10.batteries & management · 2020-04-11 · lund university / lth / iea / avo reinap / mvkf25 /...

44
09-APR-2020 MVKF25 Hydrogen, Batteries, Fuel Cells 10. Batteries & Management Balancing, BMS, TBMS States, degradation, models

Upload: others

Post on 08-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

09-APR-2020MVKF25 Hydrogen, Batteries, Fuel Cells

10.Batteries & Management Balancing, BMS, TBMS States, degradation, models

Page 2: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2

L10: Batteries & Management•

Energy management

Battery management system–

Electric

and Thermal

management

Battery states –

Charge (SoC), Function (SoF), Health (SoH)

Performance deterioration

and battery degradation•

Battery characteristics and models

Charging

and discharging–

Charger, rechargeable battery, Li-ion Battery

Self-discharge

W

W

W

W

W W

W W

Page 3: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 3

Guide•

Battery characteristics

and model

(Ch 1 & 2)–

Cell components

Electrochemical energy conversion

Performance characteristics

Electrochemical analysis methods

Battery control

and management

(Ch 6 & 6)

Energy management–

State functions

Battery usage

and degradation

(Ch 7)

Degradation mechanisms–

Degradation of Li-ion cells

Degradation analysis

Page 4: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 4

Value chain for EV batteries

Not only energy management but also material usage/reusage

From cell realization to recycling (excluding raw materials)

Vehicle power (performance), energy (range) and integration (BMS)

Fig.Ref.: B. Averill, P. Eldredge, “General Chemistry: Principles, Patterns and Applications”

Page 5: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 5

Energy Management vs Design

A cross-road of different disciplines•

Multi-dimensional (analysis) & multi-

objective (synthesis)

Construction Production

Energy Conversion

kg kW, kWh

Pack specificationPack architecture

Pack designElectrical power system

Module designElectrical distribution system

System safetyBMS design

Module  CU

CELL

•Joining methods

and E, M, T criteria?

Information

Energy•

Monitoring –

measure what

is important•

Control –

keep it optimal and

constrained•

Diagnosis –

keep battery

cells healthy

Page 6: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 6

Thermal

energy

management -

TBMS•

.J. Li, Z. Zhu, “Battery Thermal Management Systems of Electric Vehicles”, MSc Chalmers 2014

29.5/17.7 kWh

&1700/270 kg

Page 7: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 7

dtdC

RE

EEEEEdtd

thambth

losses

outputinputlossesgenerationonaccumulati

1

Battery : store energy and use it ;)

CH

AR

GE

DISC

HA

RG

E

Voltage [V]

Energy [Ah]

Current [A]

Page 8: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 8

Battery overview•

Parameters (of primary interest)

Voltage, E [V]–

Capacity, Q [Ah]

Models & approaches–

Mathematical: chemical process kinetics & Markov process based stochastic model

Electrochemical: physics based set of coupled partial differential equations connecting laws related to chemical concentration and electric current flow

Single particle model–

Equivalent circuit: Electric circuit consisting of RCE

Ageing modelThermal model

Electrical model

Page 9: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 9

Voltage and Capacity•

Electric operation domain

Voltage range –

Vmin

-Vmax

State of Charge –

SOC•

Depth of discharge DOD=100%-SOC

Voltage range –

min

-max

Open circuit voltage OCV(SOC, )

Internal resistance R(SOC,I,) results voltage drop and power losses

Voltage [V]

Capacity [Ah]

Vmax

VminQmin

Qmax

%100nomQtQtSOC

Page 10: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 10

More voltage and more capacity•

Series → increase voltage

Cells in parallel → increase capacity → unequal voltage drives current

The largest safely drawn charge is the one that is stored in the weakest cell

Purpose of BMS–

Indentify state of charge SOC

Maximize capacity –

Provide safe function

Voltage [V]

Capacity [Ah]

BM

S

Page 11: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 11

Battery control and BMS•

Energy management

Electric

operation range

– energy

balancing

for

better

usage–

Thermal

operation range

Keep temperature & use little energy for operation

Battery cell-module-pack development and control is supported buy models

From models in physics (FEM) towards datasheet and equivalent circuit modeling

from

component physics towards system realisation

Page 12: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 12

Battery modeling A•

Simple approach @ limited data, parameters are independent of SOC, current

(rate) and

temperature•

Cell voltage

U=Eo

-Ro

I where Ro

is internal resistance and Eo

is open circuit voltage (OCV)

Heating power Ploss

=(Ro

I)2

only

Ohmic

losses•

Transient temperature

rise

=Ploss

Rh

(1-e-t/RhC

h

)

Page 13: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 13

Battery modelling B

Heat generation

model

Cell Electrical

model

Cell Thermal model

VtVoc

SoC

I* ϑa

Simulink SimPowerSystem

Generic

dynamic model

Pre

characterised charging/discharging

characteristics

Page 14: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 14

Electric equivalent circuit

Electrolyte resistance –

causes resistive voltage drop at current flow

Diffusion and surface reaction –

results the voltage transient(s) at current step

R1

C1

R2

C2

R0

E=Uoc(Vsoc)

Ccap

Rsdc

Ibat Ibat

VsocBattery Lifetime

Voltage-Current Characteristics

Page 15: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 15

Step response

Page 16: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 16

Frequency response

Page 17: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 17

Electrochemical force and cell

Chemical reaction = two half-reactions: oxidation+reduction=redox

Side reactions due to thermal loads, pressure?

Active, electrodes, non-active, the rest including electrolyte, components

B. Averill, P. Eldredge, “General Chemistry: Principles, Patterns and Applications”

Page 18: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 18

Principles, definitions, realizationsLEFT:

Negative electrode

RIGHT:Positive electrode

OxRedln0 nF

RTEEEE leftrightcell

Page 19: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 19

Keywords to previous slide•

Electrochemical energy conversion

Ch → E: Galvanic, Oxidation → loss of electrons → discharging

E → Ch: Electrolytic, Reduction → gain of electrons → charging

Nernst equation•

Electrode domain

μm-scale

From left to right = negative electrode positive electrode and boundaries for different domains in between

CH 1 : The electrochemical cell

Page 20: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 20

Energy and power•

Specific energy originates from material chemistry

Capacity capability

Specific power is related to material physics and production

Internal power losses and thermal constrains –

durability and safety

p. 40 & 129

Page 21: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 21

Cell voltage

cell

negcctposcct

negposcell

iR

EEE

Activation polarization – charge transfer (ηct

) from electrode surface

Concentration polarization – caused by concentration (ηc

) differences between electrode and electrolyte due to ionic conductivity and transport properties

Ohmic

polarization –

IR drop proportional to current

p. 34

Page 22: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 22

Voltage hysteresis

cha

disE

cha

disQ

t

t

dttItV

dttItV

QQ

dttIQ

tSOCtSOC

0

10

Charge-Discharge profile•

Delay in chemical and electrochemical reactions, causes difference between charging and discharging voltages

Voltage hysteresis, ΔE, may

increase

with charge

and discharge rate

p. 34

Page 23: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 23

Charge and Discharge rates•

A C-rate is a measure of the rate at which a battery is discharged relative to its maximum capacity.

A 1C rate means that the discharge current will discharge the entire battery in 1 hour.

Practical capacity is defined as the current density passing through the cell until the cut-off voltage is reached

How C-rate affect cell performance

p. 37

Page 24: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 24

Capacity

Ageing model

Electrical model

current Thermal model

power

temperaturevoltage

DoD SoH

Specific capacity [Ah/kg] of used electrochemical active material

Capacity fade due to loss of recyclable Lithium and SEI build up

p. 37 & 197

Page 25: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 25

Cyclic voltammetry

Galvanostatic

cycling –

voltage response at constant current –

study the cell capacity and degradation

Potentiostatic

cycling –

holding voltage constant and decline the current

Cyclic voltametry

for electrode reaction response at linearly changed voltage resulting current peaks

W

1.7.2 & 7.3.3

Page 26: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 26

Electrochemical impedance spectroscopy

Frequency response of battery•

Detect changes of the interfacial properties of the electrode –

charge transfer impedance (R||C)

W

1.7.3 & 7.3.2

Page 27: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 27

EIS battery testing•

Electrochemical

dynamic

response–

Respons is related

to ion-

current/diffusion

rate in the cell–

Slower

response

for weaker

batteries

Characterization–

LF dubbed diffusion–

MF charge transfer–

HF migration

Batteries with faded capacity suffer from low charge transfer and slow active Li-ion diffusion.

http://batteryuniversity.com/learn/article/testing_lithium_based_batteries

Page 28: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 28

Battery performance degradation

Degradation –

deterioration

of useful capacity and power capabilities

Identification of physical and chemical processes behind degradation mechanisms . Origins related to technology and usage.

SoH

state of health remaining capacity due to ageing

http://epg.eng.ox.ac.uk/content/degradation-lithium-ion-batteries

Page 29: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 29

Battery failure

Safety=thermal stability

→Failure mechanisms–

External/internal –

internal short circuits–

Mechanical, electrical, thermal –

abusive conditions

Page 30: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 30

Thermal runaway•

Failure propagation from cell to module and pack

Rapid temperature increase–

Most likely due to internal spontaneous short circuits due to impurities (that can grow during time as side effect of chemical reactions)

Avoid thermal runaway–

Overcharge/discharge protection activated by over pressure

Current interrupt device (CID)–

Positive temperature coefficient (PTC)

Separator specified for PTC & CID, layered separators for reducing internal short circuits

6.1.2.1

Page 31: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 31

Energy and power demands•

Optimal performance and lifetime capacity

Power demand

vs energy

capacity–

Historic

use

and outlook

Energy capacity

and thermal

capability

6.1 vs

5.2

Page 32: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 32

Charge and discharge control

maintain

the voltage

limits while

respecting

the current and temperature

limits

LOW Constant

current

charging

followed

by voltage and temperature

control

HIGH current

for constant

voltage

charging•

Combined

CV+CC

6.1.1

Page 33: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 33

Cell balancing•

Voltage

equalization,

which

is to fill

up energy and maximize

capacity

and life by ”removing” unbalanced

weak

links

Active/passive

– taking/wasting

energy

W

6.2.1.4

Page 34: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 34

What is a BMS really doing?•

www.youtube.com/watch?v=OG-UUXEOZ8E

Page 35: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 35

BMS•

Cell protection, charge control, demand

management, SoC

and SoH

determination, cell

balancing, authentication and identification,

communication

are some

objectives

for BMS

http://www.mdpi.com/1996-1073/4/11/1840/htm

Page 36: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 36

BMS development

Overall functional

safety

is better

match to global FPGA than

to local

micro

processor units

parallelism for performance with fail-safe logic

https://www.altera.com/solutions/industry/automotive/applications/electric-vehicles/battery-management-system.html

Page 37: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 37

BMS control sequence

Intelligent batteries

due to base functions of a battery management system

http://mocha-java.uccs.edu/ideate/courses.html

Page 38: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 38

BMS Failure recognitionhttp://www.mpoweruk.com/bms.htm

Page 39: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 39

BMS implementation

Page 40: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 40

BMS architectures for xEVs

Communication, reliability

and accuracy•

Practical

attachment, number

of components

and

connections•

Few

architectures

with different features in

connections

and communication

http://www.electronicproducts.com/Power_Products/Batteries_and_Fuel_Cells/Battery_management_architectures_for_H

Page 41: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 41

Multicell Battery Stack Monitor

Component

name

LTC6802-1, Up to 12 cells, 13 ms measurement

interval, up to 1000V, passive cell

balancing

http://www.linear.com/product/LTC6802-1

Page 42: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 42

BMS sensor module

MM9Z1 638 4-Cell Lithium Battery BMS unit•battery stack monitor IC can measure a number of cell voltages and provide for the discharge of individual cells to bring them into balance with the rest of the stack

http://www.nxp.com/products/automotive-products/energy-power-management/can-transceivers/reference-design-mm

Page 43: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 43

Some future trends by Bosch

Page 44: 10.Batteries & Management · 2020-04-11 · Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 2. L10: Batteries & Management • Energy management – Battery management

Lund University / LTH / IEA / Avo Reinap / MVKF25 / 2020-04-09 44

Useful links•

www.mpoweruk.com

www.Batteryuniversity.com•

www.liionbms.com/php/cells.php