10 renewable generation dahman

38
2001 South First Street Champaign, Illinois 61820 +1 (217) 384.6330 Davis Power Consultants Strategic Location of Renewable Generation Based on Grid Reliability PowerWorld Users’ Group Meeting  November 2-3, 2005 The CALIFORNIA ENERGY COMMISSION and DAVIS POWER CONSULTANTS contributed to the development of this analysis.

Upload: cdmc

Post on 03-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 1/38

Page 2: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 2/38

2

Strategy

• Identify links between electricity needs in thefuture and available renewable resources.

• Optimize development and deployment of 

renewables based on their benefits to: – Electricity system

 – Environment

 – Local economies• Develop a research tool that integrates spatial

resource characteristics and planning analysis.

Page 3: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 3/38

3

Objectives

• Investigate the extent to which renewabledistributed electricity generation can helpaddress transmission constraints

• Determine performance characteristics for generation, transmission and renewabletechnology

• Identify locations within system wheresufficient renewable generation caneffectively address transmission problems

Page 4: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 4/38

4

Objectives

• We want to determine the impact of large-scale distributed projects on grid security.

• We need to:

 – Identify weak transmission elements and

define metrics that assess system security.

 – Find locations where new generation would

enhance the security of the grid.

 – Combine maps of beneficial locations with

maps of energy resources.

Page 5: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 5/38

5

Methodology

• Simulation – Power Flow

 – Contingency Analysis

• Security Metrics

• Results

 – Weak Elements – Security Indices

 – Visualization

Page 6: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 6/38

6

Power flow Simulation

• Identify weak elements in the system bysimulating impacts from lost transmission

or capacity (NERC N-1 contingency)

• More importantly, can identify locations in

system where new generation can provide

grid reliability benefits.

Page 7: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 7/38

7

Normal Operation Example

100 MW

50 MW

280 MW187 MW

110 MW

40 Mvar 

80 MW

30 Mvar 

130 MW

40 Mvar 

40 MW

20 Mvar 

1.

1.01 pu

1.04 pu1.04 pu

1.04 pu

0.9930 pu1.05 pu

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

67 MW

67 MW

33 MW 32 MW

57 MW58 MW

21 MW

21 MW

66 MW 65 MW

11 MW

11 MW

23 MW

42 MW

43 MW28 MW29 MW

23 MW

23 MW

 

200 MW

0 Mvar 

200 MW

0 Mvar 

 A 

MVA 

29 MW 28 MW

One

Three

F

Two

Five

SixSeven

23 MW

87%

 A 

MVA 

82%

 A 

MVA 

System does not

have normal

operation thermal

violations

Page 8: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 8/388

Contingency Example

100 MW

50 MW

280 MW188 MW

110 MW

40 Mvar 

80 MW

30 Mvar 

130 MW

40 Mvar 

40 MW

20 Mvar 

1.00 pu

1.01 pu

1.04 pu1.04 pu

1.04 pu

0.9675 pu1.05 pu

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

45 MW

45 MW

55 MW 53 MW

0 MW0 MW

58 MW

56 MW

52 MW 51 MW

26 MW

25 MW

43 MW

36 MW

37 MW24 MW25 MW

30 MW

30 MW

150 MW

200 MW

0 Mvar 

200 MW

0 Mvar 

 A 

MVA 

25 MW 24 MW

One

Three

Four 

Two

Five

SixSeven

44 MW

83%

 A 

MVA 

83%

 A 

MVA 

95%

 A 

MVA 

156%

 A 

MVA 

Suppose there is a fault

and this line is

disconnected

Planning Solutions:

 New line to bus 3

OR 

 New generation

at bus 3

Then this line gets

overloaded

(is a weak element)

This is a serious

 problem for thesystem

Page 9: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 9/389

Contingency Analysis

• Security is determined by the ability of thesystem to withstand equipment failure.

• Weak elements are those that present

overloads in the contingency conditions(congestion).

• Standard approach is to perform a single

(N-1) contingency analysis simulation.• A ranking method will be demonstrated to prioritize transmission planning.

Page 10: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 10/3810

Results Organized byLines, then Contingencies

Sum each value-100 tofind the Aggregate

Percentage Contingency

Overload (APCO)

Then multiply

 by limit to get

the Aggregate

MW

Contingency

Overload

(AMWCO)

Page 11: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 11/3811

100 MW

50 MW

280 MW187 MW

110 MW40 Mvar 

80 MW30 Mvar 

130 MW40 Mvar 

40 MW20 Mvar 

1.00 pu

1.01 pu

1.04 pu1.04 pu

1.04 pu

0.9930 pu1.05 pu

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

 A 

MVA 

67 MW

67 MW

33 MW 32 MW

57 MW 58 MW

21 MW

21 MW

66 MW 65 MW

11 MW

11 MW

23 MW

42 MW

43 MW28 MW29 MW

23 MW

23 MW

150 MW

200 MW0 Mvar 

200 MW0 Mvar 

 A 

MVA 

29 MW 28 MW

OneThree

Four 

Two

Five

SixSeven

23 MW

87%

 A 

MVA 

82%

 A 

MVA 

 28

21

14

7

AMWCO 

Weak Element Visualization

Page 12: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 12/3812

Determination of Good Locations

Overloaded Line

in this direction

 New Source

Sink 

Transfer helps mitigate

the overload by means

of a counter-flow

Page 13: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 13/3813

Determination of Good Locations

• Generation could be located to producecounter-flows that mitigate weak element

contingency overloads.

• The new injection of power requires

decreasing generation somewhere else.

 – A good assumption is that generation will be

decreased across the system or each control

area using participation factors.

Page 14: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 14/3814

TLR for Normal Operation

•  Need to know how the new generation at acertain bus will impact the flows in a

transmission element.

→ Transmission Loading Relief (TLR) 

→ Since a TLR is calculated for every bus, the

TLR can be used to rank locations that

would be beneficial for security.

,ΔMWFlow

TLR ΔMWInjection

 BRANCH 

 BUS BRANCH 

 BUS 

 jk i jk 

i

Page 15: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 15/38

Page 16: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 16/3816

TLR for Contingencies

•  Need to consider contingencies• Contingency Transmission Loading Relief 

(TLR) Sensitivity is the change in the flow

of a line due to an injection at a bus

assuming a contingency condition.

,, ,

ΔContMWFlowTLR 

ΔMWInjection

 BRANCH CONT 

 BUS BRANCH CONT 

 BUS 

 jk ci jk c

i

Page 17: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 17/3817

Determination of Good Locations

• Equivalent TLR (ETLR):

, ,

Overloaded Contingencies thatElements overloaded branch

,

ContingentViolations

ETLR = TLR  

TLR 

 BUS BUS BRANCH CONT 

 BUS CONTVIOL

i i jk c

 jk  jk 

i v

v

Page 18: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 18/3818

Determination of Good Locations

• Weighted TLR (WTLR) using post-contingency TLRs:

,

ContingentViolations

CODir 

WTLR = TLR  

SysAMWCO MWCO

CONTVIOL

CONTVIOL

 BUS BUS CONTVIOL

CONTVIOL

i i v

v v

v N 

,

Branches

CODir 

WTLR = TLR  SysAMWCO

AMWCO

 BRANCH 

CONT 

 BUS BUS BRANCH 

 BRANCH 

 jk 

i i jk  

 jk  jk 

 N 

• Weighted TLR (WTLR ) using base case

TLRs:

Page 19: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 19/3819

Weighted TLR (WTLR)

• Complexity: A TLR is computed for each bus, tomitigate a weak element, under a contingency.

• We want a single “weighted” TLR for each bus. 

Buses

Weak Elements

Contingencies

Buses

WTLR 

Page 20: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 20/3820

Calculating WTLRs

• The contingency information (severity andnumber) of a weak element can be captured bycalculating the Aggregate MW ContingencyOverload (AMWCO).

• This effectively converts the cube to a table.

Buses

Weak Elements

Buses

Weak Elements

Contingencies

Page 21: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 21/3821

Calculating WTLRs

•  Need to mitigate the weakest elements first• Weight the TLR by the weakness of each

element, which is given by the AMWCO.

Buses

Weak Elements

Buses

WTLR 

Page 22: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 22/3822

Meaning of the WTLR 

• A WTLR of 0.5 at a bus means that 1MW of newgeneration injected at the specific bus is likely toreduce 0.5 MW of overload in transmissionelements during contingencies.

• Thus, if we inject new generation at high impact buses, re-dispatch the system, and rerun thecontingencies, the overloads will decrease.

•  Note that the units of the WTLR are:

[MW Contingency Overload]

[MW Installed]

Page 23: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 23/3823

Large Case Example

• Project for the California EnergyCommission (CEC).

 –  Needed to simulate N-1 contingencies (about

6,000 for California)

 – Simulation developed for 2003, 2005, 2007

and 2017 summer peak cases.

 – In 2003, there were 170 violatingcontingencies, 255 contingency violations, and

146 weak elements.

Page 24: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 24/3824

Process Overview

Power

Flow Cases

Identify

Weak 

Elements

Evaluate

Locations

(WTLR)

GIS Overlay

Test Power

Injections

at Select

Locations

MAR IPO S  A

MAD ERA

FR ESN O

MERCED

TU L  AR E

K INGS

MO N TERRE  Y 

SAN BEN ITO

SAN T  ACLARAS  AN TACR U Z

IN YO

MONO

STAN ISL  AU S

PWR1PWR1PWR1

TO ULUMNE

  ALPIN E

CAL  AV ERAS

  AMAD O R 

ELD O RAD O

SAN MATEO

  ALAMED A

MARIN

CO N TRACO STA

SANJO AQ U IN

SACRAMEN TO

  YO N O

SO LAN O

N APA

SONOMA

L  AK E

MENDOCHINO

CO LUSA

SU TTER 

BUTTEG LEN N

PL  ACER 

N EV   AD A

SIERR   A

  YU B  A

PLUMAS

TEH AMA

TRIMITY 

HUMBOLDTSH AST  A

LASSEN

MODOC

SISK IYO U

D ELN O RTE

SAN LUISO BISPO

KER N

SAN TABARB  ARA

  VEN TURA

LO SAN G ELES

SAN BER N ARD IN O

RI  VER SID E

IMPERIAL

SAN D IEGO

O R   AN G E

Page 25: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 25/38

Page 26: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 26/38

Page 27: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 27/38

27

MARIPOSA 

MADERA 

FRESNO

MERCED

TULARE

KINGS

MON TERREY 

SAN BENITO

SANTACLARA 

SANTACRUZ

INYO

M ONO

STANISLAUS

PWR1

PWR1

PWR1

TOULUMNE

 ALPINE

CALAVERAS

 AMADOR 

ELDORADO

SAN MATEO

 ALAMEDA 

MARIN

CONTRACOSTA 

SAN JOAQUIN

SACRAMENTO

 YONO

SOLANO

NAPA 

S ONOM A 

LAKE

M E ND OCH I NO

COLUSA 

SUTTER 

BUTTE

GLENN

PLACER 

NEVADA 

SIERRA 

 YUBA 

PLUMAS

TEHAMA 

TRIMITY 

HUMBOLDT

SHASTA 

LASSEN

M OD OC

SISKIYOU

DELNO RTE

SAN LUISOBISPO

KERN

SANTABARBARA 

 VENTURA 

LOSANGELES

SAN BERNARDINO

RIVERSIDE

IMPERIAL

SAN DIEGO

ORANGE

Good Locations

 New generation atgreen locations will

tend to reduce the

overloads.

 New generation at red-

yellow locations will

tend to increase the

overloads.

 Note that higher 

imports would worsen

system security.

Page 28: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 28/38

28

Local WTLR Visualization

SAN MATEO

 ALAMEDA

CONTRA COSTA

CASTROVL

CVBART

HICKS

JEFFERSN

LSPSTAS

MTCALFD

METCALF

METCALF

MTCALFE

MNTAVSA

MONTAVIS

MORAGA

MRAGA1M

MRAGA2M

MORAGA

MRAGA3M

NEWARKF

NEWARKE

NEWARKE

NWKDIST

NEWARKD

NWRK2M

NEWARKD

MARTIN C

SANMATEO

SANMATEO

MARTIN C

SARATOGA

TESLAC

TESLA

TESLAE

TESLAJA

TESLA

TESLAJB

TESLAD

UALCOGN

SFIA

MILLBRAE

RAVENSWD

RAVENSWD

DMTAR_SL

SL BART SN LND RO

JENNY 

 ALAMEDCT

OAKC115

STATIN L

WHISMAN

MOFT.FLD

LOCKHD 1

LOCKHD 2

S.L.A.C.

MTVIEW

STELLING

JARVIS

CRYOGEN

CYTEPMP

CMPEVRS

FREMNT

CLARMNT

LKWDBART

LKWD _JCT LAKEWD -M

LAKEWD-C

LK_REACT

SERRMNTE

ESTPRTL

STATIN D

 AMESBS2

 AMESBS1 AMESJ1B

 AMESJ1A

 AMESDST

WOLFE

E. SHORE

EASTSHRE

EMBRCDRE

EMBRCDRD

LAWRENCE

ROSSTAP1

ROSSMOOR 

ROSSTAP2

SANRAMON

TASSAJAR 

TRACY 

TRACYJC

TRACY 

TRCYPMP

STATIN X 

DLYCTYP

DALYCTY 

GRANT

UCBSUB

UCBJCT1

CLYLNDG

SMATEO3M

STATIN J

 ALTM MDW

OAKLND23

MFT.FD J

LCKHD J1

LCKHD J2

SLACTAP1

 ADCC

TESJCT

TESSUB

FLOWIND2

JVENTER 

LLNLTAP

LLNLAB

LLNL

WND MSTR 

DELTAPMP

 VASONA

BELMONT

CLYLNG2

PLO ALTO

LONESTAR 

SHREDDER 

SHREDJCT

BAIR 

JVBART

BAYMDWS

SFIA-MA

SHAWROAD

ESTGRND

HNTRSPT

MISSON

LARKIN E

LARKIN F

LARKIN D

POTRERO

BAYSHOR1

BAYSHOR2

 AMD JCT

 A.M.D

 APPMAT

PHLPS_JT

PHILLIPS

BRITTN

PIERCY 

IBM-CTLE

IBM-BALY 

IBM-HRRS

IBM-HRJ

BAILYJ3

BAILYJ1BAILYJ2

EVRGRN 2

EVRGRN J EVRGRN 1

GILROY 

MARKHM J

MARKH AM MARKH MJ2

SWIFT

ST O N E J

STONE

GEN ELEC

DIXON LD

MABURY 

MABURYJ

MCKEE

SN JSEA

SJ B E

SJ B F

EDENVALE

ED N VL J3 ED N VL J1

ELPATIO

TRIMBLE

NORTECH

MONTAGUE

ZNKERJ1

ZAN KER ZN KER J2

KIFER 

SCOTT

FMCJCT

FMC

 AGNEW

 AGNEWJ

MILPITAS

wakshaj

WAUKESHA

ELLSGTY 

KSSN-J

H J H E I N Z

TEICHERT

TH.E.DV.

NUMMI

DUMBARTN

MOCCASIN

OAKDLTID

TUOLUMN

CRTEZ

PINEER 

HILMAR 

MTEDEN

OWENSTAP

OWNBRKWY 

CARTWRT

MARITIME

LEPRINO

SAFEWAY 

OI GLASS

EBMUDGRY 

FIBRJCT2

FIBRJCT1

FIBRBJCT

FIBREBRD

DOMTAR 

 AEC_TP2

 AEC_JCT

SFWY_TP2

 AEC_300

 AEC_TP1

S FW Y_ TP 1 G WF TR AC Y  

OWENSTP1

OWENSTP2

TCHRTJCT

TCHRT_T2TCHRT_T1

TCYMP1

TCYMP2

TESTAB12

TRAMAX11

LSESTRS

N_LVMORE

 VINEYD_D

 VINEYARD

SLACTAP2

EDESTAP1

EDES

EDSGRNT

ELPT_SJ1

ELPT_SJ2

LSESTRS

NORTHERN

NUMI TAP

NUMI JCT

SANPAULA

UALTAP

ELELP11

EVRMTC21

LSNWK11

LSNWK12

LSNWK13

METLS11

METLS12

METLS13

MORSTA11

MORSTA21

MORSTA31

MORSTA41

MTCEVR11

NEWNEW11

SANMAR11

SANMAR12

SANPIT11

SN ELP11

BURLNGME

CALMEC

DUBLIN

WTLR

Eastern Interconnection

Page 29: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 29/38

29

1.50

0.75

0.00

 –0.75

 –1.50 

WTLR 

Eastern Interconnection

Page 30: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 30/38

30

Towards a Locational Value

• Determination of locations where newgeneration would enhance security needs to

 be combined with availability and

economics of energy resources.• Valuation requires monetizing the security

 benefits.

Page 31: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 31/38

31

Towards a Locational Value

• GIS spatial analysis techniques are neededto determine feasible generation

alternatives for each location in a large-

scale system.

$

MWcost of least-cost alternativei ijc g 

Based on existing energy potential and

technology, a least-cost alternative can be

determined for each location.

Page 32: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 32/38

Page 33: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 33/38

33

Security-Penetration Curves

• Once a set of proposed sites is defined, theeffect of simultaneous distributed injectionswith different levels of penetration can be

simulated using  security-penetration curves.

• The effectiveness of the solution is affected

for large injections due to: – Local transfer capability of the grid

 – Reversed flows

Page 34: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 34/38

34

Security-Penetration Curves

2,000 

4,000 

6,000 

8,000 

10,000 

12,000 

0  650  1300  2000  New Generation 

SysAMWCO in 2005 

69 

500 

115 

230 

Page 35: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 35/38

35

Policy Analysis

• A fundamental goal of integrated electricitysystems is to ensure dependable supply tocustomers.

• This goal cannot be achieved if the systemconsistently exhibits overloaded elements andcongestion.

• System AMWCO can be utilized to:

 – Evaluate system security for different seasons/years – Design policy goals regarding security

• Can use security-penetration curves

Page 36: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 36/38

36

Policy Analysis

0

2000

4000

6000

8000

10000

12000

14000

0 250 500 750 1000 1250 1500 1750 2000

New Generation

 AMWCO2007 2005 2003

Indicates how much generation

is needed to maintain the current

level of reliability.

 Approx. 500MW every two years

(at strategic locations)

NewGen

 AMWCO

Indicates the effect of new generation

 Approx. -3.5 MWCO/MW Installed

Page 37: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 37/38

37

Policy Analysis

0

2000

4000

6000

8000

10000

12000

14000

0 250 500 750 1000 1250 1500 1750 2000

New Generation

 AMWCO2007 2005 2003

0

2000

4000

6000

8000

10000

12000

14000

0 250 500 750 1000 1250 1500 1750 2000

New Generation

 AMWCO2007 2005 2003

Generation needed to maintain

the current level of reliability.

Generation needed in the next two

years (2005) to solve the problems

by 2017. Approx. 950MW

7300

Page 38: 10 Renewable Generation Dahman

7/27/2019 10 Renewable Generation Dahman

http://slidepdf.com/reader/full/10-renewable-generation-dahman 38/38

Integrated Model

Power Flow

Model

Weak Element

Ranking

Spatial Rep. of 

 New Generation

Contingency Analysis

Energy

Resources

Maps of Energy Potential

List of Proposed SitesSecurity

Indices

GenerationExpansion

Security-

Penetration

Curves

WTLR Calculation

GIS Spatial Overlay

TransmissionExpansion

Transmission

Policy

Energy

Policy