100 volts

169
100 Volts 0 Volts v o,x

Upload: camdyn

Post on 23-Feb-2016

83 views

Category:

Documents


0 download

DESCRIPTION

100 Volts. v o,x. 0 Volts. V(x ). 200. 150. 100. 50 Volts. 200 Volts. 50. x. coordinates. y. z. x. -200 Volts. 200 Volts. (note the perpendicular intersections). 10 V. 0 V. y. 10 V. 0 V. x. (line of symmetry is x-axis where y=0). y. (where the equipotential line - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 100  Volts

100 Volts

0 Volts

vo,x

Page 2: 100  Volts

x

V(x)

50

150

100

200

200 Volts

Page 3: 100  Volts

-200 Volts 200 Volts

z

ycoordinates

x

Page 4: 100  Volts

10 V 0 V

(note the perpendicular intersections)

Page 5: 100  Volts

10 V 0 V x

y

(line of symmetry is x-axis where y=0)

Page 6: 100  Volts

V(x,0)

yields

Page 7: 100  Volts

x (cm)

yields

Ex(x,0)

V/m 15002.3

)03.05(.)107(

xV

x (cm)

Page 8: 100  Volts

x

U(x)potential energy

stableequilibrium(FNET = 0)

unstableequilibrium(FNET = 0)

negative slope(FNET to right)

positive slope(FNET to left)

A B

C D

Page 9: 100  Volts

x

U(x)potential energy

A: stableequilibrium C: unstable

Equilibrium

D: FNET to right

B: FNET to left

A B

C D

Page 10: 100  Volts

x

U(x)potential energy

A B

C D

Page 11: 100  Volts

x

V(x)electric potential

A Bbegin

Page 12: 100  Volts

x

y

+

Radial electric vector field of a charged conducting circle

Page 13: 100  Volts

x

+

y

_

Page 14: 100  Volts

_

y

Page 15: 100  Volts

x

y

_

Page 16: 100  Volts

y

U(x,y)potential energy

FNET to right and forward)

x

dotted lines showconstant energy

Page 17: 100  Volts

y

U(x,y)potential energy

FNET to right and forward)x

(dotted lines showconstant energy:“equipotentials”)

(equipotentialscloser where steepest)

Page 18: 100  Volts

y

V(x,y)electric potential

(potential energy per unit charge)

E(x,y)x

dotted lines showconstant electric

potential+

+

solid lines showelectric field

arrow shows electricfield direction on

positive test charge

Page 19: 100  Volts

y

V(x,y)

x

(dotted lines show constant electric potential)+

+(solid lines showelectric field)

(arrow shows forceon test charge)

++

Page 20: 100  Volts

y

V(x,y)Electrical potential

energy per unit charge

x

(equipotentialscloser where steepest)

+(dotted lines show constant electric potential while solid lines show electric field)

Page 21: 100  Volts

y

V(x,y)

x

(dotted lines show constant electric potential)+

(solid lines showelectric field)

Page 22: 100  Volts

y

V(x,y)

x

dotted lines showconstant electric

potential+solid lines showelectric field

Page 23: 100  Volts

y

+

Page 24: 100  Volts

y

Page 25: 100  Volts

x

yV=4 volts

A

B

q

Page 26: 100  Volts

V=7 volts

V=5 voltsE=?

Page 27: 100  Volts

V=7 volts

V=5 voltsE=?

d = 2 cm

Page 28: 100  Volts

100 V/m

x

y

Q = 35o

Q must be estimated ormeasured with a protractorto calculate the legs (x andY components of E).

57 V/m

82 V/m

Page 29: 100  Volts

10o15o

30o

45o

60o75o

Page 30: 100  Volts

y

V(x,y)

E(x,y)

x

dotted lines showconstant electric

potential

_

+

solid lines showelectric field

arrow shows electricfield direction on

positive test charge

Page 31: 100  Volts

y

V(x,y)

x

_

+

Page 32: 100  Volts
Page 33: 100  Volts

+ + + ++ + + ++ + + ++ + + ++ + + ++ + + ++ + +

Page 34: 100  Volts

VI

LACROSS SECTION

Page 35: 100  Volts

BATTERY

+

BATTERY

+

ITOTAL

IA IB IC

IE

ID

BATTERY

+

BATTERY

+

Page 36: 100  Volts

BATTERY

+ PUM

P

(handle)(spinning

paddlewheel)ee e e e

e

ee

ee e

e

eee

Page 37: 100  Volts

RVsourceR

RVsourceR

ab c

de

fg

h

Page 38: 100  Volts

RVsource

R

Vsource

R

resistorsin series

RVsourceR

resistorsin parallel

RVsource

Page 39: 100  Volts

6 W3 V

3V 6 W

Page 40: 100  Volts

BATTERY+

the ground

BATTERY+

the ground

current can never flow current may flow(depending on the properties of the ground)

Page 41: 100  Volts

BATTERY+

the ground

Page 42: 100  Volts

9-VOLT

BATTERY

+ _

9-VOLTBATTERY+

_

Page 43: 100  Volts

+

-

Page 44: 100  Volts

N S

Unmagnetized iron filings before being placed in magnetic field.

S N

S N

SN

Page 45: 100  Volts

NScompass

Needle direction?Draw needle in compass circle.

Page 46: 100  Volts

STOPPRELAB

Page 47: 100  Volts

-----

-- --

+ +++++

Page 48: 100  Volts

Uncharged conducting coin grounded to Earth.

Page 49: 100  Volts

+

-- -

- ---

- The presence of positive charge createsan electric field at the coin surface that attracts electrons from the Earth to negativelycharge the coin.

E

Page 50: 100  Volts

+- ---

Removing the grounding wire leavesthe coin positively charged.The Earth is a giant reservoir of charge,we do not worry about the fact that it hassome miniscule amount of excess positive charge.

E

Page 51: 100  Volts

+- ---

The presence of positive charge creates an electric field at the coin surface that causes macroscopic charge separation. (The coins positive charges are forced to be far away from the positively charged object.)

E

+++ +

Page 52: 100  Volts

+- ---

+++ +

Page 53: 100  Volts

L EONE

+- ---

If some fool’s hand comes into contact with the coin, the coin’s positive charges can move even further fromthe charged object by moving into the hand (and body).

E

++

++

Page 54: 100  Volts

L EONE

+- ---

++

++

Page 55: 100  Volts

+- ---

Removal of the hand leaves a negatively charged coin.The hand is a large reservoir of charge and we will not worry about the miniscule amount of excess positivecharge in the hand (and body) unless a very strong electricfield had been present.

E

Page 56: 100  Volts
Page 57: 100  Volts

+- ---

E

In presence of positively charged object. Positively charged object removed.

?

Page 58: 100  Volts

1.5 V

1.5 V

B. C. D.

1.5 V1.5 VV 1.5 V V+

-

+

-V

+

-V

Page 59: 100  Volts

6.0 V

b

4.5 V4.5 V

4.5 V

A. B.

6.0 V

B.A.

6.0 V

Page 60: 100  Volts

6.0 Va

b c

d

4.5 V4.5 V

4.5 V

A. B.

7.5 V

4.5 V

B.A.7.5 V

4.5 V

Page 61: 100  Volts

6.0 Va

b c

d

4.5 V4.5 V

4.5 V

A. B.

7.5 V

4.5 V

B.A.7.5 V

4.5 V

Page 62: 100  Volts

pith ball(conductor)

+Initial attraction

+repulsion after touching

Page 63: 100  Volts

metallicenclosure

solid metallicbar with round end

very thin stripof pure gold

Page 64: 100  Volts

+

+

+

+

++

+

+

+

Page 65: 100  Volts

+__+

+_

+_

+_

+_

+_

+_

+_

_

+_

+_

+_

+

_

+

_

_

Page 66: 100  Volts

BATTERY

+

BATTERY

+

Page 67: 100  Volts

R VsourceRVsource

R

A. B.

Page 68: 100  Volts

BATTERY

+

BATTERY

+

BATTERY

+

BATTERY

+

V

1.5

0

3.0

4.5

6.0

Page 69: 100  Volts
Page 70: 100  Volts
Page 71: 100  Volts

-----

-- --

+ +++++ --

---

-- --

wal

lba

lloon

stic

ks

to w

all

Page 72: 100  Volts

+- ---

E

+++ +

Page 73: 100  Volts

R

Vsource

R

R

Page 74: 100  Volts

+ _

_point of

intersection

Page 75: 100  Volts

+ _

_ point of intersectioncan’t happen

Page 76: 100  Volts

+

-

-

+

- +

A B C

Page 77: 100  Volts

R2

V

Requivalent

Page 78: 100  Volts

R1 R2

V

Page 79: 100  Volts

1 W 1 W

1 W 1 W

Page 80: 100  Volts

1 W 2 W

9 VRA

4 W

Page 81: 100  Volts

10 V R1= 1 W

R2=4 W

I2=? V2=?

I1=? V1=?IBattery=?

Page 82: 100  Volts

12 V R1= 5 W

R2=1 W

I2=? V2=?

I1=? V1=?IBattery=?

RTotal= ?

Page 83: 100  Volts

R1

R2

10 V

Page 84: 100  Volts

9 V R1= 1 W R2= 2 W

R3=4 W

I3=? V3=?

I1=? V1=? I2=? V2=?IBattery=?

Page 85: 100  Volts

R1= 8 W R2= 8 W

R4=2 WI4=? V4=?

I1=? V1=? I2=? V2=?

R3=2 WI3=? V3=?

Rtotal = 5 ohmsIbattery = 2 amps

V1 = V2 = 8 voltsI1 = I2 = 1 amp

V3 = V4 = 2 voltsI3 = I4 = 1 amp

Page 86: 100  Volts

R

Vapplied

Page 87: 100  Volts

I

Vapplied

Page 88: 100  Volts

V

100 Wa b c200 W

V200 W

a

c

b

100 W d

e f

Page 89: 100  Volts

V200 W

a

c

b

100 W d

e f

Page 90: 100  Volts

R

Page 91: 100  Volts

200 W

100 W

red 1

black 2 red 2

+

-

black 1

Page 92: 100  Volts

t

V(t)

5

0

-5t

Page 93: 100  Volts

I

Vapplied

Page 94: 100  Volts

R1= 8 WI1=? V1=?

R2=1 WRequivalent = ?Ibattery = ?

V1 = ? I1 = ?

V2 = ? I2 = ?

I2=? V2=?

Page 95: 100  Volts

C

Cb

a

R

d

c

Page 96: 100  Volts

Magnet

BClose is strong

BFar is weak

Magnet

B

IL

Magnet

B

rotate

I I

I

I

Page 97: 100  Volts

I

I

I

V

Page 98: 100  Volts

N solenoid loops enclosed in the Amperian loop, each with current I.

n is “loop density” N/L of solenoid.

BIN

Am

peria

n lo

op

L

loop Amperianby enclosed total

loopAmperian

whole

IsdB o

Ampere’s Law:

Page 99: 100  Volts

R

LBincident

einduced by B acts like battery.Current flowing through resistor is easily measured.

einduced

External Inductance

R

L

einduced

Oscillating voltage source causes oscillating B inside inductor.Oscillating B inside inductor induces voltage einduced (back EMF).Back EMF makes inductor seem like a resistor to the voltage source.

Self Inductance

Page 100: 100  Volts

R

LBincident

An oscillating external B causes an induced voltage einduced across the inductor.

einduced

External Inductance

R

L

einduced

Oscillating voltage source causes oscillating B inside inductor which induces a voltage einduced across the inductor.

Self Inductance

Page 101: 100  Volts

R

L

Self Inductance:

Page 102: 100  Volts

I

I

I

DC Power Supply+ -

brushes

Magnet

B

Page 103: 100  Volts

I

N

S

S

N

Page 104: 100  Volts

I I

a

y

z

{outward}

xB ˆ [T] 3o

Page 105: 100  Volts

y

z

x

Page 106: 100  Volts

V(t)

VL

VR

VS

Page 107: 100  Volts

V(t)

V?V?

VR

Page 108: 100  Volts

V(t)

VL

VC

VR

Page 109: 100  Volts

V(t)

VC

VR

VS

Page 110: 100  Volts

V(t)

V?

VR

V?

Page 111: 100  Volts

V(t)

VL

VC

VR

VS

Page 112: 100  Volts

V(t)

VLVC

VR

VS

t

Page 113: 100  Volts

R [ohm]

C [farad]Vsource

L [henry]

Page 114: 100  Volts

Vs (t) +

-0

Vs (t) Vs (t)-VR(t)

Vs (t)-VR(t)

Vs (t)-VR(t)-VC(t)

Vs (t)-VR(t)-VC(t)Vs (t)-VR(t)-VC(t)- VL(t)=0

+Q

-QVS VC

+

+

+

-

-

-

VR

VL

I(t)

Page 115: 100  Volts

t

V(t)

Page 116: 100  Volts

[V]

[t]

Page 117: 100  Volts

[V]

[t]

Page 118: 100  Volts

[V]

[t]

Page 119: 100  Volts

Pulses let through by the diode move speaker withfrequency of desired audio wave.

Quantum mechanical turn-on voltage of diode.

Modulate Wave Transmitted by Diode to Speaker

[V]0

Page 120: 100  Volts

ANT

GND

A

B

PRIMARYSOLENOID

SECONDARYSOLENOID

Page 121: 100  Volts

ANT

GND

A

B

PRIMARYSOLENOID

SECONDARYSOLENOID

secondary circuit

Lsec

Page 122: 100  Volts

ANT

GND

A

B

PRIMARYSOLENOID

SECONDARYSOLENOID

secondary circuitLsec/2

Page 123: 100  Volts

Diode

A

B

TUNER

Page 124: 100  Volts

3,600 [Hz]

Page 125: 100  Volts

envelope [Hz]

carrier [Hz]RF Modulator

RFout

lowin

CH2

CH1

modulated

Page 126: 100  Volts

carrier [Hz]RF Modulator

RFout

lowin CH

1modulated

Page 127: 100  Volts
Page 128: 100  Volts

CH1

modulated

antenna

ground

Page 129: 100  Volts

Iamplitude

fdrive

fresonance

Iamplitude

fdrive

fresonance

A B

Page 130: 100  Volts

9 V R1= 1 W R2= 2 W R3= 3 W

R4=4 W

I4=? V4=?

I1=? V1=? I2=? V2=?IBattery=?

Requivalent=?

Page 131: 100  Volts

BATTERY+

cd

Page 132: 100  Volts

BATTERY+ +

BTotal charge +Q & -Q Total charge +Q & -Q

+ + + + + + + + + + +

+ + + + + + + +

+ + +

+ + ++ + +

- - - - -- - - - -

- - - - - - - -- - - - - - - -

(-Q/2)

(-Q/2)

(+Q/2)

(+Q/2)

Page 133: 100  Volts

R1

VS

S1

R2

CS2

R1 = 1x106 [W]R2 = 1x105 [W]C = 1x10-5 [F]Vs = 10 [V]

Page 134: 100  Volts

Thumb shows direction of magnetic field.

B

Wrap fingersin direction ofcurrent.

q

If charge q is negative,reverse B-field direction.

Page 135: 100  Volts

B

I

I

Thumb shows direction of magnetic field.

Page 136: 100  Volts
Page 137: 100  Volts
Page 138: 100  Volts

BATTERY

+

voltage“height”

1.5 [V]

0 [V] V=

+1.5

[V] V

= -1.5 [V]

Page 139: 100  Volts

BATTERY

+

voltage“height”

1.5 [V]

0 [V]

Page 140: 100  Volts

BAT

TE

RY

voltage“height”

1.5 [V]

0 [V]

voltage

1.5 [V]

0 [V]

position on circuita b c d

1.5 [V]

a d

ad

c

b

Page 141: 100  Volts

BATTERY

+

voltage“height”

a

b c

de

voltage

1.5 [V]

0 [V]

position on circuita b c d e a

Page 142: 100  Volts

1.5 [V]1.5 [V] RBULB

a

bc

d

e

Page 143: 100  Volts

BATTERY

+

voltage“height”

1.50 [V]

0 [V]

a

b

c

0.75 [V]

Page 144: 100  Volts

BATTERY

+

voltage“height”

1.50 [V]

0 [V]

0.75 [V]

Page 145: 100  Volts

voltage

1.50 [V]

0 [V]

position on circuita b c

0.75 [V]

a

Page 146: 100  Volts

V

RBulba b cRBulb

VRBulb

a

b

f

RBulb d

c e

Page 147: 100  Volts

a

voltage“height”

1.5 [V]

0 [V]B

ATTERY

+

b c

d f e

Page 148: 100  Volts

voltage

1.50 [V]

0 [V]

position on circuitf d b

0.75 [V]

a c e f aa

Page 149: 100  Volts

display

settings

+ positive terminal for high current measurements (has large fuse)

- negative terminal or “ground”

+ positive terminal

Page 150: 100  Volts

Voltage

VDC

BATTERY

+

Page 151: 100  Volts

? amps

BATTERY

+ BATTERY

+

mA

A B

Page 152: 100  Volts

Amperes

mAR

BATTERY

+

Page 153: 100  Volts

Amperes

mA

A

R

BATTERY

+

Page 154: 100  Volts

Ohms (W)

W

R

Page 155: 100  Volts

3 V

b

cd

BATTERY

+

BATTERY

c d

1.5 [V]

0 [V]

3 V

a b

cd

BATTERY

+

BATTERY

+a b

c

1.5 [V]

3.0 [V]

Page 156: 100  Volts

Vamp=3 V

330 W

CH1 CH2

red1

red2

bottomground

x-ymode

Page 157: 100  Volts

• 30 V• Ground• 1000 V• 2000 V• 3000 V

constantvoltage ---

--

ground

--

-

---

-- -

-

-

-

-

-

ground

Page 158: 100  Volts

• 30 V• Ground• 1000 V• 2000 V• 3000 V

constantvoltage

chargeseparation

ground

Page 159: 100  Volts

+++++- ---

--

-+++++

+++++

- ---

---

+

+

++

--

--

--

- +

+

evenlyarranged

clusteredpositive

clusterednegative

Page 160: 100  Volts

Real

Imaginary

V R

wtV

L

VCVS

fshift+p

Page 161: 100  Volts

Real

Imaginary

VR

V L

V C

Page 162: 100  Volts

Im{V(t)}

Re{V(t)}Real

Imaginary

V 0

wt

V(t)=V0eiwt rotates around the complex plane in time.

Page 163: 100  Volts

Voltage

VLVC

VR

VS

Page 164: 100  Volts

R [ohm]

C [farad]

L [henry]

R [ohm]Vsource

L [henry]

THEORY REALITY

Page 165: 100  Volts

N S

Page 166: 100  Volts

x

A B C D E

Page 167: 100  Volts

x [cm]

10 [V] 8 6 4 2 0

0 2 4 6 8 10

Page 168: 100  Volts

x [cm]

10 8 6 4 2 0 [V]

0 2 4 6 8 10

A B

Page 169: 100  Volts

N solenoid loops enclosed in the Amperian loop, each with current I.

n is “loop density” N/L of solenoid.

BIN

Am

peria

n lo

op

L

loop Amperianby enclosed total

loopAmperian

whole

IsdB o

Ampere’s Law: