10/18/2014 - engfanatic.tumcivil.com · wingwall pile approach slab deck slab. 10/18/2014 2...

54
10/18/2014 1 ตัวอย่าง การจําลอง โครงสร้างสะพานส่วนบน โดย นายเกรียงไกร คําพา ตุลาคม 2557 DESIGNING OF REINFORCE CONCRETE DECK SLAB BRIDGE WITH AASHTO (LRFD) DESIGN SPECIFICATION Abutment A Bent 1 Bent 2 Abutment B Abutment A Bent 1 Bent 2 Abutment B Pier Cab Wingwall Pile Approach Slab Deck Slab

Upload: leduong

Post on 19-Jun-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

1

ตัวอย่าง การจําลอง โครงสร้างสะพานส่วนบนโดยนายเกรียงไกร คําพา

ตุลาคม 2557

DESIGNING OF REINFORCE CONCRETE DECK SLAB BRIDGE WITH AASHTO (LRFD) DESIGN SPECIFICATION

Abutment A Bent 1 Bent 2 Abutment BAbutment  A Bent 1 Bent 2 Abutment  B

Pier Cab

Wingwall

PileApproach Slab

Deck Slab

Page 2: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

2

SuperstructureDesign Example

Reinforce Concrete Deck Slab Bridge

Bridge Geometry

10m. 10m.10m.

30m.

b bAbutment  A Bent 1 Bent 2 Abutment  B

5m.

E.J. E.J. E.J. E.J.

Page 3: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

3

Bridge Deck Geometric Data

Side Railing CL of Bridge

Roadway width = 9 m.

Overall width = 10 m.

T

‐Overall bridge width = 10 m.‐Roadway width = 9 m.

‐Asphalt wearing surface = 60 mm. thickness.‐Bridge skew angle = 0 Degree‐Concrete Parapet Railing = 2 side (Section Area = 0.6m2 /side)

Section View

T

Wearing Surface

p g ( / )‐No. of Lane = 2 Lane

Elevation View

Bridge Span Length= 10 m.

Load Criteria

Dynamic Load Allowance (IM)  Dynamic Impact Factor

‐Dynamic load factor for Truck & Tandem load (Service & Ultimate) = IM = 1.33‐Dynamic load factor at fatigue limit state = IM =1.15‐ (AASHTO, Table 3.6.2.1‐1)

Braking Force (BR) and Wind Load (W)

In this case, For superstructure design, braking forces and wind on live load are not applicable

Dead Load Components (DC)  Structural and nonstructural attachment

‐Concrete BarrierC t D k‐Concrete Deck

‐Overlay and Wearing surface

Dead Load of Wearing Surface and Utilities  (DW)

Page 4: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

4

Load CriteriaLive Load (LL)Design Vehicular Live Load  HL93‐Design Vehicles Load (AASHTO, 3.6)

‐HS20‐44 Truck + Lane Load

4.3‐9.0

‐Tandem + Lane Load

Axle Configuration and Design Lane Width.

3000 mm

3600 mm

Design Thai Truck Load  Thai Truck Factor x HL93 (AASHTO LRFD)

‐For Truck Weight limit is 51 Ton ‐Thai Truck Factor  for simple span 5 to 20 m.Increasing Factored = 1.0 For Bending MomentIncreasing Factored = 1.05 For Shear Force & Reaction

3600 mm

Lane Load TransverseDistribution

Load CriteriaLive Load (LLFATIGUE)Design Vehicular Live Load for Fatigue Check (AASHTO, 3.6.1.4)

9.0

Configuration for Fatigue Load

IMPACT LOAD FOR FATIGUE CHECK = 1.15 (AASHTO 3.6.2)

Load Distribution Factored for Fatigue

Load Distribution for Fatigue, where the bridge is analyzed by approximate load distribution, as specified in Article 4.6.2, the distribution factor for one traffic lane shall be used. 

Page 5: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

5

Unit Weight of Material

Concrete = 22.76 kN/m3 (2320 kg/m3)Reinforced Concrete = 24.03 kN/m3 (2450 kg/m3)Asphalt Wearing Surfaces = 22.07 kN/m3 (2250 kg/m3)Reinforcing Steel = 77.01 kN/m3 (7850 kg/m3)

Deck Thickness, T

For Simple Span T =1.2(S+3,000)/30

Determine Deck Thickness

=1.2(10,000+3000)/30=520mm > 175 mm O.K  

Assume deck thickness = T = 600 mm. ‐‐Table 2.5.2.6.3‐1 

Live Load Analysis byEquivalent Strip Width Method

(Approximate Methods)

Page 6: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

6

Live Load Analysis STEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

Maximum Moment Due to HS20‐44 Truck Loading

Direction

Span Length = 10 m.

M+max = 446.75 kN.m/Lane

NOTE: CALCULATE CHECK FOR DESIGN TRUCK LOAD

SIMPLE SPAN (L>10m.)          PATTERN LOAD DUE TO  MAXIMUM MOMENT

Lof BridgeC

2.85m 0.70m0.75m

145kN 35kN

RESULTANT OF FORCE =325kN

L/2‐0.70L/2+0.70

145kN

THE POSITION OF MAXIMUM MOMENT

4.30m

M+max = R1x{L/2+0.7} ‐ {145x4.3}= 187.05x5.7‐623.5= 442.685 kN.m/Lane

R1 = {162.5L+245.5}/L

= 187.05 kN

O.K.

R2 = {162.5L‐245.5}/L

= 137.95 kN

L = 10m

Difference =1%

Page 7: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

7

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

Maximum Shear Due to HS20‐44 Truck Loading

Direction

Span Length = 10 m.

Vmax = 232.55 kN/Lane

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

Maximum Moment Due to Tandem Loading

Direction

Span Length = 10 mSpan Length = 10 m.

M+max = 485.98 kN.m/Lane

Page 8: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

8

NOTE: CALCULATE CHECK FOR DESIGN TENDEM LOAD

SIMPLE SPAN (L>1.2m.)          PATTERN LOAD DUE TO  MAXIMUM MOMENT

Lof BridgeC

0.6m 0.3m0.3mTHE POSITION OF MAXIMUM 

MOMENT

110kN 110kN

RESULTANT OF FORCE =220kN

L/2‐0.3L/2+0.3

M+max = R2x{L/2‐0.3} = 103.4x{5.0‐0.3}= 485.98 kN.m/Lane

R1 = {110.L+66}/L

= 116.6 kN

O.K.

R2 = {110.L‐66}/L

= 103.4 kN

L = 10m

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

Maximum Shear Due to Tandem Loading

Direction

Span Length = 10 m.

Vmax = 206.8 kN/Lane

Page 9: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

9

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

Maximum Moment Due to Uniform Lane Load

Span Length = 10 m.

Uniform Lane Load 9.3kN/m

M+max = 116.25 kN.m/Lane

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

Maximum Shear Due to Uniform Lane Load

Span Length = 10 m.

Uniform Lane Load 9.3kN/m

Vmax = 46.5 kN/Lane

Page 10: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

10

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

[Dynamic Factor x HS20‐44] + Lane Load

Maximum Moment for LLCASE‐1‐Truck+Lane

Direction

Span Length = 10 m

Uniform Lane Load 9.3kN/m

[1.33]

Span Length = 10 m.

M+max = 705.6 kN.m/Lane

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

[Dynamic Factor x HS20‐44] + Lane Load

Maximum Shear for LLCASE‐1‐Truck+Lane

Direction

Span Length = 10 m.

Uniform Live Load 9.3kN/m

[1.33]

Vmax = 355.8 kN/Lane

Page 11: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

11

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

[Dynamic Factor  x Tandem] + Lane Load

Maximum Moment for LLCASE‐2‐Tandem+Lane

Direction

S h 0

[1.33]

Span Length = 10 m.

M+max = 762.185 kN.m/Lane

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles Load

[Dynamic Factor  x Tandem] + Lane Load

Maximum Shear for LLCASE‐2‐Tandem+Lane

Direction

Span Length = 10 m.

[1.33]

Vmax = 321.54 kN/Lane

Page 12: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

12

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles LoadResult Summary

Envelop Maximum Bending Moment of LLCASE‐1‐Truck+Lane& LLCASE‐2‐Tandem+Lane

Mmax At X = 5.3 m

1.2 m

110 kN  110 kN

M+max = 762.185 kN.m/Lane

Tandam+Lane  Govern to Design Moment

Live Load AnalysisSTEP‐1‐Determine Forces/Lane for HL93‐Design Vehicles LoadResult Summary

Envelop Maximum Shear Force of LLCASE‐1‐Truck+Lane& LLCASE‐2‐Tandem+Lane

Truck+Lane  Govern to Design Shear

4.3 m

145 kN  145 kN 35 kN

4.3 m

Vmax = 355.8 kN/Lane

Page 13: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

13

FORCES VS SPAN LENGTH HL‐93 LIVE LOAD

TANDEM + LANE LOAD WILL BE GOVERN TO DESIGN SHEAR FORCE WHEN SPAN LENGTH

> 7.6 m.

NOTE:

FORCES VS SPAN LENGTH HL‐93 LIVE LOAD

TRUCK + LANE LOAD WILL BE GOVERN TO DESIGN MOMENT 

WHEN SPAN LENGTH> 12.2 m.

NOTE:

Page 14: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

14

FORCES VS SPAN LENGTH HL‐93 LIVE LOAD

Reference : LRFD Bridge Design Manual: Minnesota   Department of Transportation

Live Load Analysis (Approximate Methods)STEP‐2‐Determine the Equivalent Strip Width

Equivalent Strip Width for Interior  SlabFor One Lane

Es = 0.25+0.42(L1xW1)1/2 < W/NL

L = Min(18 Or 10 m ) = 10m

For Multilane

Em = 2.10+0.12(L1xW1)1/2 < W/NL

L1 = Min(18 Or 10 m.) = 10m.W1 = Min(18 Or 10m.) = 10m.

L1 = Min(18 Or 10 m.) = 10m.W1 = Min(9 Or 10m.) = 9m.

Es = 0.25+0.42(10x9)1/2 = 4.23 m. < W/NL =10/2 = 5m. ‐‐Eq‐4.6.2.3‐1

1

Em = 2.10+0.12(10x9)1/2 = 3.3 m. < W/NL =10/2 = 5m. ‐‐Eq‐4.6.2.3‐2

Em

Page 15: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

15

Live Load Analysis (Approximate Methods)STEP‐2‐Determine the Equivalent Strip Width

Equivalent Strip Width for Edge  Slab

Es = 4.23 m, Wedge = 0.5 m.

Ee = Wedge+0.30+Es/4

Ee = 1.8 m.

NL = 10/3.6 = 2.77 = 2 Design Lane

e edge s

= 0.5+0.3+[4.23/4]= 1.86 m.but not exceed ether 0.5xEs= 2.12m. or 1.8m.

So, Use the design equivalent strip widthEe = 1.8 m. and Em = 3.3 m. ‐‐4.6.2.1.4be m

r =1.05‐0.25(tan θ˚) = 1.05‐0.25(tan 0˚) = 1.05 ≤ 1.0 =1.0 ‐‐Eq‐4.6.2.3‐1

Ee

Live Load Analysis (Approximate Methods)STEP‐3‐Calculate Forces on Bridge Deck per Strip Width.

Live Load for Interior slab design  LL = Transient Loads, HL93

Consider moment at 5.3 m from supportMoment with impact factorMHL93+IM = 762.18 kN.m/laneMLL_INTERIOR = 762.18xr/[Em] = 762.18x1.0/[3.3] =230.97 kN.m/mConsider shear force at supportVHL93+IM = 355.8 kN/laneThai Truck Increase Factored for Shear = 1.05VLL_INTERIOR = 1.05x355.80xr/[Em] = 1.05x355.80x1.0/[3.3] 

= 113.21 kN/m

Page 16: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

16

Live Load Analysis (Approximate Methods)STEP‐3‐Calculate Forces on Bridge Deck per Strip Width.

Live Load for edge slab design  

Edge beam is assumed to support one line of truck axle

Ee

Live Load Analysis (Approximate Methods)STEP‐3‐Calculate Forces on Bridge Deck per Strip Width.

Live Load for edge slab design  LL = Transient Loads, HL93

Edge beam is assumed to support one line of truck axle. Lane load is considered by tributary portion by= [Ee‐Wedge]/3 = [1.8‐0.5]/3 = 0.43 RatioMoment with impact factorMONE LINE TRUCK AXLE+IM = 485.98x1.33/2 = 323.18 kN.m/laneMLANE LOAD       = 116.25 kN.m/laneMLL_EDGE SLAB = 323.18+0.43x116.25     = 373.37 kN.m

= 373.37xr/[Ee] = 373.37x1.0/[1.8] =207.43 kN.m/m

Consider shear force at supportThai Truck Increase Factored for Shear 1 05Thai Truck Increase Factored for Shear = 1.05VONE LINE TRUCK AXLE+IM = 232.55x1.33/2=  154.65 kN/laneVLANE LOAD        = 46.50 kN/laneVLL_EDGE SLAB = 154.65+0.43x46.5 = 174.80 kN/lane

= 1.05x174.80xr/[Em] = 1.05x174.80x1.0/[1.8] =101.97 kN/m

Page 17: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

17

Live Load Analysis (Approximate Methods)STEP‐3‐Calculate Forces on Bridge Deck per Strip Width.

Live Load for Fatigue Check

LLFATIGUE = Transient Loads, Fatigue 

Consider moment at 5.3 m from supportMoment with impact factor (IM factor =1.15, Distribution Factor =1.2)MFATIGUE_EDGE = 1.2x[1.15x377.89/2] x r/[Es]

= 1.2x217.3x1.0/[1.80] = 144.9 kN.m/mMFATIGUE_INTERIOR = 1.2x[1.15x377.89] x r/[Em]

= 1.2x435.6x1.0/[3.3] = 158.1 kN.m/m

9.0

Live Load Analysis (Approximate Methods)STEP‐3‐Calculate Forces on Bridge Deck per Strip Width.

DC = Dead load structural components and nonstructural attachments

DCDECK = 0.6x24.03 =14.42 kN/m2

Consider at X = 5.3 m. from support and r = 1.0MDECK = 14.42x5.3x(10.0‐5.3) x1.0 /2 x1.0 =179.61 kN.m/mConsider at support and r = 1.0VDECK = 14.42x10.0 x1.0 /2 x1.0 =72.1 kN/m

DCBARRIER = 0.5x24.03/10 =1.2 kN/m2

Consider at X = 5.3 m. from support and r = 1.0MBARRIER = 1.2x5.3x(10.0‐5.3) x1.0 /2 x1.0 =14.97 kN.m/mConsider at support and r = 1.0V = 1 2x10 0 x1 0 /2 x1 0 =6 01 kN/m

NOTE: Assume traffic barriers load are distribute equally over the full bridge cross‐section.

VBARRIER = 1.2x10.0 x1.0 /2 x1.0 =6.01 kN/m

Consider at X = 5.3 m. from support and r = 1.0MDC= 179.61 + 14.97 =194.58 kN.m/mConsider at support and r = 1.0VDC = 72.1 + 6.01 =78.11 kN/m

Page 18: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

18

Live Load Analysis (Approximate Methods)STEP‐3‐Calculate Forces on Bridge Deck per Strip Width.

DW = Dead load of wearing surfaces and utilities

DWWEARING SURFACE = 0.06x22.07x9.0/10 =1.19 kN/m2

Consider at X = 5.3 m. from support and r = 1.0MWEARING SURFACE = 1.19x5.3x(10.0‐5.3) x1.0 /2 x1.0 =14.85 kN.m/mConsider at support and r = 1.0VWEARING SURFACE = 1.19x10.0x1.0/2 x1.0 = 5.96 kN/m

FORCES DC DW LL+IM LLFATIGUE

Moment (kN.m/m)

Summary Design Forces

MINTERIOR STRIP 194.58 14.85 230.97 158.1

MEDGE STRIP 194.58 14.85 207.43 144.9

SHEAR (kN/m)

VINTERIOR STRIP 78.11 5.96 113.21 ‐

VEDGE STRIP 78.11 5.96 101.97 ‐

Load Combination

Service I   = 1.0DC+1.0DW+1.0[LL+IM]Strength I = 1.25DC+1.5DW+1.75[LL+IM]Fatigue I   = 1.5[LLFATIGUE]

Interior StripMomentMoment

Service I   = 1.0x194.58+1.0x14.85+1.0x230.97      = 440.39 kN.m/m

Strength I = 1.25x194.58+1.5x14.85+1.75x230.97= 669.68 kN.m/m

Fatigue I   = 1.5x158.1= 237.1 kN.m/m

Shear

Service I   = 1.0x78.11+1.0x5.96+1.0x113.21      = 197.28 kN.m/m

Strength I = 1.25x78.11+1.5x5.96+1.75x113.21= 304.7 kN.m/m

Page 19: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

19

Load Combination

Service I   = 1.0DC+1.0DW+1.0[LL+IM]Strength I = 1.25DC+1.5DW+1.75[LL+IM]Fatigue I   = 1.5[LLFATIGUE]

Edge StripMomentMoment

Service I   = 1.0x194.58+1.0x14.85+1.0x207.43     = 416.85 kN.m/m

Strength I = 1.25x194.58+1.5x14.85+1.75x207.43= 628.5 kN.m/m

Fatigue I   = 1.5x144.9= 217.4 kN.m/m

Shear

Service I   = 1.0x78.11+1.0x5.96+1.0x101.97= 186.04 kN.m/m

Strength I = 1.25x78.11+1.5x5.96+1.75x101.97= 285.1 kN.m/m

Bridge Deck Reinforcement Design

Page 20: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

20

Reinforce Concrete Design

Concrete‐Compressive strength at 28 days (Cylinder)  fc

’ = 25 Mpa.‐Modulus of elasticity, Ec = Wc

1.5 .0.0428.fc1/2

= 2,3201.5 x0.0428x251/2

E 23 914 M

Material Properties

‐‐5.4.2.4

Ec = 23,914 Mpa.‐Thermal expansion coefficient t = 0.0000108 m/m/ ˚C‐Relative humidity of the ambient temperature = 80 % ==> Use for Design Expansion Joint (Creep & Shrinkage)‐Minimum Concrete Covering = 50 mm.SteelGrade SD40Yield strength fy = 390 Mpa.Tensile Strength = 560 Mpa

‐‐5.4.2.2

‐‐TIS & ASTM

‐‐Table 5.12.3.1

Tensile Strength  = 560 Mpa.Modulus of elasticity, Es = 200,000 Mpa.Temp.(˚C)High  = 50 ˚C , Low   = 15 ˚C , Mean = 30 ˚C

Reinforce Concrete Design

Resistance Factor

Figure C5.5.4.2.1‐1 Variation of  with net tensile strain 

‐‐5.5.4.2.1‐2

c = distance from the extreme compression fiber to neutral   axis (mm)

dt = distance from the extreme compression fiber to centroid of the extreme tension steel element (mm)

Page 21: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

21

Reinforce Concrete Design

Resistance Factor

For Non‐ Prestress Concrete  ReinforcementUsed Resistance Factored  = 0.9 for Tension Controlled

Nominal Flexural Resistance (Need to design with tension controlled)

C = 0.85.fc’.a.bfc’

ᵋc = 0.003 compression

c

de

b

N.A. N.A.

a

a = 1.c 0.85.fc’

1 = 0.85 > 0.85‐(fc'‐28)/140 > 0.65 ‐‐5.7.2.2 

de – a/2

fs = fy

Section Strain 

ᵋs = 0.005 TensionAs

Section Dimension

Force Equilibrium

T = As .fy

Actual Stress

Reinforce Concrete Design

Nominal Flexural Resistance

Force Equilibrium:    Compression = TensionC = T

0.85.fc’.a.b = As.fya    = As.fy / 0.85.fc’.b A f / 0 85 f ’ b1.c = As.fy / 0.85.fc’.bc  = As.fy / 0.85.fc’.b .1     

From strain compatibility condition for tension controlledc/0.003 = de /[0.003+0.005]

For Non‐ Prestress Concrete  ReinforcementUsed Resistance Factored = 0.9

c/de = 0.375 

‐‐Eq 5.7.3.1.2‐4

Used Resistance Factored   0.9

If the ratio of c/de ≤ 0.375 ==> Tension Controlled

Flexural capacity                  .Mn = .As.fy.[de‐a/2] ‐‐5.7.3.2

Page 22: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

22

Reinforce Concrete Design

Positive Moment DesignStrength Limit State: Strength I

Mu‐max = Max(669.7, 628.5) = 669.7 kN.m/mTry to provide steel bar = [email protected] { d2/4} 1 000/100 4 909 2 Eq 5 7 3 1 2 4

Flexural Reinforcement

As‐provide = {.d2/4}x1,000/100 = 4,909 mm2

1 = 0.85, b = 1,000 mm.c              = As.fy / 0.85.fc’.b .1 

= 4,909x390 / {0.85x25x1,000x0.85}= 106 mm.

a              = 1.c = 0.85x106 = 90.1 mm.de = 600‐(50)covering ‐(25/2) = 537.5 mm.Check c/de =106/537.5 = 0.197 ≤ 0.375 ==> Tension Controlled = 0 9

‐‐5.7.2.2

‐‐Eq 5.7.3.1.2‐4

‐‐5.5.4.2.1‐2  0.9.Mn = 0.9x4,909x390[537.5‐(90.1/2)] /1,000,000

= 848.5 kN.m/m > 669.7 kN.m/m  O.K.Capacity Ratio = 669.7/848.5= 0.79Use the bottom bar parallel to traffic are DB25@100

NOTE: DB25@125==>(.Mn = 622.3 kN.m)

5.5.4.2.1 2

Reinforce Concrete Design

Mr is the lesser of 1.2Mcr and 1.33Mu

Modulus of rupture for cracking moment calculation

Minimum Reinforcement (Cracking Moment)

Positive Moment DesignStrength Limit State: Strength I

fr = 0.97.fc’1/2 = 0.97x251/2 

= 4.85 Mpa.Sc = b.h

2/6 = 1.0x0.62/6 = 0.06 m3/m.

1.2Mcr    = 1.2.Sc.fr   = 1.2x0.06x4.85x1000  = 349.2 kN.m

1.33Mu = 1.33x628.5 = 835.9 kN.mMr = 349.2 kN.m

‐‐ 5.4.2.6

Use the bottom bar parallel to traffic are [email protected] = 848.5 kN.m/m > 349.2 kN.m/m  O.K.

Page 23: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

23

Reinforce Concrete Design

LRFD  states that for cast‐in‐place slab superstructures designed for moment in conformance with LRFD 4.6.2.3,

Shear Capacity Check

Positive Moment DesignStrength Limit State: Strength I

‐‐ 5.14.4.1

may be considered satisfactory for shear.Vu = Max(304.7, 285.1) = 304.7 kN.v = 0.9.Vc = .0.083∙β∙f c’1/2∙b∙dβ = 2.0b  = 1,000 mm., d  = 537.5 mm., f c‘= 25 Mpa..Vc = 0.90x0.083x2.0x251/2x1000x537.5/1,000 

= 401.5 kN. > 304.7 kN. O.K.

‐‐ Eq. 5.8.3.3‐3

‐‐5.8.3.4.1

‐‐5.5.4.2

Reinforce Concrete Design

Positive Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

‐‐ Eq.5.7.3.4‐1Spacing of reinforcement in the layer closest to tension face                                           S    ≤ {123,000.e/[s.fss]}‐2.dcs = 1+dc/{0.7.[h‐dc]}h    = overall thicknesse   = exposure factor

= 1.00 for Class 1 exposure condition (crack width 0.430mm)(Upper bound in regards to crack width for appearance and corrosion.)

= 0.75 for Class 2 exposure condition (crack width 0.325mm)(Include decks and substructures exposed to water.)d = thickness of concrete cover measured from extremedc = thickness of concrete cover measured from extreme tension fiber to center of the flexural reinforcement located closest thereto (mm)fss = tensile stress in steel reinforcement at the service limit stateIn the application of these provisions to meet the needs of the Authority having jurisdiction. The crack width is directly proportional to the e exposure factor by Authority.e   = 0.5/0.21x (crack width‐0.22) +0.5

Page 24: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

24

Reinforce Concrete Design

Positive Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

M+ = Max(440.39, 416.85 ) = 440.4 kN.m/mCheck concrete cracked at bottom fiber (Concrete tension)C ec co c ete c ac ed at botto be (Co c ete te s o )Modulus of rupture = fr = 0.63.fc’

1/2  = 3.15 Mpa. h = 0.6 m., Ig = b.h

3/12 = 0.018 m4/1m. Widthfc‐tension = M.(h/2)/Ig = 7.34 Mpa. > 0.8fr = 2.5 Mpa.

Section is cracked

Elastic Cracked Section Property at Service State (Cracked, Linear Stage, approximately fc<0.45fc’)

/ b d /[ ]

‐‐ 5.7.3.4 &5.4.2.6

= As/ b.d  = 4,909/[1,000x537.5] = 0.0087Modular Ratio, n = Es/Ec = 200,000/23,914 = 8.36k = [2n.+(n.)2]1/2‐n. = 0.3218J = 1‐k/3 =0.893fc,comp =2.M /(k∙j∙b∙d2) = 10.61 Mpa. < 0.45fc’=11.25 Mpa.

‐‐ 5.7.1.4

Reinforce Concrete Design

Positive Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

Elastic Cracked Section Property at Service State (Cracked, Linear Stage , approximately fc<0.45fc’)f M/ A j d 440 4/ [49 09 0 89 0 54] 187 M

C = 0.5.k.d.fc

fck.d /3

h

ᵋc

k.d

d

b

N A N A

fss = M/ As.j.d = 440.4/ [49.09x0.89x0.54] = 187 Mpa.dc  = 50covering+[25/2] = 62.5 mm., h = 600 mm.In this design example used  e = 0.50 (crack width 0.22mm)

fss

Section Dimension

Force Equilibrium

Section Strain 

ᵋs

N.A.

As

N.A.

T = As .fss

M j.d

Actual Stress

Page 25: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

25

Reinforce Concrete Design

Positive Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

s = 1+dc/{0.7.[h‐dc]} = 1+62.5/{0.7x[600‐62.5]}/{ [ ]}= 1.17

Minimum Spacing of reinforcement in the layer closest to tension face to control concrete cracked (0.22mm.).

S    = {123,000.e/[s.fss]}‐2.dc = [123,000x0.5/(1.17x187)]‐2x62.5

S    = 157 mm.Use the bottom bar parallel to traffic are DB25@100Sprovide = 100 mm. ≤  157mm. O.K.

Reinforce Concrete Design

Distribution Reinforcement

Reinforcement shall be placed in the secondary direction in the bottom of slabs as a percentage of the primary reinforcement for positive moment

‐‐9.7.3.2 & 5.14.4

Bottom reinforcement parallel to trafficBottom reinforcement parallel to traffic = DB25@100 = 4,909 mm2 , L = 10,000 mm.%.As = 1,750/ L

1/2 ≤ 50%= 1,750/ 10,0001/2

= 17.5%As, For bottom bar perpendicular to traffic

= 17.5% x 4,909 = 860 mm2

Use the bottom bar perpendicular to traffic are DB12@125(As = 905 mm2)

‐‐ Eq 5.14.4.1‐1

Page 26: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

26

Reinforce Concrete Design

Shrinkage & Temperature  Reinforcement

Reinforcement for shrinkage and temperature stresses shall be provided near to daily temperature changes and in structural mass concrete in each direction and each face.

‐‐5.10.8

A ≥ 0 75∙b∙h / { 2∙[b+h]∙fy } ‐‐ Eq 5 10 8‐1As ≥ 0.75 b h / { 2 [b+h] fy }As = 0.75x1.0x0.6/{2x[1.0+0.6]x390}= 3.6x10‐4 m2 /m.= 360.6 mm2 /m.

233 ≤ As ≤ 1,270 mm2 /m. O.K.

Use the Top bar perpendicular & parallel to traffic are  DB12@250 (As = 452 mm2)

Eq. 5.10.8 1

‐‐ Eq. 5.10.8‐2

Reinforce Concrete Design

Fatigue Limit State Check

Maximum Moment due to Permanent Load (MPE) = DC+DW  =194.58+14.85 = 209.42 kN.m/mMaximum Moment due to Fatigue I (Mtruck)=Max(237.1, 217.4) = 237.1 kN.m/m

Elastic Cracked Section Property at Fatigue Limit State (Cracked, Linear Stage, approximately fc<0.45fc’)For permanent load ,at the service and fatigue limit states ,use an effective modular ratio of 2n.n = 2.Es/Ec =2x8.36 =16.7 = As/ b.d  = 4,909/[1,000x537.5] = 0.0087

‐‐5.7.1

Load Combination= 209.42+237.1 = 446.5 kN.m/m

s

k = [2n.+(n.)2]1/2‐n. = 0.421J = 1‐k/3 =0.860, Ig =0.018 m4/m.Check property of sectionlimit for crack section fc ≥  0.25.f c’1/2 = 1.25 Mpa.fc‐tension = M.(h/2)/Ig = 446.5x(0.3)/0.018x1000

= 7.42Mpa. > 1.25 Mpa.Section is cracked

‐‐5.5.3.1

Page 27: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

27

Reinforce Concrete Design

Fatigue Limit State Check

Elastic Cracked Section Property at Fatigue Limit State (Cracked, Linear Stage, approximately fc<0.45fc’)fc,comp =2.M /(k∙j∙b∙d2)

= 2x446.5/[0.421x0.86x1.0x0.53752]x1000= 8.54 Mpa. < 0.45fc’=11.25 Mpa.

Fatigue Limit Stress in Steel Bar Checkedγ(Δf) ≤ (ΔF)TH Δf =  force effect, live load stress range due to the passage of the fatigue load as specified in Article 3.6.1.4 (Mpa.)γ = load factor specified in Table 3.4.1‐1 for the (ΔF)TH =  166 ‐ 0.33 fMIN  = constant‐amplitude fatigue thresholdfMIN  = minimum live‐load stress resulting from the Fatigue I load 

bi i bi d i h h f i h

‐‐Eq.5.5.3.2‐2

‐‐Eq.5.5.3.2‐1

combination, combined with the more severe stress from either the permanent loads or the permanent loads, shrinkage, and creep‐induced external loads; 

Reinforce Concrete Design

Fatigue Limit State Check

Fatigue Limit Stress in Steel Bar Checkedγ(Δf) = Mtruck  /As.j.d = 237.1x1,000/ [4,909x0.86x0.54] 

= 104 Mpa.fMIN = MPE /As.j.d = 209.42x1,000/ [4,909x0.86x0.54] MIN    PE s

= 92.39 Mpa.(ΔF)TH =  166 ‐ 0.33 fMIN

=  166 ‐ 0.33x92.39= 135.54 Mpa.

γ(Δf) = 104 Mpa. ≤ (ΔF)TH = 135.54 Mpa.  O.K. 

Page 28: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

28

Expansion Joint DesignTemperature Movement

High  = 50 ˚C , Low   = 15 ˚C , Mean = 30 ˚CTemp.  Rise = TT‐Rise = 50‐30 = 20 ˚CTemp.  Fall = TT‐Fall =15‐30 = ‐15 ˚CThermal expansion of concrete = t = 1.08x10

‐5  m/m/˚CSlab span length =10 mSlab span length =10 m.Displacement XT‐Rise = t.TT‐Rise.L = 1.08x10‐5 x 20x10,000 = 2.16 mm.XT‐Fall = t.TT‐Fall.L = 1.08x10‐5 x ‐15x10,000 = ‐1.62 mm. 

Creep and Shrinkage Movement

Creep of the concrete for expansion joint design is ignored. 

Shrinkage Strain = ᵋSH = Kvs.Khs.Kf.Ktd.0.48x10‐3

In the absence of more accurate data the shrinkage

‐‐Eq. 5.4.2.3.3‐1

5 4 2 3 1In the absence of more accurate data, the shrinkage coefficients may be assumed to be 0.0002 after 28 days and0.0005 after one year of drying. So, Consider the effect of shrinkage after one year of drying 

ᵋSH = 0.0005 (Approximately)

Xsrinkage = ᵋSH.L = 0.0005x10,000 = ‐5 mm.

‐‐ 5.4.2.3.1

Expansion Joint DesignFor conventional concrete structures,the movement is based on the greater of two cases:Movement from Shrinkage and Temperature

X = XT‐Fall+Xsrinkage = ‐1.62 – 5 = ‐6.62 mm. 

Movement from factored effects of Temperature

Factored effects of temperature =1.15X = 1.15xXT‐Rise = 1.15x2.16 = 2.48 mm.

‐‐ FDOT criteria   (SDG 6.4.2 )

Page 29: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

29

Camber DiagramEffective Moment of Inertia of Slab

Time to remove of formwork = 14 days.fc‘ at 14 days = 20 Mpa. Ec at 14 days = = 2,320

1.5 x0.0428x201/2 = 21,389 Mpa. fr at 14 days = 0.623.fc’

1/2 = 2.79 Mpa. A 4 909 mm2 A / b d 0 0087

‐‐5.7.3.6.2

‐‐5.4.2.4

As   = 4,909 mm2,  = As/ b.d  = 0.0087n = Es/Ec = 8.36k = 0.3218J =0.893Icr =b.(k.d)

3/3+n.As.(d‐k.d)2 = 0.007178 m4/m

Ig = 0.018000 m4/m 

Mcr = fr .Ig/yt = 2.79x0.018/ (0.60/2) = 167.17 kN.m/mDCDECK+BARRIER = 14.42+1.2 =15.62 kN/m

2 /mMa = 15.62x10

2/8 = 195.28 kN.m/mMa  15.62x10 /8   195.28 kN.m/m

Ie =(167.17/195.28)3x0.018+[1‐(167.17/195.28)3]x0.007178

= 0.0142 m4/m ≤ Ig = 0.018000 m4/m 

‐‐Eq. 5.7.3.6.2‐1

Camber Diagram

W0 = 15.62 kN/m2/m

Ec = 21,389 Mpa, Ie = 0.0142 m4/m

= W0 .X.(L3‐2.L.X2+X3)/(24Ec.Ie)

Pre‐Camber of formwork to compensate immediately sag of the deck profile at time 

Page 30: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

30

Live Load Deflection Check

The deflection should be taken as the larger of:‐That resulting from the design truck alone, or‐That resulting from 25 percent of design truck + lane load

Limit of deflection for simple span = L/80010 000/800 12 5 mm

‐‐2.5.2.6.2

‐‐3.6.1.3.2

= 10,000/800 = 12.5 mm.Design equivalent strip widthEm = 3.3 m.Ie = 0.0142 m4/m x 3.3 m. = 0.04686 m4

Ec = 23,914 Mpa.

Maximum Deflection due to Lane Load at Mid Span = 1.0896 mm.Maximum Deflection due toMaximum Deflection due to Truck Load at Mid Span = 4.1419 mmMaximum Deflection due to Tandem Load at Mid Span = 4.0406 mm

Maximum Deflection = Max{4.1419, 1.0896+[4.1419x25/100]} = 4.1419 mm. < 12.5 mm.   O.K.

Summary of Steel Reinforcement

Steel Reinforcement No. of Steel Bar Bars Sign

Bottom bar parallel to traffic 

DB25@100 AS4

Bottom bar perpendicular  DB12@125 AS2p pto traffic

@

Top bar parallel to traffic   

DB12@250 AS3

Top bar perpendicular to traffic   

DB12@250 AS1

Page 31: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

31

Steel Reinforcement DetailsExample Slab Bridge Details from DOT Standard Drawing

Steel Reinforcement DetailsExample Slab Bridge Details from DOT Standard Drawing

Page 32: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/18/2014

32

Steel Reinforcement DetailsExample Slab Bridge Details from DOT Standard Drawing

Steel Reinforcement DetailsExample Slab Bridge Details from DOT Standard Drawing

Page 33: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

1

ตัวอย่าง การจําลอง โครงสร้างสะพานส่วนล่างโดยนายเกรียงไกร คําพา

ตุลาคม 2557

SubstructureDesign Example AASHTO (LRFD) 

Design Specification

Page 34: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

2

Bridge Geometry

10m. 10m.10m.

30m.

b bAbutment  A Bent 1 Bent 2 Abutment  B

5m.

E.J. E.J. E.J. E.J.

Out Line Design Member 

SubstructureAbutment A  ===> Wingwall, Pier Cab, PileAbutment B  ===> Wingwall, Pier Cab, PileBent 1 ===> Pier Cab, PileBent 2 ===> Pier Cab, PileMiscellaneous StructureMiscellaneous Structure Approach SlabConcrete Railing

Abutment  A Bent 1 Bent 2 Abutment  B

Pier Cab Deck Slab

Wingwall

PileApproach Slab

Page 35: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

3

Approach Slab Design

Bridge Approach Slab Analysis & Design Criteria 1. The bridge approach slab is designed as a slab in accordance with Section 4.6 of the AASHTO LRFD Bridge Design Specifications (Strength I loading, IM = 1.33). 2. The end support is assumed to be a uniform soil reaction with a bearing pp glength that is approximately 1/3 the length of the approach slab. 3.The Effective Span Length (Seff) is assumed to be: Seff = L‐ (L/3)/2 ‐ a/2 ; L= Approach Slab Length, a = Support Seat Width  

4. Longitudinal steel reinforcing bars do not require modification for skewed applications. 5. The maximum skew accommodated by the standard design is 30 degrees. 

/a/2L

L/3

SeffL/6a/2

Seff

Simple Support 

Wing Wall Design

Wingwalls may either be designed as monolithic with the abutments, or be separated from the abutment wall with an expansion joint and designed to be free standing.

The wingwall lengths shall be computed using the required roadway slopes. Wingwalls shall be of sufficient length to retain the roadway p g g yembankment and to furnish protection against erosion.

Ref. 11.6.1.4

Lateral Earth Pressure & 

Wingwall Length

Lateral Pressure due to Top Surcharge Load

Edge of Abutment 

Mu

Page 36: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

4

SubstructurePier Cab Design

Load Transfer to Pier CabLive Load Analysis Case 1

E.J.

9.3kN/m

Pattern Live Load due to Maximum Moment on Pier Cab and Maximum Axial Force on Pile

Page 37: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

5

Load Transfer to Pier CabLive Load Analysis Case 1

9.3kN/m

9.70m.0.30m.

9.70m.

R1 R2 R3 R4

[R2+R3][R2+R3]max

Maximum Reaction Force = [Truck+Impact] + Lane LoadInterior Strip [Em = 3.3 m.]Interior Strip [R2+R3]max = {[1.33x242]+[9.3x10]}/3.3 = 125.76 kN/mEdge Strip [Ee = 1.8 m.] Edge Strip [R2+R3]max = {[1.33x242/2]+[0.43x9.3x10]}/1.8 = 111.62 kN/m

Load Transfer to Pier CabLive Load Analysis Case 2

E.J.

9.3kN/m

Pattern Live Load due to Maximum Torsion on Pier Cab and Maximum Bending Moment on Pile

Page 38: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

6

Pier CabLoad Transfer to Pier CabSummary Load from Super Structure Transfer to Pier Cab

FORCES DC DW LL1(Truck+Lane)

Case‐1

LL2(Truck+Lane)

Case‐2

LL1+IM Case‐1

LL2+IM Case‐2

Reaction Force (kN/m)

INTERIOR STRIP 156.3 11.92 101.52 84.56 125.76 107.82

EDGE STRIP 156.3 11.92 89.44 75.71 111.62 97.02

Dynamic load allowance need not be applied to foundation components that are

Estimate No. of Pile

Dynamic load allowance need not be applied to foundation components that are entirely below ground level. Maximum Load = {[156.3+5.96]x1.1+101.52}x10.2 = 2,923 kN/BentUsed Pile Diameter 0.4x0.4 m Safe Load 700 kN/PileNo. of Pile = 2,923/700 = 4.2 So, Used 5‐Pile 0.4x0.4 Safe Load 700kN/Pile

Pile Bent Dimension & Geometry

0.6m.

0.7m.

10m.

Cap Beam Section

2.25m.0.6m. 0.6m.

10.2m.2.25m.2.25m.2.25m.

Page 39: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

7

Pier Cap Design Force

DCSelf Weight = 10.1 kN/m

SFD

0.6m. 2.25 m. 2.25 m. 2.25 m. 0.6m.2.25 m.

BMD

Pier Cap Design Force

DCsuper= 156.3 kN/m

SFD

0.6m. 2.25 m. 2.25 m. 2.25 m. 0.6m.2.25 m.

BMD

Page 40: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

8

Pier Cap Design Force

DW= 11.92 kN/m

SFD

0.6m. 2.25 m. 2.25 m. 2.25 m. 0.6m.2.25 m.

BMD

Pier Cap Design ForceLive Load Case 1 LL1+IM = 125.76 kN/m Positive Max

SFD

0.6m. 2.25 m. 2.25 m. 2.25 m. 0.6m.2.25 m.

BMD

Page 41: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

9

Pier Cap Design ForceLive Load Case 2 LL1+IM = 125.76 kN/m Negative Max

SFD

0.6m. 2.25 m. 2.25 m. 2.25 m. 0.6m.2.25 m.

BMD

Pier Cap Design ForceSummary Design Force

FORCES SW DW DC LL1+IM  LL2+IM

Moment (kN.m)

M 3 2 48 8 3 7 64 1M+ 3.2 48.8 3.7 64.1 ‐

M‐ ‐4.8 ‐74.8 ‐5.7 ‐ ‐72.6

Shear (kN)

V 12.7 196.5 15 156.1 173.8

Moment M+ (Service I) = 1.00x[3.2+48.8]+1.0x[3.7]+1.00x[64.1] =   119.8 kN.m

Design Force Moment & Shear

Moment M+ (Strength I) = 1.25x[3.2+48.8]+1.5x[3.7]+1.75x[64.1] = 182.8 kN.m

Moment M‐ (Service I) = 1.00x[4.8+74.8]+1.0x[5.7]+1.00x[72.6] = ‐157.9 kN.mMoment M‐ (Strength I) = 1.25x[4.8+74.8]+1.5x[5.7]+1.75x[72.6] = ‐235.1 kN.m

Shear (Strength I) = 1.25x[12.7+196.5]+1.5x[15]+1.75x[173.8] = 588.15 kN

Page 42: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

10

Reinforce Concrete Design

Positive Moment DesignStrength Limit State: Strength I

Mu+max = +182.8 kN.mTry to provide steel bar = 4‐DB20.A { d2/4} 4 1 257 2 Eq 5 7 3 1 2 4

Flexural Reinforcement

As‐provide = {.d2/4}x4= 1,257 mm2

1 = 0.85, b = 600 mm.c              = As.fy / 0.85.fc’.b .1 

= 1,257x390 / {0.85x25x600x0.85}= 45.23 mm.

a              = 1.c = 0.85x45.23 = 38.45 mm.de = 700‐(50)covering ‐12‐(25/2) = 625.5 mm.Check c/de =45.23/625.5 = 0.07 ≤ 0.375 ==> Tension Controlled = 0 9

‐‐5.7.2.2

‐‐Eq 5.7.3.1.2‐4

‐‐5.5.4.2.1‐2  0.9.Mn = 0.9x1,257x390[625.5‐(38.45/2)] /1,000,000

= 267.5 kN.m > 182.8 kN.m O.K.Capacity Ratio = 182.8/267.5= 0.68

Use the bottom bar are 4‐DB20

5.5.4.2.1 2

Reinforce Concrete Design

Mr is the lesser of 1.2Mcr and 1.33Mu

Modulus of rupture for cracking moment calculation

Minimum Reinforcement (Cracking Moment)

Positive Moment DesignStrength Limit State: Strength I

fr = 0.97.fc’1/2 = 0.97x251/2 

= 4.85 Mpa.Sc = b.h

2/6 = 0.6x0.72/6 = 0.049 m3/m.

1.2Mcr    = 1.2.Sc.fr   = 1.2x0.049x4.85x1000  = 285.2 kN.m

1.33Mu = 1.33x182.8 = 243.2 kN.mMr = 243.2 kN.mUse the bottom bar are 4 DB20

‐‐ 5.4.2.6

Use the bottom bar are 4‐DB20.Mn = 272.8 kN.m > 243.2 kN.m  O.K.

Page 43: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

11

Reinforce Concrete Design

Positive Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

M+ = 119.8 kN.mCheck concrete cracked at bottom fiber (Concrete tension)C ec co c ete c ac ed at botto be (Co c ete te s o )Modulus of rupture = fr = 0.63.fc’

1/2  = 3.15 Mpa. b=0.6 m., h = 0.7 m., Ig = b.h

3/12 = 0.01715 m4

fc‐tension = M.(h/2)/Ig = 2.5 Mpa. >= 0.8fr = 2.5 Mpa.Section is cracked

Elastic Cracked Section Property at Service State (Cracked, Linear Stage, approximately fc<0.45fc’)

/ b d /[ ]

‐‐ 5.7.3.4 &5.4.2.6

= As/ b.d  = 1,257/[600x625.5] = 0.0033Modular Ratio, n = Es/Ec = 200,000/23,914 = 8.36k = [2n.+(n.)2]1/2‐n. = 0.2089J = 1‐k/3 =0.93fc,comp =2.M /(k∙j∙b∙d2) = 5.25 Mpa. < 0.45fc’=11.25 Mpa.

‐‐ 5.7.1.4

Reinforce Concrete Design

Positive Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

Elastic Cracked Section Property at Service State (Cracked, Linear Stage , approximately fc<0.45fc’)A t l St i th t lActual Stress in the steelfss = M/ As.j.d = 119.8/ [12.57x0.93x0.6255] = 164 Mpa.dc  = 50covering+12+[20/2] = 72 mm., h = 700 mm.In this design example used  e = 0.50 (crack width 0.22mm)

s = 1+dc/{0.7.[h‐dc]} = 1+72/{0.7x[700‐72]}= 1.16

Minimum Spacing of reinforcement in the layer closest to i f l k d (0 22 )tension face to control concrete cracked (0.22mm.).

S    = {123,000.e/[s.fss]}‐2.dc = [123,000x0.5/(1.16x164)]‐2x72

S    = 179.3 mm.Use the bottom bar 4‐DB20 , Sprovide = 600/4 = 150 mm. ≤  179.5 mm. O.K.

Page 44: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

12

Reinforce Concrete Design

Negative Moment DesignStrength Limit State: Strength I

Mu‐max = ‐235.1 kN.mTry to provide steel bar = 5‐DB20.A { d2/4} 5 1 571 2 Eq 5 7 3 1 2 4

Flexural Reinforcement

As‐provide = {.d2/4}x5= 1,571 mm2

1 = 0.85, b = 600 mm.c              = As.fy / 0.85.fc’.b .1 

= 1,571x390 / {0.85x25x600x0.85}= 56.55 mm.

a              = 1.c = 0.85x67.86 = 48.1 mm.de = 700‐(50)covering ‐12‐(25/2) = 625.5 mm.Check c/de =56.55/625.5 = 0.09 ≤ 0.375 ==> Tension Controlled = 0 9

‐‐5.7.2.2

‐‐Eq 5.7.3.1.2‐4

‐‐5.5.4.2.1‐2  0.9.Mn = 0.9x1,571x390[625.5‐(48.1/2)] /1,000,000

= 331.7 kN.m > 235.1 kN.m O.K.Capacity Ratio = 235.1/331.7= 0.71

Use the Top bar are 5‐DB20

5.5.4.2.1 2

Reinforce Concrete Design

Mr is the lesser of 1.2Mcr and 1.33Mu

Modulus of rupture for cracking moment calculation

Minimum Reinforcement (Cracking Moment)

Negative Moment DesignStrength Limit State: Strength I

fr = 0.97.fc’1/2 = 0.97x251/2 

= 4.85 Mpa.Sc = b.h

2/6 = 0.6x0.72/6 = 0.049 m3/m.

1.2Mcr    = 1.2.Sc.fr   = 1.2x0.049x4.85x1000  = 285.2 kN.m

1.33Mu = 1.33x235.1 = 312.7 kN.mMr = 285.2 kN.mUse the bottom bar are 5 DB20

‐‐ 5.4.2.6

Use the bottom bar are 5‐DB20.Mn = 331.7 kN.m > 285.2 kN.m  O.K.

Page 45: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

13

Reinforce Concrete Design

Negative Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

M‐ = ‐157.9 kN.mCheck concrete cracked at bottom fiber (Concrete tension)C ec co c ete c ac ed at botto be (Co c ete te s o )Modulus of rupture = fr = 0.63.fc’

1/2  = 3.15 Mpa. b=0.6 m., h = 0.7 m., Ig = b.h

3/12 = 0.01715 m4

fc‐tension = M.(h/2)/Ig = 3.22 Mpa. >= 0.8fr = 2.5 Mpa.Section is cracked

Elastic Cracked Section Property at Service State (Cracked, Linear Stage, approximately fc<0.45fc’)

/ b d /[ ]

‐‐ 5.7.3.4 &5.4.2.6

= As/ b.d  = 1,571/[600x625.5] = 0.0042Modular Ratio, n = Es/Ec = 200,000/23,914 = 8.36k = [2n.+(n.)2]1/2‐n. = 0.23J = 1‐k/3 =0.92fc,comp =2.M /(k∙j∙b∙d2) = 6.4 Mpa. < 0.45fc’=11.25 Mpa.

‐‐ 5.7.1.4

Reinforce Concrete Design

Negative Moment DesignService Limit State: Service ICrack Control by Distribution Reinforcement

Elastic Cracked Section Property at Service State (Cracked, Linear Stage , approximately fc<0.45fc’)A t l St i th t lActual Stress in the steelfss = M/ As.j.d = 157.9/ [15.71x0.92x0.6255] = 175 Mpa.dc  = 50covering+12+[20/2] = 72 mm., h = 700 mm.In this design example used  e = 0.50 (crack width 0.22mm)

s = 1+dc/{0.7.[h‐dc]} = 1+72/{0.7x[700‐72]}= 1.16

Minimum Spacing of reinforcement in the layer closest to i f l k d (0 22 )tension face to control concrete cracked (0.22mm.).

S    = {123,000.e/[s.fss]}‐2.dc = [123,000x0.5/(1.16x175)]‐2x72

S    = 159 mm.Use the bottom bar 5‐DB20 , Sprovide = 600/5 = 120 mm. ≤  159 mm. O.K.

Page 46: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

14

Reinforce Concrete Design

Shrinkage & Temperature  Reinforcement

Reinforcement for shrinkage and temperature stresses shall be provided near to daily temperature changes and in structural mass concrete in each direction and each face.

‐‐5.10.8

Use DB16 A = 201 mm2Use DB16, As  201 mmAg = 600x700 = 420,000 mm2

As‐required = 0.0015.Ag = 630 mm2 < 1,257 mm2 O.K.233 ≤ As ≤ 1,270 mm2 /m. O.K.At near face of side pier capSrequired = Min[700/(630/201),300] = 223 mm

Use 2‐DB16

‐‐ 5.10.8‐2

Reinforce Concrete Design

Vu = 588.15 kN.dv = Max.[de‐a/2, 0.9de ,0.72h] = Max.[606.3, 563, 504] 

Shear Capacity CheckStrength Limit State: Strength INominal shear resistance

‐‐ 5.8.2.9

= 606.3 mm.bv  = 600 mm.v = 0.9.Vc = .0.083∙β∙f c’1/2∙bv∙dvβ = 2.0, θ = 45˚f c‘= 25 Mpa..Vc = 0.90x0.083x2.0x251/2x600x606.3/1,000 

= 271.7 kN. < 588.15 kN.Transverse reinforcement is required

‐‐ Eq. 5.8.3.3‐3

‐‐5.8.3.4.1

‐‐5.5.4.2

Transverse reinforcement is required.

Page 47: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

15

Reinforce Concrete Design

Nominal shear strength provided by shear reinforcementVn = Vc + Vs + Vp

Shear Capacity CheckStrength Limit State: Strength ITransverse reinforcement

‐‐ Eq. 5.8.3.3‐1

Vn = Min.[Vu/v ,0.25fc’.bv.dv] = Min.[653.5, 2274] = 653.5 kN.

Vp = 0 kN. (for non‐prestress concrete)Vs = 653.5‐ 301.9 = 352 kN.β = 2.0 ,θ = 45˚Size of stirrup bar = DB12 (2‐leg, Av = 2x113.1 =226.2 mm2)Angle of inclination of transverse reinforcement =  =90˚Spacing of shear reinforcementS = A f d Cotθ/V = 226 2x390x606 3xCot 45˚/352x1 000

‐‐5.8.3.4.1

‐‐ Eq. 5.8.3.3‐2

Sreq = Av.fy.dv.Cotθ/Vs = 226.2x390x606.3xCot 45 /352x1,000Sreq = 152 mm.Used DB12@150

Pile Cab Design

Summary of Reinforcement

5‐DB20 Main Flexural Bar

0.6m.

(Negative)

4‐DB20 Main Flexural Bar(Positive)

2‐DB16 Each Face(Shrinkage & 

Temperature Steel)

0.7m.

(Positive)

DB12@150(Shear Reinforcement)

Page 48: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

16

SubstructurePile Bent Design

Load on PileBraking Force 

BR1‐1=25%x[242]=60.5 kN./Lane, BR1‐2=5%x[242+9.3x10]=16.75 kN./Lane= 60.5 kN/Lane x 2 Lane. = 121 kN. [Maximum]Apply braking force 121 kN at 1.8 m. above road surface level

PLL+PDC+PDW PLL+PDC+PDW

1.80m.

BR = 121/2 = 60.5 kN

1.3 m.

4.3 m.

Mt = 60.5x3.1= 187.6 kN.m

BR = 121/2 = 60.5 kN

9 4

3.1 m.

2.0 m.

Ground level

Pile fixed point level (Assume)

Mb = 60.5x9.4= 568.7 kN.m

Braking load apply

Pile bent structural model & support configuration

Bending Moment Diagram

9.4 m.

6.3 m.

Page 49: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

17

Load Transfer to PilePile Loads ‐ Service

FORCES DC DW LL1 (Truck+Lane)Case‐1

BR WA

Axial Force (kN/Pile) 435 27 228.5 ‐ ‐

M t (L it di l)Moment (Longitudinal)

MxTop Pile (kN.m/Pile) ‐ ‐ ‐ 37.5 ‐

MxBottom Pile (kN.m/Pile)  ‐ ‐ ‐ 113.7 ‐

Pile Capacity Resistance Checked

Note: In this design example not consider water load on longitudinal direction (WA) 

Maximum Load = [435+27+228.5]=  690.5 kN/Pile < 700 kN ==> O.K.

Load CombinationTable 3.4.1‐1 Load Combinations and Load Factors

In this design example consider only load combination group Strength I  

Page 50: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

18

Pile Loads – Strength‐I

Maximum Axial LoadPu (Strength I) = 1.25x[352+83]+1.5x[27]+1.75x[228.5] = 984.2 kNMaximum MomentMut (Strength I) = 1.75x[37.5] = 65.7 kN.mMub (Strength I) = 1.75x[113.7] = 199 kN.mMaximum ShearMaximum ShearVu (Strength I) = 1.75x[60.5/5] = 21.2 kN

Vu = 21.2 kN/Pile

Mt = 65.7 kN.m/Pile

Pu = 984.2 kN/Pile

Vu = 21.2 kN/Pile

Mb = 199 kN.m/Pile

Pu = 984.2 kN/Pile

6.3 m.

Slenderness and Second ‐Order EffectMoment magnification (Approximate method)

1.Check Column SlendernessEffective length factor, Kx = 1.0 (Assume piles are braced with top slab)Lx = 6.30 m, Ag = 0.4x0.4 = 0.16m

2, Ix = 0.4x0.43/12 = 0.0021333 m4 

rx =(Ix/Ag)1/2 = 0.115 m, Kx.Lx/rx =1.0x6.3/0.115= 54.8

For members braced against side sway the effects of slenderness may be neglected where KL/r is less than 34‐12(M1/M2) = 34‐12(65.7/199) = 3030 < Kx.Lx/ rx =54.8 < 100 Second‐order effect should be considered ‐‐ 5.7.4.3

Page 51: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

19

Slenderness and Second ‐Order EffectMoment magnification (Approximate method)

2. Determine EI for use in determining Pe are the greater ofEI = {[Ec.Ig/5]+[Es.Is]}/[1+d]EI = [Ec.Ig/2.5]/[1+d]More conservative solution being

‐‐ Eq 5.7.4.3‐1

‐‐ Eq 5.7.4.3‐2

EI = [Ec.Ig/2.5]/[1+d]Ec = 23,914 Mpa., Ig = 0.4x0.4

3/12 = 0.0021333 m4 

d = ratio of maximum factored permanent load moments to maximum factored total load momentMDL= 0Mtotal‐Strength I = M2s = 1.75x[113.7] = 199 kN.md = MDL/Mtotal = 0/199 = 0EI = [23,914x106x 0.0021333/2.5]/1.0 = 20,406 kN.m2 

3 Determine Euler buckling load P3. Determine Euler buckling load PexPex = 2.EI/(KL)2 = 2.20,406/[1.0x6.32] = 5,078 kN4.Determine the factor momentCm = 1.0 for braced against side swayPu = 1.25x435+1.5x27+1.75x228.5 = 984.2 kNk. = 0.75 ,for concretes = 1/{1‐[Pu/k.Pe]} =1/{1‐[984.2/0.75x5,078]} = 1.35

‐‐ Eq 4.5.3.2.2b‐5

‐‐ Eq 4.5.3.2.2b‐4

Slenderness and Second ‐Order EffectMoment magnification (Approximate method)

5. 4.Determine the magnified factor momentMc= s.M2s= 1.35x199 = 268.7 kN.m ‐‐ Eq 4.5.3.2.2b‐1

Summary Design Force

Pu = 984.2 kNVu = 21.2 kNMu = 268.7 kN.m

Page 52: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

20

Pile Bent Axial Compression & Flexural Combnation Design Checked

Section Dimension400x400 mm.Concretefc’ = 25 Mpa.Reinforcement Steelfy = 400 Mpa.CoveringS = 50 mmNo of BarUsed 12‐DB28 (12‐#9)Rebar Ratio = 4.8%

Shear Capacity CheckStrength Limit State: Strength INominal shear resistance

Vu = 42.35 kN.a  = As.fy / 0.85.fc’.b = 4x616x400/0.85x25x400 = 116 mm.dv = Max.[de‐a/2, 0.9de ,0.72h] = Max.[266, 291.6, 288] 

‐‐ 5.8.2.9

= 291.6 mm.bv  = 400 mm.v = 0.9.Vc = .0.083∙β∙f c’1/2∙bv∙dvβ = 2.0, θ = 45˚f c‘= 25 Mpa..Vc = 0.90x0.083x2.0x251/2x400x291.6/1,000 

= 87.2 kN. > 42.35 kN. O.K.Transverse shear reinforcement is not required

‐‐ Eq. 5.8.3.3‐3

‐‐5.8.3.4.1

‐‐5.5.4.2

Transverse shear reinforcement is not required.Used Minimum transverse shear reinforcementDB12@300 at Typical sectionThe spacing of ties along the longitudinal axis ofthe compression member shall not exceed the leastdimension of the compression member or 300 mm.

‐‐5.10.6.3

Page 53: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

21

The transverse reinforcement for confinement at the plastic hinges shall be determined as followsThe total cross‐sectional area (Ash) of stirrup reinforcement shall be eitherA 0 30 S h [f ’/f ] {[A /A ] 1}

Ductility of ColumnTransverse Shear Reinforcement for confinement

E 5 10 11 4 ld 2Ash = 0.30.S.hc.[fc’/fyh].{[Ag/Ae]‐1}or,Ash = 0.12.S.hc.[fc’/fy ].{0.5+[1.25Pu/Ag.fc’]}where,S = vertical spacing (not exceed 100 mm.)Ae = area of column core measured to the outside of the transverse reinforcement (mm2)fc’ = compressive strength of concrete (Pa)f = yield strength of stirrup or spiral reinforcement (Pa)

Eq‐‐5.10.11.4.ld‐2

Eq‐‐5.10.11.4.ld‐3

fy = yield strength of stirrup or spiral reinforcement (Pa)Ag = gross area of column (mm2)Ash = total cross‐sectional area of stirrup reinforcement (mm2)hc =core dimension of tied column in the direction under consideration (mm.)Pu = factored axial load (MN)

Use 12 mm bar diameter (DB12, Ash = 113.14 mm2)Ag = 400x400 = 160,000 mm2

hc = 400‐2x(50)covering = 300 mmAe = 300x300 = 122,500 mm2

f ’ 25 MP

Ductility of ColumnTransverse Shear Reinforcement for confinement

fc’ = 25 MPa.fy = 400 MPa.Ash = 0.30.S.hc.[fc’/fyh].{[Ag/Ae]‐1}Srequired  = Ash /{0.30.hc.[fc’/fyh].{[Ag/Ae]‐1}}

=  2x113.14/{0.3x300x[25/400]x{[160,000/122,500]‐1}= 131 mm. 

DB12@125 at plastic hinge region of column

Eq‐‐5.10.11.4.ld‐2

Page 54: 10/18/2014 - engfanatic.tumcivil.com · Wingwall Pile Approach Slab Deck Slab. 10/18/2014 2 Superstructure Design Example Reinforce Concrete Deck Slab Bridge Bridge Geometry 10m

10/19/2014

22

• Provided at the top and bottom of the column over a length not less than the greatest of the maximum cross‐sectional column dimensions, one‐sixth of the clear height of the column, or 450mmP id d h f il i il b h

Ductility of ColumnTransverse Shear Reinforcement for confinement

5.10.11.4.1

• Provided at the top of piles in pile bents over the same length as specified for columns• Provided within piles in pile bents over a length extending from 3.0 times the maximum cross sectional dimension below the calculated point of moment fixity to a distance not less than the maximum cross‐sectional dimension or450 mm above the mud line