13.05.2016, check girder shear strength due to crane c1 & c2, span 15 m

Upload: madepande84

Post on 02-Mar-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 13.05.2016, Check Girder Shear Strength Due to Crane C1 & C2, Span 15 m

    1/1

    Steel Material =

    Fy = 240.00 MPa H.iwf = 1,500.00 mm Mu = 2,178.24 kN.m

    Steel Profile Used = B.iwf = 500.00 mm Mn = 3,077.96 kN.m

    E (Elastic Modulus) = 200,000.00 MPa Yes tw = 1 2. 00 m m Vu = 696.80 kN

    Ix (Moment Inertia) = 11,972,940,565 mm4 1.28 x h tf = 1 6. 00 m m Vn = 1,579.34 kN

    Steel Making = 1,879.04 mm r = 5.00 mm .max x FD = 19.93 mm

    Web Classification = 0.90 r min = 5.00 mm Limit = 15.00 mm

    Flange Classification = 0.68 Check r = OK!

    1,754.82 k N

    1,579.34 kN

    AISC Moment Provision = H.iwf = 2,500.00 mm Mn = 3,583.77 kN.m

    L Span = 15.00 m B.iwf = 500.00 mm

    Unbrace Length Factor = 0.13 Dead Load = 1.25 tw = 1 9. 00 m m

    Unbrace Length (Lb) = 1.88 m Live Load = 0.5 tf = 4 2. 00 m m X1 = 0.00 m

    Lp = 3,952.57 mm Live Load Crane = 1.5 r = 8.00 mm

    Lr = 13,796.67 mm r min = 6.00 mm

    Lb Condition = Lb Lp Check r = OK!Design Method =

    Cb = 1.00

    Mn = 3,419.96 kN.m

    = 0.90

    P1 Point Load Position from RA

    CHECK GIRDER STRENGTH DUE TO CRANE C1, Span = 15 m

    BJ 37

    Not Compact Web

    Not Compact Flange

    F4

    Multiplier Load Factor (LF)

    v =

    Web Shear Coefficient (Cv) =

    Vn =Allowable Moment Capacity (AISC 2010)

    IWF 1500x 500 x 12 x 16

    Built Up

    LRFD

    Vn =

    Custom Profile Dimension 2

    Moment Strength Capacity

    Based on SNI Baja 2002

    Summary Report

    StiffenerReq =h/tw > 2.46 x (Es/Fy), Required

    Transverse Stiffeners

    Use Stiffener=

    OK!

    OK!

    Allowable Shear Capacity (AISC 2010)

    StiffenerSpacing (a) =

    Custom Profile Dimension 1

    NOT OK!!

    70.8%

    44.1%

    132.9%

    Created by: Made Eka Prayuda Pande

    Email: [email protected]

    WA:081804022644

    = .

    Mn = 3,077.96 kN.m

    Moment Cap. Ratio (Mn/Mp) = 78%

    Width of Load Area = 0.75 m

    FP x Load

    1. Occupancy Load = 3.00 kN/m2 1.50

    2. Others Load (Area Load) = 0.00 kN/m2 0.00

    3. Others Load (Line Load) = 0.00 kN/m 0.00

    FP x Load

    Include Self Weight = Yes

    1. Self Weight = 2.64 kN/m 3.30

    2. Concrete Slab = 0.00 kN/m2 0.00

    Conc.Thickness = 0.00 mm

    3. Others Load (Area Load) = 0.50 kN/m2 0.63

    4. Others Load (Line Load) = 0.20 kN/m 0.25

    Total Distrb.Load (Q1) = 5.14 kN/m

    Load Type = Pa x LF

    Pa.1 = 68.96 kN 86.20Pa.2 = 68.96 kN 86.20

    Pa.3 = 61.85 kN 77.31

    Distributed Load

    Point Load 1

    Dead Load

    Live Load =

    Dead Load =

    P1 P2 P3 P4 P5 P6 P7 P8

    L Span

    X1 X5X2 X3 X4 X6 X7 X8

    =

    Pa.4 = 61.85 kN 77.31 RA = 696.80 kN RB = 424.93 kN

    Pa.5 = kN 0.00

    Pa.6 = kN 0.00

    Pa.7 = kN 0.00

    Pa.8 = kN 0.00 M1 = 0.00 kN.m 1 = 0.00 mm

    M2 = 1,998.41 kN.m 2 = 17.43 mm

    Load Type = Pb x LF M3 = 2,178.24 kN.m 3 = 19.81 mm

    Pb.1 = 132.04 kN 198.06 M4 = 1,440.30 kN.m 4 = 13.11 mm

    Pb.2 = 132.04 kN 198.06 M5 = 1,030.60 kN.m 5 = 9.75 mm

    Pb.3 = 107.15 kN 160.73 M6 = 615.76 kN.m 6 = 5.96 mm

    Pb.4 = 107.15 kN 160.73 M7 = 195.77 kN.m 7 = 1.91 mm

    Pb.5 = kN 0.00 M8 = 0.00 kN.m 8 = 0.00 mm

    Pb.6 = kN 0.00 mi dd = 1 9. 93 mm

    Pb.7 = kN 0.00 M.Max = 2,178.24 kN.m max = 19.93 m m

    Pb.8 = kN 0.00

    P1 = (Pa.1 + Pb.1) x LF = 284.26 kN X.P1 = 0.00 m

    P2 = (Pa.2 + Pb.2) x LF = 284.26 kN X.P2 = 5.00 m V.RA = 6 96.80 kN

    P3 = (Pa.3 + Pb.3) x LF = 238.04 kN X.P3 = 6.84 m V1 = 696.80 kN

    P4 = (Pa.4 + Pb.4) x LF = 238.04 kN X.P4 = 11.54 m V2 = 386.83 kN

    P5 = (Pa.5 + Pb.5) x LF = 0.00 kN X.P5 = 12.54 m V3 = 93.11 kN

    P6 = (Pa.6 + Pb.6) x LF = 0.00 kN X.P6 = 13.54 m V4 = -169.09 kN

    = = = = -

    Inside of Span

    PositionLoad Position from RA:

    Internal Moment Force in P5 =

    Max Moment =

    Deflectionin P5 =

    Max Deflection=

    Deflectionin middle span =

    Internal Moment Force in P3 =

    Deflectionin P1 =

    Point Load 2

    Internal Moment Force in P8 =

    Deflectionin P2 =

    Deflectionin P3 =

    Deflectionin P4 =

    Deflectionin P6 =

    Deflectionin P7 =

    Deflectionin P8 =

    Internal Moment Force in P4 =

    Internal Moment Force in P6 =

    Internal Moment Force in P7 =

    Major Moment Force Major Deflection

    Internal Moment Force in P1 =

    Internal Moment Force in P2 =

    Live Load Crane

    Point Load 1 + 2 =

    Internal Shear Force in P2 =

    Major Shear Force

    Shear Force in RA =

    Internal Shear Force in P1 =

    Inside of Span

    Inside of Span

    Inside of Span

    Inside of Span

    Inside of Span Internal Shear Force in P3

    Internal Shear Force in P4

    P7 = (Pa.7 + Pb.7) x LF = 0.00 kN X.P7 = 14.54 m V5 = -412.27 kNP8 = (Pa.8 + Pb.8) x LF = 0.00 kN X.P8 = 15.54 m V6 = -417.41 kN

    V7 = - 422. 56 kN

    V8 = 0.00 kN

    L span = 15.00 m V.RB1 = -424.93 kN

    X = 1,000.00

    Limit = L span / X = 15.00 mm V.Max = 696.80 kN

    M ul ti pl ie r Fa ctor fo r Sh ea r De fl ec ti on (FP D) = 1 .0 0

    X1 = 0.00 m

    X2 = 5.00 m

    X3 = 1.84 m

    X4 = 4.70 m

    X5 = 1.00 m

    X6 = 1.00 m

    X7 = 1.00 m

    X8 = 1.00 m

    Deflection Limit

    Load Position Arrangement

    Inside of SpanOut of Span

    Max Shear Major Force =

    Internal Shear Force in P5Internal Shear Force in P6

    Internal Shear Force in P7

    Internal Shear Force in P8

    Shear Force in RB =