1-s2.0-s0023643813002570-main

Upload: faridazulfah

Post on 01-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 1-s2.0-S0023643813002570-main

    1/7

  • 8/9/2019 1-s2.0-S0023643813002570-main

    2/7

    Even though carotenoid content in wheat grain is not very high,

    wheat could provide signicant amounts of carotenoids as wheat is

    readily found in most daily diets.   b-Carotene, zeaxanthin, cryp-

    toxanthin and lutein are the major carotenoids and lutein is the

    primary xanthophyll found in wheat (Khan & Shewry, 2009). Moore

    et al. (2005)  reported that total carotenoid contents in eight soft

    wheat varieties grown in Maryland ranged from 1.30 to 1.68  mg/g

    and lutein was the most abundant carotenoid, 0.82e1.14 mg/g, fol-

    lowed by zeaxanthin and  b-carotene. In another study lutein was

    also found to be the predominant carotenoid, 0.97e2.43  mg/g, in

    hard red winter wheat. Signicant amounts of zeaxanthin,   b-

    cryptoxanthin and b-carotene were detected in wheat samples as

    well (Zhou, Yin, & Yu, 2005). Carotenoid content of bran and germ

    mixture was shown to be almost two-fold higher than that of the

    wheat endosperm (Adom et al., 2005).

    Information on organic acid content in wheat grain is limited.

    Malic, aconitic and citric acids are the major organic acids in wheat

    (Nelson & Hasselbring,1931). Seven varieties of two and four week-

    old wheat grain samples were examined for their organic acid

    content (Burke, Hilliard, Watkins, Russ, & Scott, 1985). Succinic,

    malic, aconitic and citric acids were detected in the two weeks old

    wheat while no succinic acid was detected in the four weeks old

    samples indicating that compositional changes occur during graindevelopment.

    Abrasive decortication or dehulling is a relatively inexpensive

    process that has been used to separate bran and abraded grain in

    small scale production facilities. Although bran fraction from

    abrasive dehulling operation is expected to be rich in health

    benecial phytochemicals, its potential for utilization in functional

    foods has not been examined. Interest in plant extracts as rich

    sources of health benecial bioactive compounds and antioxidants

    continue to grow. Plant extracts are very complex mixtures of a

    number of compounds that may interact synergistically. An un-

    derstanding of the correlations between chemical composition and

    antioxidant capacity of wheat grain fractions is critical for

    designing ef cient separation techniques to produce antioxidant

    rich products. Furthermore, formulation of nutraceutical productsfor specic health conditions entails the knowledge of relationship

    between chemical composition and the function and effectiveness

    of the product ingredients.

    In a previous study we have reported that tangential abrasive

    dehulling is an effective technique to obtain wheat grain fractions

    with enhanced antioxidant properties (Chen, Dunford, & Goad,

    2013a). Wheat grain fractions obtained by using a tangential

    abrasive dehulling device (TADD) were characterized for their

    proximate composition and antioxidant capacity. Phytosterol and

    policosanols contents of the TADD fractions have also been re-

    ported elsewhere (Chen, Dunford, & Goad, 2013b) The objective of 

    this study is to characterize the phytochemical content and

    composition (phenolic compounds, tocols and organic acids) of 

    aqueous ethanol extracts of TADD fractions. Correlations betweenantioxidant capacity and the chemical compositions of the wheat

    bran fractions are also developed.

    2. Materials and methods

     2.1. Sample preparation

    Intrada wheat was collected from Oklahoma State University

    (OSU) variety testing program plots at Balko (100070W, 36060N),

    Goodwell (101060W, 36060N), and Alva (36480700N, 983905700W)

    in Oklahoma. Plots had eight 15 cmwide and 12m long rows. Seeds

    were sown into a Ulysses silt loam (ne-silty, mixed, superactive,

    mesic Aridic Haplustolls) at Balko; into a Richeld silt loam (ne,

    smectitic, mesic Aridic Argiustolls) at Goodwell; and into a Grant

    silt loam at Alva. All   elds were managed under   “grain only”practices. Detailed information on plant growth conditions were

    reported elsewhere (Chen, 2011). Whole wheat grain samples were

    collected after normal harvest. All the Intrada samples from

    different locations were mixed prior to the experiments. A com-

    mercial aleurone sample from Cargill Co. (Wayzata, MN, U.S.A.) was

    included as a reference. Samples were stored in paper bags and

    kept in a freezer at  20   C after being received in our laboratory

    until the testing began within six months.

     2.2. Grain milling and extraction

    Wheat grain fractions obtained by using a quadrumat senior

    mill (C.W. Brabender Instrument, INC, South Hackensack, NJ,

    USA) and a sieve tester (Gilson Company, Inc, Lewis Center, OH,

    USA) (particle size over 500 mm) have been referred to as   “bran”in this study. Grain dehulling by TADD was described in detail

    elsewhere (Chen et al., 2013a). Dehulling experiments were car-

    ried out at 1, 3 and 5 min abrasion time and three grain moisture

    levels, 15, 20 and 11% (the original wheat moisture level) by using

    a TADD (Venables Tangential Abrasive Dehulling Device, Model

    no. 4E-10/220, Venables Machine Works, Ltd, Saskatoon, SK,Canada). The distance between the abrasive plate (Coarse disc,

    Type 4, Perten Instruments, Huddinge, Sweden) and the bottom

    edge of the sample cups was set at 0.042 inch. Bran fractions

    obtained from TADD processing were referred to as   “TADD

    samples”   throughout this paper. Whole grain sample was pre-

    pared by grinding the wheat kernels using a coffee grinder (Black

    & Decker CBG5, Miami, FL, USA) at medium speed 3 times in 30 s

    intervals.

    The antioxidant extraction method used in this study was

    adapted from literature (Adom & Liu, 2002;   Naczka & Shahidi,

    2004). Ten grams of TADD, bran, aleurone, and whole wheat sam-

    ples were extracted separately with 100 mL of ethanol at 80%, v/v,

    in water for 16 h in the dark and under nitrogen at room temper-

    ature (22   C). Extraction was repeated twice and extracts were

    combined. Extract concentration was determined by evaporating

    the solvent from 25 mL of extract under vacuum (35   C, 210e

    240 mbar) and reported as mg solvent free extract/mL solvent. The

    protocols used for ORAC, TPC and DPPH measurements were dis-

    cussed in detail elsewhere (Chen et al., 2013a).

     2.3. Analytical tests

     2.3.1. Tocopherol and tocotrienols

    Tocopherol and tocotrienol contents of the samples were

    analyzed by using an HPLC system (Alliance 2690, Waters Corp.,

    Milford, MA, USA) which consisted of a separations module (Model

    2695) and a Photodiode Array Detector (PDA) (Model 2996, Wa-

    ters). Two microliter of sample was injected into a normal phaseHPLC column, Zorbax RX-SIL (5  mm particle size, 4.6     250 mm,

    Agilent Technologies, Santa Clara, CA, USA) and separation was

    achieved by using a mobile phase consisting of hexane (HPLC

    Grade, Fisher Scientist, Fairlawn, NJ, USA) and isopropanol (HPLC

    grade, Pharmco Co., Brookeld, CT, USA) at a ratio of 99:1 (v/v).

    Isocratic ow rate was 1.3 mL/min. Column temperature was set at

    35  C (Katsanidis & Addis, 1999). Seven individual tocol standards,

    a-tocopherol (a-T),   b-tocopherol (b-T),   d-tocopherol (d-T),   g-

    tocopherol (g-T), a-tocotrienol (a-T3), b-tocotrienol (b-T3), d-toco-

    trienol (d-T3) and g-tocotrienol (g-T3) were purchased from Sigma

    (SigmaeAldrich Corporation, St. Louis, MO, USA) and used for peak

    identication. The data collection and analysis were managed using

    Waters Pro Empower software (Version 5.00.00.00, Waters Corp.)

    running on a PC (DELL, XP-Professional, Round Rock, TX, USA).

    Y. Chen et al. / LWT - Food Science and Technology 54 (2013) 353e 359354

  • 8/9/2019 1-s2.0-S0023643813002570-main

    3/7

     2.3.2. Phenolic compounds

    Phenolic acids in samples were analyzed by a Waters 2695 series

    HPLC (Alliance 2690, Waters Corp.) equipped with a PDA (Model

    2996, Waters Corp.) and a SunFire C18 (250 4.60 mm, 5 mm, Phe-

    nomenex, Torrance, CA, USA) column. After   ltered through a

    0.45  mm syringe  lter, 10 mL of sample was injected to the HPLC. A

    mobile phase consisting of acetonitrile (solvent A) (HPLC grade,

    VWR, West Chester, PA, USA) and 2 mL acetic acid in 100 mL water

    (solvent B)was usedat a owrateof1.0mL/minforatotalruntimeof 

    70 min. The solventgradient programwas as follows: 100 mL/100mL 

    Bto85mL/100mLBin30min,85mL/100mLBto50mL/100mLBin

    20min,50mL/100mLBto0mL/100mLBin5minand0mL/100mLB

    to 100 mL/100 mL B in 15 min. Benzoic and cinnamic acids were

    monitored at wavelengths, 280 and 320 nm, respectively. Gallic,

    benzoic, vanillic, caffeic, syringic, p-coumaric and ferulic acids from

    Sigma were used as standards. Data signals were acquired and pro-

    cessed on a PC running the Waters Pro Empower software.

     2.3.3. Carotenoids

    The carotenoid analysis was conducted by using a Waters HPLC

    system equipped with a Waters 2487 dual-wavelength absorbance

    detector, a Waters 600S controller, a Waters 616 pump, an inline

    degasser, and a Waters 717 autosampler (Waters Corp.). Mobilephase consisted of HPLC grade methanol (Fisher Scientic, Pitts-

    burgh, PA, USA) and deionized water from a Millipore water puri-

    cation system (Millipore Corporation, Molsheim, France) at a ratio

    of 95:5 (v/v) as solvent A and HPLC grade Methyl tert-butyl ether

    (MTBE) (Mallinckrodt Baker, Inc. Phillipsburg, NJ, USA) as solvent B.

    Isocratic elution was achieved with 75 mL/100 mL solvent A and

    25% solvent B. Sample (10 mL) was injected to YMC Carotenoid S-3

    column (250 4.6 mm, 3 mm column, Waters Corp.)at a owrate of 

    1.9 mL/min. Column temperature was set at 35   C. The individual

    carotenoid standards, lutein, zeaxanthin and   b-carotene from

    Sigma were detected at 450 nm. Data signals were acquired and

    processed on a PC (running the Waters Empower2 software

    (Version 6.20.00.00, Waters Corp.)).

     2.3.4. Organic acids

    The organic acids analysis was performed by using an Agilent

    1200 Series HPLC system. The mobile phase, 0.005 M sulfuric acid,

    was degassed by a Degasser (G1322A, Agilent, Santa Clara, CA, USA)

    by using a Quad Pump (G1311A, Agilent). A Bio-rad Aminex HPX-

    87H column (30    7.8 mm, Bio-rad, Hercules, CA, USA) equipped

    with a guard column (30     4.6 mm, Bio-rad) were used for the

    analysis. Sample, 5   mL, was injected by an autosampler (ASL,

    G1329A, Agilent). Flow rate was 0.6 mL/min. Column temperature

    was 35   C. A dual-wavelength absorbance detector (G1315D, Agi-

    lent) was used to measure the absorbance of organic acids at

    210 nm. Citric, ascorbic, malic, succinic, lactic and fumaric acids

    from SigmaeAldrich were used as standards. Data signals were

    acquired and processed on a PC running the ChemStation for LC 3Dsoftware (Rev. B.04.0x. Agilent).

    3. Experimental design and statistical analysis

    For TADD experiments a 3 3 factorial (1, 3 and 5 min abrasion

    time and 15, 20 and 11 g/100 g moisture levels) design was used.

    Three references (aleurone, Intrada bran, and whole wheat) were

    also analyzed. The antioxidant capacity of TADD samples were

    compared to the aleurone sample by using Dunnett’s multiple

    comparisons method. Samples having signicantly higher or similar

    antioxidant capacity as the aleurone were further analyzed for their

    bioactive compounds. All the milling tests were carried out at least

    in duplicate and in randomized order with the mean values being

    reported. Analytical tests were performed in triplicate. The means

    were compared using Tukey’s adjustment. Experimental data were

    assessed for non-normality and heterogeneity of variances. Appro-

    priate linear and generalized linear mixed models were analyzed

    using version 9 SAS/GLM, SAS/MIXED and SAS/GLIMMIX procedures

    (Software Version 9.2. SAS Institute Inc., Cary, NC).All statistical tests

    were performed at the 0.05 level of signicance.

    4. Results and discussion

    The bran fractions obtained by using a TADD at various grain

    moisture contents and abrasion times were labeled as follows:

    TADD   e   Moisture content of the sample   e   abrasion time. For

    example   “TADD-20-3” refers to the TADD sample obtained at 20 g/

    100 g grain moisture content and 3 min TADD abrasion time. A

    statistical analysis of the results obtained from three antioxidant

    capacity tests, TPC, DPPH and ORAC, indicated that TADD-11-1,

    TADD-15-1, TADD-15-3, TADD-20-3 and TADD-20-5 had higher

    antioxidant capacity than the other TADD samples (Chen et al.,

    2013a). Therefore, these samples were further analyzed for their

    chemical composition focusing on the health benecial bioactive

    compounds with antioxidant properties.

    Although the same amounts of sample and solvent were used to

    obtain all the extracts there were signicant differences in the

    extract concentrations. Commercial aleurone resulted in the high-

    est extract concentration and consequently highest extract amount

    (Table 1). This is due to the very low starch content in the aleurone

    sample and very low amount of aqueous ethanol soluble com-

    pounds present in starch. Hence, extract yield varied with starch,

    bran and oil content of the samples (Chen et al., 2013a). There were

    signicant differences among the ORAC, TPC and DPPH of the ex-

    tracts (Table 1). Although aleurone gave the highest extract yield,

    the extract did not result in the highest ORAC value indicating that

    the extract contained more material that did not possess oxygen

    radical absorbance capacity than that in the TADD-11-1 and TADD-

    20-5 extracts. Hence, phytochemical content and composition of 

    the extracts were examined to evaluate the effect of extract

    composition on antioxidant capacity as measured by differentmethods, ORAC, TPC and DPPH.

    4.1. Tocopherols and tocotrienols

    Whole wheat had the lowest tocols content, 3.02  mg/g sample

    (Table 2). Aleurone (12.20   mg/g sample), TADD-20-3 (11.02   mg/g

    sample), and TADD-15-1 (10.47mg/g sample) containedsignicantly

     Table 1

    ORAC, TPC, DPPH and concentration of wheat extracts.

    Samplea Extract

    concentration

    (mg/mL)

    ORAC (mmol TE/g

    of extract,

    dry basis)

    TPC (GE mg/g

    extract,

    dry basis)

    DPPH (%

    inhibition)

    TADD-11-1 10.1 0.04B 478.7 21.8A 22.8 0.3B 42.6 0.4A

    TADD-15-1 10.3 0.5B 256.6 11.7E 22.1 0.9B 41.2 0.4AB

    T ADD -1 5-3 8 .4 0.4D 276.6 12.8D 26.4 1.1A 40.8 0.3B

    T ADD -2 0-3 9 .2 0.2C 472.7 22.0B 23.0 0.8B 33.0 0.4C

    T ADD -2 0-5 7 .7 0.03E 276.8 13.8D 26.2 1.1A 13.0 0.2E

    Bran 10.1 0.1B 205.4 9.6F 19.7 0.5C 30.0 0.3D

    Whole wheat 5.3 0.3F 159.3 7.7G 19.7 1.0C 9.8 0.1F

    Ale urone 11.3 0.1A 411.6 20.9C 22.1 1.1B 42.4 0.2A

    ABCDEFSample means within a column that have the same letter are not signicantly

    different (a ¼ 0.05).

    The data is reported as   “mean standard deviation”.a For TADD samples: TADD  e  moisture content  e  abrasion time, i.e. TADD-11-1

    refers to bran obtained by using TADD at 11% (original) moisture level, 1 min

    abrasion time. Whole wheat refers to the whole Intrada wheat sample. Bran and

    aleurone refer to the bran from quadrumat mill and commercial samples,

    respectively.

    Y. Chen et al. / LWT - Food Science and Technology 54 (2013) 353 e 359   355

  • 8/9/2019 1-s2.0-S0023643813002570-main

    4/7

  • 8/9/2019 1-s2.0-S0023643813002570-main

    5/7

    content (free  þ  bound  þ conjugated) of the samples examined in

    this study would be much higher than the amounts wereport here.

    4.4. Organic acids

    Whole grain had the lowest organic acid content (29.79 mmol/g

    sample). TADD-15-1 (82.50 mmol/g sample) and bran (76.64 mmol/g

    sample) had higher amount of organic acids than other samples(Table 5). Higher organic acid content in all TADD samples than the

    aleurone indicates that organic acids are concentrated in the bran

    fractions. Effect of grain moisture content and abrasion time

    interaction on total organic acid content of the samples was sig-

    nicant ( p < 0.0001,  F ¼ 226.86).

    HPLC method used to analyze organic acids could not separate

    ascorbic and malic acids. Hence results were reported as

    ascorbic   þ   malic acids. Citric, ascorbic   þ   malic, succinic, and

    fumaric acids were found in all the samples (Table 5). Succinic,

    citric, and fumaric acids were the most abundant organic acids in

    the samples. In aleurone, the succinic acid comprised approxi-

    mately 73% of the total organic acids. Literature on organic acids

    contents and compositions of wheat components are limited. Most

    of the studies on organic acids were carried out on wheat leaves

    (Burke et al., 1985; Clark, 1969). It has been reported that wheat

    kernel had much greater organic acids contents than those found

    in wheat leaves (Lohaus, Blos, & Rudiger, 1983). Malic, citric, suc-

    cinic and fumaric acids were the major organic acids found in

    wheat grain. The latter study reported higher amounts of organic

    acids in wheat as compared to our study possibly due to the

    different extraction method used.

    4.5. Correlations between chemical composition and antioxidant 

    capacity of the samples

    Correlations between ORAC-DPPH [r  ¼ 0.48288, where r  refers

    to Pearson Correlation (Coef cient)], ORAC-TPC (r  ¼ 0.45253) and

    TPC-DPPH (r   ¼   0.71478) were all signicant ( p   <   0.0001) andpositive. The strongest correlation was found between TPC and

    DPPH,   r  ¼   0.71478. Similar   ndings have been reported by other

    research groups (Zhou, Su, & Yu, 2004; Zhou & Yu, 2004).

    A positive and signicant correlation was found between DPPH

    and total tocols (r  ¼   0.62777), phenolic acids (r  ¼  0.685000), ca-

    rotenoids (r ¼ 0.52381) and organic acids (r ¼ 0.38060). DPPH has

    been widely used to evaluate radical scavenging ability of phenolic

    compounds which are strong quenchers of the DPPH radicals

    (Fauconneau et al., 1997;   Villaño, Fernández-Pachón, Moyá,

    Troncoso, & García-Parrilla, 2007). Phenolic acids have bothhydrogen donating and electron transfer ability (Rice-Evans, Miller,

    & Paganga, 1996, 1997). DPPH radicals react with phenolic com-

    pounds via two different mechanisms, hydrogen atom transfer

    (HAT) or the single electron transfer (ET). In these reactions solvent

    type plays a key role. The HAT mechanism is dominant when the

    reaction takes place in apolar solvent while polar solvents such as

    methanol or ethanol leads to ET mechanism (Foti, Daquino, &

    Geraci, 2004). In our study, ET mechanism is expected to be

    dominant since aqueous ethanol was used for the extraction and

    DPPH tests. Tocols, carotenoids, and phenolic acids were shown to

    have a signicant positive correlation with DPPH assay (Prior, Wu,

    & Schaich, 2005). Tocols and carotenoids can stop oxidation by

    donating a hydrogen atom to a free radical (Gurney et al., 1996;

    Niki, Saito, Kawakami, & Kamiya, 1984; Terao, 1989).Contribution of individual compounds to antioxidant capacity

    was calculated by using   r 2 selection method. Ferulic acid

    (r 2 ¼  0.5497) was the strongest contributor to DPPH radical inhi-

    bition properties of the extracts (Table 6).

    As expected phenolic acid content was positively correlated

    with TPC (r   ¼   0.83516,   r   <   0.0001). Caffeic acid was the most

    important compound affecting the TPC result (r 2 ¼   0.8750)

    (Table 6).

    Benzoic, vanilic, syringic and coumaric acids also had signicant

    and positive contributions to TPC.

    Strong correlation between ORAC and tocols content of the

    samples (r  ¼  0.75793,  p  <  0.0001) (Table 6) supports the peroxyl

    radical scavenger properties of the wheat bran extracts. Total

    phenolic acid (r ¼ 0.65813) and carotenoid (r ¼ 0.42861) contentsalso had positive and signicant correlation with ORAC. Phenolic

     Table 4

    Phenolic acids content and compositions of wheat samples a (mg/g sample, dry basis).

    Sample Benzoic acid Vanillic acid Caffeic acid Syringic acid   p-coumaric acid Ferulic acid Total phenolic acids content

    TADD-11-1 6.1 0.2CD 5.8 0.1D 4.4 0.1B 4.7 0.2C 5.2 0.2ABCD 15.0 0.6A 41.2 0.9BC

    TADD-15-1 6.2 0.09CD 5.8 0.08D 4.6 0.05B 4.4 0.03C 4.5 0.03D 8.6 0.3C 34.2 0.3D

    TADD-15-3 7.8 0.2A 8.3 0.2B 5.0 0.08AB 7.6 0.3A 5.8 0.2AB 10.5 0.3BC 45.0 1.0AB

    TADD-20-3 7.2 0.2AB 10.3 0.2A 4.9 0.1AB 7.1 0.1AB 6.1 0.1A 11.5 0.3B 47.2 0.6A

    TADD-20-5 6.5 0.1BC 6.9 0.2C 4.8 0.1AB 5.0 0.1C 5.6 0.2ABC 8.7 0.3C 37.5 0.8CD

    Bran 5.6 0.2D

    6.2 0.1CD

    4.8 0.09AB

    7.2 0.1AB

    4.8 0.1BCD

    10.8 0.5B

    39.5 0.7C

    Who le wheat 3.4 0.01E 3.3 0.02E n.d.b 2.5 0.04D 2.4 0.1E 4.8 0.2D 16.3 0.1E

    Aleurone 6.4 0.08BCD 9.6 0.3AB 5.4 0.2A 6.2 0.2B 4.7 0.2CD 12.9 0.2AB 45.1 0.9AB

    ABCDSample means within a column that have the same letter are not signicantly different (a ¼ 0.05).a Refer to Table 1 for sample abbreviations.b n.d.: Not detected.

     Table 5

    Organic acids content and compositions of wheat samples a (mmol/g sample, dry basis).

    Sample Citric acid Ascorbic acid þ malic acid Succinic acid Fumaric acid Total organic acids content

    TADD-11-1 17.9 0.2B 1.5 0.03A 25.0 0.7D 11.0 0.2D 55.3 0.9C

    TADD-15-1 25.2 0.3A 1.5 0.04A 37.7 0.7A 18.1 0.2B 82.5 0.9A

    TADD-15-3 22.7 0.4A 1.4 0.05A 21.2 0.8E 10.8 0.2D 56.0 1.0BC

    TADD-20-3 24.4 0.4A 1.1 0.04B 19.8 0.6E 10.9 0.2D 56.2 0.8BC

    TADD-20-5 18.3 0.4B 1.0 0.03C 28.8 0.5CD 14.0 0.2C 61.9 0.7B

    Bran 23.2 0.3A 0.6 0.01D 32.0 0.4BC 20.9 0.3A 76.6 0.5A

    Whole wheat 10.4 0.2C 0.3 0.005F 13.1 0.3F 6.1 0.06E 29.8 0.4E

    Aleurone 1.1 0.03D 0.4 0.01E 34.1 0.5AB 11.0 0.2D 46.6 0.6D

    ABCDSample means within a column that have the same letter are not signicantly different (a ¼ 0.05).a

    Refer to Table 1 for sample abbreviations.

    Y. Chen et al. / LWT - Food Science and Technology 54 (2013) 353 e 359   357

  • 8/9/2019 1-s2.0-S0023643813002570-main

    6/7

    acids are effective peroxyl radical scavengers because of their

    hydrogen atom donation ability (Yeh & Yen, 2003). Correlation

    between total organic acid content and ORAC was not signicant

    ( p  ¼   0.7312). Both ferulic acid-ORAC and  a-tocopherol  þ  a-toco-trienol-ORAC correlations were positive. Among the bioactive

    compounds, ferulic acid was the highest contributor to the ORAC

    values (r 2 ¼ 0.6282). Ferulic acid is a potent antioxidant due to its

    phenolic nucleus and unsaturated side chain (Castelluccio, Bolwell,

    Gerrish, & Rice-Evans, 1996). The   eCOOH substitution on the

    phenol ring makes it easier for the ferulic acid to donate its

    hydrogen atom (Nenadis, Zhang, & Tsimidou, 2003).

    5. Conclusions

    This study demonstrated that TADD was more effective than

    quadrumat senior mill to obtain wheat bran fractions enriched in

    health benecial phytochemicals. Effect of grain moisture content

    and abrasion time on chemical composition of TADD samples wassignicant ( p   <   0.001). Considering that abrasive dehulling is a

    relatively inexpensive technique and not dif cult to operate, it can

    be suitable for small scale local production of specialty products.

    TADD bran fractions can be utilized as ingredients in functional

    food formulations. Extraction of TADD products with aqueous

    ethanol would further concentrate phytochemicals with antioxi-

    dant properties in the   nal product. These extracts could be

    formulated into functional foods and nutraceuticals. The correla-

    tions between chemical composition and antioxidant properties of 

    TADD bran extracts developed in this study are helpful to formulate

    products with desired ef cacy.

    References

    Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains.  Journal of Agriculturaland Food Chemistry, 50, 6182e6187.

    Adom, K. K., Sorrells, M. E., & Liu, R. H. (2005). Phytochemicals and antioxidantactivity of milled fractions of different wheat varieties.   Journal of Agriculturaland Food Chemistry, 53, 2297e2306.

    Antoine, C., Peyron, S., Mabille, F., Lapierre, C., Bouchet, B., Abecassis, J., et al. (2003).Individual contribution of grain outer layers and their cell wall structure to themechanical properties of wheat bran.  Journal of Agricultural and Food Chemistry,51, 2026e2033.

    Burke, D. G., Hilliard, E., Watkins, K., Russ, V., & Scott, B. J. (1985). Determination of organic acids in seven wheat varieties by capillary gas chromatography.

     Analytical Biochemistry, 149, 421e429.Castelluccio, C., Bolwell, G. P., Gerrish, C., & Rice-Evans, C. (1996). Differential dis-

    tribution of ferulic acid to the major plasma constituents in relation to its po-tential as an antioxidant.  Biochemical Journal, 316 , 691e694.

    Chen, Y. (2011).   Ef  ciency of abrasive dehulling to produce wheat grain fractionsenriched in antioxidants   (Unpublished dissertation). Stillwater, OK: Oklahoma

    State University.

    Chen, Y., Dunford, N. T., & Goad, C. (2013a). Evaluation of wheat bran obtained bytangential abrasive dehulling device.  Food and Bioprocess Technology, 6 , 1655e1663.

    Chen, Y., Dunford, N. T., & Goad, C. (2013b). Tangential abrasive dehulling of wheatgrain to obtain policosanol and phytosterol enriched fractions.  Journal of CerealScience, 57 , 258e260.

    Clark, R. B. (1969). Organic acids from leaves of several crop plants by gas chro-matography.  Crop Science, 9, 341e343.

    Fauconneau, B., Waffo-Teguo, P., Huguet, F., Barrier, L., Decendit, A., & Merillon, J.-M.(1997). Comparative study of radical scavenger and antioxidant properties of 

    phenolic compounds from   Vitis vinifera   cell cultures using in vitro tests.  LifeSciences, 61, 2103e2110.

    Foti, M. C., Daquino, C., & Geraci, C. (2004). Electron-transfer reaction of cinnamicacids and their methyl esters with the DPPH

    radical in alcoholic solutions.  The Journal of Organic Chemistry, 69, 2309e2314.

    Gurney, M. E., Cutting, F. B., Zhai, P., Doble, A., Taylor, C. P., Andrus, P. K., et al. (1996).Benet of vitamin E, riluzole, and gabapentin in a transgenic model of familialamyotrophic lateral sclerosis.  Annals of Neurology, 39, 147e157.

    Hidalgo, A., & Brandolini, A. (2008). Protein, ash, lutein and tocols distribution ineinkorn (Triticum monococcum   L. subsp.   monococcum) seed fractions.   FoodChemistry, 107 , 444e448.

    Hidalgo, A., Brandolini, A., Pompei, C., & Piscozzi, R. (2006). Carotenoids and tocolsof einkorn wheat (Triticum monococcum ssp.  monococcum L.).   Journal of CerealScience, 44, 182e193.

    Katsanidis, E., & Addis, P. B. (1999). Novel HPLC analysis of tocopherols, tocotrienolsand cholesterol in tissue.  Free Radical Biology and Medicine, 27 , 1137e1140.

    Khan, K., & Shewry, P. R. (2009).  Wheat chemistry and technology. St. Paul, MN: AACCInternational.

    Kim, K.-H., Tsao, R., Yang, R., & Cui, S. W. (2006). Phenolic acid proles and anti-oxidant activities of wheat bran extracts and the effect of hydrolysis conditions.Food Chemistry, 95, 466e473.

    King, H. G. C. (1962). Phenolic compounds of commercial wheat germ.   Journal of Food Science, 27 , 446e454.

    Konopka, I., Czaplicki, S., & Rotkiewicz, D. (2006). Differences in content andcomposition of free lipids and carotenoids in  our of spring and winter wheatcultivated in Poland.  Food Chemistry, 95, 290e300.

    Liese, A. D., Roach, A. K., Sparks, K. C., Marquart, L., D’Agostino, R. B., Jr., & Mayer-Davis, E. J. (2003). Whole-grain intake and insulin sensitivity: the insulin resis-tance atherosclerosis study.  American Journal of Clinical Nutrition, 78, 965e971.

    Liu, R. H. (2007). Whole grain phytochemicals and health.  Journal of Cereal Science,46 , 207e219.

    Liyana-Pathirana, C. M., & Shahidi, F. (2007). The antioxidant potential of milling fractions from bread wheat and durum.   Journal of Cereal Science, 45,238e247.

    Lohaus, E., Blos, I., & Rudiger, W. (1983). Carboxylic acids in wheat, rye and barley. Zeitschrift fur Naturforschung, Biosciences, 38, 524e530.

    Mattila, P., Pihlava, J.-m., & Hellstrom, J. (2005). Contents of phenolic acids, alkyl-

    and alkenylresorcinols, and avenanthramides in commercial g rain products. Journal of Agricultural and Food Chemistry, 53, 8290e8295.McCullough, M., Robertson, A., Chao, A., Jacobs, E., Stampfer, M., Jacobs, D., et al.

    (2003). A prospective study of whole grains, fruits, vegetables and colon cancerrisk.  Cancer Causes and Control, 14, 959e970.

    Moore, J., Hao, Z., Zhou, K., Luther, M., Costa, J., & Yu, L. (2005). Carotenoid,tocopherol, phenolic acid, and antioxidant properties of Maryland-grown softwheat.   Journal of Agricultural and Food Chemistry, 53, 6649e6657.

    Morrison, W. R., Coventry, A. M., & Barnes, P. J. (1982). The distribution of acyl lipidsand tocopherols in  ours millstreams.  Journal of the Science of Food and Agri-culture, 33, 925e933.

    Naczka, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food.  Journalof Chromatography A, 1054, 95e111.

    Nelson, E. K., & Hasselbring, H. (1931). Some organic acids of wheat plants.  Journal of the American Chemical Society, 53, 1040e1043.

    Nenadis, N., Zhang, H.-Y., & Tsimidou, M. Z. (2003). Structureeantioxidant activityrelationship of ferulic acid derivatives: effect of carbon side chain characteristicgroups.  Journal of Agricultural and Food Chemistry, 51, 1874e1879.

    Niki, E., Saito, T., Kawakami, A., & Kamiya, Y. (1984). Inhibition of oxidation of 

    methyl linoleate in solution by vitamin E and vitamin C.   Journal of BiologicalChemistry, 259, 4177e4182.

    Okarter, N., Liu, C.-S., Sorrells, M. E., & Liu, R. H. (2010). Phytochemical content andantioxidant activity of six diverse varieties of whole wheat.  Food Chemistry, 119,249e257.

    Piironen, V., Syvaoja, E. L., Varo, P., Salminen, K., & Koivistoinen, P. (1986). To-copherols and tocotrienols in cereal products from Finland.  American Associa-tion of Cereal Chemists, 63, 78e81.

    Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determi-nation of antioxidant capacity and phenolics in foods and dietary supplements.

     Journal of Agricultural and Food Chemistry, 53, 4290e4302.Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structureeantioxidant activity

    relationships of avonoids and phenolic acids. Free Radical Biologyand Medicine, 20, 933e956.

    Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenoliccompounds.  Trends in Plant Science, 2, 152e159.

    Sosulski, F., Krygier, K., & Hogge, L. (1982). Free, esteried, and insoluble-boundphenolic acids. 3. Composition of phenolic acids in cereal and potato   ours.

     Journal of Agricultural and Food Chemistry, 30, 337e340.

     Table 6

    Contribution of bioactive compounds to ORAC, DPPH and TPC assay as determined

    by R-square selection method.

    Compounds ORAC DPPH TPC

    Ferulic acid 0.6282 0.5497 0.3800

    a-Tocopherol þ a-tocotrienol 0.5904 0.2402   e

    Vanillic acid 0.3673 0.2156 0.4197

     p-Coumaric acid 0.2693 0.2136 0.5851

    Benzoic acid 0.2533 0.3540 0.7008Caffeic acid 0.2369 0.4293 0.8750

    g-Tocopherol þ g-tocotrienol 0.2342 0.2402   e

    Lutein 0.1857 0.2718   e

    Zeaxanthin 0.1635 0.2986   e

    b-Tocopherol 0.1615 0.0995   e

    d-Tocopherol 0.1573 0.1000   e

    Ascorbic acid þ malic acid 0.1269 0.2874   e

    Syringic acid 0.0866 0.2513 0.3404

    Fumaric acid 0.0397 0.0602   e

    Citric acid 0.0177 0.0161   e

    Succinic acid 0.0167 0.2093   e

    Y. Chen et al. / LWT - Food Science and Technology 54 (2013) 353e 359358

    http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref37http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref36http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref35http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref34http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref33http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref32http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref31http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref30http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref29http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref28http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref27http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref26http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref25http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref24http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref23http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref22http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref21http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref20http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref19http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref18http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref17http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref16http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref15http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref14http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref13http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref12http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref11http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref10http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref9http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref8http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref7http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref6http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref5http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref4http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref3http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref2http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1http://refhub.elsevier.com/S0023-6438(13)00257-0/sref1

  • 8/9/2019 1-s2.0-S0023643813002570-main

    7/7

    Terao, J. (1989). Antioxidant activity of  b-carotene-related carotenoids in solution.Lipids, 24, 659e661.

    Villaño, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M., & García-Parrilla, M. C. (2007). Radical scavenging ability of polyphenolic compoundstowards DPPH free radical.  Talanta, 71, 230e235.

    Yeh, C.-T., & Yen, G.-C. (2003). Effects of phenolic acids on human phenolsulfo-transferases in relation to their antioxidant activity.   Journal of Agricultural andFood Chemistry, 51, 1474e1479.

    Yu, L. (2008).  Wheat antioxidants. Hoboken, NJ: Wiley-Interscience.Zhou, K., Su, L., & Yu, L. (2004). Phytochemicals and antioxidant properties in wheat

    bran.  Journal of Agricultural and Food Chemistry, 52, 6108e6114.Zhou, K., Yin, J. J., & Yu, L. (2005). Phenolic acid, tocopherol and carotenoid com-

    positions, and antioxidant functions of hard red winter wheat bran.   Journal of  Agricultural and Food Chemistry, 53, 3916e3922.

    Zhou,K., & Yu,L. (2004).Antioxidant propertiesof branextracts fromTregowheat grownat different locations. Journal of Agricultural and Food Chemistry, 52, 1112e1117.

    Y. Chen et al. / LWT - Food Science and Technology 54 (2013) 353 e 359   359

    http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref41http://refhub.elsevier.com/S0023-6438(13)00257-0/sref41http://refhub.elsevier.com/S0023-6438(13)00257-0/sref41http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref44http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref43http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref42http://refhub.elsevier.com/S0023-6438(13)00257-0/sref41http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref40http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref39http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38http://refhub.elsevier.com/S0023-6438(13)00257-0/sref38