10 2005 wastewater treatment filter beds

78
Wastewater Treatment in Filter Beds Evaluation of two onsite treatment plants Daniel Hellström, AP Lena Jonsson, AP R nr 10, juli 2005

Upload: christian-baresel

Post on 06-Apr-2016

217 views

Category:

Documents


1 download

DESCRIPTION

http://www.sjostadsverket.se/download/18.6579ab6011d9b20740f8000480574/1350483750090/10_2005_Wastewater_treatment_filter_beds.pdf

TRANSCRIPT

Page 1: 10 2005 wastewater treatment filter beds

Wastewater Treatment in Filter Beds

Evaluation of two onsite treatment plants

Daniel Hellström, AP Lena Jonsson, AP

R nr 10, juli 2005

Page 2: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

1

Wastewater Treatment in Filter Beds

- Evaluation of two onsite treatment plants in Sweden

Daniel Hellström and Lena Jonsson

Stockholm Water

July 2005

Page 3: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

2

Wastewater Treatment in Filter Beds

Evaluation of two onsite treatment plants

Daniel Hellström, AP Lena Jonsson, AP

juli 2005

Page 4: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

3

Preface The aim of the NI project no 02056 “Wastewater Treatment in Filter Beds 2002 – 2005” was to evaluate onsite sewage treatment systems in the Nordic countries. Magnhild Føllesdal, maxit Group, has been the project manager. This project was carried out with support and funding from the Nordic Innovation Centre (NICe). Nordic Innovation Centre is the Nordic Council of Ministers’ single most important instrument for promoting an innovative and knowledge-intensive Nordic business sector. This report presents the results from the two plants installed in the district of Bornsjön, Sweden. The evaluation of the Swedish plants has been done by Dr. Daniel Hellström, Lena Jonsson and Lennart Qvarnström at Stockholm Water Co. All persons at Stockholm Water Co.`s accredited laboratory performing all the analyses are gratefully acknowledged. The authors would also like to thank the personal working with the protection of Lake Bornsjön. This project would not have been possible without their support.

Page 5: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

4

Summary Two wastewater treatment plants designed for 10 and 7 pe, respectively, were studied. The plants consist of a septic tank, two parallel connected trickling filters filled with Filtralite 2 - 4, and a large filter bed filled with Filtralite P. The biological processes developed gradually and after 9 months of operation the nitrogen removal was 50 % - 80 % and the removal of organic matter exceeded 90 %. The nitrification was incomplete in both plants and about 20 % of the influent nitrogen was emitted as ammonium. The treatment plant with highest nitrogen load had the highest degree of nitrification during stable operation conditions. This indicates that local conditions, such as wastewater composition and/or small differences in operational conditions, are important. The reduction of phosphorus has during the two first years of operation exceeded 99 % and the effluent concentrations have generally been below 0.05 mg P/l. The concentrations of phosphate in the effluent have been below 0.01 mg PO4-P/l during nearly the whole period of study. However, there are indications that one of the filter beds is partially saturated and effluent concentrations might increase in the near future. No E. coli nor Fecal Enterococci have been found in the effluents from the plants. Economically, the treatment plants are characterised by relative high investment costs but relatively low operation costs. The installation and construction of the plant is rather complicated and requires special competence. The treatment plants had good removal efficiencies compared to other alternatives. However, it is also important to consider the environmental impact from production, transport and handling of Filtralite P. Thus, a thorough LCA is recommended. The plant should be regularly controlled to assure that there is no clogging of the spraying nozzle or any other blockages in the system. Thus, inspection pipes should be available at all critical positions. Otherwise, the treatment plants are uncomplicated and the processes require a minimum of operational control and maintenance.

Page 6: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

5

Sammanfattning Två avloppsanläggningar dimensionerade för 10 respektive 7 personekvivalenter studerades. Anläggningarna består av en slamavskiljare, två parallella biobäddar fyllda med Filtralite 2 - 4 och en stor markbädd fylld med 70 m3 respektive 50 m3 Filtralite P. Efter 9 - 10 månaders drift var biofilmen på keramikgranulerna, Ø 2 - 4 mm, i biobäddarna fullt utvecklad och reduktionen av organiskt material låg vanligtvis över 90 % och kvävereduktionen låg mellan 50 % och 80 %. Nitrifikationen var ofullständig vid båda anläggningarna och i genomsnitt släpptes ungefär 20 % av inkommande kväve ut som ammonium. Noterbart är att den anläggning som hade högst kvävebelastning hade högst nitrifikationsgrad då processen inte stördes av partiell dämning av biofiltret. Detta indikerar betydelsen av lokala avvikelser mellan två, i övrigt lika, biobäddar. Förklaringen i detta fall kan eventuellt härledas till skillnader i avloppsvattnets sammansättning och/eller driftsförhållanden. Fosforreduktionen har under de två första årens drift legat över 99 % och utgående halter har legat under 0,05 mg P/l. Koncentrationen av fosfatfosfor i utloppet har legat under eller nära 0,01 mg PO4-P/l nästan hela tiden. Det finns emellertid indikationer på fosformättnad i en av bäddarna och utgående halter kan komma att öka relativt snart. Ingen förekomst av E. Coli eller Fekala Enterococcer har kunnat påvisas i utgående vatten från anläggningarna. Anläggningarna uppvisade således goda reningsresultat. Vid en samlad miljöbedömning bör dock även hänsyn tas till miljöpåverkan i samband med bland annat produktion och hantering av filterbäddsmaterialet. Detta har emellertid inte ingått i projektet. Anläggningskostnaderna var relativt höga, medan driftskostnaderna är betydligt lägre än för exempelvis minireningsverk. Installationen av de olika komponenterna och anläggandet av markbäddarna var relativt arbetskrävande och krävde tillgång till specialiserad entreprenör samt arbetsledning med specialkompetens. En annan design, med kompaktare bäddar där filtermaterialet byts oftare, skulle kunna innebära enklare installation och en lägre totalkostnad. Ur driftssynpunkt är anläggningarna enkla att sköta. De kräver dock regelbunden tillsyn, bland annat kontroll av spridardysornas funktion i biobäddarna samt att det inte finns fördämningar/igensättningar i systemet. En viktig aspekt, som delvis belysts i det finska delprojektet (ej redovisat i denna rapport), är användningen av mättat filtermaterial på jordbruksmark. De studier som gjorts visar att mättat filtermaterial kan fungera som fosforgödsel, men det krävs utveckling av system för en fungerande praktisk hantering.

Page 7: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

6

Contents PREFACE.............................................................................................................................................................. 3

SUMMARY ........................................................................................................................................................... 4

SAMMANFATTNING ......................................................................................................................................... 5

1 INTRODUCTION ....................................................................................................................................... 7 1.1 PROJECT DESCRIPTION .......................................................................................................................... 7 1.2 REGULATIONS IN SWEDEN .................................................................................................................... 8

2 DESIGN AND SITE CONDITIONS ....................................................................................................... 10

3 BUILDING EXPERIENCE...................................................................................................................... 13

4 OPERATION EXPERIENCE / OPERATION DATA .......................................................................... 14

5 SAMPLING AND ANALYSES................................................................................................................ 16

6 RESULTS AND DISCUSSION................................................................................................................ 18 6.1 SUMMARY – REMOVAL OF N, P AND ORGANIC MATTER ...................................................................... 18 6.2 LOAD – FLOW, N, P, AND ORGANIC MATTER ....................................................................................... 22 6.3 TEMPERATURE.................................................................................................................................... 26 6.4 PHOSPHORUS ...................................................................................................................................... 27

6.4.1 Phosphorus profiles in the filter beds............................................................................................ 29 6.5 NITROGEN........................................................................................................................................... 31

6.5.1 Nitrification ................................................................................................................................... 34 6.6 ORGANIC MATTER .............................................................................................................................. 38

6.6.1 Degradation of organic matter in the trickling filter .................................................................... 42 6.7 BACTERIA ........................................................................................................................................... 46 6.8 ALKALINITY, CA, AND PH................................................................................................................... 48 6.9 COMPARISON OF GRAB SAMPLE AND COMPOSITE SAMPLE .................................................................. 49

7 DISCUSSION............................................................................................................................................. 50

8 CONCLUSION.......................................................................................................................................... 52

9 REFERENCES .......................................................................................................................................... 52

APPENDIX 1: CONCENTRATIONS OF N, P, ORGANIC MATTER AND FLOW.................................. 53

APPENDIX 2: FÅGELSTA (N, P, ORGANIC MATTER)............................................................................. 54

APPENDIX 3: TALBY (N, P, ORGANIC MATTER) .................................................................................... 59

APPENDIX 4: ANALYSES FROM SAMPLING IN FILTER BEDS ........................................................... 64

APPENDIX 5: ANALYSES DATA SHEET - FÅGELSTA ............................................................................ 66

APPENDIX 6: ANALYSES DATA SHEET - TALBY.................................................................................... 72

Page 8: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

7

1 Introduction

1.1 Project description A Nordic project with large filter beds in onsite wastewater plants started in October 2002. The project is part of the NI project no 02056 Wastewater Treatment in Filter Beds 2002 - 2005. The company maxit Group is leading the project, which was financially supported by Nordic Innovation Centre. Two plants with filter beds filled with Filtralite were built during November and December 2002 in the catchment area of Lake Bornsjön, the reserve water supply for the residents of Stockholm, see figure 1. The installation of the treatment plants is a part of Stockholm Water´s strategy to reduce the phosphorus load on Lake Bornsjön. The purpose of the project was to evaluate the function of large filter beds in four Nordic countries, Norway, Denmark, Finland, and Sweden during two years, and to detect the long term effects of phosphorus treatment in these beds.

Figure 1. Map over Stockholm and Lake Bornsjön marked with a darker blue colour.

Page 9: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

8

Figure 2. Map over the Lake Bornsjön and its catchment area. The location of the treatment plants are indicated by the red circles.

1.2 Regulations in Sweden On the national level, there is a general demand that wastewater should be managed in order to minimise hygienic risks and to avoid negative environmental impact. The use of non-renewable resources shall be as low as possible and valuable resources (such as phosphorus) shall be recovered. Earlier, the regulation concerning small onsite treatment systems was mainly focused on health aspects and it was required that septic tank effluent should be treated before discharge to the recipient. The interpretation of this regulation was given by Swedish Environmental Protection Agency (SEPA) who suggested an infiltration bed or a filter bed after the septic tank (SEPA, 1987). Today, there is no official guideline available for small onsite wastewater treatment plants from SEPA. However, new regulations, with demands for nutrient removal etc. are expected in December 2005. The regulation concerning use of phosphorus saturated filter material is indistinct. There is however no indication today that use of filter material in agriculture will be prohibited as long as the quality requirements for sewage sludge are fulfilled. The local environmental authorities (one in each municipality) in Sweden are both responsible for the supervision and for giving permissions for installations of small wastewater treatment plants. Permission to install, utilize, take samples from, and evaluate the wastewater treatment

Page 10: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

9

plants was applied for at the local environmental department in the municipality of Salem where the plants are situated. The permission was granted without any problems. In this project, we were aiming at the requirements from another project in Sweden, “Bra Små Avlopp”, that consisted of plants in the size of 5 pe (Hellström et al., 2003). The required degree of removal of phosphorus, nitrogen, and BOD7 in that project is given in Table 1, and it was used in this project as a goal. Table 1. The goals for the removal efficiency in the project “Bra Små Avlopp”.

Minimum removal efficiency Desirable removal efficiency Phosphorus > 70 % > 90 % Total nitrogen > 50 % Ammonia nitrogen > 90 % BOD7 > 70 % > 90 %

Page 11: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

10

2 Design and site conditions

Pump wellSeptic tankPrefilter

InletFilterbed

Outlet

Water levelcontrol

Figure 3. Drawing over the plants in Sweden.

Two plants, connected to this filter bed project, were built in Sweden during November and December 2002 in Talby, called Nedergården on the map in Figure 2 above, and in Fågelsta. A drawing presenting the plants is shown in Figure 3. In Fågelsta, two houses, each occupied by one family, with two adults and one child, were connected to the plant. In Talby, the Stockholm Water Co. has an office, where 5 - 6 adults are working. Above the office, there is also a small apartment for students doing there practical training periods at Stockholm Vatten. The students normally stay there for half a year. Smaller or larger groups are often visiting the office. Table 2. Data for the treatment plants at Bornsjön.

Location Talby Fågelsta Design criteria 10 pe 7 pe Persons connected 5 – 6 working person, visitors,

1 student1 4 adults 2 children

Load 16 g N/d 2.5 g P/d 17 g TOC/d 58 g COD/d 0.41 m3/d

31 g N/d 4.1 g P/d 72 g TOC/d 256 g COD/d 0.54 m3/d

Septic tank 6 m3, Ifö Trapper 6000 Pump well Ø 1.1, operated by level control Trickling filter (pre-filter)

2 modified Ifö Trapper 4000 each containing 2.3 m3 Filtralite 2 – 4 and an area of 3.5 m2.

Filter bed 50 m3 Filtralite P 0-4 mm Length = 11 m Width = 4.5 m Depth = 1.0 m

70 m3 Filtralite P 0-4 mm Length = 9.3 m Width = 7.5 m Depth = 1.0 m

In both plants, a new horizontally placed septic tank of 6 m3, Trapper 6000, consisting of three chambers, was installed. After that the wastewater is led to a sampling well with a

1 One student lived in Talby between 2003-08-01 and 2004-02-27 and another student lived there between 2004-08-02 and 2005-02-07.

= sample point

Page 12: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

11

diameter of 400 mm and then pumped to the pump well. After the pump well in Fågelsta, a storage tank was installed to have a buffer capacity if the pump should fail. However, due to leakage the storage tank was only in operation until April 2004. From the pump well the water is pumped to two trickling filters (In the diagrams, the samples taken after these filters are referred to as “bf” = before large filter bed or “TF eff” = trickling filter effluent.) The trickling filters are made of rebuilt septic tanks of 4 m3 from Ifö EcoTrap, Ifö Trapper 4000, and contains 2,3 m3 of Filtralite 2 – 4 (small, ceramic spheres), and have a outer diameter of Ø 2.2 metres and an inner diameter of Ø 2.1 metres as an average. The wastewater is spread over the spheres with two nozzles in each of the two tanks, and a biofilm was growing in time on the surface of the spheres. At the bottom of the trickling filter, the outlet is collected by a horizontally placed drainage pipe (Ø 110 mm) sliced with notches of ≤ 2 mm. After the trickling filters, another sample well (Ø 110 mm) is located. The wastewater is then led to a large filter bed with a horizontal flow. The filter mainly consists of Filtralite P, i.e. crushed spheres made from a ceramic material that also contains Calcium ions, Ca2+, that should be able to precipitate enough phosphate phosphorus for 15 years. Plastic white tarpaulins are placed below and above the filter bed in order to keep the wastewater in the bed and to avoid drainage water entering the filter bed. The horizontal inlet pipe and the outlet pipe were covered by Filtralite, 4 - 10 mm (about of 0.5 m3 per metre of pipe). In Talby, the lengths of the pipes were about 4 m each and in Fågelsta they were about 6.5 m long. All pipes had a diameter of 110 mm. These pipes are perforated and functioning as nozzles for influent and effluent wastewater, respectively. Each end of the pipes continues with a vertically placed inspection pipe. A drawing over the filter bed is shown in Figure 4.

Figure 4. Drawing over the construction of the filter bed.

Page 13: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

12

The large filter beds were built by “Styrhytten AB” according to the following from the top and downward in the bed:

• grass • soil approximately 0.3 m • tarpaulin, impermeable to water, white • geotechnical sheet, glass fibre reinforced sheet, 0.125 kg/m2, grey • Filtralite Ø 8 - 14 mm, 0.1 m • Filtralite P, approximately 1.0 m • geotechnical sheet, glass fibre reinforced sheet, 0.125 kg/m2, grey • membrane, rubber like, impermeable to water, black • geotechnical sheet, glass fibre reinforced sheet, 0.125 kg/m2, grey • sand for drainage Ø 0 - 8 mm, 0.1 - 0.2 m • Two pipes for drainage, Ø 110 mm, at each side but outside the filter bed parallel to

the direction of the flow of the wastewater at a level just below the bottom of the filter bed, black. The drainage pipes were provided with inspection and sample wells in order to inspect that the tarpaulin really is impermeable to water.

In each plant 18 vertically situated pipes were placed in the filter bed, which makes it possible to take samples of wastewater and Filtralite P in the filter bed. Six pipes have their lowest point 0.1 metre over the bottom of the filter bed, six pipes go down to 0.5 metre over the bottom, and six pipes not filled with Filtralite P go down to the bottom of the filter bed. Finally, in the Talby plant, a vertically placed pipe is collecting effluent wastewater with another automatic sampler receiving a signal from the flow meter before the water leaves the plant and flows to a ditch. The level of wastewater, that is the edge of the weir in the effluent pipe, is 0.19 metre below the highest point of the plastic tarpaulin. In both plants, grab samples were also taken in this effluent pipe. The condition of the water in the well connected to the households that are feeding the treatment plants with wastewater can affect the function of the plants. Grab samples have been taken in the households (Table 3). In the Talby plant the alkalinity is relatively high. Both plants have relatively high hardness of the water. Table 3. Analyses of water from the wells connected to the households within the project. Sample place Talby FågelstaWell dug/ drilled dug dugDistance to the well, m 200 samle point: kitchen 100 sample point: kitchenSample day 2002-11-19 2003-01-16 2003-01-16 2003-01-16 2002-11-19 2003-01-21 2003-01-21 2003-01-21Samle taken after minutes 10 0 10 warm w. 2 10 0 10 warm w. 2pH 7.93 7.73 7.68 7.74 6.71 6.67 6.67 6.80Temperature, degees C 16.1 10.8 10.8 14.6 16.1 10.1 12.3 10.8Turbidity, FNU 0.86 7.8 7.8 1.12 0.24 0.068 0.067 0.58Conductivity, mS/m 35.5 33.9 33.9 33.1 41.1 40.4 40.7 40.9Hardness, dH/Ca i mg/l 8.4 7.9/56.1 7.7/54.9 7.6/54.4 8.3 8.6/61.3 8.6/61.3 8.6/61.1Alkalinity, mg HCO3/l 168 159.2 157.1 153.7 102 102 102 102Colour, mg Pt/l 5 20 21 6 <5 <5 <5 5TOC, mg/l 1.3 1.4 1.4 1.3 1.6 1.8 2.0TS, mg/l 220 219 216 211 266 257 258 258Iron, µg Fe/l 95 510 1400 100 78 80 130 52Copper, µg Cu/l <20 44 22 86 67 54 31 96Manganese, µg Mn/l <20 25 180 <20 <20 <20 <20 <20Calcium, mg Ca/l 43 42 42 42 41 43 43 44Magnesium, mg Mg/l 11 8 8.8 9.4 11 10 11 11

Page 14: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

13

3 Building experience No greater difficulties arised during the time of building of the two plants. It was necessary to be thorough and follow the drawings with great accuracy. It was also urgent to be careful not to puncture the tarpaulins during the digging. It is important to have a drainage system below the large filter bed, otherwise displacement forces might lift the bed. The extent of the work with excavation is totally dependent of the local conditions. At both Talby and Fågelsta, the demand was relatively extensive regarding the excavation. In Talby, there was a rock where the septic tank was planned to be situated. The location of the septic tank was therefore moved a small distance, which resulted in a rather extensive work of digging and the moving of lots of excavated material. At Fågelsta, the plant was placed at the same place as the old plant had been situated. When the old plant (consisting of a septic tank, pump well, and a filter bed of 40 m2) was disconnected, it was revealed that most of the wastewater bypassed the old filter bed by an overflow in the old pump well. This is not an uncommon experience and it shows that a thorough control of the function after start of a new plant is very important. At the work of digging, forgotten pipes, tanks, and cables belonging to the old plant were discovered. The experiences from other works show that this is not uncommon and results in a more extensive work. Installation of the trickling filter and the filter bed did not result in any other problems than that a great accuracy had to bee observed. In summary, the excavation and transport of excavated material became rather extensive due to the local conditions. Everything functioned technically well but the demand for accuracy in the performance of all the work with excavation is great. All bottoms of hollows should be compacted with a vibrator. The filter material is delivered in large sacks, which was a simple and well functioning system to handle relatively large volumes of material.

Page 15: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

14

4 Operation experience / operation data The plants were taken into operation 2002-12-18 when the first influent entered the plants. The Talby plant was filled with wastewater in March 2003, and the first samples were taken in the two plants 2003-05-07. After 9 - 10 moths, the biofilm on the small ceramic spherical granules in the trickling filters were fully developed and both the reduction of organic matter and total nitrogen functioned satisfactory (see chapter “6. Results”). In the very beginning, problems were discovered with an uneven flow pattern from the nozzles in the trickling filters. Black plastic cuttings remaining from the period of building were found in the nozzles (this occurred a number of times during the first time of operation and later on it ceased to appear). When these were removed, a better distribution over the filter was achieved. Once or twice a year, the nozzles and the spraying pipes in the trickling filter should be rinsed from deposits. In the middle of March 2004 in the Fågelsta plant, an inflow of drainage water into the storage tank situated after the pump was discovered. The leakage was so large that the water was flowing upstream to the sampling well and high flows were detected2. The storage tank was taken out of operation 2004-04-16 and the leakage stopped. During the time of the leakage, the concentration of suspended solids in the sample point between the trickling filter and filter bed was very high. This might be a result of biofilm having been flushed off the granules in the trickling filter or it could also be some of the material of the granules been flushed out. The last explanation is less probable. In the autumn 2004, it was discovered that there was a low concentration of nitrate and nitrite nitrogen leaving the trickling filter in Fågelsta. However, there was a reduction of total nitrogen indicating a denitrification process in the trickling filter. An investigation 2004-11-16 revealed that the lower part (0.2 m) of the trickling filter was submerged. The pipes between the trickling filter and the filter bed were inspected. They were full with water, sludge, and earth. There was still an inclination between the sample point and the filter bed but not between the trickling filters and the sample point, revealing that the trickling filters had settled. These pipes, including the pipes dividing the water over the filter bed, were re-arranged and flushed 2005-01-26, and the trickling filters were lifted. All pipes before the septic tank were inspected, re-arranged, and flushed in the beginning of February 2005. During the end of March 2005, the snow melted in the Stockholm area and the flow in Fågelsta increased from normally 3 m3 to 5 m3 per two weeks. In beginning of May 2005, after a period with rain, the flow was 6 m3 per two weeks. This shows that there was still a leakage somewhere but a much smaller leakage than before in the system. In the Talby plant, a toilet was leaking in the house. This was discovered 2004-04-06 and immediately taken care of. A water heater was leaking from a safety valve probably from the end of January 2004 or from the beginning of the experiments. The valve of the water heater was repaired 2004-06-17. These two leakages increased the flow from around 400 l/d to nearly 1000 l/d.

2 The diagrams of concentrations showing the function of the Fågelsta plant can therefore be somewhat misleading.

Page 16: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

15

After the flow had been reduced it was observed in June 2004 that the water level did not reach the edge of the weir in the outlet. Even if no water could be observed in the drainage pipe, the conclusion is that water leaked out from the filter bed. The sludge was removed from the septic tank in Fågelsta 2003-12-05 and 2004-05-28, and in Talby 2004-04-14. The next collection of sludge is planned to take place in the end of June, 2005.

Page 17: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

16

5 Sampling and analyses The wastewater was taken for analyses in both plants by flow controlled automatic sampler placed after the septic tank, after the trickling filters, and also after the filter bed in the Talby plant (see Figure 3). In both plants, grab samples were taken after the filter bed. The frequency of the automatic sampling was regulated by the inflow to the sampling well after the septic tank. When the water level reached the upper level meter, the water is pumped down to the lower level meter. At the same time the water was measured with a flow meter, Danfoss Magflo FLowmeter Type MAG 5000, and a signal was sent to the three automatic samplers in the plant, where samples then were taken. One sample was taken for approximately every 5.7 litres of water. The samples were collected in seven 5 litres plastic bottles, each bottle containing 2 days of water samples, placed in a refrigerator3. All but the last bottle to be filled contained 25 ml of 4 M sulphuric acid to conserve the sample. The composite samples of 14 days, of 12 days, of 2 days, and the grab samples were all analysed in Stockholm Water Co.`s accredited laboratory. For economic reasons, the frequency of some analyses was decreased in December of 2003. Different analyses were therefore made during different periods of time and at different sample points in the plants, see Appendix 5 and Appendix 6. The methods of analyses are presented in Table 4. The analyses were performed with method and the uncertainty (with 95 % accuracy of measurement) mentioned in Table 4. In Table 4 the larger uncertainty refers to the lowest part of the measuring range.

3 In Talby, the refrigerator containing influent samples failed to operate. This resulted in warm samples at several occasions. The total amount of nitrogen and phosphorus should not be affected by this, but there is a risk that organic compounds in bottles without sulphuric acid was degraded (e.g. BOD7 concentrations in the influent might be underestimated).

Page 18: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

17

Table 4. Method of analysis and uncertainty for different parameters.

Parameter Method of analysis Uncertainty, % k = 2

SS, Suspended Solids SS 028112 – 3 50 – 22 VSS, Volatile suspended solids SS - EN ISO 872 – 1 50 – 22 COD, Chemical oxygen demand

SS 028142 - 2 mod 26 – 12

BOD7, Biochemical oxygen demand during 7 days

SS 028143 - 2 and SS EN 25814 – 1

24 – 10

TOC, Total organic carbon SS - EN 1484 – 1 15 – 9 Tot-P, Phosphorus

SS 028127 – 2 if concentration < 1 mg/l

34 – 11

Tot-P, Phosphorus

ASN 5240 - SE * if concentration ≥ 1 mg/l

22 – 12

PO4-P, Phosphate phosphorus SS 028126 – 2 34 – 11 Kj-N, Organic nitrogen and ammonium nitrogen

AN 300/ASN 3503 * 50 – 10

NH4-N, ammonium nitrogen AN 300 * 46 – 10 (NO3+NO2)-N, Nitrate nitrogen and nitrite nitrogen

AN 5201 * 18 – 10

HCO3-, Alkalinity SS - EN ISO 9963 - 2 18 – 13

Ca, Calcium SS - EN ISO 11885 - 1 10 Mg, Magnesium SS - EN ISO 11885 - 1 8 Fe, Iron SS 028150 - 2 and

SS - EN ISO 11885 - 1 33 – 11

Al, Aluminium SS 028150 - 2 and SS - EN ISO 11885 - 1

16 – 10

pH pH meter WTW340 with the probe SenTix21

Conductivity SS - EN 27888 - 1 26 – 4 E. coli Colilert®-18/MPN method ** Fecal enterococci EnterolertTM **

* Application note according to Foss/Tecator, ** not applicable

Page 19: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

18

6 Results and discussion

6.1 Summary – removal of N, P and organic matter The reductions of total phosphorus, total nitrogen, TOC, COD, and BOD7 in the plants are presented in Figure 5 - Figure 8. In both plants, the biofilm was not fully developed until after 9 - 10 months of operation and the degradation of organic matter and the nitrification improved continuously during this period. Thus, the results are presented both as median and average values after 9 months of operation and for the whole period of evaluation (i.e. May 2003 – May 2005), see Table 5 and Table 6. For both plants, the reduction of phosphorus was above 99 % and the reduction of organic matter was above 90 % for almost all parameters after 9 months. In Fågelsta, the nitrogen removal was about 70 %. In Talby, the fluctuation in nitrogen load and concentrations might have affected the evaluation of nitrogen removal rates and there is a relatively large discrepancy between average and median values (see also “6.5 Nitrogen”). However, the average nitrogen removal in Talby was 50 %. Table 5. Reduction of total phosphorus, total nitrogen, TOC, COD, and BOD7 in % as median and average values in the plant in Fågelsta. The first column presents values after that biological removal processes were developed and the second column presents values for the whole period of sampling.

Substance Fågelsta, After 9 months of operation

Fågelsta, May 2003 – May 2005

median / average, % median / average, % Total P 99.7 / 99.1 99.8 / 99.2 Total N 75.0 / 70.8 72.3 / 66.2 TOC 93.6 / 93.4 93.4 / 91.1 COD 93.7 / 93.7 92.8 / 89.1 BOD7 95.8 / 95.1 90.4 / 82.1 Table 6. Reduction of total phosphorus, total nitrogen, TOC, COD, and BOD7 in % as median and average values in the plant in Talby. The first column presents values after that biological removal processes were developed and the second column presents values for the whole period of sampling.

Substance Talby, after 9 months of operation

Talby, May 2003 – May 2005

median / average, % median / average, % Total P 99.8 / 99.7 99.7 / 99.6 Total N 61.3 / 50.0 55.4 / 43.3 TOC 92.9 / 91.5 91.3 / 86.9 COD 88.6 / 88.9 86.7 / 72.7 BOD7 94.0 / 91.5 83.3 / 37.1

Page 20: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

19

0

20

40

60

80

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

NredNred*PredPred*re

duct

ion,

%

Figure 5. Reduction of nitrogen and phosphorus in the plant in Fågelsta (* = 12-days composite samples have been used in the calculations, otherwise 14 d composite samples).

0

20

40

60

80

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

NredNred*PredPred*re

duct

ion,

%

Figure 6. Reduction of nitrogen and phosphorus in the plant in Talby (* = 12-days composite samples have been used in the calculations, otherwise 14 d composite samples).

Page 21: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

20

0

20

40

60

80

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7redCODredCODred*TOCredTOCred*re

duct

ion,

%

Figure 7. Reduction of organic matter in the plant in Fågelsta (* = 12-days composite samples have been used in the calculations, otherwise 14 d composite samples).

0

20

40

60

80

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7redCODredCODred*TOCredTOCred*re

duct

ion,

%

Figure 8. Reduction of organic matter in the plant in Talby (* = 12-days composite samples have been used in the calculations, otherwise 14 d composite samples).

In Table 7 and Table 8, the concentrations after 9 months of operation are presented as median, average, 5 % percentile, and 95 % percentile values. Median, 5 % percentile, and 95 % percentile values are chosen to avoid obvious outliers to affect the results too much. Similar tables for the whole period are presented in Appendix 1.

Page 22: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

21

Table 7. Concentrations of substances after 9 months of operation in the Fågelsta plant, as median, average, 5 % percentile, and 95 % percentile values.

Fågelsta plant After septic tank After trickling filter Effluent Substance Median/average,

5 % p. - 95 % p. Median/average, 5 % p. – 95 % p.

Median/average, 5 % p. - 95 % p.

Flow, l/d 498 / 554 253 – 1135

Total P, mg/l 9.3 / 9.3 5.3 – 13

8.0 / 7.8 2.5 – 12

0.02 / 0.06 0.01 - 0.20

PO4-P, mg/l 8.1 / 7.8 4.1 – 12

7.0 / 6.3 2.2 - 9.2

0.01 / 0.03 0.01 - 0.11

Total N, mg/l 66 / 63 35 – 83

43 / 42 26 – 62

17 / 16 8.5 - 20

(NO3+NO2)-N, mg/l 0.1 / 0.1 0.1 - 0.1

18 / 19 0.9 – 52

3.0 / 3.5 1.4 - 6.4

NH4-N, mg/l 56 / 53 29 – 72

13 / 16 4.3 – 35

12 / 12 5.5 - 16

TOC, mg/l 155 / 146 84 – 190

41 / 50 19 – 91

8.5 / 9.0 5.5 - 13

COD, mg/l 510 / 512 400 – 612

100 / 126 78 – 218

32 / 32 22 - 39

BOD7, mg/l 250 / 244 181 - 283

37 / 36 11 – 71

11 / 11 5 - 21

Table 8. Concentrations of substances after 9 months of operation in the Talby plant, as median, average, 5 % percentile, and 95 % percentile values.

Talby plant After septic tank After trickling filter Effluent Substance Median/average,

5 % p. - 95 % p. Median/average, 5 % p. - 95 % p.

Median/average, 5 % p. - 95 % p.

Flow, l/d 322 / 408 104 - 888

Total P, mg/l 7.5 / 8.7 2.2 - 18

5.7 / 7.3 2.5 – 16

0.02 / 0.02 0.01 - 0.03

PO4-P, mg/l 5.9 / 7.3 2.0 - 16

5.8 / 7.1 2.5 – 17

0.01 / 0.01 0.01 - 0.01

Total N, mg/l 57 / 59 13 – 114

49 / 52 17 – 95

18 / 22 11 - 46

(NO3+NO2)-N, mg/l 0.1 / 0.1 0.1 - 0.1

34 / 33 13 – 48

9.3 / 7.7 0.3 - 13

NH4-N, mg/l 50 / 53 10 – 102

12 / 18 0.7 – 49

13 / 14 2.2 - 35

TOC, mg/l 70 / 65 19 – 120

19 / 20 7.5 – 41

4.4 / 4.3 2.5 - 6.6

COD, mg/l 230 / 256 164 - 402

59 / 75 44 – 136

25 / 26 15 - 38

BOD7, mg/l 67 / 74 41 – 113

11 / 10 4 – 17

5 / 6 2 - 12

Page 23: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

22

6.2 Load – flow, N, P, and organic matter The flow to the plants has varied greatly mainly as a result of the problems with leakage into the plants (Figure 9 and Figure 10). The median flow to the plant in Fågelsta was 468 l/d and 370 l/d to the plant in Talby. The flow to the Fågelsta and Talby plant were about 360 l/d and 140 l/d, respectively, when no melting snow or rain leaked into the plant as drainage water.

0

500

1000

1500

2000

2500

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

wee

kly

aver

age

flow

, l/d

Figure 9. Flow in l/d to the plant in Fågelsta.

0

200

400

600

800

1000

1200

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

wee

kly

aver

age

flow

, l/d

Figure 10. Flow in l/d to the plant in Talby.

Page 24: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

23

The accumulated flow to the plants was studied. From the start of the plants 2002-12-18 to 2005-06-14 when the last samples were taken 493 m3 of wastewater has passed the flow meter in Fågelsta and 333 m3 has passed the flow meter in Talby. When there was a leakage from the storage tank in Fågelsta, an unknown amount of leakage water flow directly to the trickling filter. The reparation of the safety valve 2004-06-17 in the house in Talby is obvious in Figure 11.

0

100

200

300

400

500

600

Dec-02

Mar-03

Jun-03

Sep-03

Dec-03

Mar-04

Jun-04

Sep-04

Dec-04

Mar-05

FågelstaTalby

Acc

umul

ated

flow

, m3

Figure 11. Accumulated flow to the wastewater treatment plants.

The phosphorus load, as a median value, on the Fågelsta plant was 4.1 g P/d, and on Talby 2.5 g P/d. The median load of nitrogen on Fågelsta 31 g N/d and on Talby 16 g N/d. And, finally, the median load of organic matter on Fågelsta was 72 g TOC/d, 256 g COD/d, and 115 g BOD7/d, and on Talby 17 g TOC/d, 58 g COD/d, and 13 g BOD7/d4. The loads are presented in Figure 12 - Figure 15. As mentioned, a student lived in Talby between 2003-08-01 and 2004-02-27 and another student lived there between 2004-08-02 and 2005-02-07. They have greatly affected the loads to the Talby plant.

4 The low BOD/COD-ratio in Talby might be explained that BOD load was calculated from 2 day composite samples while COD load was calculated from fortnight composite samples. It is also possible that the problem with the refrigerator in Talby affected the BOD values.

Page 25: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

24

0

10

20

30

40

50

60

70

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-NinTot-Nin*Tot-PinTot-Pin*lo

ad, g

/d

Figure 12. Nitrogen and phosphorus load in g/d to the plant in Fågelsta (* = 12-days composite samples have been used in the calculations, otherwise 14 d composite samples).

0

5

10

15

20

25

30

35

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-NinTot-Nin*Tot-PinTot-Pin*lo

ad, g

/d

Figure 13. Nitrogen and phosphorus load in g/d to the plant in Talby (* = 12-days composite samples have been used in the calculations, otherwise 14 d composite samples).

Page 26: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

25

0

50

100

150

200

250

300

350

400

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7in, dCODinCODin, dTOCinTOCin, d

load

, g/d

Figure 14. Organic load in g/d to the plant in Fågelsta.

0

20

40

60

80

100

120

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7in, dCODinCODin, dTOCinTOCin, d

load

, g/d

Figure 15. Organic load in g/d to the plant in Talby.

The accumulated load of phosphorus to the plants was investigated (Figure 16). In Talby, a somewhat larger slope may be seen during the autumns when the students lived in Talby. In Fågelsta, there is an obvious change in the slope in March 2004. During that month, the storage tank leaking into the plant was taken out of operation, and the potential backflow that might have caused an overestimation of the actual flow was hindered. The accumulated phosphorus from the start of the plants in 2002-12-18 to 2005-05-24 has been calculated to 4.2 kg total P in Fågelsta and 2.1 kg total P in Talby. With a density of 450 kg/m3 for Filtralite P, the material in the large filter bed, and a volume of 70 m3 and 50 m3 in Fågelsta and Talby,

Page 27: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

26

respectively, the binding of phosphorus could be calculated to 130 mg P bound/kg bed material in Fågelsta and 90 mg P bound/kg bed material in Talby.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Dec-02

Mar-03

Jun-03

Sep-03

Dec-03

Mar-04

Jun-04

Sep-04

Dec-04

Mar-05

FågelstaTalby

Acc

umul

ated

load

of t

otal

P, k

g

Figure 16. Accumulated load of phosphorus in kg to the wastewater treatment plants.

6.3 Temperature The temperature was measured in the sample point after the septic tank. During the period from 2004-05-04 to 2004-07-13 the temperature was measured in the sample point in the effluent from the filter bed. This change in measuring point is only obvious in Fågelsta. The thermometer in Fågelsta brook down in the beginning of October 2004 and a new probe was bought. The temperature has varied between 5 °C and 19 °C in Fågelsta and between 9 °C and 22 °C in Talby.

Page 28: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

27

0

5

10

15

20

25

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

FågelstaTalby

Deg

ree

of C

Figure 17. The water temperature in the plants.

6.4 Phosphorus The median concentrations of total phosphorus after the septic tank, after the trickling filter, and in the effluent were 9.3 mg P/l, 8.2 mg P/l, and 0.02 mg P/l in Fågelsta and 6.3 mg P/l, 5.0 mg P/l, and 0.02 mg P/l in Talby. In the same sample points the median concentrations of phosphate phosphorus were 8.0 mg PO4-P/l, 7.1 mg PO4-P/l, and 0.01 mg PO4-P/l in Fågelsta and 4.5 mg PO4-P/l, 4.8 mg PO4-P/l, and 0.01 mg PO4-P/l in Talby. The values are presented in Figure 18 - Figure 21, Appendix 1, and Appendix 2. Increased concentrations of total P in the effluent in Fågelsta towards the end of the period indicate a potential saturation of the filter (see also “6.4.1 Phosphorus profiles in the filter beds”). However, it should also be noted that inlet pipes to the filter bed were flushed 2005-01-26 and the effluent concentration of phosphorus might have been influenced. Although, the concentration of total phosphorus has increased at the end of the period studied, it is the phosphate ions that are precipitated by the calcium ions, Ca2+. The concentrations of phosphate phosphorus from both plants have been laying at 0 - 0.01 mg PO4-P/l during nearly the whole period of investigation. The precipitation is almost complete.

As can be seen in Figure 20 and Figure 21, the removal of phosphorus in the trickling filter is almost insignificant5. The relative large variations in inflow concentrations are mainly explained by the leakage from the toilet and water heater (in Talby) and the inflow of drainage water/stormwater (in Fågelsta). In March and April of 2004 a storage tank in Fågelsta leaked drainage water directly into the pump well before the trickling filter which diluted the samples after the trickling filter and in the effluent more than the samples in the influent.

5 The decrease in concentration over the trickling filter in Fågelsta winter 2003/2004 might be explain by a dilution due to leakage into the aforementioned storage tank.

Page 29: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

28

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pg,outPO4-Pg,outm

g/l

Figure 18. Effluent concentrations of phosphorus from the plant in Fågelsta.

0.000.020.040.060.080.100.120.140.160.180.200.220.240.260.28

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pw,outTot-Pd,outTot-Pg,outPO4-Pd,outPO4-Pg,out

mg/

l

Figure 19. Effluent concentrations of phosphorus from the plant in Talby.

Page 30: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

29

02468

101214161820

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

P inf P TF eff P effm

g P/

l

Figure 20. Concentrations of phosphorus in the plant in Fågelsta. The low influent concentration 2004-12-14 is explained by dilution of water from snow melting. (TF = Trickling filter).

0

2

4

6

8

10

12

14

16

18

20

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

P inf P TF eff P eff

mg

P/l

Figure 21. Concentrations of phosphorus in the plant in Talby. (TF = Trickling filter).

6.4.1 Phosphorus profiles in the filter beds An investigation of the filter beds was performed in the Fågelsta plant 2004-06-17 and 2005-05-17, and 2004-06-17 and 2005-04-19 in the Talby plant. Water samples were taken at six different places in the filter bed, at the left and the right side of the filter bed in the inlet, in the middle, towards the outlet, and at two different levels, 0.1 metre and 0.5 metre over the bottom of the filter bed (see Figure 4). It was only possible to take samples just below the

Page 31: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

30

water surface at the right side of the filter bed in the influent point of the filter bed in the Fågelsta plant. The samples were analysed for total phosphorus, PO4-P, TOC, Kj-N, NH4-N, and (NO3+NO2)-N. Total nitrogen was calculated. The result from the study is presented in Table 9, Table 10, and in Appendix 4. In Talby, the concentrations of phosphorus are generally (not including the inlet) below 1 mg tot-P/l in the upper part of the filter and only slightly higher in the bottom (Table 10). The phosphate concentrations are below 0.05 mg P/l in all samples (with exception for the inlet). In Fågelsta, both the total phosphorus and phosphate concentrations are considerable higher in the bottom part of the filter (1 dm) than in the upper/middle part of the filter (5 dm), see Table 9. Furthermore, the concentrations are higher in all samples points in May 2005 compared to June 2004 (the inlet excepted). It is also noteworthy that the phosphate concentration is relatively high (0.66 – 2.5 mg PO4-P /l) in both samples towards the outlet in May 2005. Thus, there is an indication that the bottom of the filter already is saturated by phosphorus. Table 9. Concentrations of total phosphorus and phosphate phosphorus from grab water samples taken in the filter bed in Fågelsta at two levels, 0.1 metre and 0.5 metre over the bottom of the filter bed.

Fågelsta Inlet side Middle of filter Towards the outlet June 2004 Total P PO4-P Total P PO4-P Total P PO4-P Left, 5 dm 7.2 4.7 0.72 0.24 1.5 0.80 Left, 1 dm 160 2.4 3.3 0.13 7.7 1.7 Right, 5 dm 1.0 0.57 0.60 0.09 Right, 1 dm 13 0.49 1.1 0.15 Total P PO4-P Total P PO4-P Total P PO4-P May 2005 Left, 5 dm 5.0 3.7 1.0 0.83 1.2 1.2 Left, 1 dm 6.9 2.7 16 7.4 2.5 Right, 5 dm 0.80 0.49 0.66 0.50 Right, 1 dm 17 2.6 0.66

Page 32: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

31

Table 10. Concentrations of total phosphorus and phosphate phosphorus from grab water samples taken in the filter bed in Talby at two levels, 0.1 metre and 0.5 metre over the bottom of the filter bed.

Talby Inlet side Middle of filter Towards the outlet June 2004 Total P PO4-P Total P PO4-P Total P PO4-P Left, 5 dm 6.1 2.8 0.43 0.02 0.40 0.02 Left, 1 dm 39 3.3 1.1 < 0.01 0.50 < 0.01 Right, 5 dm 8.0 2.1 0.68 < 0.01 1.0 0.01 Right, 1 dm 51 1.3 1.1 0.03 5.8 0.02 Total P PO4-P Total P PO4-P Total P PO4-P April 2005 Left, 5 dm 19 18 0.19 0.03 0.10 < 0.01 Left, 1 dm 29 18 0.21 0.02 0.29 0.02 Right, 5 dm 16 0.15 0.02 0.16 0.01 Right, 1 dm 23 18 0.40 0.02 0.62 0.03

6.5 Nitrogen The median concentrations of total nitrogen after the septic tank, after the trickling filter, and in the effluent were 68 mg N/l, 43 mg N/l, and 17 mg N/l in Fågelsta and 53 mg N/l, 45 mg N/l, and 21 mg N/l in Talby. In the same sample points the median concentrations of ammonium nitrogen were 56 mg NH4-N/l, 13 mg NH4-N/l, and 12 mg NH4-N/l in Fågelsta and 48 mg NH4-N/l, 11 mg NH4-N/l, and 14 mg NH4-N/l in Talby. The median concentrations of nitrate and nitrite in trickling filter effluent were in Fågelsta 18 mg (NO3+NO2)-N/l, and in Talby 30 mg (NO3+NO2)-N/l. The effluent concentrations were 2.6 mg (NO3+NO2)-N/l in Fågelsta and 7.5 mg (NO3+NO2)-N/l in Talby. The values are presented in Figure 22 - Figure 25.

Page 33: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

32

0

10

20

30

40

50

60

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Ng,out(NO3+NO2)-Ng,outNH4-Ng,out

mg/

l

Figure 22. Effluent concentrations of nitrogen from the plant in Fågelsta.

0

10

20

30

40

50

60

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Nw,outTot-Nd,outTot-Ng,out(NO3+NO2)-Nw,out(NO3+NO2)-Nd,out(NO3+NO2)-Ng,outNH4-Nw,outNH4-Nd,outNH4-Ng,out

mg/

l

Figure 23. Effluent concentrations of nitrogen from the plant in Talby.

In Fågelsta, the trickling filter effluent had very low nitrate concentration during 2004 due to the problems with a partly submerged trickling filter (see Figure 24 and “6.5.1 Nitrification”). After the blockage, causing the problem, was removed and the treatment plant was repaired in the beginning of 2005, the nitrate concentrations increased to about 50 mg (NO3+NO2)-N/l. In March and April of 2004 the storage tank in Fågelsta leaked drainage water directly into the pump well before the trickling filter which diluted the samples after the trickling filter and in the effluent more then the samples in the influent.

Page 34: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

33

0

20

40

60

80

100

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

N infN TF effNO3-N TF effN effNO3-N eff

mg

N/l

Figure 24. Concentrations of nitrogen in the plant in Fågelsta.

0

20

40

60

80

100

120

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

N infN TF effNO3-N TF effN effNO3-N eff

mg

N/l

Figure 25. Concentrations of nitrogen in the plant in Talby.

Since the environmental effects are related to the amount emitted, the loads to the recipient were also investigated. It is interesting to note that emissions of total nitrogen are rather equal for the plants, even if the load are about twice as high on the Fågelsta plant compared to the Talby plant. The median emission of nitrogen from the Fågelsta plant was 8.9 g N/d and from Talby 8.4 g N/d.

Page 35: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

34

Figure 26. Nitrogen emissions in g N/d from the plant in Fågelsta.

Figure 27. Nitrogen emissions in g N/d from the plant in Talby.

6.5.1 Nitrification Generally, the nitrification took place in the trickling filter and the denitrification in the filter bed. An exception is the period in Fågelsta when there was a 0.2 m water level in the bottom of the trickling filters as a result of a clogging of the pipes with sludge and earth after these two parallel filters. Thus, a combination of high flow probably causing a wash of out of

0

5

10

15

20

25

30

May/03 Jul/03 Sep/03 Nov/03 Jan/04 Mar/04 May/04 Jul/04 Sep/04 Nov/04 Jan/05 Mar/05 May/05

load

to th

e re

cipi

ent,

g to

t-N

/d

0

5

10

15

20

25

May/03 Jul/03 Sep/03 Nov/03 Jan/04 Mar/04 May/04 Jul/04 Sep/04 Nov/04 Jan/05 Mar/05 May/05

load

to th

e re

cipi

ent,

g to

t-N

/d

Page 36: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

35

biofilm and settling causing poor inclination of the pipes caused a blockage resulting in a partly submerged trickling filter. During this period, the nitrification took place in the upper 0.45 m of the trickling filters not soaked with water and denitrification took place in the lower 0.2 m of the trickling filter. This could be seen as a period from June to December 2004 with very low concentrations of nitrate and nitrite nitrogen after the trickling filter according to Figure 33. The reduction of NH4-N over the trickling filer in g/(m2*d) as a function of influent NH4-N in g/(m2*d) could be seen in Figure 28 and Figure 30. Values from early samples show a lower degree of nitrification, indicating that the biofilm was not yet fully developed. There is a weak tendency that the degree of nitrification is reduced at higher nitrogen loading. It was not possible to show that the temperature had any impact on the degree of nitrification (Figure 29). The reduction of NH4-N over the trickling filter is presented in Figure 31 and Figure 32. The median values of reduction were 77 % in Fågelsta and 76 % in Talby after 9 months of operation. The corresponding average values were 70 % in Fågelsta and 75 % in Talby. Despite warmer water in the summer of 2004, the reduction of ammonium nitrogen was lower than usual in Fågelsta during that time, 40 - 60 %, see Figure 31. The conclusion is that it was problems with smaller volumes available for nitrification in the trickling filter as a result of clogging and inlet leakage with cold water that caused lower ammonium reduction. Excluding the period of submerged trickling filter in Fågelsta, the average reduction was 81 %. The concentrations of ammonium and nitrate before and after the trickling filter in the two plants are also shown in Figure 33 and Figure 34. During the spring of 2005, the influent concentration of nitrogen increased significantly in Talby but the effluent concentrations of nitrate was relative constant.

Figure 28. Reduction of ammonium nitrogen as g/(m2·d) in the trickling filter as a function of the load of ammonium nitrogen to the trickling filter in the plant in Fågelsta.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8g NH4-N in/(m2*d)

g N

H4-

N r

ed/(m

2*d)

Values from the first samples (May - June 2003)

Page 37: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

36

Figure 29. Nitrification (% of influent nitrogen not emitted as ammonia) versus water temperature in Talby. Values from the first 9 months excluded.

Figure 30. Reduction of ammonium nitrogen as g/(m2·d) in the trickling filter as a function of the load of ammonium nitrogen to the trickling filter in the plant in Talby.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0g NH4-N in/(m2*d)

g N

H4-

N r

ed/(m

2*d)

First sample, May 2003

y = 0.0714x + 75.533R2 = 0.0004

0

20

40

60

80

100

0 5 10 15 20 25

Temperature, C

Nitr

ifica

tion,

%

Page 38: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

37

0

20

40

60

80

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

NH4-Nred,bio

redu

ctio

n, %

Figure 31. Reduction of ammonium nitrogen in the trickling filter in the plant in Fågelsta.

0

20

40

60

80

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

NH4-Nred,bio

redu

ctio

n, %

Figure 32. Reduction of ammonium nitrogen in the trickling filter in the plant in Talby.

Page 39: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

38

0

10

20

30

40

50

60

70

80

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

NH4-Nw,inNH4-Nd,in(NO3+NO2)-Nw,in(NO3+NO2)-Nd,inNH4-Nw,bfNH4-Nd,bf(NO3+NO2)-Nw,bf(NO3+NO2)-Nd,bf

mg

N/l

Figure 33. Concentrations of ammonium nitrogen and nitrate and nitrite nitrogen before and after the trickling filter in the plant in Fågelsta.

0

20

40

60

80

100

120

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

NH4-Nw,inNH4-Nd,in(NO3+NO2)-Nw,in(NO3+NO2)-Nd,inNH4-Nw,bfNH4-Nd,bf(NO3+NO2)-Nw,bf(NO3+NO2)-Nd,bf

mg

N/l

Figure 34. Concentrations of ammonium nitrogen and nitrate and nitrite nitrogen before and after the trickling filter in the plant in Talby.

6.6 Organic matter The median concentrations of TOC after the septic tank, after the trickling filter, and in the effluent were 160 mg TOC/l, 41 mg TOC/l, and 9.5 mg TOC/l in Fågelsta and 57 mg TOC/l, 18 mg TOC/l, and 4.7 mg TOC/l in Talby. In the same sample points the median

Page 40: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

39

concentrations of COD were 520 mg COD/l, 120 mg COD/l, and 38 mg COD/l in Fågelsta and 190 mg COD/l, 58 mg COD/l, and 30 mg COD/l in Talby. And, finally, the median concentrations of BOD7 in these sample points were 240 mg BOD7/l, 36 mg BOD7/l, and 26 mg BOD7/l in Fågelsta and 58 mg BOD7/l, 12 mg BOD7/l, and 13 mg BOD7/l in Talby. The values are presented in Figure 35 - Figure 38 and in Appendix 1. The building up period of the biofilm in the trickling filter during 9 months after the start of operation December 2002-12-18 is obvious in all these figures. In Fågelsta, the increased inflow during spring 2004 probably caused a wash out of biofilm from the trickling filter (indicated by a considerable amount of suspended solids in trickling filter effluent). This in combination with the settling problems caused a blockage of the trickling filter effluent. Thus, trickling filter effluent concentrations increased during spring 2004 – summer 2004. In spring 2005, after the pipes were re-arranged and flushed and the leakage was reduced, were the trickling effluent concentrations below 30 mg TOC/l.

0

20

40

60

80

100

120

140

160

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7g,outCODg,outTOCg,out

mg/

l

Figure 35. Effluent concentrations of organic matter from the plant in Fågelsta.

Page 41: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

40

0

50

100

150

200

250

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7d,outBOD7g,outCODw,outCODd,outCODg,outTOCw,outTOCd,outTOCg,out

mg/

l

Figure 36. Effluent concentrations of organic matter from the plant in Talby.

0

50

100

150

200

250

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Inf. TF eff. Eff.

mg

TO

C/l

Figure 37. Concentrations of TOC in the plant in Fågelsta. The increased concentration in trickling filter effluent during 2004 is explained by the wash out of biofilm ant the blockage of the pipe between the trickling filter and the filter bed. The relatively low influent concentration 2004-12-14 is explained by dilution of water from snow melting.

Page 42: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

41

0

50

100

150

200

250

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Inf. TF eff. Eff.m

g T

OC

/l

Figure 38. Concentrations of TOC in the plant in Talby.

The amount of organic matter discharged to recipient from the two plants was also investigated. The median load of organic matter from Fågelsta was 4.7 g TOC/d, 20.9 g COD/d, and 8.5 g BOD7/d, and from Talby 1.9 g TOC/d, 11.3 g COD/d, and 3.2 g BOD7/d. This could be seen in Figure 39 and Figure 40. The starting up period in the two plants is obvious in these two figures.

0

10

20

30

40

50

60

70

80

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7out,dCODoutTOCout

load

to th

e re

cipi

ent,

g/d

Figure 39. Emission of organic matter in g/d from the plant in Fågelsta.

Page 43: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

42

0

10

20

30

40

50

60

70

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7out,dCODoutCODout,dTOCoutTOCout,d

load

to th

e re

cipi

ent,

g/d

Figure 40. Emission of organic matter in g/d from the plant in Talby.

6.6.1 Degradation of organic matter in the trickling filter Reduction of BOD7, TOC, and COD as g/(m2·d) in the trickling filter as a function of the load of BOD7, TOC, and COD, respectively, to the trickling filter in the plants are presented in Figure 41 - Figure 46. The corresponding reductions of BOD7, TOC, and COD in % in the trickling filter are presented in Figure 47 and Figure 48. The median values of reduction of BOD7, TOC, and COD over the trickling filter after 9 months of operation were 85.7 % BOD7, 73.3 % TOC, and 79.0 %COD in Fågelsta and 87.9 % BOD7, 67.3 % TOC, and 71.4 %COD in Talby. The corresponding average values were 84.6 % BOD7, 63.3 % TOC, and 74.8 %COD in Fågelsta and 85.5 % BOD7, 67.6 % TOC, and 70.5 %COD in Talby.

Page 44: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

43

0

5

10

15

20

25

30

0 5 10 15 20 25 30g BOD7 in/(m2*d)

g B

OD

7 re

d/(m

2*d)

Figure 41. Reduction of BOD7 as g/(m2·d) in the trickling filter as a function of the load of BOD7 to the trickling filter in the plant in Fågelsta.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 1 2 3 4 5 6g BOD7 in/(m2*d)

g B

OD

7 re

d/(m

2*d)

Figure 42. Reduction of BOD7 as g/(m2·d) in the trickling filter as a function of the load of BOD7 to the trickling filter in the plant in Talby.

Page 45: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

44

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30g TOC in/(m2*d)

g T

OC

red

/(m2*

d)

Figure 43. Reduction of TOC as g/(m2·d) in the trickling filter as a function of the load of TOC to the trickling filter in the plant in Fågelsta. The outlier (value 26.4 % reduction) comes from March 2004 when the leakage into the plant was large and the sample was filled with suspended solids.

Figure 44. Reduction of TOC as g/(m2·d) in the trickling filter as a function of the load of TOC to the trickling filter in the plant in Talby.

0

1

2

3

4

5

6

0 1 2 3 4 5 6g TOC in/(m2*d)

g T

OC

red

/(m2*

d)

Page 46: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

45

0

10

20

30

40

50

60

0 10 20 30 40 50 60g COD in/(m2*d)

g C

OD

red

/(m2*

d)

Figure 45. Reduction of COD as g/(m2·d) in the trickling filter as a function of the load of COD to the trickling filter in the plant in Fågelsta.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18g COD in/(m2*d)

g C

OD

red

/(m2*

d)

Figure 46. Reduction of COD as g/(m2·d) in the trickling filter as a function of the load of COD to the trickling filter in the plant in Talby.

In Fågelsta, the removal efficiency decreased during 2004 due to the problems with a partly submerged trickling filter. After the blockage causing the problem was removed and the treatment plant was repaired in the beginning of 2005, the removal efficiency increased and was as high as before the problem occurred.

Page 47: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

46

Figure 47. Reduction of BOD7, TOC and COD in the trickling filter in the plant in Fågelsta.

Figure 48. Reduction of BOD7, TOC and COD in the trickling filter in the plant in Talby.

6.7 Bacteria The concentrations of E. coli and fecal enterococci in the effluents from both plants have been below the limit of detection during the entire period of investigation. The good reduction of bacteria is probably due to a relative long hydraulic retention time in combination with a high

0

20

40

60

80

100

May/03 Jul/03 Sep/03Nov/03 Jan/04Mar/04May/04 Jul/04 Sep/04Nov/04 Jan/05Mar/05May/05

BOD7TOCCOD

redu

ctio

n, %

0

20

40

60

80

100

May/03 Jul/03 Sep/03Nov/03 Jan/04 Mar/04May/04 Jul/04 Sep/04Nov/04 Jan/05Mar/05May/05

BOD7TOCCOD

redu

ctio

n, %

Page 48: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

47

pH (around 12 - 13 in the effluent). After the trickling filters but before the large filter bed the concentrations of E. coli and fecal enterococci as numbers/100 ml have approximately been between 104 and 105 in Fågelsta and approximately between 103 and 104 in Talby according to the diagrams in Figure 49 and Figure 50.

1

10

100

1000

10000

100000

1000000

10000000

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

E.coliFecal Enterococci

Num

bers

/100

ml

Figure 49. Concentration of bacteria after the trickling filter in the plant in Fågelsta.

1

10

100

1000

10000

100000

1000000

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-05

E.coliFecal Enterococci

Num

bers

/100

ml

Figure 50. Concentration of bacteria after the trickling filter in the plant in Talby.

Page 49: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

48

6.8 Alkalinity, Ca, and pH The alkalinity as concentration of HCO3

-, the concentration of calcium and pH in the effluent from the plants are shown in Figure 51 and Figure 52. The alkalinity and the concentration of calcium in Fågelsta have decreased noticeably during the period of investigation, maybe as a result of the problems with leakage into the plant flushing out the calcium ions. The pH has not decreased to the same extent. In Talby, there is only a slight decrease in the concentration of calcium, a small decrease in the alkalinity, and no significant change in pH. Despite the high pH, no obvious effect on vegetation was observed at effluent point in the ditch situated after the filter bed in Talby6.

0

500

1000

1500

2000

2500

3000

3500

4000

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-050

2

4

6

8

10

12

14

HCO3outCa,outpHout

mg

HC

O3/

l, m

g C

a/l

p

Figure 51. Effluent concentrations of alkalinity, calcium, and pH in the plant in Fågelsta.

6 In Fågelsta is the effluent discharged to a drainage pipe.

Page 50: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

49

0

500

1000

1500

2000

2500

3000

3500

May-03 Aug-03 Nov-03 Feb-04 May-04 Aug-04 Nov-04 Feb-05 May-050

2

4

6

8

10

12

14

HCO3outCa,outpHout

mg

HC

O3/

l, m

g C

a/l

pH

Figure 52. Effluent concentrations of alkalinity, calcium, and pH in the plant in Talby.

6.9 Comparison of grab sample and composite sample In the Talby plant, both composite samples, proportional to the flow, and grab samples were taken from the outlet of the plant. In the very beginning of the period investigated there was a small difference between the samples. The biofilm in the trickling filter was not fully developed and the concentrations of nitrogen and organic matter decreased rapidly. When “steady state” occurred, there was no significant difference between the grab samples and the composite samples in the outlet. This is shown in Figure 53 and Figure 54 where TOC and total nitrogen are compared.

0

5

10

15

20

25

0 5 10 15 20 25mg TOCw,out/l

mg

TO

Cg,

out/l

Figure 53. Comparison between grab sample and composite sample in the outlet in Talby.

Page 51: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

50

0

10

20

30

40

50

60

0 10 20 30 40 50 60mg Tot-Nw,out/l

mg

Tot

-Ng,

out/l

Figure 54. Comparison between grab sample and composite sample in the outlet in Talby.

7 Discussion The average phosphorus removal for both plants, during the first 30 months of operation, was larger than 99 % and the median effluent concentrations were below 0.03 mg tot-P/l. However, the evaluated period includes less than 20 % of the expected lifetime for the filter beds. Since the filter material is gradually saturated, it can be expected that the phosphorus concentration will increase in the future. Thus, the evaluation of the filter has to continue to determine the long term removal efficiency. The phosphorus load in Talby corresponds to about two persons7, producing 60 % of their wastewater at home, and in Fågelsta three persons. Thus, the actual phosphorus load on the filter beds have been about 30 % of the design capacity and only 5 % of the assumed phosphorus adsorption capacity have been utilised. None the less, there are already indications of saturation in the bottom of the filter bed in Fågelsta. The samples taken in the filter bed in Fågelsta also indicate that there is an uneven distribution of wastewater and that the upper part of the filter bed is poorly utilised compared to lower part. Furthermore, alkalinity and calcium concentration have decreased significantly during the last year of operation in Fågelsta. Nitrogen removal exceeded the goal of 50 % in both plants and the average value in Fågelsta was as high as 71 %. Despite a relative long period with a partly submerged trickling filter, a higher nitrogen load, and a lower temperature the nitrogen removal was higher in Fågelsta. The nitrification was incomplete in both plants and about 20 % of the influent nitrogen was emitted as ammonium. Excluding periods with submerged filter, the degree of nitrification

7 Assuming 2.2 g P/person, d

Page 52: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

51

was slightly higher in Fågelsta. During periods with partly submerged filter in Fågelsta, the overall nitrogen removal efficiency did not decrease since the denitrification improved to the same extent as the nitrification was reduced. The better performance of the Fågelsta plant might depend on factors such loading frequency, distribution of the trickling water, and ventilation of the trickling filter. These parameters should be roughly equal for the plants, but they have not been thoroughly investigated. Other explanations are the different wastewater composition and the large variations in influent nitrogen concentration in Talby. Septic tank effluent in Talby has considerably lower TOC/N ratio than the wastewater in Fågelsta. Furthermore, the alkalinity in the trickling filter effluent in Talby was considerably lower than in Fågelsta (see Appendix 5 and Appendix 6). However, there was still enough alkalinity in Talby for nitrification and pH in trickling filter effluent was generally above 7. Removal of organic matter was generally above 90 % after the initial 9 months of operation and about 70 % was removed in the trickling filter. However, the trickling filters do not only reduce the organic content but they also produce a biofilm that might be sloughed off from time to time, especially at rapid increases in hydraulic loading as was the case in Fågelsta. Thus, a capture for suspended solids before the filter bed could probably improve the robustness of the treatment plant (but the design will be more complicated). The major problems in Fågelsta were high inflow due to leakage causing washout of biofilm from the trickling filter and settling of the trickling filter. These problems caused a blockage of the influent to the filter bed. In Talby, the major problem was a leakage from the filter bed. It is possible that these sorts of problems can be avoided by another design and plant lay-out, e.g. by using smaller filter bed volumes in closed tanks. Such design would probably also result in a better utilisation of the filter material. The plant should be regularly controlled to assure that there is no clogging of the spraying nozzle or any other blockages in the system. Thus, inspection pipes should be available at all critical positions. Otherwise, the process requires a minimum of operational control and maintenance. An important aspect that has been partly evaluated in the Finnish project is the utilisation of phosphorus saturated filter material in agriculture. However, the practical applicability still has to be proved. Economically, the treatment plants are characterised by relative high investment costs but relatively low operation costs. The investment cost can be significantly reduced if the volume of the filter bed is reduced. This will require a more frequent exchange of filter media and result in higher operational costs. However, by reducing the volume of phosphorus sorbing filter media, it will probably improve the possibilities to have a better overall utilisation of the media and thus reducing the total cost. Environmentally, it is also important to consider the impact by producing and distribute the special fabricated filter material. There is for example a significant use of energy and calcium to produce the filter material. Thus, a thorough LCA is recommended. Finally, it can be interesting to combine the investigated treatment plant with other solutions. For example, the emission of nitrogen and the lifetime of the filter bed can be improved by using urine separating toilets.

Page 53: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

52

8 Conclusion The biological processes developed gradually and after 9 months the nitrogen removal was 50 % - 80 % and the removal of organic matter exceeded 90 %. The nitrification was incomplete in both plants and about 20 % of the influent nitrogen was emitted as ammonium. The reduction of phosphorus has during the two first years of operation exceeded 99 % and the effluent concentrations have generally been below 0.05 mg P/l. The concentrations of phosphate phosphorus in the effluent have been below 0.01 mg PO4-P/l during nearly the whole period of study. However, there are indications that one of the filter beds is partially saturated and effluent concentrations might increase in the near future. No E. coli nor Fecal Enterococci have been found in the effluents from the plants. Economically, the treatment plants are characterised by relative high investment costs but relatively low operation costs. The installation and construction of the plant is rather complicated and requires special competence. Environmentally, it is also important to consider the impact by producing and distribute the special fabricated filter material. Thus, a thorough LCA is recommended. The plant should be regularly controlled to assure that there is no clogging of the spraying nozzle or any other blockages in the system. Thus, inspection pipes should be available at all critical positions. Otherwise, the process requires a minimum of operational control and maintenance.

9 References Hellström D., Jonsson L., Sjöström M., 2003, Bra Små Avlopp – Slutrapport: Utvärdering av 15 enskilda avloppsanläggningar, Stockholm Vatten rapport R nr 13, juni 2003. Swedish EPA, 1987, Små avloppsanläggningar – hushållsspillvatten från högst, Allmänna Råd 87:6 (in Swedish).

Page 54: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

53

Appendix 1: Concentrations of N, P, organic matter and flow Table 11. Concentrations of substances May 2003 – May 2005 in the Fågelsta plant, as median, average, minimum, and maximum values. Flow through the plants in l/d.

Fågelsta plant After septic tank After trickling filter Effluent Substance Median/average,

Min. – max. Median/average,

Min. – max. Median/average,

Min. – max. Flow, l/d 468 / 536

109 – 1922

Total P, mg/l 9.3 / 9.4 2.6 – 15

8.2 / 7.9 2.2 – 18

0.02 / 0.05 0.01 - 0.36

PO4-P, mg/l 8.0 / 7.9 1.9 – 16

7.1 / 6.4 1.8 - 9.3

0.01 / 0.02 0.01 - 0.20

Total N, mg/l 68 / 65 21 – 88

43 / 45 16 – 78

17 / 20 8.0 - 51

(NO3+NO2)-N, mg/l 0.1 / 0.1 0.1 - 0.2

18 / 19 0.1 – 53

2.6 / 3.0 0.1 - 6.8

NH4-N, mg/l 56 / 54 14 - 74

13 / 19 1.9 – 70

12 / 16 5.1 - 47

TOC, mg/l 160 / 149 65 - 200

41 / 49 13 – 180

9.5 / 13 4.8 - 65

COD, mg/l 520 / 523 400 - 680

120 / 138 77 – 260

38 / 58 17 - 150

BOD7, mg/l 240 / 235 130 - 420

36 / 33 8 – 87

26 / 37 5 – 130

Table 12. Concentrations of substances May 2003 – May 2005 in the Talby plant, as median, average, minimum, and maximum values. Flow through the plants in l/d.

Talby plant After septic tank After trickling filter Effluent Substance Median/average,

Min. – max. Median/average,

Min. – max. Median/average,

Min. – max. Flow, l/d 370 / 407

79 – 974

Total P, mg/l 6.3 / 7.9 1.7 - 19

5.0 / 6.6 1.9 – 17

0.02 / 0.02 0.001 - 0.08

PO4-P, mg/l 4.5 / 6.1 1.6 - 17

4.8 / 6.2 2.1 – 17

0.01 / 0.01 0.01 - 0.01

Total N, mg/l 53 / 55 12 - 120

45 / 49 14 – 106

21 / 23 11 - 50

(NO3+NO2)-N, mg/l 0.1 / 0.1 0.1 - 0.1

30 / 30 6.9 – 56

7.5 / 6.5 0.1 - 14

NH4-N, mg/l 48 / 49 10 - 110

11 / 17 0.4 – 66

14 / 16 2.1 - 41

TOC, mg/l 57 / 62 15 - 140

18 / 19 7.3 – 48

4.7 / 6.0 2.2 - 21

COD, mg/l 190 / 222 110 - 420

58 / 68 35 - 160

30 / 47 14 - 200

BOD7, mg/l 58 / 56 10 - 120

12 / 11 4 - 26

13 / 21 2 - 55

Page 55: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

54

Appendix 2: Fågelsta (N, P, organic matter)

0

2

4

6

8

10

12

14

16

18

20

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pw,inTot-Pd,inPO4-Pd,in

mg/

l

Figure 55. Influent concentrations of phosphorus to the plant in Fågelsta.

0

2

4

6

8

10

12

14

16

18

20

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pw,bfTot-Pd,bfPO4-Pd,bfm

g/l

Figure 56. Concentrations of phosphorus between trickling filter and filter bed in the plant in Fågelsta.

Page 56: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

55

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pg,outPO4-Pg,outm

g/l

Figure 57. Effluent concentrations of phosphorus from the plant in Fågelsta.

0

10

20

30

40

50

60

70

80

90

100

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Nw,inTot-Nd,inNH4-Nw,inNH4-Nd,in

mg/

l

Figure 58. Influent concentrations of nitrogen to the plant in Fågelsta.

Page 57: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

56

0

10

20

30

40

50

60

70

80

90

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Nw,bfTot-Nd,bf(NO3+NO2)-Nw,bf(NO3+NO2)-Nd,bfNH4-Nw,bfNH4-Nd,bf

mg/

l

Figure 59. Concentrations of nitrogen between trickling filter and filter bed in the plant in Fågelsta (bf = before filter bed).

0

10

20

30

40

50

60

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Ng,out(NO3+NO2)-Ng,outNH4-Ng,out

mg/

l

Figure 60. Effluent concentrations of nitrogen from the plant in Fågelsta.

Page 58: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

57

0

100

200

300

400

500

600

700

800

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7d,inCODw,inCODd,inTOCw,inTOCd,in

mg/

l

Figure 61. Influent concentrations of organic matter to the plant in Fågelsta.

0

50

100

150

200

250

300

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7d,bfCODw,bfCODd,bfTOCw,bfTOCd,bf

mg/

l

Figure 62. Concentrations of organic matter between trickling filter and filter bed in the plant in Fågelsta (bf = before filter bed).

Page 59: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

58

0

20

40

60

80

100

120

140

160

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7g,outCODg,outTOCg,out

mg/

l

Figure 63. Effluent concentrations of organic matter from the plant in Fågelsta.

Page 60: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

59

Appendix 3: Talby (N, P, organic matter)

0

2

4

6

8

10

12

14

16

18

20

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pw,inTot-Pd,inPO4-Pd,inm

g/l

Figure 64. Influent concentrations of phosphorus to the plant in Talby.

0

2

4

6

8

10

12

14

16

18

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pw,bfTot-Pd,bfPO4-Pd,bfm

g/l

Figure 65. Concentrations of phosphorus between trickling filter and filter bed in the plant in Talby (bf = before filter bed).

Page 61: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

60

0.000.020.040.060.080.100.120.140.160.180.200.220.240.260.28

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Pw,outTot-Pd,outTot-Pg,outPO4-Pd,outPO4-Pg,out

mg/

l

Figure 66. Effluent concentrations of phosphorus from the plant in Talby.

0

20

40

60

80

100

120

140

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Nw,inTot-Nd,inNH4-Nw,inNH4-Nd,in

mg/

l

Figure 67. Influent concentrations of nitrogen to the plant in Talby.

Page 62: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

61

0

20

40

60

80

100

120

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Nw,bfTot-Nd,bf(NO3+NO2)-Nw,bf(NO3+NO2)-Nd,bfNH4-Nw,bfNH4-Nd,bf

mg/

l

Figure 68. Concentrations of nitrogen between trickling filter and filter bed in the plant in Talby (bf = before filter bed).

0

10

20

30

40

50

60

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

Tot-Nw,outTot-Nd,outTot-Ng,out(NO3+NO2)-Nw,out(NO3+NO2)-Nd,out(NO3+NO2)-Ng,outNH4-Nw,outNH4-Nd,outNH4-Ng,out

mg/

l

Figure 69. Effluent concentrations of nitrogen from the plant in Talby.

Page 63: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

62

0

50

100

150

200

250

300

350

400

450

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7d,inCODw,inCODd,inTOCw,inTOCd,in

mg/

l

Figure 70. Influent concentrations of organic matter to the plant in Talby.

0

20

40

60

80

100

120

140

160

180

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7d,bfCODw,bfCODd,bfTOCw,bfTOCd,bf

mg/

l

Figure 71. Concentrations of organic matter between trickling filter and filter bed in the plant in Talby (bf = before filter bed).

Page 64: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

63

0

50

100

150

200

250

May-03

Jul-03

Sep-03

Nov-03

Jan-04

Mar-04

May-04

Jul-04

Sep-04

Nov-04

Jan-05

Mar-05

May-05

BOD7d,outBOD7g,outCODw,outCODd,outCODg,outTOCw,outTOCd,outTOCg,out

mg/

l

Figure 72. Effluent concentrations of organic matter from the plant in Talby.

Page 65: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

64

Appendix 4: Analyses from sampling in filter beds Table 13. Results from sampling in Fågelsta filter bed, 17 June 2004.

TOC PO4-P Tot-P Kj-N NH4-N NO3-N Tot-N Location mg/l mg/l mg/l mg/l mg/l mg/l mg/l In, left, 0.1 m 170 2,4 160 57,9 17,4 0,1 58 In, left, 0.5 m 36 4,7 7,2 19,0 13,6 0,7 20 In, right, 0.9 m 32 3,8 6,2 16,5 11,9 0,1 17 Middle, left, 0.1 m 20 0,13 3,3 17,2 14,7 1,5 19 Middle, left, 0.5 m 14 0,24 0,72 16,0 14,6 2,9 19 Middle, right, 0.1 m 52 0,49 13 23,7 17,7 0,3 24 Middle, right, 0.5 m 18 0,57 1,0 18,2 16,3 1,1 19 Out, left, 0.1 m 27 1,7 7,7 7,3 3,4 13,3 21 Out, left, 0.5 m 11 0,80 1,5 4,2 3,0 14,3 19 Out, right, 0.1 m 8,6 0,15 1,1 3,9 3,0 5,7 10 Out, right, 0.5 m 8,1 0,09 0,60 2,9 2,1 7,1 10

Table 14. Results from sampling in Fågelsta filter bed, 17 May 2005.

TOC PO4-P Tot-P Kj-N NH4-N NO3-N Tot-N Location mg/l mg/l mg/l mg/l mg/l mg/l mg/l In, left, 0.1 m 78 2.7 6.9 31.2 13.6 5.5 37

In, left, 0.5 m 36 3.7 5.0 21.6 13.5 4.7 26

In, right, 0.9 m 17 3.6 4.1 14.8 12.1 0.5 15

Middle, left, 0.1 m 37 16 18.1 12.6 3.5 22

Middle, left, 0.5 m 8.9 0.83 1.0 7.0 5.7 7.9 15

Middle, right, 0.1 m 54 17 25.8 18.5 1.7 28

Middle, right, 0.5 m 11 0.49 0.80 10.6 9.0 3.9 15

Out, left, 0.1 m 28 2.5 7.4 5.0 1.3 11 16

Out, left, 0.5 m 5.4 1.2 1.2 1.4 0.3 12 13

Out, right, 0.1 m 11 0.66 2.6 6.1 4.8 5.4 12

Out, right, 0.5 m 5.5 0.50 0.66 2.7 1.8 5.9 9

Page 66: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

65

Table 15. Results from sampling in Talby filter bed, 17 June 2004.

TOC PO4-P Tot-P Kj-N NH4-N NO3-N Tot-N Location mg/l mg/l mg/l mg/l mg/l mg/l mg/l In, left, 0.1 m 120 3,3 39 22,4 5,0 4,7 27 In, left, 0.5 m 20 2,8 6,1 6,4 3,7 6,4 13 In, right, 0.1 m 79 1,3 51 12,8 4,0 6,3 19 In, right, 0.5 m 15 2,1 8,0 5,8 3,7 6,6 12 Middle, left, 0.1 m 9 <0,01 1,1 5,2 2,7 10 16 Middle, left, 0.5 m 5,4 0,02 0,43 2,8 2,4 10 13 Middle, right, 0.1 m 7,4 0,03 1,1 4,5 3,8 11 16 Middle, right, 0.5 m 6,1 <0,01 0,68 3,4 3,1 11 15 Out, left, 0.1 m 4,7 <0,01 0,50 1,8 0,8 11 13 Out, left, 0.5 m 4,1 0,02 0,40 1,0 0,7 11 12 Out, right, 0.1 m 9,9 0,02 5,8 1,7 0,7 13 15 Out, right, 0.5 m 4,7 0,01 1,0 1,1 0,6 13 14

Table 16. Results from sampling in Talby filter bed, 19 April 2005.

TOC PO4-P Tot-P Kj-N NH4-N NO3-N Tot-N Location mg/l mg/l mg/l mg/l mg/l mg/l mg/l In, left, 0.1 m 66 18 29 66 55 12 78 In, left, 0.5 m 42 18 19 60 54 13 73 In, right, 0.1 m 46 18 23 59 51 20 79 In, right, 0.5 m 33 16 49 51 20 69 Middle, left, 0.1 m 14 0,02 0,21 43 41 19 62 Middle, left, 0.5 m 12 0,03 0,19 41 39 19 60 Middle, right, 0.1 m 13 0,02 0,40 44 42 17 61 Middle, right, 0.5 m 12 0,02 0,15 42 40 18 60 Out, left, 0.1 m 8,2 0,02 0,29 15 12 26 41 Out, left, 0.5 m 5,5 <0,01 0,10 7,5 6 27 35 Out, right, 0.1 m 14 0,03 0,62 22 19 20 42 Out, right, 0.5 m 5,5 0,01 0,16 20 19 20 40

Page 67: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

66

Appendix 5: Analyses data sheet - Fågelsta Date Q outlet SS in SS TF SS out Tot P in Tot P TF Tot P out PO4 in PO4 TF PO4 out NH4

+ in NH4 TF NH4+ out NO3 in NO3 TF NO3 out

l/s mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l19-05-03 363 72 45 9,9 9,4 7,9 7,4 69 66 < 0,5 < 0,520-05-03 462 9,3 8,5 68 60 < 0,5 < 0,520-05-03 7 0,02 < 0,01 47 < 0,502-06-03 577 84 30 9,8 8,5 9,6 67 65 < 0,5 < 0,503-06-03 470 9,3 9,0 73 70 < 0,5 < 0,503-06-03 9 0,02 < 0,01 43 < 0,516-06-03 117-06-03 394 11 10 71 59 < 0,5 < 0,517-06-03 8 0,01 < 0,01 43 < 0,530-06-03 500 130 22 12 9,3 8,3 8,7 66 30 < 0,5 2301-07-03 363 9,8 9,5 69 35 < 0,5 2201-07-03 14 0,01 0,01 38 < 0,528-07-03 434 100 10 7,7 7,6 60 11 < 0,5 4829-07-03 406 9,5 8,8 62 14 < 0,5 4929-07-03 6 0,01 < 0,01 35 1,511-08-03 571 97 16 12 7,7 10 7,3 58 7,4 < 0,5 5812-08-03 342 13 8,2 59 8,4 < 0,5 5112-08-03 26 0,01 < 0,01 33 0,825-08-03 361 180 22 9,6 6,9 5,9 5,1 40 8,9 < 0,5 2226-08-03 741 8,6 6,2 46 8,0 < 0,5 2426-08-03 9 0,01 < 0,01 30 1,808-09-03 586 170 17 9,5 5,5 6,3 5,0 41 8,1 < 0,5 2209-09-03 449 7,3 5,7 44 7,8 < 0,5 1709-09-03 8 < 0,01 < 0,01 28 1,122-09-03 664 150 27 14 9,7 11 9,2 56 14 < 0,5 2123-09-03 489 13 7,5 57 12 < 0,5 1723-09-03 5 0,01 < 0,01 24 0,806-10-03 30228-09-03 624 14 10 63 11 < 0,5 2407-10-03 6 0,01 17 1,420-10-03 706 110 10 14 9,3 10 8,4 62 12 < 0,5 2821-10-03 665 13 9,6 64 11 < 0,5 3321-10-03 4 0,01 13 2,203-11-03 735 94 11 12 7,7 9,6 7,0 66 16 < 0,5 2404-11-03 698 12 8,0 65 14 < 0,5 2904-11-03 3 0,01 12 2,612-11-0317-11-03 74118-11-03 679 13 8,4 67 15 3318-11-03 0,01 12 3,001-12-03 650 90 32 18 6,6 16 6,302-12-03 607 11 7,1 56 10 2802-12-03 4 0,01 13 2,603-12-0315-12-03 78116-12-03 675 15 12 54 11 2816-12-03 0,01 14 3,326-01-04 610 84 11 8,127-01-04 609 9,3 7,1 51 10 3527-01-04 5 0,02 12 2,828-01-0409-02-04 80710-02-04 1189 7,2 2,5 34 1,9 1210-02-04 0,01 14 2,323-02-04 711 68 65 11 8,6 9,4 7,524-02-04 607 9,2 5,0 48 8,6 2324-02-04 4 < 0,01 14 1,925-02-0408-03-04 33009-03-04 574 12 13 56 17 2709-03-04 < 0,01 12 1,222-03-04 2150 38 230 2,4 6,1 1,9 2,323-03-04 1922 6,9 8,0 26 6,8 1123-03-04 18 0,05 < 0,01 9,6 2,524-03-0405-04-04 57306-04-04 780 8,1 11 29 5,6 1506-04-04 0,03 8,0 1,719-04-04 626 80 49 11 9,2 9,3 8,1 2120-04-04 498 12 7,6 44 8,7 2120-04-04 39 0,06 5,5 1,803-05-04 623 76 68 11 12 8,3 9,304-05-04 528 6,2 12 56 22 9,6

Page 68: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

67

Date Q outlet SS in SS TF SS out Tot P in Tot P TF Tot P out PO4 in PO4 TF PO4 out NH4+ in NH4 TF NH4

+ out NO3 in NO3 TF NO3 out

l/s mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l04-05-04 27 0,03 < 0,01 5,1 2,105-05-0417-05-04 39218-05-04 483 8,8 9,9 48 22 4,618-05-04 0,02 5,5 2,231-05-04 001-06-04 320 9,4 9,3 63 28 2,601-06-04 23 0,02 6,5 1,702-06-0415-06-04 0,01 7,9 3,423-06-0428-06-04 453 67 36 7,8 7,1 7,529-06-04 426 7,0 18 44 19 0,529-06-04 9 0,02 < 0,01 9,8 3,130-06-0412-07-04 26513-07-04 400 8,4 8,8 54 32 1,313-07-04 0,02 12 3,009-08-04 41910-08-04 381 7,5 7,0 43 18 1,210-08-04 0,02 13 2,423-08-04 298 109 90 8,1 8,0 4,8 5,524-08-04 374 7,5 6,9 46 18 1,424-08-04 10 0,01 < 0,01 13 2,406-09-04 29607-09-04 286 8,4 8,1 57 30 1,007-09-04 0,02 13 2,816-09-0420-09-04 207 120 61 11 9,4 8,2 7,521-09-04 302 8,9 9,1 61 34 1,521-09-04 15 0,02 11 3,822-09-0404-10-04 23105-10-04 260 11 12 67 33 1,905-10-04 0,01 12 3,818-10-04 443 96 39 9,5 8,9 7,2 7,219-10-04 315 9,8 8,9 69 36 1,319-10-04 10 0,04 10 5,019-10-0401-11-04 36502-11-04 383 12 10 74 38 0,602-11-04 0,03 11 5,115-11-04 352 92 20 8,2 9,3 6,6 8,816-11-04 413 12 12 71 35 1,316-11-04 29 0,08 < 0,01 8,5 6,429-11-04 339 80 130 8,3 7,8 6,4 4,830-11-04 386 10 9,2 71 35 1,630-11-04 31 0,10 < 0,01 10 6,713-12-04 44714-12-04 1129 2,6 2,4 14 4,4 1214-12-04 0,19 15 5,431-01-05 53201-02-05 697 5,7 4,6 33 7,2 1801-02-05 0,09 15 3,914-02-05 391 100 14 8,1 2,2 5,7 1,815-02-05 109 8,6 2,2 49 6,1 4515-02-05 14 0,03 0,01 16 3,928-02-05 36601-03-05 372 9,4 3,5 57 6,5 5301-03-05 0,09 13 5,714-03-05 292 83 33 10 6,4 10 5,615-03-05 351 10 5,4 74 9,5 5215-03-05 38 0,14 < 0,01 12 6,028-03-05 822 100 14 5,6 4,8 4,3 4,629-03-05 552 9,6 6,3 72 12 5329-03-05 67 0,36 0,20 10 6,811-04-05 67712-04-05 910 4,1 3,2 30 3,5 2912-04-05 0,25 12 5,025-04-05 20126-04-05 400 5,5 3,3 36 5,9 2526-04-05 0,11 12 5,209-05-05 275 77 120 6,1 4,1 4,4 3,410-05-05 436 6,3 3,9 44 13 2310-05-05 22 0,08 0,01 13 4,711-05-0523-05-05 21524-05-05 185 7,9 4,9 55 13 2824-05-05 0,15 11 5,513-06-05 2018 86 21 6,9 6,2 5,3 5,614-06-05 671 9,2 6,5 73 26 1114-06-05 24 0,20 0,07 9,0 6,2

Page 69: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

68

Date TotN in TotN TF TotN out COD in COD TF COD out BOD7 in BOD7 TF BOD7 out TOC in TOC TF TOC out pH pH pHmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l in TF out

19-05-03 82 74 680 250 420 52 210 7320-05-03 80 68 680 250 200 6120-05-03 51 150 56 6502-06-03 84 72 550 170 310 50 180 53 7,53 7,8903-06-03 82 78 600 180 200 6303-06-03 47 140 92 48 12,4216-06-0317-06-03 84 67 610 200 190 6117-06-03 46 130 88 43 12,4330-06-03 84 56 400 100 150 36 120 59 7,76 7,9701-07-03 82 64 520 160 170 4701-07-03 41 110 130 33 12,7128-07-03 77 63 340 100 130 8 100 3029-07-03 73 67 480 120 140 3429-07-03 38 83 46 2611-08-03 72 68 330 80 160 19 130 25 7,67 7,5912-08-03 69 63 410 88 130 2812-08-03 36 67 46 21 12,4325-08-03 58 34 440 87 190 21 140 32 7,67 7,6726-08-03 49 37 450 120 140 3326-08-03 34 67 41 20 12,6308-09-03 56 34 440 82 210 16 140 25 7,70 7,8409-09-03 54 30 570 130 160 3509-09-03 31 54 30 16 12,6222-09-03 70 39 450 85 270 25 150 29 7,68 7,7623-09-03 66 33 600 99 190 3223-09-03 26 38 26 16 12,7806-10-0328-09-03 74 40 630 100 190 3507-10-03 20 38 13 12,5920-10-03 75 43 500 67 160 23 7,93 7,9121-10-03 71 48 540 77 170 2521-10-03 17 37 11 12,9703-11-03 78 43 450 72 140 24 7,85 7,8204-11-03 76 46 510 78 160 2504-11-03 16 32 9,5 12,9512-11-03 23 8,717-11-03 7,84 7,5318-11-03 78 54 140 3818-11-03 16 8,6 13,0001-12-03 510 57 270 9 7,88 7,6302-12-03 65 42 480 93 160 2902-12-03 17 28 11 8,8 12,9303-12-03 77 8,515-12-03 7,81 7,6916-12-03 65 44 490 110 160 3516-12-03 19 31 8,4 13,0826-01-04 7,7027-01-04 62 50 160 3427-01-04 15 7,2 13,1228-01-0409-02-04 7,7210-02-04 44 16 110 1310-02-04 17 8,6 13,0823-02-04 240 39 7,95 7,3424-02-04 59 36 400 84 130 2524-02-04 18 28 12 8,2 13,0825-02-0408-03-04 8,01 7,8609-03-04 69 56 140 8209-03-04 15 7,3 13,2422-03-04 7,38 6,9923-03-04 35 36 97 8223-03-04 13 7,8 12,7424-03-0405-04-04 7,95 7,3706-04-04 35 42 85 13006-04-04 11 6,2 12,9219-04-04 7,83 7,8320-04-04 56 36 160 4220-04-04 8,5 5,4 13,0303-05-04 8,02 7,7504-05-04 68 42 160 77

Page 70: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

69

Date TotN in TotN TF TotN out COD in COD TF COD out BOD7 in BOD7 TF BOD7 out TOC in TOC TF TOC out pH pH pHmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l in TF out

04-05-04 8,0 4,8 12,8805-05-0417-05-04 7,94 7,7718-05-04 59 37 150 6918-05-04 8,1 5,5 12,8631-05-0401-06-04 78 42 600 260 190 8401-06-04 8,9 17 10 14 12,9202-06-0415-06-04 13 6,9 12,7223-06-0428-06-0429-06-04 54 50 130 18029-06-04 14 8,330-06-0412-07-04 7,73 7,8213-07-04 66 43 150 7913-07-04 16 10 12,9709-08-04 7,61 7,6510-08-04 57 28 170 6910-08-04 17 11 12,8823-08-0424-08-04 56 27 170 5424-08-04 17 1106-09-0407-09-04 67 38 130 5607-09-04 17 1016-09-0420-09-04 340 150 160 40 100 43 7,92 7,9721-09-04 72 44 400 190 130 6021-09-04 17 37 13 10 12,6822-09-0404-10-04 8,07 8,0205-10-04 79 48 140 7105-10-04 17 9,6 12,6618-10-04 550 220 260 87 170 68 7,77 7,9219-10-04 82 44 550 160 170 5019-10-04 16 32 11 9,519-10-04 12,6201-11-04 7,87 7,7702-11-04 88 45 180 5002-11-04 17 13 12,5615-11-04 7,71 7,6116-11-04 83 44 180 4716-11-04 16 10 12,5129-11-04 400 190 220 38 110 50 8,01 7,5530-11-04 83 44 500 170 160 5030-11-04 19 40 9 11 12,6113-12-04 7,65 7,0814-12-04 21 21 65 2914-12-04 21 11 12,3531-01-0501-02-05 42 32 92 2301-02-05 20 8,414-02-05 8,13 7,2815-02-05 62 55 140 2515-02-05 20 8,1 13,1028-02-05 8,05 7,2901-03-05 68 62 140 2001-03-05 20 7,4 12,7114-03-05 8,16 7,4515-03-05 85 64 160 2315-03-05 19 8,5 12,5828-03-05 400 66 240 14 120 25 7,94 7,0029-03-05 78 66 540 100 170 2929-03-05 18 29 5 7,9 11,9611-04-05 7,48 7,1812-04-05 36 35 78 1412-04-05 18 7,4 12,0025-04-05 7,80 7,8726-04-05 46 34 120 2426-04-05 19 7,2 12,0109-05-05 440 110 290 36 130 33 7,78 7,8610-05-05 52 41 420 120 130 4010-05-05 19 < 25 6 7,0 12,1011-05-0523-05-05 7,62 7,3224-05-05 68 47 180 4524-05-05 18 7,2 11,9513-06-05 7,29 7,1214-06-05 85 44 180 5514-06-05 16 7,7 11,66

Page 71: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

70

Date Cond. Cond. Cond. Alk. in Alk. TF Alk. out Ca out Mg out Fe out Al out Enteroc. Entero- E-coli E-coli CommentsIn TF Out mg/l mg/l mg/l mg/l TF cocci out out pre filter out

19-05-03 150 152 580 690 2 day sample20-05-03 12 day sample20-05-03 990 3400 860 < 1 0,021 < 1 grab sample02-06-03 143 146 520 580 2 day sample03-06-03 12 day sample03-06-03 1000 3000 850 < 1 0,020 < 1 grab sample16-06-03 2 day sample17-06-03 12 day sample17-06-03 955 2900 810 < 1 0,020 < 1 grab sample30-06-03 138 124 620 360 2 day sample01-07-03 12 day sample01-07-03 936 2900 740 < 1 0,020 < 1 grab sample28-07-03 138 600 2 day sample29-07-03 12 day sample29-07-03 885 2700 750 grab sample11-08-03 127 116 510 150 2 day sample12-08-03 12 day sample12-08-03 894 2700 700 grab sample25-08-03 122 106 550 320 2 day sample26-08-03 12 day sample26-08-03 897 2800 600 grab sample08-09-03 123 104 480 310 2 day sample09-09-03 12 day sample09-09-03 904 2800 600 grab sample22-09-03 141 115 380 2 day sample23-09-03 12 day sample23-09-03 917 2600 570 grab sample06-10-03 2 day sample28-09-03 12 day sample07-10-03 902 2900 610 grab sample20-10-03 134 107 520 240 2 day sample21-10-03 12 day sample21-10-03 920 2600 650 grab sample03-11-03 130 107 460 220 2 day sample04-11-03 12 day sample04-11-03 927 2600 680 grab sample12-11-03 45000 < 10 81600 < 100 grab sample17-11-03 2 day sample18-11-03 12 day sample18-11-03 grab sample01-12-03 530 190 2 day sample02-12-03 12 day sample02-12-03 2700 800 < 1 0,055 < 1 grab sample03-12-03 25600 < 10 41060 < 100 grab sample15-12-03 2 day sample16-12-03 14 day sample16-12-03 grab sample26-01-04 380 2 day sample27-01-04 12 day sample27-01-04 2400 780 grab sample28-01-04 < 10 < 100 grab sample09-02-04 2 day sample10-02-04 14 day sample10-02-04 grab sample23-02-04 120 96,3 450 180 2 day sample24-02-04 12 day sample24-02-04 844 2500 730 < 1 0,120 < 1 grab sample25-02-04 18500 < 10 309000 < 100 grab sample08-03-04 2 day sample09-03-04 14 day sample09-03-04 grab sample22-03-04 140 110 2 day sample23-03-04 12 day sample23-03-04 1800 440 grab sample24-03-04 < 10 < 100 grab sample05-04-04 2 day sample06-04-04 14 day sample06-04-04 grab sample19-04-04 440 260 2 day sample20-04-04 12 day sample20-04-04 2000 650 grab sample03-05-04 580 420 2 day sample04-05-04 12 day sample

Page 72: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

71

Date Cond. Cond. Cond. Alk. in Alk. TF Alk. out Ca out Mg out Fe out Al out Enteroc. Entero- E-coli E-coli CommentsIn TF Out mg/l mg/l mg/l mg/l TF cocci out out pre filter out

04-05-04 2400 grab sample05-05-04 < 10 < 100 grab sample17-05-04 2 day sample18-05-04 14 day sample18-05-04 grab sample31-05-04 2 day sample01-06-04 14 day sample01-06-04 756 2200 680 < 1 0,130 < 1 grab sample02-06-04 48800 < 10 2280000 < 100 grab sample15-06-04 grab sample23-06-04 < 10 < 100 grab sample28-06-04 450 330 2 day sample29-06-04 12 day sample29-06-04 1800 470 grab sample30-06-04 < 10 < 100 grab sample12-07-04 2 day sample13-07-04 14 day sample13-07-04 grab sample09-08-04 2 day sample10-08-04 14 day sample10-08-04 grab sample23-08-04 450 390 2 day sample24-08-04 12 day sample24-08-04 2200 620 grab sample06-09-04 2 day sample07-09-04 14 day sample07-09-04 grab sample16-09-04 < 10 < 100 grab sample20-09-04 136 119 520 460 2 day sample21-09-04 12 day sample21-09-04 471 1300 300 < 1 0,370 1,4 grab sample22-09-04 24194 < 10 43520 < 100 grab sample04-10-04 2 day sample05-10-04 14 day sample05-10-04 grab sample18-10-04 155 134 620 580 2 day sample19-10-04 12 day sample19-10-04 340 1000 220 < 1 0,370 1,8 grab sample19-10-04 24192 < 10 98040 < 100 grab sample01-11-04 2 day sample02-11-04 14 day sample02-11-04 grab sample15-11-04 480 480 2 day sample16-11-04 12 day sample16-11-04 630 120 grab sample29-11-04 129 123 520 350 2 day sample30-11-04 12 day sample30-11-04 259 660 130 1,6 0,340 1,4 grab sample08-12-04 30760 < 10 19863 < 100 grab sample13-12-04 2 day sample14-12-04 14 day sample14-12-04 grab sample31-01-05 2 day sample01-02-05 14 day sample01-02-05 grab sample14-02-05 240 78 2 day sample15-02-05 12 day sample15-02-05 810 170 grab sample28-02-05 2 day sample01-03-05 14 day sample01-03-05 grab sample14-03-05 650 110 2 day sample15-03-05 12 day sample15-03-05 490 110 grab sample28-03-05 103 94,7 400 130 2 day sample29-03-05 12 day sample29-03-05 112 280 58 5,2 0,190 < 1 grab sample11-04-05 2 day sample12-04-05 14 day sample12-04-05 grab sample13-04-05 106 < 10 5900 < 100 grab sample25-04-05 2 day sample26-04-05 14 day sample26-04-05 grab sample09-05-05 116 88,9 460 250 2 day sample10-05-05 12 day sample10-05-05 176 480 83 1,4 0,220 < 1 grab sample11-05-05 695 < 10 1350 < 100 grab sample23-05-05 2 day sample24-05-05 14 day sample24-05-05 grab sample13-06-05 330 300 2 day sample

Page 73: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

72

Appendix 6: Analyses data sheet - Talby 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Date Q outlet SS in SS TF SS out Tot P in Tot P TF Tot P out PO4 in PO4 TF PO4 out NH4+ in NH4 TF NH4

+ out NO3 in NO3 TF NO3 outl/s mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l

19-05-03 304 8 24 3,5 0,02 2,8 < 0,01 26 27 20 < 0,520-05-03 288 2,8 3,7 0,08 41 36 22 < 0,5 6,9 < 0,520-05-03 12 0,01 < 0,01 30 < 0,502-06-03 405 28 7 61 2,8 2,7 0,01 2,4 2,7 0,01 21 9,1 28 < 0,5 17 < 0,503-06-03 333 3,7 3,5 0,03 36 16 27 < 0,5 18 < 0,503-06-03 10 0,01 < 0,01 36 < 0,516-06-03 428 58 6 62 3,3 2,9 0,02 2,5 2,7 0,01 27 8,3 38 < 0,5 20 < 0,517-06-03 429 3,1 2,8 0,02 26 8,1 34 < 0,5 17 < 0,517-06-03 9 0,01 0,01 42 < 0,530-06-03 413 39 3,8 3,1 0,01 2,5 3,0 23 5,6 39 < 0,5 16 < 0,501-07-03 490 3,6 3,0 0,03 28 8,2 41 < 0,5 18 < 0,501-07-03 8 0,04 0,01 40 < 0,528-07-03 354 74 2,5 0,01 2,1 < 0,01 18 20 < 0,5 < 0,529-07-03 417 3,4 1,9 0,01 25 4,4 25 < 0,5 22 < 0,529-07-03 56 0,01 < 0,01 19 < 0,511-08-03 535 22 70 3,5 0,01 3,0 < 0,01 20 18 < 0,5 < 0,512-08-03 468 3,2 2,7 0,02 16 3,8 20 < 0,5 18 < 0,512-08-03 10 0,01 < 0,01 18 < 0,525-08-03 140 6 7,5 4,6 0,10 4,1 < 0,01 11 15 < 0,5 18 < 0,526-08-03 170 5,7 3,8 < 0,01 36 10 15 < 0,5 16 < 0,526-08-03 16 0,01 < 0,01 16 < 0,508-09-03 161 10 6,2 0,01 5,9 57 15 11 35 < 0,509-09-03 278 5,0 5,7 0,04 57 18 13 < 0,5 22 < 0,509-09-03 5 0,01 < 0,01 12 < 0,522-09-03 500 59 7 75 8,0 6,8 0,01 6,7 6,9 < 0,01 53 25 13 < 0,5 29 0,723-09-03 347 9,1 7,2 0,02 69 27 12 < 0,5 28 < 0,523-09-03 5 < 0,01 14 0,506-10-03 370 43 6 160 7,2 6,0 0,01 5,9 6,0 55 21 13 < 0,5 38 0,907-10-03 371 8,4 6,6 0,01 66 26 13 < 0,5 32 0,807-10-03 5 0,01 14 0,820-10-03 386 56 60 7,9 6,8 0,02 6,5 5,7 54 12 9,0 < 0,5 35 1,021-10-03 368 7,5 5,7 0,03 50 16 13 < 0,5 34 0,921-10-03 3 < 0,01 14 1,203-11-03 418 44 7,7 6,3 5,9 49 18 < 0,5 2804-11-03 456 7,4 6,0 0,01 49 18 17 < 0,5 29 1,504-11-03 6 < 0,01 22 1,312-11-0317-11-03 57718-11-03 485 7,7 6,3 0,01 50 17 23 30 1,118-11-03 0,01 24 2,201-12-03 470 60 3 5,7 5,1 4,1 4,802-12-03 462 6,4 5,1 0,03 48 11 23 34 2,402-12-03 5 0,01 23 2,703-12-0315-12-03 43516-12-03 452 6,2 4,8 < 0,01 41 7,2 21 37 0,716-12-03 0,01 21 4,326-01-04 598 47 3 23 6,4 5,1 0,02 4,6 4,827-01-04 450 6,6 4,7 0,02 47 6,2 15 34 1028-01-0409-02-04 75910-02-04 718 5,7 4,7 < 0,01 34 5,3 12 34 9,910-02-04 < 0,01 16 5,223-02-04 744 27 2 77 5,2 4,3 < 0,01 4,3 4,024-02-04 809 5,1 4,2 < 0,01 30 4,4 15 30 6,024-02-04 7 < 0,01 14 7,125-02-0408-03-04 73109-03-04 774 4,9 4,9 0,02 22 3,7 13 27 8,009-03-04 < 0,01 11 9,922-03-04 853 13 5 48 2,8 3,0 < 0,01 2,4 2,8 < 0,0123-03-04 844 3,2 2,8 < 0,01 17 0,8 9,4 17 1123-03-04 7 < 0,01 < 0,01 7,9 1324-03-0405-04-04 88106-04-04 974 3,2 3,2 < 0,01 15 1,5 6,1 17 1306-04-04 < 0,01 5,1 1319-04-04 523 16 2 72 2,8 2,8 < 0,01 2,1 2,6 13 1320-04-04 814 2,6 2,8 0,03 10 0,4 4,3 13 1320-04-04 6 0,02 3,8 1203-05-04 865 7 3 36 2,0 2,5 < 0,01 1,6 2,1 < 0,01

Sampling point no:

Page 74: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

73

Date Q outlet SS in SS TF SS out Tot P in Tot P TF Tot P out PO4 in PO4 TF PO4 out NH4

+ in NH4 TF NH4+ out NO3 in NO3 TF NO3 out

l/s mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l04-05-04 539 1,9 2,8 < 0,01 10 0,7 3,9 16 1304-05-04 6 < 0,01 < 0,01 3,8 1205-05-0417-05-04 83118-05-04 831 1,7 1,9 0,03 10 0,6 3,2 12 1218-05-04 0,01 2,8 1131-05-04 74101-06-04 87001-06-04 9 < 0,01 2,4 1102-06-0414-06-04 83115-06-04 943 2,7 2,6 0,01 15 0,9 2,2 17 1017-06-04 < 0,01 2,3 9,723-06-0428-06-04 8929-06-04 275 2,4 2,3 0,01 13 1,1 2,1 14 9,629-06-04 25 0,01 < 0,01 1,5 9,830-06-0412-07-04 1013-07-04 99 6,0 4,0 < 0,01 36 4,3 2,3 30 9,713-07-04 0,01 2,0 9,909-08-04 15010-08-04 143 9,1 5,4 0,02 54 7,9 2,2 44 9,210-08-04 0,07 2,6 8,023-08-04 312 48 2 47 9,2 6,7 0,01 7,2 5,9 < 0,0124-08-04 234 9,9 6,7 0,03 56 12 2,7 40 7,224-08-04 8 0,01 < 0,01 2,8 7,206-09-04 32507-09-04 190 9,8 6,6 0,02 58 10 3,2 45 7,507-09-04 0,02 3,5 7,316-09-0420-09-04 351 44 15 86 13 8,6 0,02 9,4 7,521-09-04 195 10 7,3 0,02 69 17 3,7 47 7,421-09-04 11 0,02 4,0 7,422-09-0404-10-04 13805-10-04 212 12 8,8 0,03 77 25 3,7 46 7,305-10-04 0,01 4,0 7,318-10-04 1819-10-04 169 13 9,8 0,01 84 30 4,5 49 7,219-10-04 6 0,01 4,5 6,919-10-0402-11-04 < 0,01 6,2 6,916-11-04 10 < 0,01 < 0,01 7,2 7,230-11-04 11 < 0,01 7,7 7,408-12-0414-12-04 < 0,01 15 8,131-01-05 7901-02-05 169 17 14 < 0,01 88 34 22 47 9,301-02-05 < 0,01 1114-02-05 139 60 13 17 16 0,01 16 16 2015-02-05 214 18 16 0,01 92 39 22 46 1015-02-05 20 0,03 0,03 28 1128-03-05 19 68 21 19 1629-03-05 106 18 16 0,02 97 39 28 47 1229-03-05 13 0,03 < 0,01 28 1211-04-05 98 53 3 22 18 17 0,01 17 17 < 0,0112-04-05 129 19 16 0,03 95 32 25 56 1312-04-05 16 0,25 0,04 30 1113-04-0525-04-05 23726-04-05 211 18 16 0,08 93 42 34 45 1126-04-05 0,20 21 2009-05-05 120 54 22 22 16 16 0,04 16 17 < 0,0110-05-05 126 17 16 0,02 110 66 36 36 1310-05-05 24 0,03 < 0,01 37 1211-05-0523-05-05 10924-05-05 162 16 17 0,03 110 63 36 39 1424-05-05 0,08 22 2513-06-05 6014-06-05 79 15 19 < 0,01 6,314-06-05 15 0,02 < 0,01 35 16

Page 75: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

74

Date TotN in TotN TF TotN out COD in COD TF COD out BOD7 in BOD7 TF BOD7 out TOC in TOC TF TOC out pH pH pHmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l in TF out

19-05-03 48 29 130 67 180 26 55 17 2220-05-03 46 44 23 180 75 120 48 18 1520-05-03 31 140 50 2202-06-03 27 29 30 120 63 120 35 12 50 31 14 20 7,24 7,62 12,5403-06-03 40 36 28 180 71 200 56 14 1803-06-03 38 85 50 22 12,4616-06-03 30 30 40 93 40 76 25 4 50 25 10 24 7,72 7,67 12,4617-06-03 29 27 34 120 40 81 38 12 2017-06-03 43 78 48 23 12,4930-06-03 30 24 40 130 50 73 54 35 12 22 7,75 7,28 12,6601-07-03 32 28 42 160 55 80 52 12 2101-07-03 42 70 39 20 12,6928-07-03 20 21 59 50 10 21 20 1129-07-03 28 28 26 130 48 46 30 12 1229-07-03 20 41 20 1111-08-03 24 19 76 26 23 16 22 8,3 7,80 12,5112-08-03 20 23 20 110 35 34 35 9,6 8,212-08-03 19 25 19 7,6 12,4125-08-03 54 32 16 190 67 39 18 7,74 7,59 12,4226-08-03 41 39 15 190 58 39 58 15 7,026-08-03 17 32 18 7,4 12,6108-09-03 68 52 12 200 65 12 64 19 6,5 7,7809-09-03 63 44 15 290 71 30 82 21 5,509-09-03 13 28 16 7,4 12,5422-09-03 62 57 15 180 58 25 61 12 13 56 20 5,5 7,77 7,27 12,6523-09-03 73 57 13 270 83 37 87 23 7,523-09-03 16 25 11 5,2 12,7206-10-03 56 61 14 150 47 25 44 15 4,9 7,56 7,22 12,5807-10-03 72 60 15 240 59 25 75 19 5,207-10-03 16 25 4,5 12,5820-10-03 61 53 11 170 98 27 50 27 5,9 8,01 7,33 12,8621-10-03 55 52 14 180 53 25 56 18 5,621-10-03 17 25 4,5 13,0403-11-03 56 48 180 53 50 19 7,6904-11-03 56 49 19 190 57 25 56 19 5,004-11-03 24 25 5,0 12,9812-11-03 26 4,417-11-03 7,82 7,4518-11-03 57 49 24 73 20 4,518-11-03 27 4,8 13,0501-12-03 160 41 67 4 7,84 7,0502-12-03 53 46 25 230 52 < 25 79 17 5,202-12-03 26 < 25 4 4,1 13,0403-12-03 40 4,515-12-03 7,96 7,21 12,8416-12-03 47 46 23 200 48 < 25 62 16 5,916-12-03 26 < 25 4,1 13,1326-01-04 7,96 7,36 13,0927-01-04 53 41 26 74 13 3,928-01-0409-02-04 8,09 7,09 13,1010-02-04 38 40 22 44 11 3,210-02-04 22 3,3 13,1323-02-04 33 4 4 8,22 7,21 13,1524-02-04 35 36 22 140 37 15 45 10 5,224-02-04 22 24 4 13,1625-02-04 3,408-03-04 8,18 7,69 13,1909-03-04 27 33 21 36 14 4,009-03-04 22 4,0 13,2422-03-04 7,87 7,69 13,0723-03-04 20 19 21 23 8,2 2,823-03-04 21 4,0 13,0124-03-0405-04-04 7,79 7,27 12,9806-04-04 18 20 20 20 9,7 2,906-04-04 18 2,8 13,0219-04-04 7,77 7,74 12,9720-04-04 13 14 18 21 7,4 2,920-04-04 18 2,7 13,1003-05-04 7,95 7,49 12,99

Page 76: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

75

Date TotN in TotN TF TotN out COD in COD TF COD out BOD7 in BOD7 TF BOD7 out TOC in TOC TF TOC out pH pH pHmg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l in TF out

04-05-04 12 18 17 15 7,8 2,604-05-04 16 6,9 12,9905-05-0417-05-0418-05-04 13 14 15 18 7,3 3,218-05-04 14 2,6 13,0431-05-0401-06-0401-06-04 13 11 2 2,7 13,1002-06-0414-06-04 7,89 7,69 12,6115-06-04 19 19 14 24 7,5 2,217-06-04 12 4,123-06-0428-06-0429-06-04 18 18 14 20 8,2 2,529-06-04 12 3,230-06-0412-07-04 8,60 7,11 12,9713-07-04 41 36 12 36 12 2,413-07-04 12 2,5 13,1009-08-04 8,01 6,96 12,9310-08-04 60 54 12 53 18 4,610-08-04 12 6,5 12,9923-08-0424-08-04 62 55 11 74 22 3,124-08-04 11 8,406-09-0407-09-04 65 57 11 68 20 3,507-09-04 11 3,016-09-0420-09-04 230 97 20 95 15 10 72 30 5,5 7,96 7,48 12,8021-09-04 75 66 12 220 72 14 75 26 4,121-09-04 12 16 6 4,1 12,8822-09-0404-10-04 8,07 7,56 12,7305-10-04 84 74 12 78 25 5,005-10-04 12 3,1 12,8718-10-04 94 85 8,13 6,7919-10-04 91 80 12 72 24 3,019-10-04 12 2,1 13,0019-10-0402-11-04 14 4,2 13,0516-11-04 15 2,3 13,1130-11-04 15 15 3 4,5 13,1108-12-0414-12-04 24 11 11 12,9831-01-0501-02-05 98 83 31 100 30 4,001-02-05 31 3,314-02-05 8,42 7,89 13,3215-02-05 100 87 32 99 33 4,715-02-05 39 6,7 13,6128-03-05 310 91 32 120 9 5 94 28 8,5 8,16 7,66 12,9529-03-05 110 88 40 420 120 32 140 38 6,429-03-05 40 < 25 5 5,9 13,1111-04-05 280 88 < 25 81 9 2 80 29 4,1 7,81 6,98 12,8312-04-05 100 89 38 390 100 < 25 120 31 4,412-04-05 41 < 25 3 4,4 12,9013-04-0525-04-05 7,80 7,36 12,8526-04-05 100 87 45 120 40 4,726-04-05 41 6,4 12,6809-05-05 220 110 < 25 62 18 2 87 36 4,4 8,00 7,35 12,7410-05-05 120 110 49 370 160 < 25 110 48 4,410-05-05 49 < 25 5 6,2 12,8611-05-0523-05-05 7,90 7,35 12,5224-05-05 120 110 50 100 42 4,824-05-05 47 4,7 12,4413-06-0514-06-05 41 < 25 120 63 8,214-06-05 51 < 25 6 6,2 12,53

Page 77: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

76

1 2 3 1 2 3 3 3 3 3 2 3 2 3

DateCond.

InCond.

TFCond.

out Alk. in Alk. TF Alk. out Ca out Mg out Fe out Al out Enteroc. Entero- E-coli E-coli Commentsmg/l mg/l mg/l mg/l TF cocci out out pre filter out

19-05-03 86,5 1200 330 2800 850 < 1 0,024 < 1 2 day sample20-05-03 12 day sample20-05-03 1110 3100 880 < 1 0,020 < 1 grab sample02-06-03 69,9 75,1 1080 240 180 2600 850 < 1 0,020 < 1 2 day sample03-06-03 12 day sample03-06-03 1030 3000 870 < 1 0,020 < 1 grab sample16-06-03 72 70,1 912 280 340 2800 790 < 1 0,028 < 1 2 day sample17-06-03 12 day sample17-06-03 975 2900 850 < 1 0,020 < 1 grab sample30-06-03 67 64 793 280 160 740 < 1 0,020 < 1 2 day sample01-07-03 12 day sample01-07-03 931 2900 800 < 1 0,060 < 1 grab sample28-07-03 59,3 778 260 2300 730 2 day sample29-07-03 12 day sample29-07-03 800 2500 790 grab sample11-08-03 59,9 765 250 2300 680 2 day sample12-08-03 12 day sample12-08-03 840 3000 730 grab sample25-08-03 75,4 140 2100 2 day sample26-08-03 12 day sample26-08-03 834 2500 660 grab sample08-09-03 88,7 150 2 day sample09-09-03 12 day sample09-09-03 831 2500 640 grab sample22-09-03 102 94,7 780 640 140 2300 580 2 day sample23-09-03 12 day sample23-09-03 863 2700 650 grab sample06-10-03 100 94,7 742 390 95 2100 570 2 day sample07-10-03 12 day sample07-10-03 861 2500 640 grab sample20-10-03 101 84 472 380 65 1200 700 2 day sample21-10-03 12 day sample21-10-03 879 2300 680 grab sample03-11-03 94,6 330 2 day sample04-11-03 12 day sample04-11-03 894 2500 730 grab sample12-11-03 61000 < 10 241900 < 100 grab sample17-11-03 2 day sample18-11-03 12 day sample18-11-03 grab sample01-12-03 310 51 2 day sample02-12-03 12 day sample02-12-03 2600 860 < 1 0,028 < 1 grab sample03-12-03 4106 < 10 7330 < 100 grab sample15-12-03 2 day sample16-12-03 14 day sample16-12-03 grab sample26-01-04 380 73 2400 790 2 day sample27-01-04 12 day sample28-01-04 < 10 < 100 grab sample09-02-04 2 day sample10-02-04 14 day sample10-02-04 grab sample23-02-04 68,1 56,8 809 300 51 2400 770 2 day sample24-02-04 12 day sample24-02-04 880 2700 770 < 1 0,060 < 1 grab sample25-02-04 11200 < 10 5290 < 100 grab sample08-03-04 2 day sample09-03-04 14 day sample09-03-04 grab sample22-03-04 220 70 2900 800 2 day sample23-03-04 12 day sample23-03-04 3300 810 grab sample24-03-04 < 10 < 100 grab sample05-04-04 2 day sample06-04-04 14 day sample06-04-04 grab sample19-04-04 220 100 2100 730 2 day sample20-04-04 12 day sample20-04-04 2400 790 grab sample03-05-04 220 99 2400 2 day sample

Page 78: 10 2005 wastewater treatment filter beds

C:\MAGNHILD\NI\sluttrapportering\Stockholm Vatten\FinalReport from pilot plant in Sweden 18072005 mfø.doc

77

Date Cond. Cond. Cond. Alk. in Alk. TF Alk. out Ca out Mg out Fe out Al out Enteroc. Entero- E-coli E-coli CommentsIn TF Out mg/l mg/l mg/l mg/l TF cocci out out pre filter out

04-05-04 12 day sample04-05-04 2400 grab sample05-05-04 < 10 < 100 grab sample17-05-04 2 day sample18-05-04 14 day sample18-05-04 grab sample31-05-04 2 day sample01-06-04 14 day sample01-06-04 806 2300 780 < 1 0,110 < 1 grab sample02-06-04 359 < 10 630 < 100 grab sample14-06-04 2 day sample15-06-04 14 day sample17-06-04 grab sample23-06-04 < 10 < 100 grab sample28-06-04 2 day sample29-06-04 14 day sample29-06-04 1700 540 grab sample30-06-04 < 10 < 100 grab sample12-07-04 2 day sample13-07-04 14 day sample13-07-04 grab sample09-08-04 2 day sample10-08-04 14 day sample10-08-04 grab sample23-08-04 370 30 2000 620 2 day sample24-08-04 12 day sample24-08-04 1700 420 grab sample06-09-04 2 day sample07-09-04 14 day sample07-09-04 grab sample16-09-04 < 10 < 100 grab sample20-09-04 126 104 688 480 130 2000 530 2 day sample21-09-04 12 day sample21-09-04 745 2100 560 1 0,024 1 grab sample22-09-04 30 < 10 960 < 100 grab sample04-10-04 2 day sample05-10-04 14 day sample05-10-04 grab sample18-10-04 2 day sample19-10-04 12 day sample19-10-04 730 2300 690 grab sample19-10-04 719 < 10 860 < 100 grab sample02-11-04 grab sample16-11-04 2100 570 grab sample30-11-04 739 2100 580 < 1 0,020 < 1 grab sample08-12-04 19890 < 10 907 < 100 grab sample14-12-04 grab sample31-01-05 2 day sample01-02-05 14 day sample01-02-05 grab sample14-02-05 1200 150 400 2 day sample15-02-05 12 day sample15-02-05 550 530 grab sample28-03-05 2 day sample29-03-05 12 day sample29-03-05 788 2400 720 1 0,031 1 grab sample11-04-05 144 124 581 550 64 1700 500 2 day sample12-04-05 12 day sample12-04-05 718 2100 630 1 0,068 1 grab sample13-04-05 669 < 10 960 < 100 grab sample25-04-05 2 day sample26-04-05 14 day sample26-04-05 grab sample09-05-05 164 146 692 600 80 2100 580 2 day sample10-05-05 12 day sample10-05-05 719 2100 610 1 0,140 1 grab sample11-05-05 8400 < 10 7590 < 100 grab sample23-05-05 2 day sample24-05-05 14 day sample24-05-05 grab sample13-06-05 grab sample14-06-05 2 day sample14-06-05 682 2000 12 day sample