1 scalable e-mode n-polar gan misfet devices and process with self-aligned source/drain regrowth...

18
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi, Brian Swenson, Brian Thibeault, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2010 Device Research Conference University of Notre Dame, South Bend, IN *[email protected]

Post on 21-Dec-2015

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

1

Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth

Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi, Brian Swenson, Brian Thibeault, Jim Speck, and Umesh Mishra

ECE and Materials DepartmentsUniversity of California, Santa Barbara, CA

2010 Device Research ConferenceUniversity of Notre Dame, South Bend, IN

*[email protected]

Page 2: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

2

Outline

• Motivation – Why E-mode, N-polar

• Device design and Process– Self-aligned device process– E-mode device design

• Results– Optical gate devices DC and RF data

• Conclusion and Future work

Page 3: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

3

Why E-mode GaN devices

GaN devices high speed and high breakdown high Johnston figure of merit D-mode HEMTs with ft ~ 200 GHz, fmax ~ 300 GHz

Motivation for E-mode−Single voltage supply circuit−Simplified circuits−E-mode/D-mode logic circuits

Figure source: . T. Palacios group, MIT

Page 4: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

4

Ga-face

GaN buffer

Al(Ga)N2DEG

N-faceBarrier

GaN

Al(Ga)N

2DEG

GaN buffer+++++++++++ Si doping

− Back barrier for electron confinement higher gm

− No higher bandgap AlGaN layer on top low resistance contacts

Scaling advantages of N-polar GaN

Why E-mode, why N-polar GaNN-face

AlGaNGaN

EF

EC

VP

Page 5: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

5

Ga-polar E-mode devices with alloyed contacts

Source/drain contacts to highband gap AlGaN layers parasitic source contact resistance high Ron, gm degradation, scaling issues

Higashiwaki, IEEE TED 2006

K.Chen, IEEE TED 2006

Thinning down barrier under the gate

Thicker barrier in the access regions

F- on incorporation under the gate

Thicker barrier in the access regions

Page 6: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

6

Self-aligned scaled E-mode devices

− Self-aligned InGaN grade/InN source/drain to reduce access resistance*

− Sub 100 nm gate-lengths velocity overshoot

− Vertical scaling of channel to keep high aspect ratio

Ultra scaled GaN devices: ft, fmax > 200 GHz Figure source: . T. Palacios group, MIT

* S.Dasgupta, APL 2010. Nidhi, IEDM 2009

Page 7: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

7

Device structure and design

Under sidewall

20 40 60 80 100

-4

-3

-2

-1

0

1

2

3

4

GaNchannel

SiN sidewall

EF

n(x)n

(x

101

9 cm

-3)

Depth (nm)

En

erg

y (

eV

)

0.00.20.40.60.81.01.21.41.61.82.0

∫ n(x)dx= 4.5×1012 cm-2

AlN removed under sidewall

Under gate

0 10 20 30 40 50 60-5-4-3-2-1012345

GaN:SiGaN channel

AlNAlN

SiN

Depth (nm)

En

erg

y (e

V)

EF

20 nm channelTop AlN depletes 2-DEG under gate

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

3

4

InN

n+ Graded InGaN(In: 0% to 65%)

GaN:SiAlN

GaN channel

EF

En

erg

y (e

V)

Depth (nm)

Under S/D contacts*

* S.Dasgupta, APL 2010. Nidhi, IEDM 2009

Page 8: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

9

Device fabrication process

*

* U.Singisetti, pss(c) 2009, EDL 2009.

Page 9: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

10

After etch

After etchAs_grown

Al 2p

Ga 3s

Ga 3s

x 104

5

10

15

20

CPS

300 200 100 0Binding Energy (eV)

0 5 10 15 20 25 30 35 40

-4

-3

-2

-1

0

1

2

3

4

n (x

1019

cm

-3)

n(x)

EF

Ene

rgy

(eV

)

Depth (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Selective AlN etch on GaN channel

− Digital etch 5 m UV ozone oxidation, BHF etch

− 2 nm AlN etched in 4 cycles of etching

− XPS on process monitor shows removal of AlN

− Hall measurement gives ns = 3x1012 cm-2, agrees well to simulation

Band diagram after AlN etching

∫ n(x) dx = 3×1012 cm-2

No Al signal after etching

XPS of process monitor sample

Page 10: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

11

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6

Vds

(V)

I ds(

A/m

m)

Lg= 1 m

Vgs

= 0 to 5 VV

gs,step= 1 V

0 1 2 3 40.00

0.05

0.10

0.15

0.20L

g= 10 m

Vgs

= 0 to 5 VV

gs,step= 1 V

I ds(

A/m

m)

Vds

(V)

DC characteristics of E-mode devices

Imax = 0.2 A/mm for Lg = 10 m device

Imax = 0.6 A/mm for Lg = 1 m device

Page 11: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

12

DC characteristics of E-mode devices

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lg = 0.55 m, W

g= 100 m

Vgs

= 0 to 5 VV

gs,step= 1 V

I ds(

A/m

m)

Vds

(V)

0 2 4 60.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lg = 0.55 m

Vds

= 4 V

I ds

(A/m

m)

Vgs

(V)

0

50

100

150

200

250

gm (m

S/m

m)

0 2 4 60.00

0.05

0.10

0.15

0.20

0.25L

g = 0.55 m

Vds

= 0.5 V

gm (m

S/m

m)

Vgs

(V)

I ds

(A/m

m)

0

20

40

60

80

100

120

140

Imax = 0.7 A/mm

−Vth = 0.8 V at Vds = 4.0V

− Imax = 0.7 A/mm, gm = 250 mS/mm at Vds = 4.0 V

−Imax = 0.22 A/mm, peak gm = 125 mS/mm at Vds = 0.5 V

Vth

Page 12: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

13

Low gate leakage

-1 0 1 2 3 4 5

1

2

3

4

5

6

7

8

Vds

= 0.5 V

Vds

= 4.0 V

Lg = 0.55 m

I g (m

A/m

m)

Vgs

(V)

Maximum gate leakage current of 7 mA/mm at Vgs=5 V, and Vds =4.0 V

Page 13: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

14

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0L

g = 0.23 m

Vgs

= -1 to 5 VV

gs,step = 1 V

I ds

(A/m

m)

Vds

(V)

-1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Vds

(V)

I ds

(A/m

m)

60

80

100

120

140

160

180

200

220Lg = 0.23 m

Vds

= 4 V

gm (m

S/m

m)

0.23 m gate length device

Device no longer E-mode at Lg = 0.23 mm

Imax = 0.9 A/mm, peak gm = 210 mS/mm at Vds = 4.0 V

Page 14: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

15

Short channel effect

-1 0 1 2 3 4 50.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vds

= 4.0 V

Vds

= 3.0 V

Vds

= 0.5 V

Vds

= 0.1 V

Lg = 0.55 m

I ds (

A/m

m)

Vgs

(V)

Threshold voltage decreases with drain bias (Vds)

Page 15: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

16

Short channel effect

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Vth

Gate length (m)0.1 1 10

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Vth

Gate length (m)

Vds

= 4 V

0.23 m 0.55 m 1 m 10 m

I ds

(A/m

m)

Vgs

(V)

• Vth roll off with gate length

• Device becomes D-mode at Lg= 0.23 m because of low aspect ratio (Lg/t = 230 nm/ 27 nm = 8.5)

• Short channel effect is because of low aspect ratio and self-aligned access regionsNeed more vertical scaling for sub-100 nm E-mode devices

Page 16: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

17

Device access resistance

• Source access resistance of 1 -mm, regrowth Rsh = 1000 /□, Rc = 0.2 -mm, high compared to D-mode devices*• Reasons:

• Unintentional grading to In0.3Ga0.7N instead of In0.6Ga0.4N Higher sheet resistance• No InN coverage due to uncalibrated growth temperature Higher Rc

• Rs can be easily reduced

Gate

n+ regrowth

Gate

n+ regrowth

No InN

0 2 4 6 8 100

2

4

6

8

10

12

14

Gate lenght, Lg (m)

Ro

n (-

mm

)

Rs + Rd = 2 mm

* S.Dasgupta, APL 2010. Nidhi, IEDM 2009

Page 17: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

18

Small-signal characteristics

0.1 1 10-5

0

5

10

15

20

25

Lg = 0.55 m, W

g = 100 m

Vgs

= 3.5 V, Vds

= 3Vft = 18 GHz

h21

(d

B)

frequency (GHz)

Page 18: 1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,

19

Conclusions and future work

– Scalable self-aligned N-polar E-mode devices– Vth = 0.8 V for Lg = 0.55 m device

– High current drive > 0.7 A/mm– Peak gm = 250 mS/mm

– Short channel effects observed

–Vertical scaling and gate length scaling– Optimized regrowth

Future work