1-s2.0-s0012160699993405-main

Upload: esqueletorumbero

Post on 15-Oct-2015

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/25/2018 1-s2.0-S0012160699993405-main

    1/20

    REVIEW

    Comparative Biology of Calcium Signaling duringFertilization and Egg Activation in Animals

    Stephen A. Stricker1

    D epartm ent of Bio logy, U n iv ersi t y of N ew M exico, Al buqu erque, N ew M exico 87131

    During animal fertilizations, each oocyte or egg must produce a proper intracellular calcium signal for development t

    proceed normally. As a supplement to recent synopses of fertilization-induced calcium responses in mammals, this papereviews the spatiotemporal properties of calcium signaling during fertilization and egg activation in marine invertebrateand compares these patterns with what has been reported for other animals. Based on the current database, fertilizatiocauses most oocytes or eggs to generate multiple wavelike calcium oscillations that arise at least in part from the releasof internal calcium stores sensitive to inositol 1,4,5-trisphosphate (IP3). Such calcium waves are modulated by upstreampathwaysinvolvingoolemmal receptorsand/orsolublesperm factorsandin turnregulatecalcium-sensitivetargetsrequirefor subsequent development. Both protostome animals (e.g., mollusks, annelids, and arthropods) and deuterostomes(e.g., echinoderms and chordates) display fertilization-induced calcium waves, IP3-mediated calcium signaling, and thability to use a combination of external calcium influx and internal calcium release. Such findings fail to support thdichotomy in calcium signaling modes that had previously been proposed for protostomes vs deuterostomes and insteasuggest that various features of fertilization-induced calcium signals are widely shared throughout the animakingdom. 1999Academic Press

    K ey W o r d s : calciumwave;CICR; calciumoscillations;oocyte;meiosis arrest;maturation;spermfactor;ICSI;IP3;cADP

    IP3R; RyR; capacitative calcium entry; CaMKII; mouse; sea urchin; protostome; deuterostome.

    INTRODUCTION

    D uring ferti l ization, anim al oocyt es or eggs m ust un dergo

    a proper chan ge in their int racellular free calcium levels

    ([C a 2]i) t o ensur e t ha t developm ent proc eeds nor m a l l y

    (Epel, 1990; N uccitelli, 1991; Whit aker and Sw ann , 1993).

    In t he c a s e of m a m m a l s , t he c ha r a c t er i s t i c pr oper t i es of

    fert i l i za t i on-i nduc ed c a l c i um s i gna l i ng ha v e b een t hor -

    oughl y desc ri b ed (S wa nn a nd Ozi l , 199 4; Y a na gim a c hi ,

    1994; Miyazaki, 1995; Schultz and Kopf, 1995; Kline, 1996;

    BenYosef and Shalgi, 1998; Ozil, 1998). H ow ever, to gain a

    broader perspective, this review compares the spatiotempo-

    ral patterns of calcium signals during normal fertilization or

    artifi cial activat ion in ma rine invertebrates w here calcium

    levels have been directly monitored in oocytes or eggs (i.e.,

    in fema le gametes before or after the completion of m eiotic

    maturation). In addition, the contributions of external cal-

    c i um i nfl ux a nd i nt erna l c a l ci um r el ea s e a r e a s sess ed i n

    order to reevaluate the hypothesis that in an imals in w hich

    t he a dul t m out h dev elops from t he em b ry oni c b l a s t opor

    (i .e., protostom es ) fundam entally different mechan ism

    of generating calcium transients are employed during fer

    t i l i za t i on t ha n a r e used i n deut er os t om es , w hi c h do no

    derive th eir m outh from th e blast opore (Jaffe, 1983, 1985

    The group-by-group synopsis is organized according to

    traditional phylogeny of invertebrates (Pearse et al ., 1987a nd i s s ub s eq uent l y s y nt hes ized w i t h r epresent a t i v e da t

    ob t a i ned fr om ot her a ni m a l s w i t h t he a i m of a ddress i ng

    key question in developm ental biology: nam ely, wh at kind

    of calcium signals are used by animal oocytes and eggs t

    trigger norma l development?

    CNIDARIA

    During ferti l ization in hydrozoan jellyfi sh (Phylum Cni

    daria, Class Hydrozoa), the egg generates a single calcium

    transient of undetermined spatial properties (Freeman an

    Ridgw ay, 1993) (Table 1; Fig. 1A). Althou gh th e sources o

    c a l ci um m ob i l ized dur i ng fert i l i za t i on ha v e not b een d1 Fax: (505) 277-0304. E-mail: [email protected].

    D evelopm ental Biology 211, 157176 (1999)

    Article ID dbio.1999.9340, availa ble online at h tt p://w w w .idealibrary.com on

    0012-1606/99 $30.00

    Copyright 1999 by Academic Press

    All rights of reproduction in any form reserved. 157

  • 5/25/2018 1-s2.0-S0012160699993405-main

    2/20

  • 5/25/2018 1-s2.0-S0012160699993405-main

    3/20

    rectly evaluated, calcium release from internal stores may

    play a role, since calcium ionophore can trigger a calcium

    t r a ns ient i n unfer t i li zed eggs i nc uba t ed i n c a l ci um -free

    seaw at er (C aFSW) (Freem an and Ridgw ay, 1987). M oreover,

    t he m a t ur e eggs of c ni da r ia ns exhi b it a c a l c ium t r a ns ient

    w hen injected w ith inosit ol 1,4,5-trisphosphate (IP 3) (Free

    man and Ridgway, 1991) but not when treated with exces

    potassium (Freeman and Ridgwa y, 1993), w hich stimulat e

    e x t er n a l c a l c iu m i n fl u x t h r o u gh v o l t a ge -g a t e d c a l c iu m

    channels in the plasmalemma (Conley and Brammer, 1998)

    FIG. 1. Temporal patt erns of fertilization-induced calcium signals in protostom e (BF) vs deuterostom e (G L) anim als [note: cnidarian

    (A)a re not readily a llied w ith either lineage (Pearseet al., 1987)]. N ormal state of oocyt e m aturation at fertilization: prophase I-arrested (D

    F); betw een germina l vesicle breakdow n and polar body format ion (H); met aphase I-arrested (B, C , E, I); met aphase II-arrested (JL

    pronuclear egg (A, G ). Amplitudes, durations, and frequencies of calcium transients are not draw n t o scale, and th e t im ings of fi rst cell cy cl

    events are only approxima te (for pertinent data, see Table 1 and text). C alcium traces and cell cycle ch ronology are based on (A) Freema

    an d Rid gw ay (1991, 1993); (B) Stri cker (1996b); (C ) Togoet al. (1993), D eguchi and Osan ai (1994b); (D ) G eilenkirchen et al.(1977), D eguch

    and Osanai (1994a); (E) Harvey (1939), Eckberg and Miller (1995); (F) G ould and Stephano (1996), Stephano and G ould (1997); (G ) Shen anBuck (1993), Wildi ng et al .(1996); (H) St rick er (1995); (I) Speksni jderet al .(1989), M cD ougall and Levasseur (1998); (J) Ridgw ay et al.(1977

    Fluck e t a l . (1991), Abraham e t a l . (1993) for t he medaka O r y z i a s (w hich forms t he s econd pola r body 15 min pos t fert i l iza t ion a n

    generates slow calcium waves along the cleavage furrow prior to fi rst cleavage at 90 min postfertilization), Creton e t a l . (1998) for th

    zebrafi sh D a n i o (w hich undergoes fi rst cleavage 45 m in postfertilizat ion); (K) Busa and N uccitelli (1985), Keatin g e t a l . (1994); and (L

    Tombes et a l . (1992), Jones et a l . (1995a) for the mouse M u s.

    15Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    4/20

    FIG. 2. Spatial properties of fertilization -induced calcium signals in protostom es (nemertean w orms: AE) vs deuterostom es (starfi sh: F

    G ), show ing pseudocolored im ages (AC , F, G ) of ratioed confocal data from C alcium G reen-loaded specimens exam ined every 5 s. Blue

    encode low calcium levels, whereas yellows and reds correspond to higher calcium levels. (A) Two mature oocytes from the nemertean

    Micrura a laskensis . A s ynchronous ly propa ga t ed cort ica l fl a s h (a rrow hea ds) a r ises from ext erna l ca lcium infl ux a t t he ons et o

    fertilization in each oocyt e. First frame is before sperm addit ion; second frame is at 105 s after sperm addit ion, and each subsequent fram

    of t he 11-frame sequence is t aken a t 5-s int ervals. (B) Tw o fertilizat ion-induced calcium w aves (arrows) arising 5 a n d 1 0 m i n a f t e

    ins emina t ion in t heM . alask ensisoocyte previously show n generating a cortical fl ash in the top row of A. (C )Fertilization-induced calcium

    t ra ns ient s in a n imma t ure oocyt e (t op t w o row s ) a nd a ma t ure oocyt e (bot t om row ) of t he nemert ea n Cerebratulus lacteus. N o t e t h

    non-w avelike propagation patt erns (arrowheads) in the im ma ture oocyte vs the point-source calcium w ave (arrow) in the m ature specimen

    160 Stephen A . Str ick e

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    5/20

    Thus, ferti l ization m ay involve calcium release modulat ed

    by IP 3 receptors (IP 3Rs) (Berridge, 1993; Bezprozvan ny and

    Ehrlich, 1995), w hich presuma bly occur m ainly on t he eggs

    endoplasmic reticulum (ER) (Han and Nu ccitelli , 1990).

    However, i t remains to be determined (i) i f the ER of cni-

    da r ia n eggs a l s o c ont a i ns func t i ona l r y a nodi ne r ec ept ors

    (RyRs) (Sorrentino, 1996), the second major class of cal-

    cium channel receptors used by cells to mobilize internalcalcium stores (Table 2); an d (ii) w heth er either or bot h o f

    these receptor types actually contribute to a normal ferti l-

    ization response.

    NEMERTEA

    Ful l y grow n ooc y t es of t he nem er t ea n w orm Cerebratu-l u s arrest at metaphase I and upon insemination generatemultiple calcium transients for 75 min (Stricker, 1996b;

    Fig. 1B). The fi rst ferti l ization-induced calcium transient

    comprises an essential ly syn chronous cortical fl ash that

    i s m i m i ck ed b y e xc es s p o t a ss iu m o r e l im i n a t ed b y t h e

    calcium channel blocker cobalt chloride, collectively sug-

    gesting a dependence on external calcium infl ux (Stricker,

    1996b). After the cortical fl ash, fertilized oocytes produce

    10 calcium w aves that init ial ly arise near the sperm entry

    s i t e (S t ri c ker , 19 96b ). S ubs eq uent l y , t he w a v es t end t o

    originate from the vegetal hemisphere and do not require

    external calcium, since th ey persist in C aFSW (Stricker,

    1996b). Although u nfertilized oocy tes can m obilize calcium

    w hen treated with ryanodine to stimulate RyRs, fertilization-

    induced calcium waves appear to depend on IP 3-mediated

    calcium release, given that they are disrupted by heparin

    (Stricker, 1996b), w hich is a som ew hat selective inhibitor ofIP 3Rs (Hill et al ., 1987).

    A c o rt i c al fl a s h a n d w a v el ik e o sc il la t i on s a l so o cc u r

    w hen m ature oocytes of ot her nemertean species are ferti l-

    ized (Figs. 2A and 2B). By contrast, prophase-arrested imma-

    ture oocytes of C erebratu l us remain uncleaved after sperma ddi t i on a nd genera t e l ow-a m pl i t ude, non-w a v eli ke c a l -

    cium t ransients for only 25 min, presumably because th e

    o o cy t e s ER h a d n o t f u ll y m a t u r ed b ef or e i n s em i n a t i on

    (Stricker et al ., 1998) (Figs. 2C 2E).

    MOLLUSCA

    O o c y t es pr od u ce d b y c la m s a n d t h e ir a l li es (P h y l u m

    M ol l usc a , C l a s s Bi v a l v ia ) a r rest a t eit her propha s e I o

    meta phase I and typically un dergo 515 calcium transient

    after insemination (Deguchi and Osanai , 1994b; Fig. 1C)

    a l t hough fer t i l i zed ooc y t es of t he b i v a l v e M a c t r a displa

    onl y a s ingl e c a lc i um t r a ns ient fol l owed b y a n elev a t eplateau (Deguchi and Osanai , 1994a; Fig. 1D). The initia

    ferti l ization-induced calcium transient of Rudi tapes a nM y t i l u s arises synchronously around the oocyte as a cortical fl ash that lacks a point-source origin (Abdelmajid et al

    1993; Deguchi and Osanai, 1994b). In M y t i l u s, the corticafl a s h i s el i m i na t ed b y t he c a l ci um c ha nnel b l oc ker m e

    t hoxy v era pa m i l , i ndic a t i ng t ha t ext erna l c a l c ium i nfl u

    occurs at the onset of ferti l ization (Deguchi et al ., 1996C onversely, subsequent calcium oscillations generated in

    M y t l i u s oo cy t e s c on t i n u e t o o cc u r i n t h e pr es en c e ometh oxyverapam il (D eguchi et al., 1996) or after t ransfer tC aFSW (D eguchi and Osanai , 1994b), and such postfl as

    oscillations are blocked in heparin-loaded oocytes, suggest

    i n g a l a t er d epe n de n ce o n IP 3-mediated calcium releas

    (Deguchi and Osanai , 1994a; Deguchi et al ., 1996). Moreover, the calcium oscil lations that follow t he initial cortica

    fl a s h propa ga t e a s di st i nc t w a v es, r a t her t ha n a s s y nc hro

    nous elevat ions (D eguchi and M orisaw a, 1997).

    Prophase-arrested oocytes of several bivalve species gen

    erate at least one calcium transient a nd/or undergo germi

    na l v esi c le b r ea kdown (G VBD ) w hen t r ea t ed w i t h a c t i v a t

    ing a gents (D eguchi and Osanai , 1995; Lippai et al ., 1995Fong et a l . , 1997). External calcium infl ux is apparentlinvolved in suc h a ctiva tion s, since (i) G VBD is preceded b

    calcium infl ux and prevented by calcium infl ux blocker(D ube a nd G uerrier, 1982; Kada m et al., 1990; Juneja et al

    1994; Juneja and Koide, 1996); (ii) calcium ionophore trig

    g er s G VB D i n Spisula o o cy t e s i n c u ba t e d i n c a l ci u mc ont a i ni ng s ea wa t er b ut not i n C a FS W (S chuet z , 19 75

    Kadam et al ., 1990); and (iii) th e pre-G VBD calcium risinduced by the hormone serotonin often requires externa

    calcium to be fully effective (Deguchi and Osanai , 1995)

    Similarly, calcium infl ux seems to be involved in optim all

    activating metaphase I-arrested oocytes of M y t i l u s, sinc

    (D , E) Tw o sets of compressed confocal z series of a C. l acteus oocyt e inject ed w it h t he vit a l ER indica t or DiI , show ing t he forma t ion o

    ER microdom ains (arrows) that ma y play a role in producing a norm al calcium response (D , 75 min postrem oval from t he ovary; E, 16

    m in postremoval from ov ary). (F)Oocy te from t he starfi sh Pisaster ochraceus,showin g a norm al fertilizat ion-induced calcium w ave (arrow

    in t he pres ence of t he ca lcium cha nnel blocker nifedipine. Not e t he conca ve na t ure of t he w a vefront , w hich indica t es a more ra pi

    transmission around the periphery than through the center of the oocyte (i.e. , even though the peripheral pathway represents a greate

    distance than directly through the center of the oocyte, the calcium wave advances around the cortex of the oocyte before fully traversin

    the cent ral ooplasm). (G ) A 3-D cylindrical reconstruction of a t im e-lapse confocal data set show ing fertilization in a Pisasteroocyt e. Fo

    such reconstructions, the circular optical sections in a t ime-lapse confocal data set w ere stacked on t op of each ot her so that the vertica

    axis equals t im e, and the top of t he rendered cy linder represents t he oocyt e before insemination (Stricker, 1994); vertical scale bar, 200

    The r ight -ha nd rect a ngle is t he clea ved cylinder t o depict t he progress ion of t he fert i l iza t ion-induced ca lcium w a ve w it hin t he oocyt

    (a rrow ). N ot e t h a t compa red t o t he oocyt e cent er, t he w a ve t ra vels more ra pidly in t he cort ex, judging from t he s ha llow er s lope of t h

    w avefront (i.e. , less t im e elapses during simi lar distances t raveled in t he cortex vs center). (AC ) Stricker, unpublished observations; (D , E

    Stricker et a l . (1998); (F, G ) Stricker et a l . (1994). Horizontal scale bar, 50 m .

    16Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    6/20

  • 5/25/2018 1-s2.0-S0012160699993405-main

    7/20

    either a rapid replacement of high-potassium seaw ater w ith

    CaFSW (Deguchi and Osanai , 1994b) or an incubation in

    c a l c ium i nfl ux b l oc ker s b efore t he pot a s s ium t r ea t m ent

    (Krantic a nd Riva iller, 1996) signifi cant ly reduces the num -

    ber of oocyt es forming polar bodies.

    N ev ert hel es s, i nt erna l c a l ci um r el ea s e m a y a l s o oc c ur

    during activation of several bivalves examined, given that

    (i ) v a ri ous a goni st s c a n t r i gger c a l ci um t r a ns ient s a nd a tleast som e G VBD in C aFSW (G uerrieret al .,1993; G obet etal ., 1995; Lippai et al ., 1995); (ii) IP 3 is capable of el ici t ingG VBD (Bloom et al ., 1988; G uerrier et al ., 1996); and (iii)s er ot oni n, whi c h nor m a l l y i nduc es a t r a ns i ent r i s e i n IP 3levels prior t o G VBD (G obet et a l . , 1994), fails to causeG VBD in heparin-loaded specimens (D eguchi and Osanai ,

    1995).

    ANNELIDA

    Ferti l ization causes metaphase I-arrested oocytes of the

    a nnel i da n wor m Chaetopterus to undergo 327 calciumt r a ns i ent s t ha t c ea s e b y 10 min postinsemination (Eck-

    berg and Miller, 1995; Fig. 1E). The fi rst calcium tran sient

    fa i ls t o propa ga t e c om pl et el y a c ros s t he oopl a s m a nd i s

    foll owed b y m ul t i pl e ful ly propa ga t ed c a l ci um w a v es t ha t

    eventually arise from a repeated pacemaker si te (Eckberg

    and Miller, 1995). Although the sources of calcium mobi-

    lized during ferti l ization have not been directly analyzed,

    prophase-arrested oocytes of Chaetopterus (Ikegami et al .,

    1976) and Pectinaria (Anstrom and Summ ers, 1981) typi-c a l ly r eq ui r e ext er na l c a l c i um t o m a t ur e properl y . S im i -

    l a rl y , w h e n t r ea t e d w i t h e xc es s po t a ss iu m , m e t a ph a s e-

    arrested Chaetopterus specimens produce calcium w aveslike t hose of fertilizat ion (Eckberg an d M iller, 1995), collec-

    t i v ely s ugges t i ng t ha t a c t i v a t i on depends on ext erna l c a l -

    cium . How ever, oth er fi ndings implicat e int ernal sources of

    c a l c ium , s i nce hi gh c onc ent r a t i ons of c a l c ium i onophor e

    a c t i v a t e Chaetopterus oocy t es i n Ca FS W (E ckb er g a ndC arroll, 1982), and t he application of C aM g-free seaw at er by

    itself leads to G VBD in Sabel lari a (Peucellier, 1977). More-over, homogenates of Chaetopterus oocytes mobilize cal-cium in response to either IP 3 or the thiol reagent t him ero-

    sal (Thomas et a l . , 199 8), w hi c h i n ot her c el ls t ends t osensitize IP 3Rs (Miyazakiet al.,1992a) but m ay a lso releasec a l c i um t hr ough R y R s i n s om e c a s es (M c D ouga l l e t a l . ,

    1993).

    ECHIURA

    Follow ing insemina tion , prophase-arrested oocytes of th e

    ec hiur a n w orm U rechis genera t e a c a l ci um t r a ns ient t ha tdoes not form a distinct point-source wave (Stephano and

    G ould, 1997). The init ial calciu m tran sient is follow ed by a

    plateau of elevated calcium (Fig. 1F) that can culminat e in

    pa rt i c ul a rl y hi gh nuc l ea r c a l c i um l ev els , a nd ha l f of t he

    fertilized oocytes also exhibit at least one more calcium rise

    t ha t pr opa ga t es i n a non-wa v el i ke fa s hi on (S t epha no a nd

    G ould , 1997).

    The ferti l ization-induced calcium response of U rechiinvolves calcium infl ux, based on (i) 45Ca m ea s ur em ent

    (Johnston and Paul, 1977); (i i) al teration of ferti l ization

    induced calcium dynamics by perfusions of seawater con

    taining t he calcium chelating agent BAPTA (Stephano an

    G ould, 1997); and (iii) duplication of the calcium respons

    i n t h e a b se nc e o f s pe rm b y o pe n in g o ol em m a l c a lc iu m

    chan nels (Stephano and G ould, 1997). Accordingly, treat inunferti l ized oocytes w ith exogenous trypsin (Johnston an

    Paul, 1977) or t he P23 peptide from sperm acrosome

    (Stephano and G ould, 1997) elici ts ferti l ization-like cal

    c i um dy na m i c s a nd/or a c t i v a t i on, pr ov i ded t ha t ext erna

    c a l ci um i nfl ux i s a l l ow ed t o oc c ur (S t epha no a nd G oul d

    1997). Unferti l ized oocytes can also mobilize internal cal

    cium stores in response to IP 3, b ut s uc h t r ea t m ent s do no

    fully mimic the ferti l ization response or trigger activatio

    (Stephano and G ould, 1997). C ollectively, such dat a reveal

    need for ext erna l c a l ci um i nfl ux duri ng fer t i li za t i on, a l

    though a supplementat ion by int ernal calcium release can

    not be ruled out (Stephano and G ould, 1997).

    ARTHROPODA

    In the shrimp Sicyoni a (Phylum Arthropoda, SubphylumCrustacea), magnesium ions in the seawater activate meta

    phase I-arrested oocytes by ca using an in tracellular calciu m

    wave in these specimens (Lindsay et al ., 1992). A similac a l ci um w a v e i s i nduc ed b y eit her M g 2 in the absence o

    external calcium or calcium ionophore treatments in Mg

    FSW (Lindsay et a l . , 1992). Moreover, the Mg 2-induceC a 2 w a v e i s m i m i c k e d b y I P 3 injections and blocked b

    tyrosine kinase inhibitors, suggesting the involvement oa n I P 3-dependent release of internal calcium stores regu

    lat ed by a ty rosine kinase-based signaling path w ay (Lindsa

    and Clark, 1994). In the presence of sperm, activated oo

    cytes invariably generate a second calcium t ransient w hic

    ma y represent a ferti l ization-induced calcium response

    although this rem ains t o be verifi ed (Lindsay et al ., 1992)Magnesium ions also activate unferti l ized oocytes of th

    pr a wn Palaemon b y t r i gger ing a s er ies of IP 3-mediatecalcium oscil lations that last for 76 5.5 min, follow ed b

    a 49.6 4.5-m in postoscillat ory plateau of elevat ed calcium

    t h a t r el i es o n e x t er n a l c a l ci u m i n fl u x (G o u d ea u a n

    G oudeau, 1996, 1998). Whether any of these calcium tran

    sients propagate as waves has not been established. More

    over, as in Sicyoni a,the t ype of calcium response normallelici ted by ferti l ization rema ins unclear.

    ECHINODERMATA

    E chi noi dea

    During ferti l ization, eggs of sea urchins and other echi

    noids (Phy lum Echinodermat a, C lass Echinoidea)generate

    single 5 - t o 1 0 -m i n c a l c i um t r a ns i ent t ha t s pr ea ds a s

    w ave across th e ooplasm (Steinha rdt et al., 1977; G illot an

    Whitaker, 1993; Table 1). In Lyt echinus, the ferti l ization

    16Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    8/20

    induced calcium w ave is directly preceded by an infl ux of

    calcium leading to a cortical fl ash t hat is not required for

    normal wave production (McDougall et al., 1993; Shen andBuck, 1993). The calcium wave is then followed by a few

    p o st f e r t i l iz a t i o n c a l c i u m t r a n s i e n t s (S t e i n h a r d t , 1 99 0;

    Br owne et al ., 1996; Fig. 1G ).Although external calcium infl ux occurs at the onset of

    sea urchin ferti l ization (Paul and Johnston, 1978), normalferti l izations can sti l l be achieved in CaFSW using prere-

    acted sperm (Schmidt et al., 1982; McDougall et al., 1993).Accordingly, unferti l ized sea urchin eggs are activated by

    calcium ionophore in CaFSW (Steinhardt and Epel, 1974)

    but not by excess potassium in calcium-containing seawa-

    ter (Schmidt et al., 1982), suggesting t hat calcium infl ux isnot a major driving force in activation. Conversely, ferti l i-

    za t i on c a n b e i nhi b i t ed b y pr et r ea t m ent s wi t h l a nt ha num

    or calcium chelators to block calcium infl ux (C reton and

    Jaffe, 1995), indicating that calcium infl ux may indeed play

    a necessary role (for a discussion of the discrepancies, see

    Jaffe, 1990; C reton and Jaffe, 1995; Jones et al ., 1998b).As point ed out in previous review s (Whit aker and Sw ann ,

    1993; Shen, 1995), unfertilized sea urchin eggs can release

    internal calcium stores via IP 3- or non-IP 3-mediated mecha-

    ni s m s . Fol low i ng i ns em i na t i on, a c a l ci um w a v e oc c urs i n

    the presence of inhibitors against IP 3R s or R y R s b ut not

    w hen both inhibitor types are used, suggesting that t he tw o

    receptors funct ion redundant ly during fertiliz at ion (G alione

    et al., 1993; Lee et al., 1993). H ow ever, it w as no t reportedif the specimens displaying calcium waves underwent nor-

    mal cleavage, and other analyses indicate that ferti l ization

    m a y a c t ua l l y r eq uir e IP 3-mediated calcium release (Mohri

    et al., 1995; Lee et al., 1996; Lee and Shen, 1998; Carroll et

    al ., 1999), which in turn depends on functional phospho-lipase C (PLC ) (Carroll et a l . , 1999). Thus, i t rem ainsunc l ea r i f s ea ur chi n R y R s c a n ful ly s ubs t i t ut e for IP 3R s

    during normal development.

    A st er oi dea

    Prophase-arrested oocyt es of sta rfi sh (Ph ylum Echinoder-

    m ata, C lass Asteroidea) undergo G VBD in response to the

    hor m one 1 -m et hy l a deni ne a nd proc eed t hr ough m ei osi s

    w ith out arrest (Meijer and G uerrier, 1984). D uring fertili-

    z a t i on i n Pisaster a n d o t h er s t a rfi s h , m a t u r in g o o cy t e sproduce a single w avelike calcium transient t hat m aintain s

    elevated [Ca 2]i for 1030 min (Eisen and Reynolds, 1984;

    Strickeret al., 1994). The w ave m ay (C arrollet al., 1997) ormay not (Strickeret al .,1994) follow a distin ct cort ical fl ashand is generally com pleted about an hou r before th e onset of

    some postfertilization calcium oscillations (Stricker, 1995;

    Fig. 1H).

    External calcium infl ux does not appear to be required for

    t he produc t ion of a c a l ci um w a v e, s i nc e unfer t i li zed oo-

    c y t es c a n b e a c t i v a t ed b y c a lc iu m i on o ph o re i n C a F SW

    (Steinhardt et a l ., 1 97 4), a nd a nor m a l -a ppea ri ng w a v econtinues to be generated w hen oocytes are ferti l ized in the

    p re se n c e o f t h e c a l c iu m c h a n n e l b l oc k er n i f ed i pi n e

    (Stricker et al ., 1994) (Fig. 2F). As further evidence for in-

    ternal calcium release, unferti l ized oocytes are capable o

    generating calcium transients in response to either IP 3 o

    agents such as ryanodine, caffeine, and cyclic ADP-ribos

    (cADPr)that target RyRs (Stricker, 1995; Santella, 1996). In

    prophase-arrested specimens of A ster ina pect in i fera, botIP 3- and non-IP 3-mediated calcium release can yield a cal

    c i um fl ux i n t he c y t opla s m a nd n uc l eus , a nd t he n uc l ea

    calcium elevation in particular appears to play an importanrole in G VBD , based on injections of agonists or BAPTA

    (Sant ella an d Ky ozuka , 1994, 1997). H ow ever, during fertil

    izations of post-G VBD specimens in other starfi sh species

    c a lc i um s ee m s t o b e m o b i li z ed p re do m i n a n t l y t h r ou g

    IP 3R s, giv en t ha t (i ) pr et r ea t m ent w i t h hepa r in i nhi bi t

    cleavage and causes aberrant calcium dynam ics (Stricker

    1 99 5); a nd (i i ) fer t i li za t i on-i nduc ed c a l c i um w a v es a n

    c l ea v a ge a r e eli m i na t ed b y preinjec t ions of r ec om b i na n

    src-homology 2 (SH2) domains of PLC , w h i c h b l o c k I P 3m edi a t ed c a l c i um r el ea se r egula t ed b y t y r os ine ki na s e

    (Carroll et al ., 1997).

    CHORDATA

    U r o c h o r d a t a

    During ferti l ization, metaphase I-arrested oocytes of as

    cidians (Phylum Chordata, Subphylum Urochordata, Clas

    A sc i di a c ea ) genera t e m ul t i ple c a l ci um w a v es w hi l e c om

    pleting meiosis (Speksnijder e t a l . , 1989; McDougall anSardet, 1995; Sardet et al ., 1998; Fig. 1I). In Phal lusia a nother species, t he fi rst ferti l ization-induced calcium tran

    sient, or activat ion w ave (Speksnijder, 1990a), originat e

    f ro m t h e po in t o f s pe rm e nt r y a n d d i re ct l y pr ec ed es

    microfi lament -m ediated cortical contraction (Speksnijdeet al ., 1990a,b,c; McDougall and Sardet, 1995; Roegiers eal ., 1996). Subsequently, each ferti l ized oocyte produceabout one to tw o dozen calcium w aves that shift their onse

    s i t e t ow a r d t he v eget a l pol e, w here t hey ev ent ua l l y ori gi

    nat e from an ER-rich vegetal pacemaker w hile displaying

    m ore cortica lly enha nced propagation (Speksnijder, 1992

    McDougall and Sardet, 1995).

    Ferti l izations of Phal lusia ooc y t es i n Ca F S W c a n y i elnormal calcium dynamics and development (Speksnijder eal ., 1989). Accordingly, ionophore treatments of unferti lized oocytes in CaFSW elicit cortical contractions and pola

    body formation (McDougall et al .,

    1995), suggesting tha

    the calcium mobilized during ferti l ization comes from in

    t er na l s t or es . Howev er , i n ot her s t udi es of Phal lusia, remova l of external calcium causes aberrant ferti l ization po

    tentials an d increased polyspermy, w hich can be prevente

    b y a puls e of nor m a l s ea wa t er a t t he ons et of fer t i li za t i o

    (G oudeau and G oudeau, 1993). Simila rly, C i o n a oocytefer t i l ized i n C a FS W fa i l t o produc e ei t her t he l a t er-oc

    c urr ing c a l c ium os ci l la t i ons of nor m a l fer t i li za t i ons or

    second polar body (Sensui an d M orisaw a, 1996), collectivel

    suggesting that development requires an infl ux of calcium

    A n IP 3-m edi a t ed pa t hwa y i s a ppa r ent l y ut i l i zed dur i n

    f er t il iz a t i on , g iv en t h a t h e pa ri n o r a n a n t i bo d y a ga i n s

    IP 3Rs disrupts fertilization-induced calcium oscillations in

    164 Stephen A . Str ick e

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    9/20

    Ciona, w h erea s ru t h en i um red , w h i ch c an b e u s ed t oi nhi b i t R y R s r a t her t ha n IP 3Rs, has no noticeable effect

    (Russo et al ., 1996; Yoshida et al ., 1998). Simila rly, unfer-ti l ized oocytes of C i o n a or Phal lusia generate ferti l ization-like calcium oscil lations and form polar bodies when sub-

    jec t ed t o ( i ) a denophos t i n, a pot ent a goni s t of IP 3Rs; (ii)

    continuously perfused IP 3; or (iii) multiple IP 3 pulses (Mc-

    Dougall and Sardet, 1995; Albrieux et al., 1998; Yoshida etal ., 1998). C onversely, treatm ents w ith ryanodine, cADP r,caffeine, or nicotinic acidadenine dinucleotide phosphate

    (N A A D P ) t o s t i m ul a t e non-IP 3-b a s ed s i gna l i ng pa t hwa y s

    fail to trigger a m arked calcium response or full activation

    (McDougall and Sardet, 1995; Albrieux et al ., 1997, 1998;Wilding et al ., 1998).

    However, contributions from non-IP 3-mediated calcium

    release cannot be ruled out for C i o n a or Phal lusia, giventha t (i) heparin-loaded oocytes display on e to a few calcium

    t r a ns ient s a f t er fer t i li za t i on or s perm ext ra c t i nject i ons

    (Russo et a l . , 1996; Wilding and D ale, 1998); and (i i) as i gna l i ng pa t hw a y t r i gger ed b y ni t r ic oxide c a n c a us e a

    c a l c ium fl ux a ppa r ent l y v i a r ec ept ors ot her t ha n IP 3R s

    (G rumet to et a l . , 1997; Wildin g et a l . , 1998). Mo reover,non-IP 3 receptors may cont ribute to highly localized an d/or

    ephem era l c a l c i um t r a ns ient s , w hi c h a r e not ea si l y de-

    tected but are nevertheless needed for regulating oolemmal

    capacitance and currents (Albrieux et al., 1997, 1998; Wild-in g et al ., 1998).

    CALCIUM WAVES DURINGFERTILIZATION IN DEUTEROSTOMESAND PROTOSTOMES

    L. F. Jaffe (1983, 1985) hypothesized that deuterostome

    animals release internal stores of calcium to generate cal-

    c iu m w a v es d u ri n g f er t il iz a t i on , w h e re as t h e f er t il iz e d

    ooc y t es of prot os t om es ut i l i ze ext erna l c a l c ium i nfl ux t o

    produc e non-w a v el i ke c a l c i um t r a ns i ent s . How ev er , a s

    s um m a r i zed i n Ta b l e 1 , poi nt -s ourc e c a l ci um w a v es oc -

    cur not only in deuterostomes but also during ferti l ization

    (Eckberg and Miller, 1995; Stricker, 1996b; D eguchi and

    Morisaw a, 1997) or oocyte activat ion (Lindsay et al., 1992)i n s ev era l phy l a t ha t a r e gener a ll y b el i ev ed t o r epresent

    protostom e l ineages, based on both classical em bryological

    criteria [Pearse e t a l . ,

    1987; G ilbert, 1994althou gh see

    Hertzler an d C lark (1992) for a n al ternative interpretat ion

    of Sicyonias ontogeny] and molecular-based phylogenies(Aguinaldo and Lake, 1998; Winnepenninckx et al ., 1998).E ven i n m a m m a l s w here s om e s y nc hronousl y propa ga t ed

    calcium fl uxes can occur during maturation or late ferti l i-

    zation (Carroll et al., 1994; Shiraish i et al .,1995), the initialfertilizat ion-induced calcium tran sients are w avelike (Fuji-

    w a r a et a l . , 1993; Wu et a l . , 1996), and currently onlyec hi ur a n pr ot os t om es ha v e b een s hown t o l a c k c a l c i um

    w aves (Stephano and G ould, 1997).

    The m ea n v el oci t i es of fert i l i za t i on-i nduc ed c a l c i um

    w a v es f a l l w i t h i n a r el a t i ve ly n a rr ow r an g e o f 1030

    m/s, w hich is consistent w ith a fundam entally conserved

    reaction-diffusion-based m echanism of w ave propagatio

    (Jaffe, 1991, 1995). As diffusible messengers for propagatin

    such global calcium w aves, oocyt es may use IP 3 (Allbritto

    et a l . , 1992) o r c a l c iu m i o n s t h a t p ro m o t e a c a l ci u minduced calcium release (C ICR) acting on RyRs (G al ion

    and Sum m erhill, 1996) and/or IP 3Rs (G alione et al ., 1993Whitaker and Swann, 1993). In some species (Mohri an

    Ha m aguchi, 1991; Strickeret al .,1994; Font anilla a nd N uccitell i , 1998), the calcium wave travels faster around th

    cortex than through the central ooplasm and thus display

    a concav e w avefront (Figs. 2F and 2G ). Such differences in

    transmission rates may be due to an enhanced distributio

    of peripheral ER structures (McPherson et al ., 1992; Mehm a n n et al., 1995; Stricker et al., 1998; Fissore et al., 1999an d/or a gradient of IP 3concen trat ions (Wagneret al .,1998

    SINGLE VS MULTIPLE CALCIUMTRANSIENTS FOLLOWINGFERTILIZATION

    Ferti l ization in most animals, including numerous mam

    m a l s e xa m i n ed , r es u lt s i n m u l t i pl e c a lc iu m t r a ns ie nt

    (Ta b l e 1). S uch os ci l la t or y c ha nges i n free c a l ci um a r

    generally believed to arise from interactions between tw

    separate pools of bound c alcium (Berridge, 1991)or from th

    b iph a s ic r el ea s e o f c a lc iu m w i t h in a s in gl e p o ol t h a t i

    d if fe re nt i a ll y r eg ul a t ed b y s u ch m o d u la t o rs a s I P 3 a n

    calcium (De Young and Keizer, 1992).

    The common occurrence of fertilization-induced calcium

    os ci l la t i ons m a y s i m ply r efl ect t he need for a l ong-t erm

    calcium response without the continuous elevation of cal

    cium tha t ca n be toxic t o cells (D ow d, 1995). On the ot hehand, an oscil latory response could provide an inherentl

    m ore robust t rigger of cellular processes, since it ca rries no

    only the amplitude-related signal that accompanies a soli

    tary calcium pulse but also frequency-encoded informa

    tion (G u and Spitzer, 1995; Tang and Othmer, 1995). Ac

    cordingly, m am m als can display species-specifi c difference

    i n t he freq uenc i es of t hei r fer t i li za t i on-i nduced c a l ci um

    oscillation s (Wu et a l . , 1997; Jones, 1998), and a singlc a l ci um puls e oft en fa i ls t o a c t i v a t e a ni m a l ooc y t es ful l y

    w hereas m ultiple calcium t ransients successfully releas

    o o cy t e s f ro m m e i ot i c a rr es t t o f or m b ot h p ol a r b o d ie

    (D eguchi and Osan i, 1995; Stricker, 1996b; Albrieux 1997

    Lawrence et al ., 1998; Ozil, 1998).The q uest i on t hen a r is es : w hy do c ni da r ia ns , ec hi no

    derm s, fi sh, and frogs generate a soli tary calcium transien

    at fertili za ti on (Figs. 1A, 1G , 1H, 1J, and 1K)? In cases w her

    meiosis either fully precedes ferti l ization (sea urchins an

    cnidarians) or lacks a natural arrest point once G VBD ha

    been triggered (starfi sh), a soli tary ferti l ization-induce

    transient may be suffi cient, given that a resumption from

    m ei ot i c a r r es t i s not r eq ui red. A l t er na t i v el y , unl i ke t h

    m a ny hour s t ha t el a ps e b et ween m ei ot i c r es um pt i on a n

    interphase in m am ma lian zygotes (Jones, 1998; Fig. 1L

    fer t i li za t i on i n fi s h (Iwa m a t s u a nd Oht a , 19 78) a nd frog

    (Rugh, 1951) can trigger a rapid (1030 min) transitio

    16Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    10/20

    from MII arrest to pronuclear formation prior to fi rst cleav-

    age. Accordingly, the abbreviated nature of the postferti l-

    ization phase in these zygotes could obviate the need for a

    repeated series of calcium transients such as found in mam-

    mals (Jones, 1998).

    EXTERNAL CALCIUM INFLUX VSINTERNAL CALCIUM RELEASE DURINGFERTILIZATION

    The current database suggests that a fertilization-induced

    infl ux of external calcium is not restricted to protostomes

    as postulat ed by Jaffe (1983, 1985) but fun ction s along w ith

    i nt er na l c a l c i um r el ea s e t hr oughout t he a ni m a l ki ngdom

    (Table 2). Even in mammalian oocytes that can be activated

    by an ionophore-induced release of internal st ores w ithout

    external calcium being present (Steinhardt et a l . , 1974),ferti l ization apparently requires an infl ux of external cal-

    cium to refi l l internal stores an d t hereby al low prolonged

    calcium oscillations to occur (Igusa a nd Miyaz aki, 1983;Kline an d Kline, 1992b; Miy aza ki, 1995; McG uinness et al .,

    1 996 ). S uch i nfl ux s eem s t o ut i l i ze a c a pa c i t a t i v e or

    store-operat ed form of calcium entry (Pa rkeh and Pen ner,

    1 997 ) t ha t i n t ur n depends on t he deplet i on of i nt erna l

    calcium stores an d either positive or negative feedback on

    the store-operated plasmalemmal channels by such diffus-

    ible m essengers as calcium (Barritt, 1998), in ositol 1,3,4,5-

    tet rakisphosphat e (IP 4) (Bird and P ut ney, 1996), an d calcium

    infl ux fa ctor (C IF) (C sutora et al ., 1999).O n t h e o t h er h a n d, i t i s c l ea r t h a t o oc y t es c a n a ls o

    m obilize int ernal calcium stores, and such int ernal release

    typically involves an IP 3-m edi a t ed s i gna l i ng pa t hw a y t ha tb ec om es s ens i t i zed a s t he ooc y t e m a t ur es (Chi b a et a l . ,1990; Mehlman and Kline, 1994; Abbott et al., 1999). Bothprotostom e and deuterostome oocyt es have the capacity for

    IP 3-based calcium signaling, and in several animal groups

    IP 3-m edi a t ed c a l ci um r el ea s e a ppea rs t o b e r eq ui red for

    nor m a l fer t i li za t i on (Ta b l e 2 ). C onv er sely , t he a b i li t y t o

    produce global calcium transients via either RyRs or other

    non-IP 3 ty pes of calcium release channels (Willmot et al .,1997) has been demonstrated for only a few taxa (Table 2).

    Accordingly, the presence or absence of functional RyRs in

    m a m m a l i a n ooc y t es v a r i es a m ong s pec i es or ev en wi t hi n

    different strains, in the case of m ice (Jones et al .,

    1995b).

    R ega r dl es s of w het her ext erna l or i nt erna l s ourc es of

    calcium are uti l ized during ferti l ization, the calcium tran-

    sients generated by such mechanism s can facil i tat e various

    im portant processes ranging from polysperm y prevent ion to

    m eiotic resumption. This facil i tation presumably occurs

    via direct or indirect effects of calcium transients on dow n-

    stream effectors such as calciumca lmodulin-dependent

    k i n a s e s (C a M K s ), c y t o s t a t i c f a c t o r (C S F), m a t u r a t i o n -

    promoting factor (MPF), mitogen-activated protein kinase

    (MAP K), an d protein kin ase C (PKC ) (G allican o et al.,1993;Whitaker, 1995, 1996; Sagata, 1996; Raz and Shalgi, 1998).

    In particular, the activity of type II C aMK can be modulated

    by oscil latory calcium transients (De Koninck and Schul-

    m an, 1998) and is generally believed to be essential for cel

    cycle progression (Baitin ger et al., 1990; Lorca et al ., 1993D uPont , 1998; Johnson et al ., 1998).

    RECEPTOR-MEDIATED VS SPERM-FACTOR-BASED SIGNALING PATHWAYS

    Essential ly two groups of opposing, but not necessaril

    m ut ua l l y excl usi v e, hy pot hes es ha v e b een propos ed t

    account for the upstream pathways by which sperm trigge

    calcium transients during ferti l ization (D ale and D eFelice

    1990) (Fig. 3). In receptor-m ediat ed hy poth eses (Jaffe, 1990

    Foltz and Shil l ing, 1993), t he sperm is view ed as an hon

    orary horm one (Whit aker and C rossley, 1990) th at gener

    a t es t he c a l ci um r is e from t he out s i de-i n b y b i ndi ng t

    oolemmal surface receptors. Conversely, sperm-factor hy

    potheses postulate tha t following gam ete fusion, the sperm

    introduces internally a cting m olecule(s)int o th e ooplasm t

    trigger th e ca lcium response (Sw ann , 1990, 1993).

    Receptor-m ediated hy potheses are consisten t w ith (i) thi dent i fi c a t i on of func t i ona l s perm l i ga nds a nd oolem m a

    receptors in various species (Myles, 1993; Foltz, 1995

    Ohlendieck and Lennarz, 1995); (ii) the demonstration tha

    unferti l ized oocytes are capable of el ici t ing calcium tran

    sients via signaling cascades involving int egrins, G -proteins

    a n d /o r t y r os in e k i n as es , w h i ch i n m a n y c el l t y p es a r

    stimulated by receptor activation (Miyazaki, 1988; Moor

    et al ., 1993; Shilling et al ., 1994); and (iii) the perturbatioof norm a l fer t i li za t i on-i nduced c a l c ium dy na m i c s foll ow

    ing th e inhibition of G -proteins or t yrosine kinases that i

    t u r n m a y f u n ct i o n d o w n s t re a m o f r ec ep t or a c t i va t i o

    (Mi ya za ki, 1988; Fissore and Ro bl, 1994; G lah n et al.,1998For more direct support of a receptor-mediated pathway

    ext erna l a ppl i c a t i ons of s perm -deri v ed c om ponent s c a

    elicit a calcium transient in oocytes or zygotes of severa

    species (Osaw a et a l . , 1994; Stephano and G ould, 1997Shilling e t a l . , 1 9 9 8 ). Howev er , i n m a m m a l s t her e i s nconcrete evidence for similar externally acting sperm mol

    ec ul es t ha t c a n t r i gger c a l c i um t r a ns ient s v i a r ec ept or

    m ediated pat hw ays (Evans an d Kopf, 1998). Moreover, nei

    ther heterotrimeric G -proteins (Williams et al ., 1998) not y r os i ne ki na s es t a r get i ng S H2 dom a i ns on P LC (Meh

    m a n net al.,1998) appear to be required for the fertilizat ioninduced calcium response of mammals, al though i t is pos

    sible that other receptor-mediated means of increasing PLC

    a c t i v i t y c oul d s t i l l pl a y a r ol e (M ehl m a nn et a l . , 1998Thus, al th ough sperm receptors and dow nstream signalin

    pathways are present prior to ferti l ization, i t remains pos

    sible that in some animals sperm-receptor binding is no

    specifi cally required for generating a normal calcium re

    sponse.

    Alternatively, sperm-factor hypotheses gain indirect sup

    por t fr om t he l a t ent peri od t ha t oc c ur s b et w een s perm

    oolemma l contact and calcium transient onset (Whitakereal ., 1989). In mammals, for example, sperm fuse with thegg duri ng t hi s l a t ent per iod s ev era l m i nut es b efore t h

    c a l ci um w a v e s t a r t s (La wr enc e e t a l . , 1997; Jones et a l

    166 Stephen A . Str ick e

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    11/20

    1998b), w hich is consistent w ith t he tim ing required for th e

    diffusion of a soluble sperm-supplied molecule, al though

    not exclusive proof for such a mechanism (Evans and Kopf,

    1998). M o re d ir ec t e vi de n ce c om e s f ro m t h e f a ct t h a t

    intracellular injections of soluble sperm extracts can both

    generate a ferti l ization-like calcium response in m am ma ls,

    ascidians, an d nemerteans (Stricker, 1997; Kyozuka et al .,

    1998; Sw ann et al ., 1998; Sakurai et al ., 1999) and triggera c t i va t i o n t h a t c u lm i n a t e s i n po l ar b o dy f or m a t i on

    (Stricker, 1997; Wildinget al .,1997)o r even c leav age (Wuetal ., 1997; Fissore et al ., 1998). Furthermore, the fact thatintracytoplasmic sperm injections (ICSI)into the interior of

    oocytes produce calcium oscillations (Na kano et al ., 1996)and healthy offspring (Palermo et al ., 1996) demonstratest ha t i nt er a c t i ons b et ween s per m a nd ool em m a l r ec ept or s

    are not strictly required for norma l ferti l izat ion.

    Such internally a ctin g activat ors w ere once believed to be

    small molecules like calcium (Jaffe, 1991) or IP 3 (Tosti etal ., 1993) th at w ere derived directly from th e sperm and/ori n t he c a s e of c a l c i um i ons funneled t hr ough t he s perm

    from t he ext ra c el l ula r m edi um i n a c onduit -l i ke fa s hion

    (Creton and Jaffe, 1995). Accordingly, calcium injections are

    capable of causing a ferti l ization-like calcium w ave in fi s

    oocytes (Yoshimoto et al.,1986). H ow ever, neither calciu mn o r I P 3 c a n ful ly m i m i c t he s perm -i nduced c a l c i um r e

    s po n se o f m a m m a l s (S w a n n a n d O z i l, 1994), a n d m o r

    recent dat a suggest t hat sperm factors are actually protein

    aceous in nat ure (Sw ann , 1996; Stricker, 1997; Wu et al1998; Perry et al ., 1999).

    A 33-kD a oscillin protein w as originally proposed as

    possible oscillogen in mammalian sperm (Parrington et al1996). How ever, subsequent ana lyses have ruled out oscil

    l i n a s a c a l ci um -m ob i l izi ng a gent (S wa nn et a l ., 1998Wolosker et al., 1998; Wu et al., 1998; Wolny et al., 1999Thus , a l t erna t i v e a c t i v a t or s s uc h a s a t r unc a t ed form o

    c-kit (Sette et a l . , 1997), a perinuclear consti tuent l ikcalicin (Kimura et al ., 1998), or P LC (D upont et al ., 1996Jones et al ., 1998a; Mehlmann et al ., 1998) should be considered, especially i f such sperm-borne oocyt e activat io

    fact ors (SOAFs) can be show n to generate a fertilizat ion-lik

    calcium response. In a ny case, i t remains t o be determin e

    if t he putat ive soluble activat or derived from sperm (i) ex

    i s t s a t hi gh enough c onc ent r a t i ons t o b e phy s i ol ogi c a ll

    relevant (Evans and Kopf, 1998); (i i) represents a singl

    FIG. 3. D iagram of som e possible components of fertilization-induced calcium signaling, show ing receptor-m ediated and sperm-facto

    ba s ed pa t hw a ys a s w ell a s cont ribut ions from int erna l ca lcium relea se a nd ext erna l ca lcium infl ux. N ot a l l cellula r s t ruct ures a n

    m olecules involved in th e fertilization-induced calcium response are depicted, nor does the diagram n ecessarily fi t th e data obtained from

    som e species (e.g.,U rechis). Whether calcium is released from a single or mult iple stores w ithin the oocy te/egg has not been establishe

    for a l l a nima ls . Simila rly, i t rema ins t o be det ermined if a n increa s e in P L C a ct ivit y modula t ed by t yros ine kina ses or ot her regula t or

    necessarily requires receptor stimulation or if it may also occur in response to soluble sperm factors. Moreover, receptor-mediated an

    sperm-factor-based pathw ays need not represent m utually exclusive alternativ es, but instead th ese tw o signaling pathw ays could functio

    in concert during fertilization . cADP r, cyclic AD P-ribose; C aMKII, multifunct ional calcium /calm odulin-dependent kina se, type II ; cG MP

    cyclic guanosine m onophosphat e; CIF, calcium infl ux factor; ER, endoplasmic reticulum ; IP 3, inositol 1,4,5-trisphosphate; IP 3Rs, inosito

    1,4,5-trisphosphate calcium channel receptors; IP 4, inos it ol 1,3,4,5-t et ra kisphospha t e; NA A DP , nicot inic a cida denine dinucleot id

    phosphate; NAADPR, nicotinic acidadenine dinucleotide phosphate calcium channel receptor; PLC, phospholipase C; RyRs, ryanodin

    calcium channel receptors.

    16Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    12/20

    (Sw ann et al., 1998) or mult iple molecule(s) w ithin any onesperm (Wilding and Dale, 1998; Perry et al ., 1999); (iii) isw ell conserved a cross phyla (Wilding a nd D ale, 1997); (iv)

    directly affects IP 3 levels (Jones et al ., 1998a) or alters IP 3Rfunc t i oni ng b y a l t er na t i v e m ec ha ni s m s (G a l i one et a l .,

    1997); a nd (v) acts in isolation of (Sw ann et al., 1998), or inc onjunc t i on w i t h, r ec ept or -m edi a t ed pa t hw a y s (Tesa r i k,

    1998) (Fig. 3).

    FUTURE DIRECTIONS

    The current dat abase indicates that both protostomes and

    deuterostomes exhibit ferti l ization-induced calcium w aves,

    IP 3-m e d ia t e d c a lc iu m s ig na l in g, a n d t h e a b il it y t o u s e

    int ernal and/or external sources of calcium during fertiliza-

    tion. Such fi ndings fail to support a clear-cut distinction in

    c a lc iu m s ig n al in g m o d es f or t h e se t w o m a jo r g r ou ps o f

    a n i m a l s a n d i n st e a d s ug ge st t h a t f u nd a m e n t a ll y s im i l a r

    pa t t erns of fer t i li za t i on-i nduced c a l ci um s i gna l i ng exi s t

    throughout the animal kingdom, as has been concluded byThomas e t a l . (1998). How ever, in spite of such generaltrends, specifi c mechanisms of modulating calcium levels

    d u ri n g f er t il iz a t i on m a y t u rn o u t t o v a ry s ig ni fi c a n t ly

    w ith in certain species th at eit her have been exam ined [e.g.,

    U rechi s (S t epha no a nd G oul d, 1 997 )] or ha v e y et t o b ea n a l y ze d. Th u s, f or a m o r e c om p l et e u n d er st a n d in g o f

    ferti l ization-induced calcium signaling, additional analyses

    a r e needed, pa rt i c ul a rl y a m ong nonm a m m a l i a n s pec ies

    w hi c h c a n di ffer fr om m a m m a l s w i t h r ega rd t o (i ) m ei ot i c

    arrest points reached before fertilization; (ii) orientation of

    t h e s pe rm t o t h e o o le m m a ; (i ii ) t y p es o f e xt r a ce ll u la r

    investment s around the oocyt e; and (iv) internal vs externalmodes of insemination. These supplemental studies should

    ext end b ey ond fer t i li za t i on b ot h t o ensur e t ha t develop-

    ment proceeds normally (Stricker and Whitaker, 1999) and

    to determine i f there are ontogenetic changes in either the

    s pa t i ot em por a l pa t t er ns of t he c a l ci um r es pons e or t he

    embryos sensitivities to various calcium-releasing agonists

    (Sousa et al ., 1996a; Stricker, 1996a). In addition, furthera na l y s es c om b i ni ng c a l c i um -i m a gi ng m et hods wi t h el ec -

    trophysiological techniques such as previously performed

    on several animal groups (Miyazaki et al.,1986; McD ougallet a l . , 1993; Stephano and G ould, 1997) should help toelucidate various regulatory m echanisms, particularly w ith

    respect to the modes an d roles of external calcium infl ux

    during ferti l ization.

    Although in some species supplemental signals such as

    pH c ha nges m a y b e r eq ui r ed i n a ddi t i on t o c a l c i um t r a n-

    sients (G ould a nd St ephano, 1989), an int racellular calcium

    fl ux nev er t heless r em a i ns a n ess ent i a l c om ponent of t he

    ferti l ization response in al l animals examined. Combined

    w i t h c ont i nuing i nv est i ga t i ons i nt o t he ups t rea m m odul a -

    t or s a nd downs t r ea m t a r get s of fer t i li za t i on-i nduced c a l -

    c i um t r a ns ient s , furt her s t udi es s uc h a s out l i ned i n t hi s

    review should eventually provide an integrated view of how

    calcium signals allow fertilized oocytes and eggs to develop

    nor m a l l y .

    ACKNOWLEDGMENTS

    D rs. R . Cret on, R . D eguchi, R . Fis sore, M . G ould, K. J ones , C

    L a mbert , L . L inds a y, A . M cDouga ll , S. Shen, C. Simerly, a nd K

    Sw ann provided extremely h elpful feedback but are neither respon

    sible for inaccuracies nor necessarily in agreement with the view

    t ha t a re expres s ed in t his review . St udies on Micrura a laskens

    w ere conduct ed a t Frida y Ha rbor L a bora t ories , us ing la bora t or

    space generously provided by t he director, Dr. A. O. D . Willow s.

    REFERENCES

    Abbott , A. L., Fissore, R. A., and D ucibell a, T. (1999). Incom petenc

    of preovulatory mouse oocytes to undergo cortical granule exo

    cyt os is follow ing induced ca lcium os cil la t ions . D ev . B i o l . 207

    3848.

    Abdelmajid, H., Leclerc-David, C. , Moreau, M., G uerrier, P. , an

    Ryaz anov, A. (1993). Release from met aphase I block in inverte

    b r at e o o c y t e s: P o s si b l e i n v o l v em e n t o f C a 2/c a l m o d u l i n

    dependent kinase III. In t . J. D ev. B io l . 37, 279290.

    A bra ha m, V. C. , G upt a , S. , a nd Fluck, R . A . (1993). Oopla smis egrega t ion in t he m eda ka (Oryzias lat ipes ) egg. B i o l . B u l l . 184

    115124.

    A guina ldo, A . M . A ., a nd L a ke, J. A . (1998). Evolut ion of t h

    mult icellula r a nima ls . A m . Z o ol . 38, 878887.

    Albrieux, M., Lee, H. C ., and Villaz, M . (1998). C alcium signalin

    by cyclic A D P -ribos e, N A AD P , a nd inos it ol t r is phos pha t e i

    involved in distinct functions in ascidian oocytes. J. Biol. C hem

    272, 1456614574.

    Albrieux, M ., Sardet, C . , and Villaz, M. (1997). The tw o in tracellu

    l a r C a 2 release chan nels, ryanodine receptor and inositol 1,4,5

    trisphosphate receptor, play different roles during fertilization i

    ascidians. Dev. B io l . 189, 174185.

    A ll b ri t t o n , N . L ., M e y er , T. , a n d S t ry e r, L . (19 92 ). R a n ge o

    messenger action of calcium ion and inositol 1,4,5-trisphosphate

    Science258, 18121815.

    Allen, R. D . (1953). Fertilizat ion a nd a rtifi cial activa tion in t he eg

    of the surf-clam, Spisula sol id i ssim a. B io l . Bul l . 105, 213239.

    Anstrom, J ., and Summ ers, R . G . (1981). The role of extracellula

    C a 2 in t he a ct iva t ion of Pectinariaoocytes.Dev. Grow th. Di f fe

    23, 415420.

    Arnoult , C . , Albrieux, M., Antoine, A. F. , G runw ald, D ., Marty , I

    a nd V illa z , M . (1997). A rya nodine s ensit ive ca lcium s t ore i

    ascidian eggs monitored by whole-cell patch clamp recordings

    C e l l C a l c i u m 21, 93101.

    A ust in, C. R . (1965). Fert i l iza t ion. P rent ice H a ll , Englew oo

    C lif fs , N J.

    Ayabe, T., Kopf, G . S. , and Schultz, R. M . (1995). R egulation omou se egg activa tion: P resence of ryanodine receptors and effect

    of microinjected ryanodine and cyclic ADP ribose on uninsemi

    na t ed a nd ins emina t ed eggs .D evelopm ent 121, 22332244.

    B a it inger , C. , A ldert on, J . , P oenie, M . , Schulma n, H. , a nd St ein

    hardt, R. A. (1990). M ultifunct ional C a 2/calm odulin -dependen

    prot ein kina s e is neces s a ry for nuclea r envelope brea kdow n

    J. Cell Biol. 111, 17631773.

    B a rrit t , G . J. (1998). D oes a decrea s e in s ubpla s ma lemm a l C a 2

    expla in how s t ore-opera t ed C a 2 cha nnels a re opened? Ce

    C a l c i u m 23, 6575.

    BenYosef, D., and Shalgi, R. (1998). Early ionic events in activatio

    of t he ma mma lia n egg. Rev. Reprod. 3, 96103.

    Berridge, M . J . (1991). C yt oplasmic calcium oscillationsA tw

    pool model. C e l l C a l c i u m 12, 6372.

    168 Stephen A . Str ick e

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    13/20

    Berridge, M. J. (1993). Inositol t risphosphate an d calci um signall ing.

    N a t u r e 361, 315325.

    Bezprozvann y, I . , and Ehrlich, B. E. (1995). The inositol 1,4,5-

    trisphosphate (InsP 3) receptor. J. M em br. B io l . 145, 205216.

    Bird, G . S. J . , and Putney, J . W. (1996). Effect of inositol 1,3,4,5-

    tetrakisphosphate on inositol trisphosphate-activated Ca 2 sig-

    n a li n g i n m o u se l a cr im a l a c in a r c el ls . J. B i o l . C h em . 271,

    67666770.

    B loom, T. L . , Szut s , E. Z . , a nd Eckberg, W. R . (1988). I nos it ol

    trisphosphate, inositol phospholipid metabolism, and germinal

    vesicle breakdown in surf clam oocy tes.D ev. B io l .129, 532540.

    Brown e, C. L. , Creton, R., Karplus, E., Moh ler, P. J ., Pala zzo, R. E. ,

    and Miller, A. L. (1996). Analysis of the calcium transient at NEB

    during the fi rst cell cycle in dividin g sea urchin eggs.B i o l . B u l l .

    191, 516.

    Brow nlee, C ., and D ale, B. (1990). Tem poral and spatia l correlati on

    of fert i l iza t ion current , ca lcium w a ves a nd cyt opla s mic cont ra c-

    tion in eggs of C i o n a i n t e st i n a l i s. Proc. Roy. Soc. London Ser. B

    239, 321328.

    Buck, W. R., Ra kow , T. L., and Shen , S. S. (1992). Syn ergistic release

    of calcium in sea urchin eggs by caffeine and ryanodin e.Exp. Cell

    Res.202, 5966.Busa, W. B., Ferguson, J . E. , Joseph, S. K., Williamson, J . R. , and

    Nuccitelli, R. (1985). Activation of frog (Xenopus laevis) eggs by

    inos it ol t r is phos pha t e. I . C ha ra ct eriza t ion of C a 2 release from

    intracellular st ores. J. Cell Biol. 101, 677682.

    Busa, W. B., and Nuccitelli, R. (1985). An elevated free cytosolic

    C a 2 w a v e f o l l ow s f er t il i z at i o n i n e gg s o f t h e f ro g, Xenopus

    laevis. J. Cell Biol. 100, 13251329.

    C arroll, D . J., Albay, D . T., Terasaki, M ., Jaffe, L. A., and Foltz , K. R.

    (1999). I dent ifi ca t i on of P L C -dependent a nd -independent

    event s during fert i l iza t ion of s ea urchin eggs . D e v . B i o l . 206,

    232247.

    C a r ro ll , D . J. , R a m a r ao , C . S ., M e hl m a n n, L. M . , R o c h e, S .,

    Terasaki, M., and Jaffe, L. A. (1997). Calcium release at fertiliza-tion in starfi sh eggs is mediated by phospholipase C .J. Cell Bi ol.

    138, 13031311.

    C arroll, J. , and Sw ann, K. (1992). Spontaneous cytosolic calcium

    oscillations driven by in ositol trisphosphat e occur during i n v i t r o

    ma t ura t ion of mous e oocyt es .J. Biol. C hem . 267, 1119611201.

    C arroll, J. , Sw ann, K., Whitt ingham , D ., and Whita ker, M. (1994).

    Spatiotem poral dynam ics of intracellular [C a 2]i oscillations dur-

    ing t he grow t h a nd m eiot ic ma t ura t ion of mous e oocyt es.D evel-

    opment 120, 35073517.

    C heek, T. R . , M cG uinness , O. M . , V incent , C . , M oret on, R . B . ,

    B erridge, M . J. , a nd Johns on, M . H. (1993). Fert i l is a t ion a nd

    t him eros a l s t imula t e s im ila r ca lcium s piking pa t t erns in m ous e

    oocyt es but by dif ferent mecha nis ms . D evelopm ent 119, 179

    189.

    C hiba , K. , Ka do, R . T. , a nd Ja f fe, L . A . (1990). D evelopment of

    ca lcium relea se m echa nisms during s t a rfi s h oocyt e ma t ura t ion.

    Dev. B io l . 140, 300306.

    Chini, E. N. , L ia ng, M . Y. , a nd Dous a , T. P . (1998). Dif ferent ia l

    e f fe c t o f p H o n c y c l i c -A D P - ri b o se a n d n i c o t i n a t e a d e n i n e

    dinucleotide phosphate-induced C a 2 release system s. B iochem .

    J. 335, 499504.

    C lapper, D . L. , Walseth, T. F. , D argie, P. J ., an d Lee, H . C . (1987).

    P yridine nucleot ide met a bolit es s t imula t e ca lcium relea se from

    s ea urchin egg micros omes desens it ized t o inos it ol t r is phos -

    phate. J. Biol. Chem. 262, 95619568.

    C onley, E. C . , and Bramm er, W. J. (1998). The Ion C hannel Facts

    Book. Voltage-G ated C hannels. Academic P ress, San D iego.

    Creton, R., and Jaffe, L. F. (1995). Role of calcium infl ux during th

    latent period in sea urchin fertilization. D ev . G r o w t h . D i f f er .37

    703709.

    C reton, R., Speksnijder, J. E., and Jaffe, L. F. (1998). Pa tt erns of fre

    calcium in zebrafi sh embryos. J. Cell Sci. 111, 16131622.

    Csutora, P. , Zhengchang, S. , Kim, H. Y., Burgim, A., Cunningham

    K. W., Nuc cit elli, R., Keizer, J. E., Ha nley , M. R., and Blal ock, J. E

    (1999). Calcium infl ux factor is synthesized by yeast and mam

    ma lia n cells deplet ed of orga nella r ca lcium s t ores . Proc. NatA cad. Sci. U SA 96, 121126.

    Dale, B. (1988). Primary and secondary messengers in the activatio

    of ascidian eggs. Exp. Cell Res. 177, 205211.

    D ale, B. , and D eFelice, L. (1990). Soluble sperm factors, electrica

    events and egg activa tion. I n Mechanism of Fertilization: Plan t

    to Humans (B. Dale, Ed.), pp. 476487. Springer Verlag, Berlin

    D eguchi, R., and Morisaw a, M . (1997). Spatial patterns of in crease

    in int ra cellula r ca lcium a t fert i l iza t ion in oocyt es of t he m a rin

    bivalve M yt i lus edul i s. J. Reprod. D ev. 43(Suppl.), 183184.

    D eguchi, R., and O sanai, K. (1994a). Meiosis reinitiat ion from th

    fi rst prophase is dependent on the levels of int racellular Ca 2 a n

    p H i n o o cy t e s o f t h e b i v a l v es M a ct r a c h i n en si s a n d L i m a r i

    hakodatensis . D ev. B i o l . 166, 587599.Deguchi, R., and Osanai, K. (1994b). Repetitive intracellular Ca 2

    increases at fertilization and the role of Ca 2 in meiosis reinitia

    tion from t he fi rst metaphase in oocyt es of ma rine bivalves.De

    B i o l .163, 162174.

    D eguchi, R . , a nd Os a na i , K. (1995). Serot onin-induced meios i

    reinitiation from t he fi rst prophase and from the fi rst m etaphas

    i n o o cy t e s o f t h e m a r i n e b i v al v e H i at ell a flacci da : Respectiv

    cha nges in int ra cellula r Ca 2 a nd pH. Dev. B io l . 171, 483496

    D eguchi, R . , Os a na i , K. , a nd M orisa w a , M . (1996). Ext ra cellula

    C a 2 e n t r y a n d C a 2 release from inositol 1,4,5-trisphosphate

    sensitive stores function at fertilization in oocytes of the marin

    bivalve Myt i lus edul is . Development 122, 36513660.

    D e K o ni n c k, P . , a n d S ch u l m a n , H . (1 99 8). S en s it i v i t y o f C a M

    k in a se II t o t h e f re qu en c y o f C a 2 oscillations. Science 279227230.

    D e n g , M . Q . , a n d Fa n , B . Q . (1 99 6). I nt r a ce ll u la r C a 2 durin

    f er t i li z a t io n a n d a r t ifi c i a l a c t i v at i o n i n m o u s e o o cy t e s. A c t

    Pharm . S in ica17, 357360.

    Deng, M . Q. , Hua ng, X. Y. , Ta ng, T. S. , a nd Sun, F. Z . (1998)

    S po n t a n e o us a n d f er t i l iz a t i o n -i n d u c ed C a 2 o s c il l a t i o n s i

    mous e imma t ure germina l ves icle s t a ge oocyt es . Biol. Reprod

    58, 807813.

    D e Young, G . W., and Keizer, J . (1992). A single-pool in osito

    1,4,5-trisphosphate receptor-based model for agonist-stimulate

    os cil la t ions in Ca 2 concentration. Proc. Natl. Acad. Sci. U SA

    89, 98959899.

    D ow d, D . R. (1995). C alcium regulation of apoptosis.I n Ca lciumRegulat ion of C ellular Funct ion (A. R. Mean s, Ed.), pp. 255280

    Raven Press, New York.

    D ube, F. , a nd G uerrier, P. (1982). Activation of Barnea candid

    (M ollus ca , P elecypoda ) oocyt es by s perm or KCl, but not b

    N H 4Cl, requires a calcium infl ux. Dev. B io l . 92, 408417.

    D upont, G . (1998). Link betw een fertilizat ion-induced C a 2 osci

    lations an d relief from m etaphase II arrest in ma m ma lian eggs: A

    model based on calmodulin-dependent kinase II activation. Bio

    phys. Chem . 72, 153167.

    Dupont, G . , McG uinness, O. M., Johnson, M. H., Berridge, M. J

    a nd B orgese, F. (1996). P hos pholipa s e C in mous e oocyt e

    C ha ra ct eriza t ion of a n d isoforms and t heir possible involve

    ment in sperm-induced calcium spiking. Bioch em . J. 316, 583

    591.

    16Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    14/20

    Eckberg, W. R., an d Anderson, W. A. (1995). C yt oskeleton , cellula r

    s igna ls , a nd cyt opla smic loca liza t ion in Chaetopterus embryos.

    Curr . Top. D ev. B io l . 31, 1995.

    Eckberg, W. R., and C arroll, A. G . (1982). Sequestered calcium

    t r i gg er s o o cy t e m a t u r a t i on i n Chaetopterus. C el l D i f fer . 11,

    155160.

    Eckberg, W. R., and Miller, A. L. (1995). Propagated and nonpropa-

    ga t ed ca lcium t ra ns ient s during egg a ct iva t ion in t he a nnelid,

    Chaetopterus. Dev. Biol. 172, 654664.Eckberg, W. R., Miller, A. L., Short, L. G ., and Jaffe, L. F. (1993).

    C a lcium puls es during t he a ct iva t ion of a prot os t ome egg. B io l .

    B u l l .185, 289290.

    Eisen, A., Kiehart , D . P., Wieland, S. J., and R eyn olds, G . T. (1984).

    Tempora l s equence a nd s pa t ia l dis t r ibut ion of ea rly event s of

    fertilization in single sea urchin eggs.J. Cell Biol .99, 16471654.

    Eisen, A., and Reynolds, G . T. (1984). Calcium transients during

    ea rly development in s ingle s t a rfi s h (Asterias forbesi) oocytes.

    J. Cell Biol. 99, 18781882.

    Epel, D . (1990). The initiat ion of development at fertilization. Cel l

    Di f fer . Dev. 29, 112.

    Eva ns, J. P . , a nd Kopf, G . S. (1998). M olecula r mecha nis ms of

    spermegg interactions and egg activation. Andrologia 30, 297307.

    Ferguson, J . E. , Han, J . K., Kao, J . P. Y., and Nuccitelli, R. (1991).

    The effects of inositol trisphosphates and inositol tetrakisphos-

    ph a t e o n C a 2 relea s e a nd Cl current pa t t ern in t he Xenopus

    laevis oocyt e. Exp. Cell Res. 192, 352365.

    Fissore, R. A., Dobrinsky, J . R. , Balise, J . J ., D uby, R. T., and Robl,

    J. M . (1992). P a t t erns of int ra cellula r C a 2 concent ra t ions in

    fertilized bovine eggs. Biol. Reprod. 47, 960969.

    Fis sore, R . A ., G ordo, A . C . , a nd Wu, H. (1998). A ct iva t ion of

    development in m a mm a ls : I s t here a role for a s perm cyt os olic

    factor? Theriogenology 49, 4352.

    Fissore, R. A., Longo, F. J., Anderson, E., Parys, J. B., and D ucibella ,

    T. (1999). Differential distribution of inositol trisphosphate re-

    ceptor isoforms in mouse oocytes. Biol. Reprod. 60, 4957.Fissore, R. A., Pinto-Correia, C. , and Robl, J . M. (1995). Inositol

    trisphosphate-induced calcium release in the generation of cal-

    cium oscillations in bovine eggs. Biol. Reprod. 53, 766774.

    Fis sore, R . A ., a nd R obl, J . M . (1994). M echa nis m of ca lcium

    oscillations in fertilized rabbit eggs. Dev. B io l . 166, 634642.

    Fluck, R. A., M iller, A. L. , and Jaffe, L. F. (1991). Slow calcium

    w a ves a ccompa ny cy t okinesis in meda ka fi s h eggs . J. Cell Biol.

    115, 12591265.

    Fluck, R. A., Miller, A., and Jaffe, L. F. (1992). High calcium zones

    at the poles of developing medaka eggs. B i o l . B u l l . 183, 7077.

    Foltz, K. R. (1995). Sperm-binding proteins. I n t . R e v . C y t o l . 163,

    249303.

    Foltz, K. R., and Shilling, F. M. (1993). Receptor-mediated signalt ra ns duct ion a nd egg a ct iva t ion. Zygote1, 276279.

    Fong, P. P. , D eguchi, R., and Kyozuka, K. (1997). C haracterization

    of serotonin receptor mediating int racellular calcium increase in

    meiosis-reinitiated oocytes of the bivalve Rudi t apes phi l ippina-

    ru m from central Japan. J. Exp. Zool. 279, 89101.

    Fontanilla, R. A., and N uccitelli, R. (1998). C haracterization of th e

    s perm-induced ca lcium w a ve in Xenopus eggs us ing confoca l

    microscopy. Bi ophy s. J. 75, 20792087.

    Freema n, G ., and Ri dgw ay , E. B. (1987). Endogenous phot oproteins,

    calcium channels and calcium transients during metamorphosis

    in hydrozoa ns. Rouxs Arch. Dev. B io l . 196, 3050.

    Freema n, G ., and Rid gw ay, E. B. (1991). Endogenous phot oproteins

    as calcium indicators in hydrozoan eggs and larvae. Zool. Sci. 8,

    225233.

    Freeman, G . , an d Ridgw ay, E. B. (1993). The role of intracellula

    ca lcium a nd pH during fert i l iza t ion a nd egg a ct iva t ion in t h

    hydrozoan P h i al i d i u m . D e v . Bi o l . 156, 176190.

    Fujiw ara, A., Taguchi, K., an d Yasuma su, I . (1990). Fertilizatio

    mem brane form ation in sea urchin eggs induced by drugs know

    t o ca us e Ca 2 release from isolated sarcoplasmic reticulum. De

    G r o w t h . D i f f e r. 32, 303314.

    Fujiw ara, T., N akada, K., Shirakaw a, H ., and M iyazak i, S. (1993

    Development of inositol trisphosphate-induced calcium releas

    mecha nis m during ma t ura t ion of ha ms t er oocyt es . D e v . B i o

    156, 6979.

    G a lione, A ., Jones, K. T. , L a i , F . A ., a nd Sw a nn , K. (1997). A

    cytosolic sperm protein factor mobilizes Ca 2 from intracellula

    s t ores by a ct iva t ing mult iple Ca 2 release m echanisms indepen

    dently of low -molecular-w eight m essengers. J. Biol. C hem . 272

    2890128905.

    G alione, A., Lee, H. C., and Busa, W. B. (1991). Ca 2-induced C a 2

    relea s e in s ea urchin egg homogena t es : M odula t ion by cycli

    ADP-ribose. Science253, 11431146.

    G alione, A., McDougall, A., Busa, W. B., Willmot, N., G illot, I., an

    Wh i t a k e r, M . (1 99 3). R e d u n da n t m e c h a n i s m s o f c a l c i u m

    induced calcium release underlie calcium w aves during fertilization of sea urchin eggs. Science261, 348352.

    G alione, A., and Summerhill, R. (1996). Regulation of ryanodin

    receptors by cyclic ADP-ribose. I n Ryan odine Receptors (V

    Sorrentino, Ed.), pp. 5170. CRC Press, Boca Raton.

    G a ll ica no, G . I ., Schw a rz , S. M . , M cG a ughey, R . W. , a nd Ca pco

    D . G . (1993). Protein kinase C , a pivota l regulator of ha mst er eg

    activa tion, function s after elevation of intracellular free calcium

    Dev. B io l . 156, 94106.

    G eilenkirchen, W. L. M., Jansen, J . , C oosen, R., an d v an Wijk, R

    (1977). C hanges in t he content of cyclic AM P an d cyclic G MP i

    eggs ofM actra sol id i ssim aduring the second cleavage cycle. Ce

    Biol . In t . Rep. 1, 419426.

    G enazzani, A. A., a nd G alione, A. (1997). A C a2

    release mechanis m ga t ed by t he novel pyridine nucleot ide, NA A DP . Trend

    Pharm . Sci. 18, 108110.

    G ilbert , S. F. (1994). D evelopment al Biology, 4th ed. Sina ue

    Sunderland.

    G i lkey, J. C. (1981). M echa nis ms of fert i l iza t ion in fi s hes. A m

    Z o o l . 21, 359375.

    G ilkey, J. C ., Jaffe, L. F., Ridgw ay , E. B., and Reyn olds, G . T. (1978

    A free ca lcium w a ve t ra vers es t he a ct iva t ing egg of t he m eda k

    O ryzias lat ipes. J. Cell Biol . 76, 448466.

    G illot , I . , and Whitaker, M . (1993). Ima ging calcium w aves in egg

    a nd em bryos. J. Exp. Biol. 184, 213219.

    G la hn, D . , M a rk, S. D . , B ehr, R . K. , a nd Nuccit ell i , R . (1998

    Tyrosine kinase inh ibitors block sperm-induced egg activat ion i

    Xenopus laevis. Dev. Biol. 205, 171180.

    G obet, I . , Durocher, Y., Leclerc, C. , Moreau, M., and G uerrier, P

    (1994). Reception and transduction of the serotonin signal re

    sponsible for meiosis reinitiation in oocyt es of the Japanese clam

    Ruditapes phi l ippinarum. Dev. B io l . 164, 540549.

    G obet, I . , Lippai, M., Tomkow iak, M ., Leclerc, C. , M oreau, M., an

    G uerrier, P. (1995). 4-Aminopyridine acts as a w eak ba se and

    ca lcium mobiliz ing a gent in t r iggering m eiosis reinit ia t ion a n

    activation in the Japanese clam Rud i t apes phi l ippinarum . Int .

    Dev. B io l . 39, 485491.

    G oudeau, H., and G oudeau, M. (1998). Depletion of intracellula

    C a 2 s t o re s, m e d i a t ed b y M g 2-stim ulated InsP 3 l ibera t ion o

    thapsigargin, induces capacitative Ca 2 infl ux in prawn oocytes

    Dev. B io l . 193, 225238.

    170 Stephen A . Str ick e

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    15/20

    G oudeau, M., and G oudeau, H. (1993). In the egg of the ascidian

    Ph a l l u si a m a m m i l l a t a , remova l of ext erna l Ca 2 modifi es t he

    fert i l iza t ion pot ent ia l , induces polys permy, a nd blocks t he re-

    s umpt ion of meios is. Dev. B io l . 160, 165177.

    G oudea u, M . , a nd G oudea u, H. (1996). Ext erna l M g 2 triggers

    oscillations an d a subsequent sustain ed level of intracellular free

    C a 2, correla t ed w it h cha nges in m embra ne conduct a nce in t h e

    oocyt e of t he pra w n Palaem on serratu s. D ev. Biol .177, 178189.

    G ould, M ., and Stephano, J . L. (1989). H ow do sperm a ctivat e eggs

    in U rechis (as w ell as in polych aetes and m olluscs)? I n Mecha-

    nisms of Egg Activation (R. Nuccitelli, G . N. Cherr, and W. H.

    Clark, Eds.), pp. 201214. Plenum Press, New York.

    G ould, M . C ., and Stephano, J . L. (1996). Fertilizat ion and parthe-

    nogenesis in U rechi s caupo (Echiura). I nv. Repr. D ev.30, 1722.

    G rum ett o, L., Wildin g, M., D e Simon e, M. L., Tosti, E., G alion e, A.,

    and Dale, B. (1997). Nitric oxide gates fertilization channels in

    a s cidia n oocyt es t hroughout nicot ina mide nucleot ide met a bo-

    lis m. B iochem . Biophys. Res. Com m un. 239, 723728.

    G u, X. , a nd Spit zer , N . C. (1995). D is t inct a s pect s of neurona l

    differentiation encoded by frequency of spontaneous Ca 2 t ra n-

    sients. N a t u re 375, 784787.

    G uerrier, P. , Durocher, Y., G obet, I . , Leclerc, L. , and Moreau, M.(1996). Reception and transduction of the serotonin signal re-

    sponsible for meiosis reinitiation in bivalves. Inv. Repr. Dev. 30,

    3945.

    G uerrier, P., Leclerc-D avid, C ., and M oreau, M . (1993). Evidence for

    t he involvement of int erna l ca lcium s t ores during s erot onin-

    induced meios is reinit ia t ion in oocyt es of t he biva lve mollus c

    R u d i t a p es p h i l l i p i n a ru m . D ev . B i o l . 159, 474484.

    Ha fner, M . , P et zelt , C. , N obiling, R . , P a w ley, J. B . , Kra mp, D . , a nd

    Schatt en, G . (1988). Wave of free calcium at fertilization in t he

    s ea urchin egg vis ua lized w it h fura -2. C e l l M o t i l . C y t o s k e l . 9,

    271277.

    Ham aguchi, Y., and H am aguchi, M. S. (1990). Simult aneous inves-

    t iga t ion of int ra cellula r C a2

    increase and morphological eventsupon fertilization in the sand dollar egg. Cel l . Struct . Funct. 15,

    159162.

    Han , J . K., a nd N uccitelli, R. (1990). Inositol 1,4,5-trisphosphate-

    induced calcium release in the organelle layers of the stratifi ed,

    int a ct egg of Xenopus laevis. J. Cell Biol. 110, 11031110.

    Harris, P. J. (1994). Caffeine-induced calcium release in sea urchin

    eggs and the effect of continuous versus pulsed applications on

    t he m it ot ic a ppa ra t us . Dev. B io l . 161, 370378.

    Hartzell, H. C., Machacha, K., and Hirayama, Y. (1997). Effects of

    adenophostin-A and inositol-1,4,5-trisphosphate on Cl currents

    in Xenopus laevisoocytes. M o l . Ph a r m . 51, 683692.

    Harvey, E. B. (1939). D evelopm ent of half-eggs of Chaetopterus

    pergamentaceus w it h s pecia l reference t o pa rt henogenet ic m e-

    rogony. B i o l . B u l l . 76, 384404.

    He, C . L . , D a mia ni, P . , P a rys , J . B . , a nd Fis sore, R . A . (1997).

    C a lcium, ca lcium relea se recept ors , a nd meiot ic res umpt ion in

    bovine oocytes. Biol. Reprod. 57, 12451255.

    Herbert, M ., M urdoch, A. P. , and G illespie, J . I . (1995). The thiol

    reagent, th imerosal, induces intracellular calcium oscillation s in

    ma t ure huma n oocyt es . M o l . H u m . R ep r od . 10, 21832186.

    Hertzler, P. L. , and C lark, W. H. (1992). C leavage and gastrulation

    in t he s hrimp Sicyonia ingentis: Invagination is accompanied by

    oriented cell division. D evelopm ent 116, 127140.

    Hill, T. D., Berggren, P.-O., and Boynton, A. L. (1987). Heparin

    inhibit s inos it ol t r isphospha t e-induced ca lcium relea se from

    permeabilized rat liv er cells.B iochem . Biophys. Res. Com m un.

    149, 897901.

    Hinega rdner, R . (1975). Ca re a nd ha ndling of s ea urchin egg

    embryos a nd a dult s (principa lly Nort h A merica n s pecies ). I

    The Sea U rchin Embryo. Biochemistry and M orphogenesis (G

    C ziha k, Ed.), pp. 1025. Springer Verlag, Berlin.

    Hiram oto, Y., Yoshim oto, Y., an d Iw am atsu, T. (1989). Increase i

    intracellular calcium ion s upon fertilization in anim al eggs.A c t

    H i st o c h em . C y t o c h em . 22, 153156.

    Igusa, Y., and Miyazaki, S. (1983). Effects of altered extracellula

    a nd int ra cellula r ca lcium concent ra t ion on t he hyperpola riz in

    responses of the ham ster egg.J. Physiol. 340, 611632.

    Ikegami, S. , Okada, T. S. , and Koide, S. S. (1976). On the role o

    c a l c iu m i o n s i n o o c y t e m a t u r a t i on i n t h e p ol y c h a et

    Chaetopterus pergamentaceus. D ev. Grow th . D i f fer .18, 3343

    I w a m a t s u, T. (1992). Egg a ct iv a t ion (in J a pa nes e). F i sh B i o

    J. M edaka 4, 110. [For English version, see ht tp://biol1.bio

    nagoy a-u.ac.jp:8000/Iw am at suT92.htm l]

    Iwa ma tsu, T. (1997). Abbreviation of the second m eiotic divisio

    by precocious fert i l iza t ion in fi s h oocyt es . J. Exp. Z ool . 277

    450459.

    Iwa ma tsu, T., Kikuyam a, M ., and H iramot o, Y. (1992). Fertilizatio

    rea ct ion w it hout cha nges in int ra cellula r Ca 2 in medaka eggs

    An experiment w ith acetone-treated eggs. D e v . G r o w t h D i f f e34, 709717.

    Iwa m atsu, T., and Oht a, T. (1978). Electron microscopic observa

    tion on sperm penetration and pronuclear formation in the fi s

    egg. J. Exp. Zool. 205, 157180.

    Iw am at su, T., Oht a, T., Osh im a, E., and Sugiura, T. (1985). Requi re

    m e n t o f e xt r a ce ll u la r c a l ci u m i o n s f o r t h e e a rl y f er t i li z a t i o

    event s in t he m eda ka egg. D ev . G r o w t h . D i f f er . 27, 751762.

    Iwa ma tsu, T., On itake, K., Yoshim oto, Y., and Hiram oto, Y. (1991

    Time sequence of early events in fertilization in t he medaka egg

    D e v . G r ow t h D i f f er . 33, 479490.

    I w a ma t s u, T. , Yos himot o, Y. , a nd Hira mot o, Y. (1988). M echa

    nis ms of Ca 2 release in medaka eggs microinjected w ith in osito

    1,4,5-trisphosphate and Ca2

    . Dev. B io l . 129, 191197.Jaffe, L. A. (1990). First m essengers at fert iliza tio n. J. Reprod. Fert i

    Suppl. 42, 107116.

    Jaffe, L. F. (1983). Sources of calcium in egg activation: A review

    and hypothesis. Dev. B io l . 99, 265276.

    Jaffe, L. F. (1985). The role of cal cium explosions, w aves a nd pulse

    in activ ating eggs.I n Biology of Fertilization (C . B. Metz and A

    Monroy, Eds.), pp. 127165. Academic Press, New York.

    Jaffe, L. F. (1990). The roles of int ram em brane ca lcium in polariz in

    a nd a ct iva t ing eggs . I n M echa nis m of Fert i l iza t ion: P la nt s t

    Humans (B. Dale, Ed.), pp. 389417. Springer Verlag, Berlin.

    Ja f fe, L . F. (1991). The pa t h of ca lcium in cyt os olic ca lcium

    oscillations: A unifying hypothesis. Proc. Natl. Acad. Sci. U SA

    88, 98839887.

    Jaffe, L. F. (1995). C alcium w aves an d development. I n Ca lcium

    Wa ves, G ra dient s a nd Os cil la t ions (R . B ock a nd K. A ckril

    Eds.), pp. 4 17. Wiley, C hich ester.

    Johnson, J., Bierle, B. M., G allica no, G . I., and C apco, D . G . (1998

    C alcium /calm odulin dependent protein kinase II and calmodu

    lin: Regulators of the meiotic spindle in mouse eggs. D ev . B i o

    204, 464477.

    Johns t on, R . N. , a nd P a ul, M . (1977). Ca lcium infl ux follow in

    fertilization of U rechis caupo eggs. Dev. B io l . 57, 364374.

    Jone s, K. T. (1998). C a 2 oscillations in the activa tion of the egg an

    development of t he embryo in ma mma ls . In t . J. D ev. B io l . 42

    110.

    Jones, K. T., Carroll, J . , Merriman, J . A., Whittingham, D. G . , an

    Kono, T. (1995a). Repetitiv e sperm-induced C a 2 t ra ns ient s i

    17Fert i l i zat i on-Induced C a2 Signals

    Copyright 1999 by Academic Press. All rights of reproduction in a ny form reserved.

  • 5/25/2018 1-s2.0-S0012160699993405-main

    16/20

    m o u s e o o cy t e s a r e c e l l c y c l e d ep en d en t . Development 121,

    32593266.

    Jones, K. T., C arroll, J ., an d Whittin gham, D . G . (1995b). Ionom y-

    cin, t h a psiga rgin, rya nodine, a nd s perm induced C a 2 release

    increa s e during meiot ic ma t ura t ion of mous e oocyt es . J. Biol.

    C h e m .270, 66716677.

    Jones, K. T. , a nd Whit t ingha m, D . G . (1996). A compa ris on of

    sperm-induced and IP 3-induced Ca2 relea s e in a ct iva t ed a nd

    aging mouse oocytes. Dev. B io l . 178, 229237.Jones, K. T., Crutt w ell, C . , Parrington, J . , and Sw ann, K. (1998a). A

    mammalian sperm cytosolic phospholipase-C activity generates

    inositol trisphosphate and causes Ca 2 release in sea urchin egg

    homogenates. FEBS Lett. 437, 297300.

    Jones, K. T., Soeller, C ., and C ann ell, M . B. (1998b). The passage of

    C a 2 a nd fl uores cent ma rkers bet w een t he s perm a nd egg a f t er

    fus ion in t he m ous e. D evelopm ent 125, 46274635.

    Juneja, R., I to, E. , and Koide, S. S. (1994). Effect of serotonin and

    tricyclic antidepressants on intracellular calcium concentration

    in Spisula oocytes. C e l l C a l c i u m 15, 16.

    Juneja, R., a nd Koide, S. S. (1996). Biochemica l path w ays involved

    in serotonin-regulated Spisula oocyt e ma t ura t ion a nd fert i l iza -

    t ion. I nv. Repr. D ev. 30, 4753.Ka da m, A . L . , Ka da m, P . A ., a nd Koide, S. S. (1990). C a lcium

    requirement for 5-hydroxyt rypt a m ine-induced m a t ura t ion of

    Spisula oocytes. I n t . J. I nv. Repr. Dev.18, 165168.

    Keating, T. J., Cork, R. J., and Robinson, K. R. (1994). Intracellular

    free ca lcium os cil la t ions in norma l a nd clea va ge-blocked em-

    bryos and artifi cially act ivated eggs ofXenopu s laevis. J. Cell Sci.

    107, 22292237.

    Kimura, Y., Yanagim achi, R., Kuretake, S., Bortkiewicz , H., Perry,

    A. C. F. , and Yanagimachi, H. (1998). Analysis of mouse oocyte

    activation suggests the involvement of sperm perinuclear mate-

    rial. Biol. Reprod. 58, 14071415.

    Kline, D. (1988). Calcium-dependent events at fertilization of the

    frog egg: Injection of a calcium buffer blocks ion channel open-ing, exocyt os is, a nd forma t ion of pronuclei . D e v . B i o l . 126,

    346361.

    Kline, D. (1996). Activation of the mouse egg. Theriogeneology 45,

    8190.

    Kline, D ., and Kline, J. T. (1992a). Repetitiv e calcium tran sient s and

    the role of calcium in exocytosis and cell activation in th e mouse

    egg. Dev. B io l . 149, 8089.

    Kline, D ., and Kli ne, J. T. (19