 C -5.52512 0.97268 0.64837 F 5.36939 0.07081 -1.4699 F 6.82639 -1.14439 -0.41029 F 5.04962 -2.06735 -1.25297 F -5.04967 2.06623 1.25383 F -6.82645 1.14391 0.41042 F -5.36962 -0.07206 1.46935

4b Anion

E = - -6976.5395258 h

-1 2 C -1.58728 -0.9886 -0.13908 C -0.68658 0.09527 -0.09835 C -1.20334 1.39779 -0.25934 C -1.03798 -2.32102 0.02838 C 0.68659 -0.0952 0.09834 C 1.20335 -1.39773 0.25933 C 0.29847 -2.51167 0.21786 C 1.58729 0.98867 0.13908 C 1.03799 2.32109 -0.02839 C -0.29846 2.51174 -0.21787 N -2.51436 1.58954 -0.44807 N -2.88966 -0.77418 -0.32663 N 2.88967 0.77425 0.32662 N 2.51437 -1.58947 0.44806 Br 2.21033 3.78746 0.0231 Br -2.21032 -3.78739 -0.02309 C -3.26197 0.49279 -0.47377 C 3.26198 -0.49273 0.47375 H -0.71314 3.50477 -0.34272 H 0.71315 -3.5047 0.34271 C 4.76134 -0.72233 0.6798 C -4.76134 0.72238 -0.67981

S41   

F 5.32344 0.34966 1.27134 F 4.96422 -1.79692 1.46996 F -4.96424 1.79709 -1.46978 F -5.32337 -0.34954 -1.27155 C 5.52717 -0.97321 -0.65048 C -5.5272 0.97299 0.6505 F 5.37798 0.06828 -1.47376 F 6.82597 -1.14581 -0.41261 F 5.05642 -2.0638 -1.26053 F -5.05645 2.06347 1.26076 F -6.82599 1.14567 0.41262 F -5.37806 -0.06864 1.47359

4c

E = -7451.9565698 h

0 1 C -1.46051 -1.16611 -0.17641 C -0.68072 0.01072 -0.16655 C -1.30945 1.2302 -0.50334 C -0.79959 -2.40943 0.17376 C 0.68075 -0.01053 0.16652 C 1.30947 -1.23001 0.5033 C 0.52669 -2.43546 0.49707 C 1.46055 1.16631 0.17637 C 0.79961 2.40963 -0.1738 C -0.52667 2.43566 -0.4971 N -2.61102 1.26101 -0.82283 N -2.7551 -1.11625 -0.50002 N 2.75513 1.11645 0.49999 N 2.61105 -1.26083 0.82278 Br 1.81131 3.98578 -0.17059 Br -1.81127 -3.98559 0.17057 C -3.23973 0.0878 -0.80392 C 3.23976 -0.08762 0.80387 H -1.02283 3.36349 -0.75818 H 1.02284 -3.3633 0.75815 C 4.72137 -0.11701 1.17967 C -4.72133 0.11718 -1.17975 F 5.01008 0.96856 1.93311 F 4.99636 -1.2249 1.89933 F -4.99639 1.22517 -1.89923 F -5.00993 -0.96827 -1.93342 C 5.7077 -0.07742 -0.01996 C -5.70772 0.07726 0.01984 F 5.50765 1.06728 -0.70504 F 6.96128 -0.07971 0.47862 F -6.96128 0.07971 -0.47881 F -5.50775 -1.06766 0.70457 C 5.60955 -1.24227 -1.02968 C -5.60962 1.24179 1.02993 F -5.78694 2.41891 0.43158 F -6.54557 1.089 1.96876 F -4.40721 1.2338 1.62531 F 4.40711 -1.23444 -1.625 F 5.78686 -2.41919 -0.43094 F 6.54548 -1.08979 -1.96859

4c Anion

S42   

E = -7452.0711088 h

-1 2 C -1.45524 -1.16989 -0.17575 C -0.67939 0.00773 -0.16832 C -1.30758 1.22218 -0.51402 C -0.79194 -2.40985 0.18133 C 0.67939 -0.00772 0.16831 C 1.30758 -1.22217 0.51402 C 0.53103 -2.42953 0.5093 C 1.45524 1.1699 0.17574 C 0.79194 2.40986 -0.18134 C -0.53104 2.42954 -0.50931 N -2.60607 1.2466 -0.83784 N -2.74643 -1.12189 -0.50262 N 2.74643 1.1219 0.50261 N 2.60606 -1.24658 0.83783 Br 1.79474 3.99792 -0.17931 Br -1.79475 -3.99791 0.17929 C -3.22998 0.07611 -0.81335 C 3.22997 -0.0761 0.81334 H -1.03052 3.35299 -0.77604 H 1.03051 -3.35298 0.77603 C 4.71393 -0.10386 1.19104 C -4.71394 0.10387 -1.19104 F 5.00966 0.98914 1.92789 F 4.98602 -1.19359 1.93456 F -4.98603 1.19361 -1.93454 F -5.00966 -0.98912 -1.9279 C 5.70991 -0.09025 -0.01442 C -5.70991 0.09024 0.01442 F 5.55774 1.06517 -0.68825 F 6.96049 -0.13875 0.48101 F -6.96049 0.13875 -0.481 F -5.55774 -1.0652 0.68823 C 5.57225 -1.24596 -1.04592 C -5.57224 1.24593 1.04594 F -5.69661 2.43562 0.46688 F -6.51982 1.12021 1.97357 F -4.38001 1.18379 1.65359 F 4.38004 -1.18382 -1.6536 F 5.69659 -2.43564 -0.46683 F 6.51985 -1.12027 -1.97353

5

E = -12428.1619911 h 0 1 C 1.42961 1.20324 0.11256 C 0.69987 0.00002 -0.00007 C 1.42961 -1.2032 -0.1127 C 0.68668 2.44411 0.22975 C -0.69987 0.00001 -0.00006 C -1.42961 1.20323 0.11258 C -0.68668 2.44411 0.22975 C -1.42961 -1.20321 -0.11268 C -0.68668 -2.44408 -0.22986 C 0.68668 -2.44408 -0.22987 N -2.7632 1.19419 0.11695 N -2.7632 -1.19417 -0.11702 N 2.7632 -1.19416 -0.11707 N 2.7632 1.1942 0.11691

S43   

C 3.35764 0.00002 -0.00011 C -3.35764 0.00001 -0.00004 C 4.84117 0.00001 -0.00002 C 5.56706 0.90427 -0.783 C 5.56693 -0.90428 0.78305 C 6.95762 0.90837 -0.79108 C 6.95749 -0.90843 0.7913 C 7.65389 -0.00004 0.00016 C -4.84117 0. 0.00001 C -5.56696 -0.90429 0.78306 C -5.56703 0.90427 -0.78298 C -6.95752 -0.90842 0.79128 C -6.9576 0.90838 -0.7911 C -7.65389 -0.00003 0.00011 F 4.94152 1.76587 -1.58112 F 7.62425 1.76719 -1.56005 F 8.98221 -0.00006 0.00024 F 7.624 -1.76727 1.56035 F 4.94126 -1.76586 1.58108 F -4.94146 1.76586 -1.58109 F -7.6242 1.7672 -1.56009 F -8.98221 -0.00004 0.00016 F -7.62405 -1.76726 1.56031 F -4.94132 -1.76587 1.58111 Br -1.67293 4.02215 0.37889 Br 1.67292 4.02215 0.37886 Br 1.67293 -4.02212 -0.37898 Br -1.67292 -4.02213 -0.37896

5 Anion

E = -12428.2748868 h

-1 2 C 1.42692 1.20261 0.11163 C 0.69909 0.00002 -0.0001 C 1.42692 -1.20257 -0.11183 C 0.68635 2.44571 0.22877 C -0.69909 0.00002 -0.00009 C -1.42692 1.20261 0.11165 C -0.68635 2.44571 0.22878 C -1.42692 -1.20258 -0.11181 C -0.68635 -2.44567 -0.22894 C 0.68635 -2.44567 -0.22895 N -2.75864 1.19081 0.11548 N -2.75864 -1.19078 -0.11562 N 2.75864 -1.19078 -0.11566 N 2.75864 1.19082 0.11544 C 3.34869 0.00003 -0.00015 C -3.34869 0.00002 -0.00008 C 4.83494 0.00001 -0.00002 C 5.55713 0.80282 -0.88122 C 5.55694 -0.80283 0.8813 C 6.94458 0.80611 -0.89181 C 6.94439 -0.80618 0.89213 C 7.63914 -0.00005 0.00022 C -4.83494 0. 0.00001 C -5.55697 -0.80283 0.88131 C -5.5571 0.80281 -0.88121 C -6.94442 -0.80617 0.8921 C -6.94455 0.80611 -0.89183 C -7.63914 -0.00004 0.00018 F 4.92585 1.56124 -1.77354

S44   

F 7.61129 1.56501 -1.75562 F 8.965 -0.00008 0.00033 F 7.61092 -1.56511 1.75605 F 4.92548 -1.56123 1.7735 F -4.9258 1.56123 -1.77351 F -7.61123 1.56502 -1.75566 F -8.965 -0.00006 0.00026 F -7.61097 -1.5651 1.75601 F -4.92553 -1.56124 1.77354 Br -1.68722 4.02274 0.37697 Br 1.68722 4.02274 0.37694 Br 1.68722 -4.02271 -0.37711 Br -1.68722 -4.02271 -0.37709

6

E = -3192.0968549 h

0 1 C -1.42851 1.20903 -0.01187 C -0.69998 -0.00012 -0.00572 C -1.42792 -1.20961 -0.01188 C -0.68919 2.4582 -0.00509 C 0.69998 0.00022 0.0057 C 1.42792 1.2097 0.01187 C 0.68801 2.45852 0.0051 C 1.42852 -1.20894 0.01185 C 0.68918 -2.45811 0.00508 C -0.688 -2.45843 -0.0051 N 2.76325 1.20063 0.02474 N 2.76378 -1.19919 0.02472 N -2.76324 -1.20053 -0.02476 N -2.76379 1.19929 -0.02475 C -3.33971 -0.00078 -0.03516 C -4.86731 -0.0007 -0.00041 C 3.33971 0.00088 0.03512 C 4.86731 0.00059 0.00042 F 5.28816 -0.00697 -1.27665 F 5.36384 1.08751 0.59649 F 5.36317 -1.07985 0.60898 F -5.36366 -1.08661 -0.59853 F -5.36339 1.08078 -0.60691 F -5.28812 0.00434 1.27668 Cl -1.58908 3.91487 -0.01165 Cl 1.58721 3.91562 0.01164 Cl -1.58721 -3.91553 -0.01163 Cl 1.58908 -3.91478 0.01164

6 Anion

E = -3192.2137594 h

-1 2 C 1.42575 1.20743 0.01402 C 0.69908 -0.00012 0.00654 C 1.42516 -1.20801 0.01408 C 0.6878 2.45504 0.00613 C -0.69908 0.00022 -0.00655 C -1.42516 1.2081 -0.0141 C -0.68662 2.45536 -0.00626 C -1.42576 -1.20734 -0.01402 C -0.68779 -2.45495 -0.00614

S45   

C 0.68661 -2.45527 0.00624 N -2.7584 1.19739 -0.0281 N -2.75893 -1.19595 -0.02801 N 2.75838 -1.19729 0.02808 N 2.75894 1.19605 0.02801 C 3.33121 -0.00077 0.03699 C 4.86101 -0.00071 0.0012 C -3.33121 0.00088 -0.037 C -4.86101 0.0006 -0.00118 F -5.28284 -0.00726 1.27719 F -5.36535 1.08463 -0.59287 F -5.36474 -1.07669 -0.60592 F 5.36515 -1.08369 0.59506 F 5.36492 1.07766 0.6038 F 5.28286 0.00453 -1.27718 Cl 1.58661 3.91016 0.01462 Cl -1.58475 3.91091 -0.01476 Cl 1.58475 -3.91082 0.01474 Cl -1.58662 -3.91007 -0.01461

7a

E = -1972.7593265 h

0 1 C -1.21477 -1.41983 0.00885 C -0.00001 -0.70012 0.00007 C 1.21474 -1.41984 -0.0085 C -2.4777 -0.69188 0.00359 C 0. 0.70008 -0.00014 C -1.21474 1.41979 -0.00885 C -2.47769 0.69187 -0.00351 C 1.21475 1.4198 0.00839 C 2.47769 0.69184 0.00327 C 2.47769 -0.6919 -0.00344 N 1.20111 -2.76072 -0.00173 N -1.20117 -2.76071 0.0025 N 1.20117 2.76066 0.0016 N -1.2011 2.76067 -0.00248 C -0.00004 -3.3427 0.00035 C 0.00004 3.34262 -0.00047 H 0.00006 4.43085 -0.00067 H -0.00006 -4.43093 0.00081 C 3.73264 1.48884 -0.0419 C 4.64643 1.31611 -1.08982 C 4.00989 2.44138 0.94856 C 5.81287 2.06621 -1.14766 H 4.43818 0.59081 -1.86963 C 5.17886 3.18747 0.90802 H 3.30402 2.59733 1.75678 C 6.08826 3.00512 -0.14381 H 6.51328 1.93081 -1.96494 H 5.39228 3.91683 1.68225 C 3.73265 -1.48887 0.04166 C 4.64628 -1.31647 1.08977 C 4.01009 -2.44105 -0.94909 C 5.81274 -2.06654 1.14752 H 4.43789 -0.59145 1.8698 C 5.17908 -3.18711 -0.90864 H 3.30435 -2.59673 -1.75749 C 6.08831 -3.00509 0.14339 H 6.51302 -1.93141 1.96496 H 5.39266 -3.91618 -1.6831

S46   

C -3.73267 -1.48887 -0.04128 C -4.64634 -1.31667 -1.08938 C -4.01003 -2.4409 0.94964 C -5.81281 -2.06676 -1.14694 H -4.438 -0.5918 -1.86956 C -5.17903 -3.18696 0.90939 H -3.30424 -2.59645 1.75801 C -6.08832 -3.00512 -0.14262 H -6.51313 -1.93178 -1.96436 H -5.39255 -3.91591 1.68398 C -3.73263 1.48889 0.0415 C -4.64638 1.3164 1.0895 C -4.0099 2.44119 -0.94917 C -5.81282 2.0665 1.14718 H -4.4381 0.5913 1.86948 C -5.17888 3.18727 -0.90878 H -3.30405 2.59695 -1.75745 C -6.08825 3.00516 0.14311 H -6.51321 1.93131 1.96452 H -5.39234 3.91644 -1.68318 C 7.29204 -3.77805 0.19298 C 7.29196 3.7781 -0.19349 C -7.29196 3.77815 0.19264 C -7.29205 -3.77809 -0.192 N 8.27022 -4.40643 0.23181 N -8.27022 -4.4065 -0.23063 N -8.27012 4.40656 0.23138 N 8.27012 4.4065 -0.23239

7a Anion

E = -1972.8727062 h

-1 2 C -1.21218 1.41841 -0.01189 C 0. 0.69937 -0.00011 C 1.21219 1.41841 0.0115 C -2.4722 0.68976 -0.00658 C 0. -0.69937 0.00008 C -1.21218 -1.41841 0.01179 C -2.4722 -0.68976 0.0064 C 1.21219 -1.41841 -0.01144 C 2.47221 -0.68976 -0.00624 C 2.47221 0.68976 0.00638 N 1.19823 2.75678 0.00437 N -1.19822 2.75678 -0.00515 N 1.19823 -2.75678 -0.00433 N -1.19822 -2.75678 0.00504 C 0. 3.33925 -0.00054 C 0. -3.33925 0.00046 H 0. -4.4264 0.00057 H 0. 4.4264 -0.00052 C 3.72828 -1.48339 0.02625 C 4.62488 -1.34792 1.08997 C 4.02001 -2.39483 -0.99349 C 5.79071 -2.09642 1.13527 H 4.40456 -0.65571 1.89479 C 5.18955 -3.1366 -0.96672 H 3.32676 -2.52255 -1.81639 C 6.08254 -2.99249 0.10148 H 6.47806 -1.99131 1.96656 H 5.41499 -3.83459 -1.76461 C 3.72828 1.48339 -0.02602

S47   

C 4.62496 1.34793 -1.08968 C 4.01994 2.39483 0.99374 C 5.79079 2.09642 -1.13489 H 4.40469 0.65572 -1.89451 C 5.18948 3.13659 0.96705 H 3.32664 2.52254 1.81659 C 6.08255 2.99249 -0.10108 H 6.4782 1.99131 -1.96613 H 5.41487 3.83458 1.76496 C -3.72827 1.48339 0.02564 C -4.62495 1.34816 1.08932 C -4.01994 2.39461 -0.99433 C -5.79079 2.09666 1.13436 H -4.40469 0.65613 1.89431 C -5.18948 3.13637 -0.96781 H -3.32663 2.52214 -1.81721 C -6.08255 2.9925 0.10035 H -6.4782 1.99172 1.96562 H -5.41487 3.83418 -1.76587 C -3.72827 -1.48339 -0.02588 C -4.6249 -1.34817 -1.08961 C -4.01999 -2.3946 0.99408 C -5.79073 -2.09667 -1.13471 H -4.40459 -0.65614 -1.89459 C -5.18953 -3.13636 0.9675 H -3.32673 -2.52213 1.81699 C -6.08254 -2.9925 -0.10071 H -6.4781 -1.99174 -1.96601 H -5.41497 -3.83417 1.76556 C 7.28476 3.76249 -0.13739 C 7.28475 -3.76249 0.13787 C -7.28476 -3.76249 -0.1369 C -7.28477 3.76249 0.13648 N 8.25737 4.38636 -0.16531 N -8.25739 4.38637 0.16426 N -8.25738 -4.38637 -0.16472 N 8.25736 -4.38637 0.16586

7b

E = -2951.9562833 h

0 1 C -1.22588 -1.42734 0.02659 C -0.00884 -0.71109 0.01784 C 1.20465 -1.43343 0.01573 C -2.48691 -0.69666 0.01366 C -0.00543 0.68915 0.01082 C -1.21885 1.41142 -0.00311 C -2.4835 0.68694 0.00187 C 1.21152 1.40554 0.01737 C 2.47257 0.67484 0.01661 C 2.46925 -0.70885 0.0175 N 1.18745 -2.77458 0.03023 N -1.21544 -2.76861 0.0278 N 1.20104 2.74675 0.00477 N -1.20181 2.7526 -0.00269 C -0.01545 -3.3526 0.03289 C 0.00106 3.33074 -0.00141 H 0.00371 4.41912 -0.00615 H -0.01818 -4.44098 0.03981 C 3.7301 1.46848 -0.03201 C 4.63911 1.295 -1.08215

S48   

C 4.01766 2.4147 0.96066 C 5.80999 2.04228 -1.13857 H 4.42744 0.56952 -1.86099 C 5.19298 3.15328 0.91498 H 3.31764 2.56911 1.77455 C 6.09115 2.96969 -0.13688 H 6.50895 1.89884 -1.95544 H 5.41499 3.87184 1.6971 C 3.72388 -1.50711 0.06387 C 4.63525 -1.33815 1.11321 C 4.00446 -2.45627 -0.9275 C 5.80415 -2.0881 1.16587 H 4.42423 -0.61718 1.89644 C 5.17805 -3.1985 -0.88523 H 3.29831 -2.61407 -1.73537 C 6.08014 -3.01642 0.16287 H 6.49876 -1.95669 1.9887 H 5.3885 -3.92921 -1.65896 C -3.74434 -1.49051 -0.0336 C -4.64832 -1.32538 -1.08945 C -4.03689 -2.4286 0.96527 C -5.81906 -2.07284 -1.14547 H -4.43256 -0.60642 -1.87322 C -5.21221 -3.16728 0.91993 H -3.34086 -2.5766 1.78375 C -6.1053 -2.99202 -0.13763 H -6.51388 -1.93611 -1.96705 H -5.43817 -3.8794 1.70677 C -3.73728 1.48697 0.04005 C -4.65002 1.32631 1.08902 C -4.01762 2.42657 -0.96091 C -5.81738 2.07967 1.13624 H -4.44386 0.60629 1.87441 C -5.18951 3.17114 -0.92442 H -3.31471 2.57111 -1.77411 C -6.09142 3.00033 0.12637 H -6.51904 1.9464 1.95255 H -5.40588 3.88433 -1.71299 C 7.33119 3.81628 -0.21494 F 7.08108 5.00691 -0.79774 F 8.30136 3.22121 -0.93379 F 7.83295 4.07763 1.00801 F 8.34802 -3.11183 -0.47615 F 7.81901 -3.98519 1.43482 C 7.3758 -3.77873 0.18018 C -7.34515 -3.8389 -0.21534 C -7.32761 3.85336 0.19455 F -7.07507 5.04444 0.77529 F -8.30483 3.26517 0.9097 F -7.82113 4.11335 -1.03197 F -7.09436 -5.03073 -0.7953 F -8.31432 -3.24532 -0.93697 F -7.84872 -4.09746 1.0074 F 7.25713 -4.98221 -0.41247

7b Anion

E = -2952.05891003 h

-1 2 C -1.22196 -1.42588 0.0238 C -0.00779 -0.70995 0.01218 C 1.20306 -1.43158 0.00619

S49   

C -2.48008 -0.69448 0.01275 C -0.00456 0.68883 0.00653 C -1.21533 1.4104 -0.0095 C -2.47686 0.68484 -0.00422 C 1.20954 1.40488 0.01672 C 2.46771 0.67347 0.01595 C 2.4645 -0.70595 0.00932 N 1.18586 -2.77012 0.01902 N -1.21099 -2.76453 0.02306 N 1.19856 2.74347 0.00487 N -1.1982 2.74896 -0.0079 C -0.01392 -3.3492 0.02396 C 0.00154 3.32814 -0.00367 H 0.00405 4.41538 -0.00772 H -0.01647 -4.43644 0.02897 C 3.72641 1.46363 -0.01725 C 4.62143 1.32677 -1.08034 C 4.02525 2.36869 1.00518 C 5.79291 2.07071 -1.12118 H 4.39958 0.63539 -1.88547 C 5.20113 3.10315 0.97736 H 3.33508 2.49585 1.8309 C 6.08713 2.95404 -0.08731 H 6.48 1.95613 -1.9512 H 5.43056 3.79121 1.78287 C 3.72036 -1.50057 0.04277 C 4.61402 -1.36941 1.10806 C 4.01624 -2.40645 -0.97941 C 5.78359 -2.1159 1.14807 H 4.39055 -0.68282 1.91687 C 5.19046 -3.14415 -0.95216 H 3.32362 -2.53452 -1.80289 C 6.07466 -3.0011 0.11438 H 6.46489 -2.01273 1.98449 H 5.41284 -3.84047 -1.75236 C -3.73881 -1.4846 -0.01954 C -4.6295 -1.35447 -1.08716 C -4.04237 -2.38238 1.00786 C -5.80153 -2.0975 -1.12733 H -4.40366 -0.66907 -1.89629 C -5.21888 -3.11598 0.98054 H -3.35559 -2.50438 1.83716 C -6.10073 -2.97325 -0.08839 H -6.48512 -1.98831 -1.96099 H -5.45211 -3.7982 1.7899 C -3.73196 1.4809 0.02212 C -4.62839 1.35488 1.08542 C -4.02612 2.38051 -1.00639 C -5.79681 2.10384 1.12028 H -4.40985 0.66822 1.89549 C -5.19902 3.12005 -0.98442 H -3.33477 2.49937 -1.83235 C -6.08663 2.98146 0.08026 H -6.48487 1.9979 1.95068 H -5.42487 3.80368 -1.79469 C 7.33037 3.795 -0.14387 F 7.08681 5.00657 -0.69161 F 8.29875 3.22355 -0.88219 F 7.84225 4.02256 1.08125 F 8.34886 -3.08076 -0.51414 F 7.81128 -4.00396 1.36822 C 7.36903 -3.76286 0.12033 C -7.34492 -3.8128 -0.14442 C -7.32671 3.82743 0.13067 F -7.0815 5.03743 0.68102 F -8.3013 3.25895 0.86345 F -7.83125 4.05799 -1.09679

S50   

F -7.10352 -5.02405 -0.69371 F -8.31323 -3.23926 -0.88157 F -7.85617 -4.04077 1.08075 F 7.26132 -4.95153 -0.50264

8a

E = -2000.3257083 h

0 1 C -1.81656 -0.48562 -0.02201 C -0.4051 -0.57187 -0.02468 C 0.19446 -1.84946 -0.01896 C -2.44213 0.83373 -0.01657 C 0.40511 0.57187 -0.02467 C -0.19446 1.84946 -0.01892 C -1.6259 1.94001 -0.01953 C 1.81656 0.48561 -0.02201 C 2.44213 -0.83373 -0.0166 C 1.6259 -1.94001 -0.01957 N -0.55986 -2.96166 -0.02286 N -2.54484 -1.60809 -0.0109 N 2.54485 1.60808 -0.0109 N 0.55986 2.96165 -0.02281 C -1.87327 -2.76078 -0.02208 C 1.87328 2.76078 -0.02205 H 2.04941 -2.93883 -0.04769 H -2.04941 2.93883 -0.04762 C 2.76337 4.00035 -0.01033 C -2.76337 -4.00035 -0.01038 F 3.70483 3.905 -0.96324 F 2.0658 5.11676 -0.22144 F -2.06579 -5.11678 -0.22126 F -3.70467 -3.90507 -0.96346 F -3.3872 -4.10908 1.17401 F 3.38698 4.10921 1.17416 C 3.91251 -0.99635 0.00692 C 4.76331 -0.19047 -0.76675 C 4.47905 -2.00999 0.79695 C 6.13427 -0.40358 -0.7635 H 4.35065 0.60735 -1.37097 C 5.8489 -2.2262 0.81074 H 3.83993 -2.61839 1.42964 C 6.68685 -1.4236 0.02405 H 6.78432 0.21774 -1.37026 H 6.27661 -3.00604 1.43176 C -3.9125 0.99634 0.00693 C -4.76329 0.19048 -0.76677 C -4.47906 2.00997 0.79698 C -6.13425 0.40359 -0.76354 H -4.35062 -0.60732 -1.371 C -5.84891 2.22617 0.81074 H -3.83995 2.61835 1.42969 C -6.68685 1.42359 0.02402 H -6.78429 -0.21772 -1.37033 H -6.27663 3.006 1.43177 C -8.10139 1.64201 0.02981 C 8.10139 -1.64201 0.02986 N -9.25053 1.82239 0.03354 N 9.25054 -1.8224 0.03361

S51   

8a Anion

E = -2000.4451576 h

-1 2 C 1.81614 0.4718 -0.02895 C 0.40797 0.56886 -0.03024 C -0.18109 1.84855 -0.0154 C 2.42896 -0.85051 -0.02551 C -0.40797 -0.56886 -0.03023 C 0.18109 -1.84855 -0.01538 C 1.61034 -1.95034 -0.01781 C -1.81614 -0.4718 -0.02894 C -2.42896 0.85051 -0.02551 C -1.61034 1.95034 -0.01782 N 0.58332 2.95095 -0.0064 N 2.55331 1.58595 -0.00847 N -2.55331 -1.58595 -0.00844 N -0.58332 -2.95095 -0.00637 C 1.89089 2.73935 -0.00368 C -1.89089 -2.73935 -0.00364 H -2.03014 2.95011 -0.03679 H 2.03014 -2.95011 -0.03677 C -2.78988 -3.97526 0.03197 C 2.78988 3.97526 0.03191 F -3.71394 -3.91471 -0.94033 F -2.10175 -5.10405 -0.12441 F 2.10175 5.10405 -0.12447 F 3.71392 3.9147 -0.9404 F 3.43878 4.0434 1.2067 F -3.43876 -4.0434 1.20677 C -3.89784 1.0156 -0.0126 C -4.72779 0.27403 -0.86288 C -4.47808 1.96027 0.84358 C -6.09688 0.48366 -0.87014 H -4.30045 -0.46491 -1.52756 C -5.8476 2.16888 0.85074 H -3.85163 2.52067 1.52921 C -6.6658 1.43161 -0.01189 H -6.73258 -0.08593 -1.5378 H -6.28939 2.89428 1.52378 C 3.89784 -1.0156 -0.01262 C 4.72779 -0.27404 -0.86291 C 4.47809 -1.96026 0.84357 C 6.09688 -0.48367 -0.87018 H 4.30044 0.46489 -1.5276 C 5.84761 -2.16887 0.85072 H 3.85164 -2.52065 1.52922 C 6.6658 -1.43161 -0.01192 H 6.73257 0.08592 -1.53786 H 6.2894 -2.89426 1.52377 C 8.07786 -1.64528 -0.0145 C -8.07786 1.64528 -0.01446 N 9.22016 -1.82105 -0.01721 N -9.22016 1.82105 -0.01716

8b

E = -2489.9244216 h

S52   

0 1 C -1.76108 -0.65857 0.00233 C -0.34785 -0.60839 0.00193 C 0.37289 -1.8218 0.00867 C -2.51163 0.59356 0.00461 C 0.34786 0.60846 0.00194 C -0.37287 1.82186 0.00879 C -1.80632 1.77352 0.00579 C 1.76109 0.65863 0.00223 C 2.51165 -0.59349 0.00446 C 1.80633 -1.77346 0.00562 N -0.27074 -3.00171 0.00568 N -2.37787 -1.8464 0.01359 N 2.37788 1.84647 0.01354 N 0.27075 3.00177 0.00579 C -1.5975 -2.92825 0.00516 C 1.59753 2.9283 0.00513 H 2.32561 -2.72601 -0.02254 H -2.32559 2.72609 -0.02234 C 2.36254 4.24856 0.01805 C -2.36258 -4.24846 0.01811 F 3.30679 4.24913 -0.93686 F 1.55897 5.29268 -0.1888 F -1.55893 -5.29272 -0.18775 F -3.30613 -4.24934 -0.93751 F -2.97645 -4.41591 1.20125 F 2.97554 4.41653 1.20158 C 3.99122 -0.61251 0.01834 C 4.7528 0.25886 -0.77541 C 4.66054 -1.55139 0.81833 C 6.13949 0.17612 -0.78146 H 4.25949 1.00486 -1.38574 C 6.04722 -1.62993 0.81834 H 4.0894 -2.20686 1.46906 C 6.78998 -0.76764 0.01296 H 6.71895 0.85324 -1.39988 H 6.55277 -2.34945 1.45343 C -3.9912 0.61253 0.01845 C -4.7527 -0.2588 -0.77546 C -4.66061 1.55127 0.81851 C -6.13938 -0.17613 -0.78157 H -4.25929 -1.00467 -1.38587 C -6.0473 1.62973 0.81845 H -4.08956 2.20671 1.46934 C -6.78997 0.7675 0.01292 H -6.71879 -0.85319 -1.40011 H -6.55291 2.34916 1.45359 C 8.28846 -0.89023 -0.03866 C -8.28844 0.89007 -0.03871 F -8.67581 1.74943 -1.00351 F -8.7923 1.34819 1.12272 F -8.87806 -0.29042 -0.30227 F 8.79224 -1.34918 1.12248 F 8.67588 -1.74888 -1.00405 F 8.87811 0.29046 -0.30132

8b Anion

E = -2490.0377948 h

-1 2 C 1.7616 0.64644 -0.00095 C 0.35055 0.60593 -0.00102

S53   

C -0.36098 1.82176 0.01261 C 2.50092 -0.6093 -0.00184 C -0.35055 -0.60592 -0.00101 C 0.36098 -1.82175 0.01265 C 1.79329 -1.78349 0.00662 C -1.7616 -0.64643 -0.00093 C -2.50092 0.60931 -0.00184 C -1.79329 1.7835 0.0066 N 0.29217 2.99365 0.02168 N 2.38633 1.82755 0.02012 N -2.38633 -1.82754 0.02017 N -0.29217 -2.99364 0.02175 C 1.61415 2.91039 0.02543 C -1.61415 -2.91038 0.02551 H -2.30926 2.73707 -0.01567 H 2.30926 -2.73707 -0.01563 C -2.38781 -4.22819 0.0616 C 2.38781 4.2282 0.06149 F -3.31259 -4.25969 -0.91153 F -1.59271 -5.28499 -0.09321 F 1.59271 5.285 -0.09332 F 3.31257 4.25969 -0.91168 F 3.02838 4.35949 1.23574 F -3.02835 -4.35946 1.23587 C -3.97928 0.63108 0.00274 C -4.72804 -0.18741 -0.85087 C -4.65449 1.51373 0.85392 C -6.11257 -0.10868 -0.86584 H -4.22789 -0.88434 -1.51017 C -6.03989 1.58653 0.84914 H -4.09115 2.13135 1.54534 C -6.77016 0.77501 -0.0141 H -6.68224 -0.74354 -1.53422 H -6.55109 2.26285 1.52409 C 3.97928 -0.63107 0.00272 C 4.72803 0.1874 -0.85091 C 4.6545 -1.51371 0.8539 C 6.11257 0.10867 -0.8659 H 4.22787 0.88432 -1.51022 C 6.0399 -1.58651 0.84912 H 4.09116 -2.13132 1.54534 C 6.77016 -0.775 -0.01415 H 6.68223 0.74352 -1.5343 H 6.5511 -2.26281 1.52408 C -8.26774 0.89209 -0.06645 C 8.26774 -0.89211 -0.06648 F 8.65785 -1.81461 -0.97381 F 8.78785 -1.26751 1.11633 F 8.85496 0.26668 -0.41433 F -8.78784 1.26792 1.11623 F -8.65788 1.81426 -0.97411 F -8.85495 -0.26683 -0.41387

S54   

SI.5 - Comparison of the bond lengths and angles obtained from X-ray and DFT Bond lengths [Å] and angles for compound 2a: (Bond) (X-ray) (DFT) F(1)-C(14) 1.3382(17) 1.33620 F(2)-C(14) 1.3379(17) 1.34601 F(3)-C(14) 1.3207(16) 1.33791 N(1)-C(11) 1.3375(17) 1.33416 N(1)-C(1) 1.3466(17) 1.34057 N(2)-C(11) 1.3329(18) 1.33253 N(2)-C(4) 1.3500(17) 1.34189 C(1)-C(5) 1.4067(18) 1.41185 C(1)-C(2) 1.4422(18) 1.44228 C(2)-C(3) 1.3601(19) 1.36370 C(2)-H(2) 0.9500 1.08530 C(3)-C(4)#1 1.4428(19) 1.44230 C(3)-H(3) 0.9500 1.08530 C(4)-C(5) 1.4065(18) 1.41198 C(4)-C(3)#1 1.4428(19) 1.44157 C(5)-C(5)#1 1.408(2) 1.40300 C(11)-C(14) 1.5163(19) 1.52665 (Angle) (X-ray) (DFT) C(11)-N(1)-C(1) 115.47(11) 115.843 C(11)-N(2)-C(4) 114.89(11) 115.893 N(1)-C(1)-C(5) 119.94(11) 120.322 N(1)-C(1)-C(2) 120.80(11) 121.298 C(5)-C(1)-C(2) 119.26(11) 118.380 C(3)-C(2)-C(1) 120.46(12) 120.903 C(3)-C(2)-H(2) 119.8 121.571 C(1)-C(2)-H(2) 119.8 117.526 C(2)-C(3)-C(4)#1 120.78(12) 120.899 C(2)-C(3)-H(3) 119.6 121.578 C(4)#1-C(3)-H(3) 119.6 117.514 N(2)-C(4)-C(5) 120.46(12) 120.295 N(2)-C(4)-C(3)#1 120.78(11) 121.339 C(5)-C(4)-C(3)#1 118.77(11) 118.365 C(4)-C(5)-C(1) 119.28(11) 118.559 C(4)-C(5)-C(5)#1 120.69(14) 120.723 C(1)-C(5)-C(5)#1 120.03(14) 120.718 N(2)-C(11)-N(1) 129.96(12) 129.686 N(2)-C(11)-C(14) 116.69(11) 115.943 N(1)-C(11)-C(14) 113.34(11) 114.931

S55   

Bond lengths [Å] and angles for compound 3: (Bond) (X-ray) (DFT) F(1)-C(15) 1.3529(14) 1.33177 F(2)-C(16) 1.3344(14) 1.33238 F(3)-C(17) 1.3324(14) 1.32924 F(4)-C(18) 1.3375(15) 1.33238 F(5)-C(19) 1.3404(14) 1.33178 N(1)-C(11) 1.3380(17) 1.34117 N(1)-C(1) 1.3454(16) 1.33956 N(2)-C(11) 1.3439(16) 1.34118 N(2)-C(9) 1.3450(16) 1.33957 C(1)-C(10) 1.4118(17) 1.41115 C(1)-C(2)#1 1.4404(19) 1.44279 C(2)-C(3) 1.3599(18) 1.36374 C(2)-C(1)#1 1.4405(19) 1.44280 C(2)-H(2) 1.075(15) 1.08539 C(3)-C(9) 1.4467(17) 1.44280 C(3)-H(3) 1.038(17) 1.08539 C(9)-C(10) 1.3989(18) 1.41115 C(10)-C(10)#1 1.407(2) 1.40243 C(11)-C(14) 1.4914(16) 1.48595 C(14)-C(19) 1.3864(18) 1.39849 C(14)-C(15) 1.3924(17) 1.39849 C(15)-C(16) 1.3769(17) 1.39084 C(16)-C(17) 1.3843(19) 1.39117 C(17)-C(18) 1.3792(18) 1.39117 C(18)-C(19) 1.3782(18) 1.39084 (Angle) (X-ray) (DFT) C(11)-N(1)-C(1) 115.76(10) 116.404 C(11)-N(2)-C(9) 115.72(11) 116.404 N(1)-C(1)-C(10) 120.33(12) 120.523 N(1)-C(1)-C(2)#1 120.86(11) 121.288 C(10)-C(1)-C(2)#1 118.80(11) 118.188 C(3)-C(2)-C(1)#1 120.44(11) 120.978 C(3)-C(2)-H(2) 122.2(8) 121.527 C(1)#1-C(2)-H(2) 117.4(8) 117.495 C(2)-C(3)-C(9) 120.98(12) 120.980 C(2)-C(3)-H(3) 118.1(8) 121.527 C(9)-C(3)-H(3) 120.9(9) 117.495 N(2)-C(9)-C(10) 120.56(11) 120.523 N(2)-C(9)-C(3) 120.69(11) 121.288 C(10)-C(9)-C(3) 118.71(11) 118.189 C(9)-C(10)-C(10)#1 120.58(14) 120.833 C(9)-C(10)-C(1) 118.94(11) 118.333 C(10)#1-C(10)-C(1) 120.44(14) 120.833 N(1)-C(11)-N(2) 128.66(12) 127.810 N(1)-C(11)-C(14) 116.63(11) 116.095 N(2)-C(11)-C(14) 114.70(11) 116.095

S56   

Bond lengths [Å] and angles for compound 4a: (Bond) (X-ray) (DFT) Br(1)-C(2) 1.8763(19) 1.87308 Br(2)-C(7) 1.8768(19) 1.87308 F(1)-C(14) 1.332(2) 1.33363 F(2)-C(14) 1.333(2) 1.34188 F(3)-C(14) 1.329(2) 1.34187 F(4)-C(15) 1.332(2) 1.33363 F(5)-C(15) 1.327(2) 1.34188 F(6)-C(15) 1.319(2) 1.34187 N(1)-C(1) 1.337(2) 1.33439 N(1)-C(11) 1.342(2) 1.33446 N(2)-C(11) 1.326(2) 1.33007 N(2)-C(9) 1.348(2) 1.34210 N(3)-C(13) 1.336(2) 1.33010 N(3)-C(4) 1.339(2) 1.34207 N(4)-C(13) 1.333(2) 1.33442 N(4)-C(6) 1.346(2) 1.33441 C(1)-C(10) 1.409(2) 1.41246 C(1)-C(2) 1.446(2) 1.45104 C(2)-C(3) 1.355(2) 1.36535 C(3)-C(4) 1.438(2) 1.43740 C(3)-H(3) 0.9500 1.08418 C(4)-C(5) 1.412(2) 1.41216 C(5)-C(10) 1.403(2) 1.40204 C(5)-C(6) 1.403(2) 1.40205 C(6)-C(7) 1.454(2) 1.45102 C(7)-C(8) 1.363(2) 1.36536 C(8)-C(9) 1.438(2) 1.43738 C(8)-H(8) 0.9500 1.08418 C(9)-C(10) 1.405(2) 1.41215 C(11)-C(14) 1.520(2) 1.52679 C(13)-C(15) 1.522(2) 1.52680 (Angle) (X-ray) (DFT) C(1)-N(1)-C(11) 115.24(15) 116.225 C(11)-N(2)-C(9) 114.79(15) 115.670 N(1)-C(1)-C(10) 120.42(16) 120.374 N(1)-C(1)-C(2) 121.82(15) 122.208 C(10)-C(1)-C(2) 117.76(15) 117.418 C(3)-C(2)-C(1) 121.91(15) 121.086 C(3)-C(2)-Br(1) 120.51(13) 120.621 C(1)-C(2)-Br(1) 117.57(12) 118.293 C(2)-C(3)-C(4) 119.85(16) 120.936 C(2)-C(3)-H(3) 120.1 121.201 C(4)-C(3)-H(3) 120.1 117.863 C(5)-C(4)-C(3) 119.39(15) 118.715

S57   

C(10)-C(5)-C(6) 121.56(16) 121.679 C(10)-C(5)-C(4) 120.04(16) 120.163 C(6)-C(5)-C(4) 118.39(15) 118.157 Bond lengths [Å] and angles for compound 5: (Bond) (X-ray) (DFT) Br(1)-C(2) 1.878(4) 1.86685 Br(2)-C(3) 1.867(4) 1.86685 F(1)-C(15) 1.340(4) 1.33065 F(2)-C(16) 1.335(5) 1.33165 F(3)-C(17) 1.336(4) 1.32832 F(4)-C(18) 1.333(5) 1.33165 F(5)-C(19) 1.334(4) 1.33066 N(1)-C(11) 1.331(5) 1.33907 N(1)-C(1) 1.340(5) 1.33363 N(2)-C(4) 1.342(5) 1.33363 N(2)-C(11) 1.344(5) 1.33907 C(1)-C(5) 1.400(5) 1.41172 C(1)-C(2) 1.446(5) 1.45102 C(2)-C(3)#1 1.375(5) 1.37336 C(3)-C(2)#1 1.375(5) 1.37336 C(3)-C(4) 1.453(5) 1.45102 C(4)-C(5) 1.399(5) 1.41172 C(5)-C(5)#1 1.413(7) 1.39974 C(11)-C(14) 1.497(5) 1.48353 C(14)-C(15) 1.379(6) 1.39916 C(14)-C(19) 1.391(5) 1.39916 C(15)-C(16) 1.378(6) 1.39060 C(16)-C(17) 1.375(6) 1.39142 C(17)-C(18) 1.370(6) 1.39142 C(18)-C(19) 1.381(5) 1.39060 (Angle) (X-ray) (DFT) C(11)-N(1)-C(1) 116.0(3) 116.722 C(4)-N(2)-C(11) 115.6(3) 116.722 N(1)-C(1)-C(5) 120.9(3) 120.756 N(1)-C(1)-C(2) 120.7(3) 121.166 C(5)-C(1)-C(2) 118.5(3) 118.077 C(3)#1-C(2)-C(1) 121.1(3) 120.798 C(3)#1-C(2)-Br(1) 121.3(3) 121.890 C(1)-C(2)-Br(1) 117.6(3) 117.312 C(2)#1-C(3)-C(4) 119.9(3) 120.798 C(2)#1-C(3)-Br(2) 122.0(3) 121.890 C(4)-C(3)-Br(2) 118.0(3) 117.321 N(2)-C(4)-C(5) 120.9(3) 120.756 N(2)-C(4)-C(3) 120.2(3) 121.166 C(5)-C(4)-C(3) 118.8(3) 118.077

S58   

C(4)-C(5)-C(1) 118.4(3) 117.749 Bond lengths [Å] and angles for compound 6: (Bond) (X-ray) (DFT) Cl(1)-C(2) 1.6991(19) 1.71224 Cl(2)-C(3) 1.7082(19) 1.71223 F(1)-C(14) 1.323(2) 1.33540 F(2)-C(14) 1.325(2) 1.34465 F(3)-C(14) 1.324(3) 1.33584 N(1)-C(11) 1.331(2) 1.33111 N(1)-C(1) 1.338(2) 1.33541 N(2)-C(11) 1.336(2) 1.33114 N(2)-C(4) 1.343(2) 1.33537 C(1)-C(5) 1.408(2) 1.41167 C(1)-C(2) 1.453(3) 1.45158 C(2)-C(3) 1.366(3) 1.37722 C(3)-C(4)#1 1.451(2) 1.45158 C(4)-C(5) 1.405(2) 1.41169 C(4)-C(3)#1 1.451(2) 1.45157 C(5)-C(5)#1 1.402(3) 1.40000 C(11)-C(14) 1.523(3) 1.52800 (Angle) (X-ray) (DFT) C(11)-N(1)-C(1) 115.13(16) 116.055 C(11)-N(2)-C(4) 114.86(16) 116.058 N(1)-C(1)-C(5) 121.12(16) 120.654 N(1)-C(1)-C(2) 120.66(16) 121.037 C(5)-C(1)-C(2) 118.22(16) 118.309 C(3)-C(2)-C(1) 120.60(16) 120.634 C(3)-C(2)-Cl(1) 121.55(14) 121.693 C(1)-C(2)-Cl(1) 117.85(14) 117.672 C(2)-C(3)-C(4)#1 120.97(16) 120.634 C(2)-C(3)-Cl(2) 121.13(14) 121.694 C(4)#1-C(3)-Cl(2) 117.90(14) 117.672 N(2)-C(4)-C(5) 121.13(16) 121.039 N(2)-C(4)-C(3)#1 120.73(16) 120.652 C(5)-C(4)-C(3)#1 118.14(16) 118.309 C(5)#1-C(5)-C(4) 121.1(2) 121.057 C(5)#1-C(5)-C(1) 121.0(2) 121.057 C(4)-C(5)-C(1) 117.93(16) 117.886

S59   

SI.6 - AFM pictures of fabricated OTFTs

1b 1.0µm

7b 1.0µm

8a 1.0µm

3 1.0µm

4c 1.0µm

5 1.0µm

S60   

SI.7 - 1H and 13C NMR spectra

Numbering of the atoms:

 

S61   

N N

NN

Cl

Cl Cl

Cl

1a

 

4,5,9,10-tetrachloro-1,3,6,8-tetraazapyrene (1a) 

1H NMR (399.89 MHz, CDCl3)

13C NMR (150.90 MHz, CDCl3)

S62   

4,5,9,10-tetrabromo-1,3,6,8-tetraazapyrene (1b)

1H NMR (600.13 MHz, CDCl3) 

13C NMR (150.90 MHz, CDCl3)

S63   

2,7-bis-(trifluoromethyl)-1,3,6,8-tetraazapyrene (2a)  

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S64   

2,7-bis-(pentafluoroethyl)-1,3,6,8-tetraazapyrene (2b) 

1H NMR (399.89 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S65   

2,7-bis-(heptafluoropropyl)-1,3,6,8-tetraazapyrene (2c) 

1H NMR (399.89 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S66   

2,7-bis-(pentafluorophenyl)-1,3,6,8-tetraazapyrene (3) 

1H NMR (399.89 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S67   

2,7-bis-(trifluoromethyl)-4,9-dibromo-1,3,6,8-tetraazapyrene (4a)

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S68   

4b

N

N N

NC2F5F5C2

Br

Br

2,7-bis-(pentafluoroethyl)-4,9-dibromo-1,3,6,8-tetraazapyrene (4b) 

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S69   

2,7-bis-(heptafluoropropyl)-4,9-dibromo-1,3,6,8-tetraazapyrene (4c) 

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S70   

5

N

N N

NC6F5C6F5

Br Br

Br Br

2,7-bis-(pentafluorophenyl)-4,5,9,10-tetrabromo-1,3,6,8-tetraazapyrene (5) 

13C NMR (150.90 MHz, CDCl3)

 

S71   

2,7-bis-(trifluoromethyl)-4,5,9,10-tetrachloro-1,3,6,8-tetraazapyrene (6) 

13C NMR (150.90 MHz, CDCl3)

S72   

N N

NN

NC

CNNC

CN

7a

4,5,9,10-tetrakis-(4-cyanophenyl)-1,3,6,8-tetraazapyrene (7a) 

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S73   

4,5,9,10-tetrakis-(4-trifluoromethylphenyl)-1,3,6,8-tetraazapyrene (7b)

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S74   

2,7-bis-(trifluoromethyl)-4,9-bis-(4-cyanophenyl)-1,3,6,8-tetraazapyrene (8a)

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S75   

2,7-bis-(trifluoromethyl)-4,9-bis-(4-trifluoromethylphenyl)-1,3,6,8-tetraazapyrene (8b)

1H NMR (600.13 MHz, CDCl3)

 

13C NMR (150.90 MHz, CDCl3)

S76   

SI.7 References

(SI1) (a) Ward, E. R.; Johnson, C. D.; Day, L. A. J. Chem. Soc. 1959, 487-493.; (b) Vitske,

V.; König, C.; Hübner, O.; Kaifer, E.; Himmel, H.-J. Eur. J. Inorg. Chem. 2010, 115-126. (c)

Dimroth, O.; Roos, H. Liebigs Ann. Chem. 1927, 456, 177-192. (d) Will, W. Chem. Ber.

1895, 28, 2234-2235.

(SI2) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A.; J. Chem. Phys. 1972, 56, 2257; (b) Pople,

J. A. J. Chem. Phys. 1975, 62, 2921; (c) Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J.

S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654; (d) Clark, T.;

Chandrasekhar, J.: Spitznagel, G. W.; Schleyer, P. V. R. J. Comp. Chem. 1983, 4, 294.

(SI3) Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M.

Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,

K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M.

Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,

R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.

Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox,

Gaussian, Inc., Wallingford CT, 2009.

(SI4) (a) Chang, Y.-C.; Kuo, M.-Y.; Chen, C.-P.; Lu, H.-F.; Chao, I. J. Phys. Chem. C 2010,

114, 11595-11601; (b) Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer III, H. F.; Nandi,

S.; Ellison, G. B. Chem. Rev. 2002, 102, 231-282.