12_linearized lateral-directional.pdf

9
Linearized Lateral-Directional Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 Spiral, Dutch roll, and roll modes Stability derivatives Roll-mode response of roll angle Spiral-mode response of crossrange Spiral-mode response of yaw angle Dutch-roll- mode response of side velocity Dutch-roll-mode response of roll and yaw rates Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html 6-Component Lateral-Directional Equations of Motion State Vector, 6 components Nonlinear Dynamic Equations ! v = Y / m + g sin! cos" # ru + pw ! y I = cos" sin$ ( ) u + cos! cos$ + sin! sin" sin$ ( ) v + # sin! cos$ + cos! sin" sin$ ( ) w ! p = I zz L + I xz N # I xz I yy # I xx # I zz ( ) p + I xz 2 + I zz I zz # I yy ( ) % & ( r { } q ( ) ÷ I xx I zz # I xz 2 ( ) ! r = I xz L + I xx N # I xz I yy # I xx # I zz ( ) r + I xz 2 + I xx I xx # I yy ( ) % & ( p { } q ( ) ÷ I xx I zz # I xz 2 ( ) ! ! = p + q sin! + r cos! ( ) tan" ! $ = q sin! + r cos! ( ) sec" x 1 x 2 x 3 x 4 x 5 x 6 ! " # # # # # # # # $ % & & & & & & & & = x LD6 = v y p r ( ! " # # # # # # # # $ % & & & & & & & & = Side Velocity Crossrange Body ) Axis Roll Rate Body ) Axis Yaw Rate Roll Angle about Body x Axis Yaw Angle about Inertial x Axis ! " # # # # # # # # $ % & & & & & & & & Douglas A-4 4- Component Lateral-Directional Equations of Motion State Vector, 4 components Nonlinear Dynamic Equations, neglecting crossrange and yaw angle ! v = Y / m + g sin! cos" # ru + pw ! p = I zz L + I xz N # I xz I yy # I xx # I zz ( ) p + I xz 2 + I zz I zz # I yy ( ) $ % & r { } q ( ) ÷ I xx I zz # I xz 2 ( ) ! r = I xz L + I xx N # I xz I yy # I xx # I zz ( ) r + I xz 2 + I xx I xx # I yy ( ) $ % & p { } q ( ) ÷ I xx I zz # I xz 2 ( ) ! ! = p + q sin! + r cos! ( ) tan" x 1 x 2 x 3 x 4 ! " # # # # # $ % & & & & & = x LD 4 = v p r ! " # # # # # $ % & & & & & = Side Velocity Body ( Axis Roll Rate Body ( Axis Yaw Rate Roll Angle about Body x Axis ! " # # # # # $ % & & & & & Eurofighter Typhoon Lateral-Directional Equations of Motion Assuming Steady, Level Longitudinal Flight Nonlinear Dynamic Equations, assuming steady, level, longitudinal flight (constant longitudinal variables) ! v = Y B / m + g sin ! cos" N # ru N + pw N = Y B / m + g sin ! cos $ N # ru N + pw N ! p = I zz L B + I xz N B ( ) I xx I zz # I xz 2 ( ) ! r = I xz L B + I xx N B ( ) I xx I zz # I xz 2 ( ) ! ! = p + r cos ! ( ) tan" N = p + r cos ! ( ) tan $ N q N = 0 ! N = 0 " N = # N Lockheed F-117

Upload: anonymous-ry7aem

Post on 18-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

  • Linearized Lateral-Directional

    Equations of MotionRobert Stengel, Aircraft Flight Dynamics MAE 331, 2010

    Spiral, Dutch roll, and roll modes

    Stability derivatives

    Roll-mode responseof roll angle

    Spiral-moderesponse ofcrossrange

    Spiral-mode responseof yaw angle

    Dutch-roll-mode responseof side velocity

    Dutch-roll-moderesponse of rolland yaw rates

    Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    6-Component

    Lateral-DirectionalEquations of Motion

    State Vector,6 components

    Nonlinear Dynamic Equations

    !v = Y / m + gsin! cos" # ru + pw

    !yI= cos" sin$( )u + cos! cos$ + sin! sin" sin$( )v + # sin! cos$ + cos! sin" sin$( )w

    !p = IzzL + I

    xzN # I

    xzIyy# I

    xx# I

    zz( ) p + Ixz2 + Izz Izz # Iyy( )%& '(r{ }q( ) Ixx Izz # Ixz2( )!r = I

    xzL + I

    xxN # I

    xzIyy# I

    xx# I

    zz( )r + Ixz2 + Ixx Ixx # Iyy( )%& '( p{ }q( ) Ixx Izz # Ixz2( )!! = p + qsin! + r cos!( ) tan"

    !$ = qsin! + r cos!( )sec"

    x1

    x2

    x3

    x4

    x5

    x6

    !

    "

    ########

    $

    %

    &&&&&&&&

    = xLD6=

    v

    y

    p

    r

    '

    (

    !

    "

    ########

    $

    %

    &&&&&&&&

    =

    Side Velocity

    Crossrange

    Body ) Axis Roll Rate

    Body ) Axis Yaw Rate

    Roll Angle about Body x Axis

    Yaw Angle about Inertial x Axis

    !

    "

    ########

    $

    %

    &&&&&&&&

    Douglas A-4

    4- Component

    Lateral-Directional

    Equations of Motion

    State Vector,

    4 components

    Nonlinear Dynamic Equations, neglecting crossrange and yaw angle

    !v = Y / m + gsin! cos" # ru + pw

    !p = IzzL + I

    xzN # I

    xzIyy# I

    xx# I

    zz( ) p + Ixz2 + Izz Izz # Iyy( )$% &'r{ }q( ) Ixx Izz # Ixz2( )!r = I

    xzL + I

    xxN # I

    xzIyy# I

    xx# I

    zz( )r + Ixz2 + Ixx Ixx # Iyy( )$% &' p{ }q( ) Ixx Izz # Ixz2( )!! = p + qsin! + r cos!( ) tan"

    x1

    x2

    x3

    x4

    !

    "

    #####

    $

    %

    &&&&&

    = xLD4=

    v

    p

    r

    '

    !

    "

    #####

    $

    %

    &&&&&

    =

    Side Velocity

    Body ( Axis Roll Rate

    Body ( Axis Yaw Rate

    Roll Angle about Body x Axis

    !

    "

    #####

    $

    %

    &&&&&

    Eurofighter Typhoon

    Lateral-Directional Equations

    of Motion Assuming Steady,Level Longitudinal Flight

    Nonlinear Dynamic Equations, assuming steady, level, longitudinal flight

    (constant longitudinal variables)

    !v = YB/ m + gsin! cos"

    N# ru

    N+ pw

    N

    = YB/ m + gsin! cos$

    N# ru

    N+ pw

    N

    !p =IzzLB+ I

    xzN

    B( )IxxIzz# I

    xz

    2( )

    !r =IxzLB+ I

    xxN

    B( )IxxIzz# I

    xz

    2( )!! = p + r cos!( ) tan"N = p + r cos!( ) tan$N

    qN= 0

    !N= 0

    "N= #

    N

    Lockheed F-117

  • Lateral-Directional Force

    and Moments

    YB = CYB1

    2!NVN

    2S; Body " Axis Side Force

    LB = ClB1

    2!NVN

    2Sb; Body " Axis Rolling Moment

    NB = CnB1

    2!NVN

    2Sb; Body " Axis Yawing Moment

    Linearized Equationsof Motion

    Body-Axis Perturbation

    Equations of Motion

    !!x

    LD(t) = F

    LD!x

    LD(t) +G

    LD!u

    LD(t) + L

    LD!w

    LD(t)

    ! !v(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((

    =

    ) f1

    )v) f

    1

    ) p) f

    1

    )r) f

    1

    )"

    ) f2

    )v) f

    2

    ) p) f

    2

    )r) f

    2

    )"

    ) f3

    )v) f

    3

    ) p) f

    3

    )r) f

    3

    )"

    ) f4

    )v) f

    4

    ) p) f

    4

    )r) f

    4

    )"

    #

    $

    %%%%%%%%%%%

    &

    '

    (((((((((((

    !v(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((

    +

    ) f1

    )*A) f

    1

    )*R) f

    2

    )*A) f

    2

    )*R) f

    3

    )*A) f

    3

    )*R) f

    4

    )*A) f

    4

    )*R

    #

    $

    %%%%%%%%%%

    &

    '

    ((((((((((

    !*A(t)

    !*R(t)

    #

    $%%

    &

    '((+

    ) f1

    )vwind

    ) f1

    ) pwind) f

    2

    )vwind

    ) f2

    ) pwind) f

    3

    )vwind

    ) f3

    ) pwind) f

    4

    )vwind

    ) f4

    ) pwind

    #

    $

    %%%%%%%%%%%

    &

    '

    (((((((((((

    !vwind!pwind

    #

    $%%

    &

    '((

    !u1

    !u2

    "

    #

    $$

    %

    &

    ''=

    !(A

    !(R

    "

    #$

    %

    &' =

    Aileron Perturbation

    Rudder Perturbation

    "

    #

    $$

    %

    &

    ''

    !w1

    !w2

    "

    #

    $$

    %

    &

    ''=

    !(A

    !(R

    "

    #$

    %

    &' =

    SideWind Perturbation

    Vortical Wind Perturbation

    "

    #

    $$

    %

    &

    ''

    Perturbations from wings-level flight vN= 0; p

    N= 0; r

    N= 0; !

    N= 0

    !v!p

    !r!"

    #

    $

    %%%%%

    &

    '

    (((((

    =

    Side Velocity Perturbation

    Body ) Axis Roll Rate Perturbation

    Body ) Axis Yaw Rate Perturbation

    Roll Angle about Body x Axis Perturbation

    #

    $

    %%%%%

    &

    '

    (((((

    Typical

    Lateral-Directional Initial-Condition

    Linearized Response

    Roll-mode responseof roll angle

    Spiral-moderesponse ofcrossrange

    Spiral-moderesponse of yawangle

    Dutch-roll-mode responseof side velocity

    Dutch-roll-moderesponse of rolland yaw rates

  • Dimensional Stability-

    and-Control Derivatives! f

    1

    !v! f

    1

    ! p! f

    1

    !r! f

    1

    !"

    ! f2

    !v! f

    2

    ! p! f

    2

    !r! f

    2

    !"

    ! f3

    !v! f

    3

    ! p! f

    3

    !r! f

    3

    !"

    ! f4

    !v! f

    4

    ! p! f

    4

    !r! f

    4

    !"

    #

    $

    %%%%%%%%%%%

    &

    '

    (((((((((((

    =

    Yv Yp + wN( ) Yr ) uN( ) gcos*NLv Lp Lr 0

    Nv Np Nr 0

    0 1 tan*N 0

    #

    $

    %%%%%%

    &

    '

    ((((((

    ! f1

    !"A

    ! f1

    !"R

    ! f2

    !"A

    ! f2

    !"R

    ! f3

    !"A

    ! f3

    !"R

    ! f4

    !"A

    ! f4

    !"R

    #

    $

    %%%%%%%%%%

    &

    '

    ((((((((((

    =

    Y"A Y"R

    L"A L"R

    N"A N"R

    0 0

    #

    $

    %%%%%

    &

    '

    (((((

    ! f1

    !vwind

    ! f1

    ! pwind

    ! f2

    !vwind

    ! f2

    ! pwind

    ! f3

    !vwind

    ! f3

    ! pwind

    ! f4

    !vwind

    ! f4

    ! pwind

    "

    #

    $$$$$$$$$$$

    %

    &

    '''''''''''

    =

    Yv Yp

    Lv Lp

    Nv Np

    0 0

    "

    #

    $$$$$

    %

    &

    '''''

    StabilityMatrix

    ControlEffect Matrix

    DisturbanceEffect Matrix

    v

    p

    r

    !

    "

    #

    $ $ $ $

    %

    &

    ' ' ' '

    =

    Side Velocity

    Body ( Axis Roll Rate

    Body ( Axis Yaw Rate

    Roll Angle about Body x Axis

    "

    #

    $ $ $ $

    %

    &

    ' ' ' '

    ! !v(t)

    !!p(t)

    !!r(t)

    ! !"(t)

    #

    $

    %%%%%

    &

    '

    (((((

    =

    Yv Yp + wN( ) Yr ) uN( ) gcos*NLv Lp Lr 0

    Nv Np Nr 0

    0 1 tan*N 0

    #

    $

    %%%%%%

    &

    '

    ((((((

    !v(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((

    +

    Y+A Y+R

    L+A L+R

    N+A N+R

    0 0

    #

    $

    %%%%%

    &

    '

    (((((

    !+A(t)

    !+R(t)

    #

    $%%

    &

    '((+

    Yv Yp

    Lv Lp

    Nv Np

    0 0

    #

    $

    %%%%%

    &

    '

    (((((

    !vwind!pwind

    #

    $%%

    &

    '((

    Rolling and yawing motions

    Body-Axis Perturbation

    Equations of Motion

    Stability Axes

    Stability Axes Alternative set of body axes

    Nominal x axis is offset from the body centerline bythe nominal angle of attack, !N

  • Transformation fromOriginal Body Axesto Stability Axes

    HB

    S=

    cos!N

    0 sin!N

    0 1 0

    " sin!N

    cos!N

    #

    $

    %%%

    &

    '

    (((

    !u

    !v

    !w

    "

    #

    $$$

    %

    &

    '''S

    = HB

    S

    !u

    !v

    !w

    "

    #

    $$$

    %

    &

    '''B

    !p

    !q

    !r

    "

    #

    $$$

    %

    &

    '''S

    = HBS

    !p

    !q

    !r

    "

    #

    $$$

    %

    &

    '''B

    Side velocity (!v) and pitch rate (!q) are unchanged by the transformation

    Stability-Axis Lateral-Directional Equations

    Rotate body axes to stability axes

    Replace side velocity by sideslip angle

    Revise state order

    !" #!v

    VN

    !v(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((Body)Axis

    *

    !v(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((Stability)Axis

    !v(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((Stability)Axis

    *

    !+(t)

    !p(t)

    !r(t)

    !"(t)

    #

    $

    %%%%%

    &

    '

    (((((Stability)Axis

    !"(t)

    !p(t)

    !r(t)

    !#(t)

    $

    %

    &&&&&

    '

    (

    )))))Stability*Axis

    +

    !r(t)

    !"(t)

    !p(t)

    !#(t)

    $

    %

    &&&&&

    '

    (

    )))))Stability*Axis

    Stability-Axis Lateral-Directional Equations

    !!r(t)

    ! !"(t)!!p(t)

    ! !#(t)

    $

    %

    &&&&&

    '

    (

    )))))S

    =

    Nr N" Np 0

    Yr

    VN*1

    +

    ,-.

    /0Y"

    VN

    Yp

    VN

    gcos1 NVN

    Lr L" Lp 0

    tan1 N 0 1 0

    $

    %

    &&&&&&&

    '

    (

    )))))))S

    !r(t)!"(t)!p(t)!#(t)

    $

    %

    &&&&&

    '

    (

    )))))S

    +

    N2A N2R

    Y2A

    VN

    Y2R

    VN

    L2A L2R

    0 0

    $

    %

    &&&&&&

    '

    (

    ))))))S

    !2A(t)!2R(t)

    $

    %&&

    '

    ())+

    N" Np

    Y"

    VN

    Yp

    VN

    L" Lp

    0 0

    $

    %

    &&&&&&&

    '

    (

    )))))))S

    !"wind!pwind

    $

    %&&

    '

    ())

    !x1

    !x2

    !x3

    !x4

    "

    #

    $$$$$

    %

    &

    '''''

    =

    !r!(

    !p

    !)

    "

    #

    $$$$$

    %

    &

    '''''

    =

    Stability * Axis Yaw Rate Perturbation

    Sideslip Angle Perturbation

    Stability * Axis Roll Rate Perturbation

    Stability * Axis Roll Angle Perturbation

    "

    #

    $$$$$

    %

    &

    '''''

    Why Modify the Equations?

    Dutch-roll mode is primarily described by stability-axis yawrate and sideslip angle

    Roll and spiral mode are primarily described by stability-axisroll rate and roll angle

    Linearized equations allow the three modes to be studied

    Stable Spiral

    Unstable Spiral

    Roll

    Dutch Roll, top Dutch Roll, front

  • Why Modifythe Equations?

    FLD

    =FDR

    FRS

    DR

    FDR

    RSFRS

    !

    "

    ##

    $

    %

    &&=

    FDR

    small

    small FRS

    !

    "

    ##

    $

    %

    &&'

    FDR

    ~ 0

    ~ 0 FRS

    !

    "

    ##

    $

    %

    &&

    Effects of Dutch roll perturbations

    on Dutch roll motion

    Effects of Dutch roll perturbations

    on roll-spiral motion

    Effects of roll-spiral perturbationson Dutch roll motion

    Effects of roll-spiral perturbations on

    roll-spiral motion

    ... but are the off-diagonal blocks really small?

    Dassault Rafale

    Stability, Control, andDisturbance Matrices

    FLD =FDR FRS

    DR

    FDRRS

    FRS

    !

    "

    ##

    $

    %

    &&=

    Nr N' Np 0

    Yr

    VN(1

    )

    *+,

    -.Y'

    VN

    Yp

    VN

    gcos/ NVN

    Lr L' Lp 0

    tan/ N 0 1 0

    !

    "

    #######

    $

    %

    &&&&&&&

    GLD

    =

    N!A N!R

    Y!A

    VN

    Y!R

    VN

    L!A L!R

    0 0

    "

    #

    $$$$$$

    %

    &

    ''''''

    LLD

    =

    N! Np

    Y!

    VN

    Yp

    VN

    L! Lp

    0 0

    "

    #

    $$$$$$$

    %

    &

    '''''''

    !x1

    !x2

    !x3

    !x4

    "

    #

    $$$$$

    %

    &

    '''''

    =

    !r!(

    !p

    !)

    "

    #

    $$$$$

    %

    &

    '''''

    !u1

    !u2

    "

    #

    $$

    %

    &

    ''=

    !(A

    !(R

    "

    #$

    %

    &'

    !w1

    !w2

    "

    #

    $$

    %

    &

    ''=

    !(A

    !(R

    "

    #$

    %

    &'

    Lateral-DirectionalStability Derivatives

    Weathercock Stability: Yaw AccelerationSensitivity to Sideslip Angle, N"

    N! "#C

    n

    #!$V 2

    2

    %&'

    ()*Sb

    Izz

    = Cn!

    $V 2

    2

    %&'

    ()*Sb

    Izz

    Vertical tail, fuselage, and wing areprincipal contributors to directionalstability Side force contributions times

    respective moment arms

    Non-dimensional stability derivative

    > 0 for stability

    Dimensional stability derivative

    Cn! " Cn!( )Vertical Tail + Cn!( )Fuselage + Cn!( )Wing + Cn!( )Propeller

  • Contributions toDirectional Stability, N"

    Cn!( )Fuselage ="2K VolumeFuselage

    SbK = 1! dmax

    Lengthfuselage

    "#$

    %&'1.3

    Cn!( )

    Vertical Tail

    " aFin#vt

    SFinlvt

    Sb= a

    Fin#vtVvt

    Vertical tail

    Vvt=SFinlvt

    Sb= Vertical Tail Volume Ratio

    Fuselage

    !vt= !

    elas1+ "# "$( )

    VTail

    2

    VN

    2

    %

    &'(

    )*

    aFin = () Lift slope of isolated fin

    referenced to fin area, SFin

    VTail = Airspeed at vertical tail;scrubbing lowers VTail,propeller slipstreamincreases VTail

    #, Sidewash: Deflection of flowfrom freestream direction dueto wing-fuselage interference

    Contributions toDirectional Stability, N"

    Cn!( )Wing = 0.75CLN" + fcn #,AR,$( )CLN2

    Cn!( )Propeller Propeller fin effect Function of blade geometry,

    number of blades, thrustcoefficient, and advance ratio

    J = V/nd

    n = rpm

    d = propeller diameter

    " = Sweep angle

    AR = Aspect ratio

    $ = Taper ratio% = Dihedral angle

    Wing Differential drag

    Interference effects

    see NACA-TR-819

    Side Acceleration Sensitivityto Sideslip Angle, Y"

    Dimensional stability derivative

    Y! " CY!#V 2

    2m

    $%&

    '()S

    CY! " CY!( )Fuselage + CY!( )Vertical Tail + CY!( )Wing

    CY!( )Vertical Tail " aFin#vtSFin

    S

    CY!( )Fuselage " $2SBase

    S; SB =

    %dBase2

    4

    CY!( )Wing = $CDParasite,Wing $ k&2

    k =!AR

    1+ 1+ AR2

    Fuselage, vertical tail, and wing are principal contributors

    Yaw Damping Due to Yaw Rate, Nr

    Dimensional stability derivative

    Nr! C

    nr

    "VN

    2

    2Izz

    #

    $ %

    &

    ' ( Sb = Cn

    r

    b

    2VN

    #

    $ %

    &

    ' (

    "VN

    2

    2Izz

    #

    $ %

    &

    ' ( Sb

    = Cn

    r

    "VN

    4Izz

    #

    $ %

    &

    ' ( Sb2 < 0 for stability

    High wing-sweep anglecan lead to Nr > 0

    Martin Marietta X-24B

  • Yaw Damping Due toYaw Rate, Nr

    Cnr ! Cnr( )Vertical Tail + Cnr( )Wing

    Cnr( )Wing = k0CL2+ k

    1CDParasite,Wing

    k0 and k1 are functions of

    aspect ratio and sweep angle

    Wing contribution

    Vertical tail contribution

    ! Cn( )Vertical Tail = " Cn#( )

    Vertical Tail

    rlvt

    V( ) = " Cn#( )Vertical Taillvt

    b

    $%&

    '()

    b

    V

    $%&

    '()r

    Cnr

    ( )vt

    =*! C

    n( )Vertical Tail* rb

    2V( )=*! C

    n( )Vertical Tail* r

    = "2 Cn#( )

    Vertical Tail

    lvt

    b

    $%&

    '()

    r =rb

    2VN

    Approximate Rolland Spiral Modes

    !!p

    ! !"

    #

    $%%

    &

    '((=

    Lp 0

    1 0

    #

    $%%

    &

    '((

    !p

    !"

    #

    $%%

    &

    '((+

    L)A

    0

    #

    $%%

    &

    '((!)A

    !RS (s) = s s " Lp( )#S = 0

    #R = Lp

    Characteristic polynomial has real roots

    Roll rate is damped by Lp Roll angle is a pure integral of roll rate

    Roll Damping Due to Roll Rate, Lp

    Lp ! Clp"VN

    2

    2Ixx

    #

    $%&

    '(Sb = Clp

    b

    2VN

    #

    $%&

    '("VN

    2

    2Ixx

    #

    $%&

    '(Sb

    = Clp"VN4Ixx

    #

    $%&

    '(Sb

    2

    Clp( )Wing =! "Cl( )Wing

    ! p= #

    CL$

    12

    1+ 3%1+ %

    &'(

    )*+

    Wing with taper

    Thin triangular wingClp( )Wing = !

    "AR

    32

    Clp ! Clp( )Vertical Tail + Clp( )Horizontal Tail + Clp( )Wing

    Vertical tail, horizontal tail, and wing areprincipal contributors

    < 0 for stability

    Roll Damping Dueto Roll Rate, Lp

    Vertical tail

    Tapered horizontal tail p =pb

    2VN

    Clp( )ht =! "Cl( )ht

    ! p= #

    CL$ht

    12

    Sht

    S

    %&'

    ()*1+ 3+1+ +

    %&'

    ()*

    pb/2VN describes helix anglefor a steady roll

    Clp( )vt =! "Cl( )vt

    ! p= #

    CY$vt

    12

    Svt

    S

    %&'

    ()*1+ 3+1+ +

    %&'

    ()*

  • Primary Lateral-DirectionalControl Derivatives

    N!R = Cn!R

    "VN

    2

    2Izz

    #

    $%&

    '(Sb

    L!A = Cl!A

    "VN

    2

    2Ixx

    #

    $%&

    '(Sb

    Comparison of Fourth-and Second-OrderDynamic Models

    Second-Order Models of

    Lateral-Directional Motion

    Approximate Spiral-Roll Equation

    Approximate Dutch Roll Equation

    !!xDR

    =!!r! !"

    #

    $%%

    &

    '(()

    Nr

    N"

    Yr

    VN

    *1+

    ,-.

    /0Y"

    VN

    #

    $

    %%%%

    &

    '

    ((((

    !r!"

    #

    $%%

    &

    '((+

    N1R

    Y1R

    VN

    #

    $

    %%%

    &

    '

    (((!1R +

    N"

    Y"

    VN

    #

    $

    %%%%

    &

    '

    ((((

    !"wind

    !!xRS =!!p

    ! !"

    #

    $%%

    &

    '(()

    Lp 0

    1 0

    #

    $%%

    &

    '((

    !p

    !"

    #

    $%%

    &

    '((+

    L*A

    0

    #

    $%%

    &

    '((!*A +

    Lp

    0

    #

    $%%

    &

    '((!pwind

    2nd-order-model eigenvalues are close to those of the 4th-order model

    Eigenvalue magnitudes of Dutch roll and roll roots are similar

    Bizjet Fourth- and

    Second-Order Modelsand Eigenvalues

    Fourth-Order ModelF = G = Eigenvalue Damping Freq. (rad/s)

    -0.1079 1.9011 0.0566 0 0 -1.1196 0.00883

    -1 -0.1567 0 0.0958 0 0 -1.20.2501 -2.408 -1.1616 0 2.3106 0 -1.16e-01 + 1.39e+00j 8.32E-02 1.39E+00

    0 0 1 0 0 0 -1.16e-01 - 1.39e+00j 8.32E-02 1.39E+00

    Dutch Roll ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -0.1079 1.9011 -1.1196 -1.32e-01 + 1.38e+00j 9.55E-02 1.38E+00

    -1 -0.1567 0 -1.32e-01 - 1.38e+00j 9.55E-02 1.38E+00

    Roll-Spiral ApproximationF = G = Eigenvalue Damping Freq. (rad/s)

    -1.1616 0 2.3106 0

    1 0 0 -1.16

  • Comparison of Second- and Fourth-OrderInitial-Condition Responses of Business Jet

    Fourth-Order Response Second-Order Response

    Speed and damping of responses is adequately portrayed by 2nd-order models

    Roll-spiral modes have little effect on yaw rate and sideslip angle responses

    Dutch roll mode has large effect on roll rate and roll angle responses

    Approximate DutchRoll Mode

    !!r! !"

    #

    $%%

    &

    '((=

    Nr

    N"

    Yr

    VN

    )1*

    +,-

    ./Y"

    VN

    #

    $

    %%%%

    &

    '

    ((((

    !r!"

    #

    $%%

    &

    '((+

    N0R

    Y0R

    VN

    #

    $

    %%%

    &

    '

    (((!0R

    !DR(s) = s

    2 " Nr+Y#VN

    $%&

    '()s + N# 1"

    Yr

    VN

    ( ) + Nr Y# VN

    *+,

    -./

    0nDR

    = N# 1"Yr

    VN

    ( ) + Nr Y# VN

    1DR

    = " Nr+Y#VN

    $%&

    '()

    2 N# 1"Yr

    VN

    ( ) + Nr Y# VN

    !nDR

    = N" + NrY"VN

    #DR

    = $ Nr+Y"VN

    %&'

    ()*

    2 N" + NrY"VN

    With negligible Yr

    Characteristicpolynomial,natural frequency,and damping ratio

    Next Time:Analysis of Time

    Response